
SIAM J. COMPUT.
Vol. 23, No. 1, pp. 1-11, February 1994

() 1994 Society for Industrial and Applied Mathematics
001

COMPUTATIONAL COMPLEXITY OF SPARSE RATIONAL INTERPOLATION

DIMA GRIGORIEVt, MAREK KARPINSKIt, AND MICHAEL F. SINGER

Abstract. The authors analyze the computational complexity of sparse rational interpolation, and give the first
deterministic algorithm for this problem with singly exponential bounds on the number of arithmetic operations.

Key words, computational complexity, interpolation, sparse rational functions, arithmetic operations

AMS subject classifications. 68Q25, 68Q40, 68Q15, 26C15

Introduction. Given a black box to evaluate a t-sparse (a quotient of two t-sparse poly-
nomials) n-variable rational function f with integer coefficients, we can find the coefficients
and exponents appearing in a t-sparse representation of f using (t (nt) log d)1) black box
evaluations and arithmetic operations, and with arithmetic depth (nt log d), where d de-
notes the degree of t-sparse representation of f (see the theorem at the end of 4 for an exact
statement of this result). Although these bounds involve the size ofexponents, this dependency
arises only at the end of our algorithm. The algorithm genuinely produces (i.e., produces in
a way whose arithmetic complexity does not depend on the size of the coefficients of f or
on the degree of f, [19]) a polynomial whose roots are p-powers (for some small p) of the
exponents appearing in a t-sparse representation of f. All known algorithms to find the roots
of this polynomial (even knowing that they are p-powers) have complexities that depend on
the size of the roots. This dependency also occurs in algorithms for interpolating t-sparse
polynomials (cf., [1]) for the same reason.

To find the exponents appearing in some t-sparse representation of a t-sparse univariate
rational function f(X), we proceed as follows: We consider representations of f(X) of the
form (YI=I aiXai)/(l=l biXg) where ai, be, de, fli are real numbers. Such a function is
called a real quasi-rational function. Furthermore, we call such a representation minimal
if it has a minimal number of nonzero terms in the numerator and denominator; it is called
normalized if some term is 1. We show that there are only a finite number of minimal
normalized representations and that the exponents must be integers. We are able to produce a
system T of polynomial equalities and inequalities (whose coefficients depend on the values
of f(X) at O(t) points) that determine all the possible values of any such O and i. Using the
methods of [13], we can then find all O and/3i. To find the exponents when f(X1
is a multivariate polynomial, we show how to produce sufficiently many n-tuples of integers
(vl Vn) such that the exponents of f can be recovered from the exponents of all the
f(X"vl Xpn).

Complexity issues for t-sparse polynomial and rational function interpolation have been
dealt with in several papers. Polynomial (black box) interpolation was studied in [1], [2], [9],
[12], [17], [19], [27], and [28]. For bounded degree rational interpolation (when the bound
on the degree is part of the input), see [15], [16], [25]. Approximative unbound interpola-
tion also arises naturally in issues of computational learnability of sparse rational functions

*Received by the editors January 15, 1991; accepted for publication (in revised form) May 19,1992. A preliminary
version of this paper appeared in 10].

tDepartment of Computer Science, University of Bonn, 5300 Bonn 1, Germany, and Steklov Mathematical
Institute, Fontanka 27, St. Petersburg, 191011 Russia. The author would like to thank the Max Planck Institute in
Bonn for its hospitality and support during the preparation of this paper.

tDepartment of Computer Science, University of Bonn, 5300 Bonn 1, Germany and International Computer
Science Institute, Berkeley, California 97420. The work of this author was supported in part by Leibniz Center for
Research in Computer Science, by the Deutsche Forschungemeinschaft grant KA 673/4-1.

Department of Mathematics, North Carolina State University, Raleigh, North Carolina, 27695-8205. This
author would like to thank the University of Bonn for its hospitality and support during the preparation of this paper.

2 D. GRIGORIEV, M. KARPINSKI, AND M. E SINGER

(cf. [21]). The present authors have previously studied the problem of interpolation of rational
functions in 10], but the algorithm presented there for finding the exponents had consider-
ably worse complexity. The present paper significantly improves the results of that paper by
introducing the notion of a minimal representation (allowing us to compute directly a finite
set of possible exponents instead of just bounding them) and a new technique for reducing
multivariate interpolation to univariate interpolation. As we shall see, these ideas give us a
more efficient algorithm.

The rest of the paper is organized as follows: In 1 we give formal definitions of a
quasi-rational function and related concepts and prove some basic facts about these functions.
In 2 we introduce some useful linear operators on fields of these functions. We use these
operators to derive criteria for a function to be t-sparse. In 3 we use these criteria to give an
algorithm for t-sparse univariate interpolation. In 4 we again use these operators to show how
multivariate interpolation can be reduced to univariate interpolation. Complexity analyses of
the algorithms are also given in 3 and 4.

1. Quasi-rational functions. A finite sum

(1) CIxl

where I (or1 Otn), Oli E (-,, YI Xtl Ytn Ci (is called a quasipolynomial of n
variables. The set ofquasipolynomials forms a ring under the obvious operations and we denote
this ring by C(X1 Xn). The subring of quasipolynomials (1) with oti 6 R and ci 6 R
will be referred to as the ring of real quasipolynomials and will be denoted by N(X Xn).
A ratio of two quasipolynomials (real quasipolynomials) is called a quasi-rational function
(real quasi-rational function). The set of such functions forms a field that we denote by
C((X Xn))(]l((X Xn))). Note that Q(X1 Xn) C R((X1 Xn)). We
use the expressions polynomial or rational function in the usual sense (that is, for a quasi-
polynomial or quasi-rational function with nonnegative integer exponents in their terms).

We say that the quasipolynomial (1) is t-sparse if at most of the c are nonzero. If
a quasi-rational function f can be written as a quotient of a numerator that is tlosparse and
a denominator that is t2-sparse, then we say that f is (h, t2)-sparse. For example, (X
1)/(X- 1) Xm- + + is (2, 2)-sparse and also (m, 1)-sparse. If f is (t, tz)-sparse
but not (tl 1, t2)- or (tl, t2 1)-sparse, we say that f is minimally (h, tz)-sparse. Note
that the above example is both minimally (2.2)-sparse and minimally (m, 1)-sparse. We say
that a representation f p/q is a minimal (h, t2)-sparse representation if f is minimally
(tl, tz)-sparse and p is tl-sparse and q is tz-sparse.

We will need a zero test for (t, t2)-sparse rational functions. This is similar to the well-
known zero test for t-sparse polynomials (cf., [1], [9], 11]). We assume that we are given a
black box for an n-variable rational function f with integer coefficients in which we can put
points with rational coefficients. The output ofthe black box is either the value ofthe function at
this point or some special sign (e.g., "c") if the denominator of the irreducible representation
of the function vanishes at this point. (A representation f g h, g, h C[X Xn], is
irreducible if g and h are relatively prime.)

LEMMA 1. Let f be a (h, tz)-sparse rationalfunction ofn variables, let pl Pn be n
distinctprimes, and let PJ (PJi P/n < j < tl + t2 1. Then f is not identically zero

ifand only if the black box outputs a number differentfrom 0 and cx at one of the points pJ.
Proof. If MI Mt are distinct positive numbers, then any subdeterminant of

the r matrix (M)<_s<_t,x<_jzr is nonsingular (cf. [5]). Since the black box gives output
based on an irreducible representation of f, we see that any zero of the denominator of such
a representation is zero of the denominator of a (h, tz)-sparse representation of f. Using the

COMPLEXITY OF SPARSE INTERPOLATION 3

remark about the matrix (Mj) above we see that the denominator can vanish at (at most) t2
of these points. A similar argument applies to the numerator Therefore, the (tl, t2)-sparse
function f is not identically zero if and only if the black box outputs a number different from
0 and oe at one of these points PJ.

We note that Lemma is not true for quasi-rational functions. For example, let p 2

and f(X) X2,’/,- We then have that f(2i) 0 for all i. If one restricts oneself1,, 2
to real quasi-rational functions, then Lemma 1 is also not true for n > 2. To see this, let

f(X, X2) Xlg25 Xa2g35 and p 2, P2 3. However, we do have a zero test for
univariate real quasi-rational functions. We need such a test, which we state in the following
lemma, for real quasipolynomials only.

LEMMA 2. Let p be a positive real number and let f IR X) be t-sparse. If f(pi 0

for 0 1, then f =- O.
Proof. Let f YI= aiSti, where O Ofj for/ :/= j. Since f(pi) 0 for/

0 t-l,

al 0

p,l pat a2 0

(p,)t-1 (p,)t-1 at 0

Since the C are real, pOti pj if j. Therefore, the above x matrix is nonsingular and
soal --’"--at =0.

If f is a quasi-rational function, we call a representation f g/h, g, h C(X1 Xn
normalized if g or h contains the constant term 1. For an arbitrary representation f /h,
there are a finite number of monomials M such that (,/M)/(h/M) is normalized.

LEMMA 3. (a) Assume that p/q / are normalized representations ofa multivariate
quasi-rationalfunction and assume that p/q is a minimal (t t2)-sparse representation. Then
the Z-module generated by the exponent vectors of p and q is a submodule of the Z-module
generated by the exponent vectors of and .

(b) There exist at most (tl + t2) O(q+t2) minimal (tl, t2)-sparse normalized representa-
tions. Furthermore, for given exponent vectors, the coefficients in the corresponding minimal
representations are unique.

(c) Assume the same conventions as in (a). Then

max{I deg(p)l, deg(q)l} _< 2(t + t2) max{I deg(/5)l, deg(4)l}.

Proof. Let I1 It, be the exponent vectors of p; J Jr2 be the exponent vectors
of q; and let i (respectively, @. }) be the exponent vectors of/3 (respectively, c]). We define
a weighted directed graph in the following way: The vertices of correspond to the t -t- t2
exponents of p/q. Wejoin Ii and J/if Ii + Jj Jj + Ii for some l, j and assign the weight
Ii Jj to the edge (Ii, Jj). We join Ii and Ii if Ii + Jj Ii + Jjl for some j jl and
assign weight @., @. to the edge (Ii, Ii,). Finally, we join Jj and Jj, if Jj. +
for some - i and assign weight ii i to the edge (Jj, Jj).

We claim that is connected when viewed as an undirected graph. If not, let o be
the connected component that contains the exponent vector (0 0). One sees that the
representation po/qo obtained from p/q by deleting all terms with exponent vectors not
belonging to this connected component equals/3/q7. This contradicts the minimality of p/q
and proves the claim.

4 D. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER

To prove (a) and (c), consider a spanning tree 7" of and let (0 0) be the root of 7-.
Any exponent vector Ii (respectively, Ji) equals the sum of the weights along the unique path
connecting Ii, (respectively, Ji) with the root and so lies in the module generated by the Ii
and Ji.

To prove (b), note that the spanning tree above uniquely determines the set of exponent
vectors that can occur in p/q. Therefore, the number of exponent vectors in the numerator
and denominator is at most the product of the number of such weighted trees and (tl+t2) (the
latter value being the number of choices of exponents for the numerator and denominator).
The number of rooted trees with (tl + t2) vertices is at most (tl + t2)O(tl+t2). For a fixed tree,
the number of ways to assign weights of the above form from a fixed set {i }I1 I,_J {. }.2= can

be bounded by (t + t2)O(t+t2) Thus the number of exponent vectors can also be bounded by
(tl -+- t2)O(q +t2).

We now prove the last statement of (b). Assume that Po/qo P/q are two different
minimal (t, tz)-sparse representations with the same exponent vectors in the corresponding
numerators and denominators. For suitable c 6 C, (po cp)/(qo cq) p/q is a represen-
tation that is either (tl 1, t2)- or (t, t2 1)-sparse, contradicting the minimality of (t, t2).
This completes the proof of Lemma 3.

We note that we do not know whether the above bound on the number of distinct minimal
(tl, t2)-sparse representations is sharp. We have the following immediate consequence of
Lemma 3(a).

COROLLARY 4. Any normalized minimal (t, t2)-sparse quasi-rational representation of
a rationalfunction has exponents that are integers.

2. Linear operators. In the following sections it will be useful to consider the actions
of certain linear operators on fields of quasi-rational functions.

DEFINITION. (a) Let Pl p, be distinct prime numbers, and let

nn C((X1 Xn) - C((X1

be the C-linear operator defined by D,(Xi) p.X where the number p is defined to be
e og p; for some fixed branch of the logarithm. When n 1 we will write C({X)) instead of
C X1)) and D instead of D1.

(b) Let 79 C ((X)) C ((X)) be the C-linear operator defined by

d
(x) x-==(x) x.

We first note that given a black box for f, one can immediately construct a black box for
D, f. As we shall see below, this new black box will help us to interpolate f. Dn is used in
a spirit similar to the prime power evaluation scheme of], [9],], and 12]. On the other
hand, we know of no simple deterministic way of constructing a black box for 79f given a
black box for f, i.e., without first interpolating f. In this paper, our main use of 79 will be to

prove that "faithful" mappings of multivariate (t, t2)-sparse rational functions to univariate
(t, t2)-sparse rational functions are abundant. Note also that D, is a homomorphism, i.e.,
D(fg) D, (f)D (g) while 79 is a derivation, i.e., 79(f)g + f79(g). This difference will
force us to deal with these operators separately. We begin by studying D,.

LEMMA 5. (a) Let f C(X1 X), and assume that D, (f) f Then f C.
(b) Let f X) and assume that D(f f Then f .
Proof. (a) If D (f) f, then

F(XI, Xn) f(pX, p, Xn) 2 2f(pX pX,) =....

COMPLEXITY OF SPARSE INTERPOLATION 5

Lemma implies that f(X1 Xn) f(X1 Y1 XnYn) for new variables Y1 Yn.
If f gh, let g yi azXI, h Ej bjXJ. Comparing coefficients of the corresponding
monomials in X and Y we have that, after a suitable reordering., 11 J1, I2 J2 and
azbj ajbI for all I, J. Therefore, f C.

(b) The proof is the same as in (a) using Lemma 2 instead of Lemma 1.
Note that Lemma 5(a) is not true for f R((Xl Xn C C (X Xn)), n > 2.

To see this, let f Nilg25X; 1g35, Pl 2, p2 3. Lemma 5(b) is not true for f e C((X))
2rq’-z-f

since, for p 2, f X ,og2 gives a counterexample.
LEMMA 6. (a) If Yl Ym C(X1 X,), then Yl Ym are linearly dependent

over C ifand only if

WD, (Yl Ym) det
Dn Yl Dn Ym

D’- Yl D’- Ym

(b) If yl Ym IR((X)), then Yl Ym are linearly dependent over IR ifand only if
WD (Yl Ym O.

Proof. (a) If Yl Ym are linearly dependent over C, then we clearly have

WD, (Yl Ym) 0. Now assume that WD, (Yl Ym) 0. In this case there exist

fl fm C(X1 Xn), not all zero, such that

flY1 +’"+ fmYm flDnYl +’"+ frnDnYm flDmn-lyl +...+ fmDmn-lym =0.

We may assume fl 1. Applying D, to each of these equations, we have

DinYl -t- Dn f2 Di y2 +"" + Dn fn DinYrn 0

for n. This implies that

(f2 Dn f2) DnY2 +"" + (fn Dnfm)DnYm 0

for n 1. Either f Df 0 for 2 m, in which case we are done by
Lemma 5, or by induction there exist or2 otto e C, not all zero, such that c2Dy2 + -t-
oxin DYm 0. Therefore, D (ot2y +. + Om Ym 0, so o2y +.. + Om Ym 0. The proof
of part (b) is similar and omitted

Lemma 6 immediately implies the following criterion for a real quasi-rational function
to be (h, t2)-sparse.

LEMMA 7. (a) Let f e C(X1 X). f is (tl, t2)-sparse if and only if there exist

I1 Ih, J1 Jt2 e Z Ii 7 Ij, Ji 7 Jj for :/: j such that

mDn (X1 X/tl XJ’ f, XJ’2 f) 0.

(b) Let f IR (X)). f is (tl, tz)-sparse ifand only ifthere exist otl otto, 1 fit2
IR, oi =/: otj, fli j for :/: j such that WD(Aml Amtl, X f, X’2 f) O.

Proof. (a) f is (tl, tz)-sparse if and only if there exist I1 Its, J1 Jt Z Ii =/=
for j and al,. bl bt2 6 C, not all zero, such that Yi=l ai +
f O. By Lemma " at

this happens if and only if

WD. (XIt XIt, XJ1 f, XJ’2 f) 0.

6 D. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER

The proof of (b) is similar.
We now consider the other linear operator 79 on C((X)). We will need results similar to

Lemmas 5 and 6.
LEMMA 8. If f C((X)) and 79f O, then f C.
Proof. First assume that f ’I=1 aiSti C(S). If 0 79f I=1 ailiSti, then

t=landal=0, sof6C.
Now let f C((X)). f is minimally (tl, t2)-sparse for some (tl,t:). Let f g/h

be a minimal (tl, t)-sparse normalized representation. If Dh 0, then we have just shown
that h C. Since 79f ((Dg)h g79h)/ h2 (79g)/h, so 79g O. Therefore, g 6 C
and so f C. We will, therefore, now assume that 79h 0 and derive a contradiction.
Since (79g)h g79h 0, we have g/h 79g/79h. Since g/h is normalized, 79g/79h is a
(tl 1, t)- or a (tl, t2 1)-sparse representation of f, a contradiction.

LEMMA 9. Ify Ym C((X)), then y Ym are linearly dependent over C, ifand
only if

W(y Ym) det
79Y 79Ym

79m- 1Yl 79m- 1Ym

Proof. Lemma 8 implies that C((X)) is a differential field with constant subfield equal to
C. The result now follows from ([8, Thm. 3.7]).

3. Univariate interpolation. Lemma 7 in 2 allows us to characterize (t, t2)-sparse
rational functions and is the basis of the following algorithm for finding the exponents of a
sparse univariate rational function.

Assume we are given a black box to evaluate a univariate rational function f 6 Q(X),
and assume we are told that it is minimally (t, t2)-sparse. (The general case, in which we are
told only that it is (tl, t)-sparse, is handled below.) Consider the expression

S(pOt, pat,, p, ptz, f(X), f(pX) f(pt+t2-1X))
Wo(X)U’, X f, X’2 f

X", X’ X X’
Note that S is a polynomial in the indicated terms with integer coefficients. Replacing
p’’ p’,, p p’2 with new variables Y,..., Yt+t, we get a polynomial
S(Y1 Yt+t, f(X), f(pX) f(ptt+t2- X)) with at most (tl + t)t+t2 terms in the
variables Y Yt+t2 and multilinear in the black boxes f(X), f(pX) f(pt+t- X).
Since we are looking for the exponents of a normalized minimal (t, t2)-sparse representation
of f, we may assume Y1 1. By Lemma 7(b) (0, c2 ct, 1 t2)]l(tl+t2) will be
a vector of such exponents if and only if

(2) S(1, pO,2 p%, pe, pe,=, f(X), f(pX) 0

(3) 0oi CO,j, /i /3j for - j.

Observe that S as a rational function from (X) is ((tl + t2)2(t’+tz), t’+t)-sparse, hence
by Lemma 1, condition (2) is equivalent to the condition that S is either cx or 0 for X

COMPLEXITY OF SPARSE INTERPOLATION 7

pi, 0 2(tl q-t2 - 1)2(t+t2) 1. For at least (t + t2 - 1)2(t+t2) of these points
(being independent from or2 /3t), 5’ will be zero. Using the black box for f(X), we can
determine a system T consisting of (tl +t2 + 1)2(t +tz) equations in the unknowns Y2 Yt,+t
of degree at most (t +t2); of inequalities 1 - Yi Yj 1,2 _< < j <_ tl, Yi
Yj, tl < < j <_ tl +t2; and of inequalities Y2 >_ Yt,+t >_ that is equivalent
to (2), (3) (for Y2 P’2 Yt+t P’). By Lemma 3(b), T has a finite number of
solutions in]1t+t2-1 Note that Corollary 4 implies that these solutions are integers. We
can apply the algorithm of [13], [14] (cf. also [1]) to this system and find these solutions

with ((t + t2) (t+t) log d) () arithmetic operations and depth ((t + t2)log d)(), where d
is the maximum of the exponents or2 /t. Note that the algorithm of [13], [14] will
yield a polynomial satisfied by these p-powers with (tl + t2)O(t+t2) arithmetic operations and
(t +t.) o(1) depth. As we noted in the introduction, the dependence on d ofthe final complexity
is introduced when we find the roots of this polynomial. One can find these roots as in [23]
or more simply by considering the powers of p that divide the coefficients. We remark that
this algorithm also implies that there are at most (t + t2) O(t+t2) solutions [cf. Lemma 3(b)]
and that these solutions p p’ are bounded by pa < exp(M(t + t2)(t+tz), where M
is bound on the bitsize of the values yielded by the black box when we evaluate f(pi+j) for

0 t + t2 1, j 0 2(t + t2 + 1)2(t+t2) l. Hence, the exponents c2 flt
of the rational function f do not exceed d < M(t + t2) O(t+t2). Notice that the algorithm
can find the exponents ct2 flt in ((t + t2) (t+t2) log d)o() arithmetic operations with the
depth ((tl + t2) log d) (1).

We can find the coefficients by solving a system of linear equations gotten from

biX f(X) _,aiX
i=1

by letting X pJ, j 0, tl + t2 1. Note that Lemma 3(b) implies that this system
will have a unique solution. This can be found with (tl + t2) O(1) arithmetic operations with
depth (log(t1 + t2)) O(1), since to set up this system one has to compute powers pi, p., which
were computed above.

Turning to the general case, where we are told only that f is (tl, t2)-sparse, we proceed
as follows: We consider all pairs (t’1, t) with < < tl, < 2 < t2 and use the above
algorithm for these pairs. The first time that the above algorithm yields a nonempty set of
solutions, we are guaranteed that, for this (t’ t), f has a minimal (t t)-sparse representation
and that the algorithm has yielded the exponents and the coefficients.

4. Multivariate interpolations. Let f(X1 Xn) Q(X1, ..-, Xn) be a minimally
(tl, t2)-sparse rational function given by a black box. We shall show in this section how
the problem of finding the exponent vectors of f can be reduced to the univariate case. In
particular, we shall show that the set of vectors , (vl Vn) C such that f,(X)
f(X’ Xn) is not minimally (tl, t2)-sparse is a small set V. We will then show that if
we find the exponents of f, for sufficiently many v V, then we can recover the exponents
appearing in f.

LEMMA 10. Let f(X1 Xn) be a minimally (tl, t2)-sparse rational function and let
v Vn C be linearly independent over Z. Then f(Xv Xn) is minimally (tl, tg.)-
sparse.

Proof. Let/3(X)/I(X) be a minimally (/’1,/’2)-sparse representation of f(X Xn)
with/’ < t,/’2 < t2. By Lemma 3(a), we may assume that/3, 4 C[X X]. Since
the map sending A’ to Xi induces an isomorphism of C(W’ X) onto C(X Xn),
we get a (/’1,/’.)-sparse representation of f(X1 Xn). Therefore,/’1 tl, and [2 t2.

8 D. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER

LEMMA 1. Let f be a minimally (t, t2)-sparse rationalfunction with integer coefficients.
The set V of vectors v, C such that fu is not minimally (t, t2)-sparse lies in the union of
at most (t + t2) O((tl+tz)n) hyperplanes determined by linearforms with integer coefficients.

Proof We will first show that V is defined by a set ofpolynomial equalities and inequalities
with coefficients in Q (i.e., V is a Q-constructible set). Let V Vn be variables. We
shall write down conditions on V1 Vn so that f(Xv’ Xv") is (t 1, tz)-sparse.
These conditions will be used to determine a set W(1). Similar conditions can be derived
for f(Xv’ Xv") to be (t, t2 1)-sparse and used to determine a set]/V(2) Thus W
W(1 tO W(2. Lemma 9 implies that f(Xv’ Xvo is (t 1, tz)-sparse if and only if there
exist c1 oft1-1,/31 /t2 6 C such that ci - cj,/i -/3j. for -J: j, and

(4)

$7) (o/1 otl-1,/1 /t2, f(Xv’ xV") Dtl-t-t2--2 f(Xv’ xV"))
W79 X’ X%-1, Xel f Xv, xV, X,2 f Xv, xV,)1

When we clear the denominator of (4), we will get a linear function in expressions of the
form Xzaivi with coefficients Ca, where a (al an) 6 Zn, that are polynomials in

01 Ot,-1, /1 /t2, V Vn with integer coefficients. Observe that there are at most

(t + t2) O(t’+t2) distinct powers XzaiVi that can appear.
For any pair y. aiVi, _, biVi of distinct exponents, let La,b Y(ai bi)Vi. Lemma 9

states that for any choice (v Vn) C such that La,b(Vl vn) k O, f is (tl 1,/2)-
sparse if and only if there exist otl at,-1, fll fit2 6 C such that all the Ca considered
above vanish. Let be the formula, from the language of algebraically closed fields, with
bound variables oil oft,_1, fl fit2 and free variables V1 Vn, that express this latter
statement. This formula contains at most (t + t2) {t+t2) polynomials, each of degree at most
(tl + t2)2.

Applying the results of [6] (see also [4]), we can eliminate quantifiers and get a quantifier-
free formula q in variables V1 Vn equivalent to . Furthermore, the polynomials occur-
ring in q have degrees at most (tl + t2) ((t’+tz)n) and there are at most (t + t2) {{t’+t2)") of
these. This formula determines a constructible set 1420 C Cn. As it was shown previously,
the symmetric difference (IA;{1)\W0) tO (1/V0\I/V{1)) lies in a union of all (t + t2) O(t’+t2) hy-
perplanes of the kind La,b for the integer vectors a, b considered above. From Lemma 0, we
know that for each point (Vl vn) W there exists a relation zin=l /i l)i 0 for suitable
integers ?’1 ’n not all zero. From Lemma 12 of the appendix we know that each irre-
ducible component of W0 (and also of W) lies in a hyperplane. Therefore, W lies in the union
of at most (tl + t2)o((t +tz)n) hyperplanes determined by linear forms with integer coefficients.

We now proceed to describe an algorithm to find p-powers ofthe exponents of a minimally
(tl, tz)-sparse normalized rational function f.

For any c > 0 using the construction from ([or 12], Lem.), one can explicitly produce,
for suitable cl > O, C2 > O, N (tl + t2)c(t’+t2)n vectors l}(i) (l)li) l)n(i) < < N
where the integers 1 < I)j(.i) (tl -}- t2)c2(t+t2)" such that for any family of (tl + t2)c(t’+t2)n

hyperplanes (containing the origin) at least n of these vectors lie in none of these hyperplanes
and any n of these vectors are linearly independent. We take c > 0 such that the number of
hyperplanes in Lemma 11 is at most (tl -+- t2)c(t+t2)n (SO for the algorithm we have only to
estimate explicitly constant c once and forever) and apply to this c the construction mentioned
above. For each of the vectors /.(i) produced in this way, use the algorithm from 3 to find

ti) <_ tl, ti) <_ t2 such that the rational function f,,;, 6 Q(X) has a minimal (ti), ti))-sparse
representation. By Lemma 11 and the construction of the ,{i}, there exist at least n vectors

COMPLEXITY OF SPARSE INTERPOLATION 9

among the V(i) (without loss of generality we let them be V(1) p(n)) such that fv<i) is
minimally (tl, t2)-sparse for all _< _< n. Using the algorithm from 3 we find p-powers
of the exponents of all normalized (t, t2)-sparse representations of fv,) for each _< _< n
(recall that there are at most (tl + t2)O(tl q-t2) of these). For each fw), 1 < <_ n, pick out one

set of such p-powers of the exponents pU(,i) p’i pli) p2 For eachi, 1 <i <n,
we also pick out two permutations 7/"(i) E t.tl and if(i) E t.t2, where Sm is the permutation
group on rn elements. For every ji, < jl < tl, the algorithm solves the p-power form of a
linear system

(5) k=l

l<i<n

and for every j2, < j2 < t2 a system

(6)
n (i) z(kJ2) P

ti)
p/.vk

a(i) (j2)

k=l

<i<n.

Using [22] the algorithm produces the inverse matrix (lzi)ilz), where/zi),/z 6 Z, to

(i),,n n matrix (v, which is invertible because of the construction of the vectors v i). Then

(i) (i)
//k O7r (i)

plZYJl) pl<i<n (J)

and the algorithm computes the right side of this equality. The algorithm also computes
"(J2)

p’Lk The vectors yl) (y(1) yl)) yet,) (y(tl) Yn(t)) and Z1)

(Z),..., Z()),..., Zt2) (Zt2),..., Z(nt)) are considered as candidates for being ex-
ponent vectors in the numerator and denominator of a (tl, t2)-sparse representation of f. The

algorithm represents them by pU’j) <2)
p’k The algorithm tests whether Y(J) Y(I), Z(j)

Z) for j 1. Then the algorithm tests whether these candidates fit. For this aim consider
the linear system

(7)

(i)

l<i<t, i p(Y(’)l pyni)l Z1 <i<t2 lPiPZ’li)l pZ,, ,,,,jtpllZl pl),
_< _< 2(t + t)

in the unknown coefficients)i, lPi of the (tl, t2)-sparse representations of f currently being
/zltested. (In (7) we skip the equations for which f(pi Pn cxz.) Lemma implies

that (7) is solvable if and only if exponent vectors Y(J), Z(j) fit. Here we apply Lemma
but probably not to rational functions, since the exponents v(i) (i)., Zk could be rational; it is,
however, still valid when the variables Xi -- f, < < n are replaced.) If (7) is solvable,
then yi), z(i) are integers because of Lemma 3(a). Moreover, it has a unique solution by
Lemma 3(b). This completes the description of the algorithm for f as minimally (tl, tz)-
sparse. To treat the case when we are told only that f is (t, tz)-sparse, we proceed as in

3.
Now we proceed to the complexity bounds. Let us assume we are given the black box for

a (t, tz)-sparse rational function. The algorithm produces (t + t2) (t+tz)n) integer vectors v(i)

10 D. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER

and, for each of these, applies the algorithm from 3 to the univariate rational function f,.
This part of the algorithm requires ((tl + t2) (t+t2)n log d)01) arithmetic operations with depth
((tl + t2)n log d)1). The algorithm then selects, for each i, 1 < < n, some (tl, t2)-sparse
representation of f,i and also two permutations zr i), tr i). This is again within the same
bounds. The algorithm then solves (tl + t2) O((t+t2)n) p-power forms of linear systems of type
(5) and (6). To invert n x n matrix (vi)), n1) arithmetic operations are used with depth

log) n. Since lZ(ki) lZ < (t + t2) O((t+t2)n2) computation of pV pJ ;2p can be done
within the same complexity bounds. The same applies to solving system (7). If we are told
only that f is (tl, t2)-sparse, the additional search required by the algorithm does not change
the complexity.

We are also able to give some bounds on the degree d of a sparse representation. Assume
that A is a bound for all the exponents o)i) /j(.i) found for the univariate rational functions fti)
(such a bound can be found using the techniques of 3). We can then bound d by looking at
p-power forms of the linear systems (5) and (6); in fact, d < A(q + t2) O((t+t2)n2). Thus, we
can formulate the main result of the paper, which is given in the following theorem.

THEOREM. (a) One can construct some (tl, t2)-sparse representation

ffi) :(i) k(i)
k(i)Z aiX1 ""XJnn / biX’ ""Xn

<i<t <i <t2

of (tl, t2)-sparse rationalfunction f in ((t + t2) (t’+t)n log d)o arithmetic operations with
the depth ((t 4- t2)n log d)().

(b) The exponents j(l i) ki) do not exceed d _< M(t 4- t)o((tl +tz)n:z) where M is the bound
on bitsizes ofall the outputs ofapplications ofa black box during the computation.

Appendix. For the convenience of the reader, we give a short proof of the result about
complex varieties that was needed in the proof of Lemma 11. This result is true for varieties
over any algebraically closed field of characteristic 0, but the proof is more complex and
depends on the Hilbert Irreducibility Theorem instead of on elementary topological notions.

LEMMA 12. Let)/V be an irreducible constructible set in Cn (i.e., a constructible set

whose Zariski closure is irreducible). Assume thatfor each v (v l)n) 42 there exist

F1 Fn Z, not all zero, such that Y’]in= Fi l)i O. Then there exist Z, not

all zero, such that -in= i vi 0for all (vi
Proof. If]/V has dimension 0, then it is a point and we are done. Therefore, assume

dimV > 0 and let YV be its Zariski closure. Since 142 is constructible, it can be written
as a finite union of sets Wi, each of which is Zariski open in its Zariski closure I/V. Since
)/V is irreducible, we must have that for some i,)/V "i. Therefore V contains a set
79 that is Zariski open in V. Since the nonsingular points of V are Zariski dense, there
exists a point u 6 A; that is nonsingular in kV (i.e., a point where the Jacobian of a suitable
system of defining equations has maximal rank). We select a sufficiently small e such that

W W {xlllx- ull _< e} will be closed in the usual topology and contain an open
subset of)/V. For each (F Fn) 6 Zn, not all Fi zero, let He
"1ZiL1 /il)i 0}. Since V is closed, the Baire Category Theorem ([24, p. 139]) implies
that for some (7 Tn), H, , contains an open subset ofW (and so, ofV). Therefore,

dim(H, p,)4;) dim)4;. Since)/V is irreducible, we must have dim(H
(cf. [26, p. 54]) so W c__ H p,.

Acknowledgment. We are indebted to Volker Strassen for motivating the problem and a
number of stimulating discussions.

COMPLEXITY OF SPARSE INTERPOLATION 11

REFERENCES

M. BEN-OR AND P. A. TIWARI, A deterministic algorithmfor sparse multivariate polynomial interpolation, Pro-
ceedings ofthe 20th Annual Symposium on Theory ofComputing, Association for Computing Machinery,
New York, 1989, pp. 301-309.

[2] A. BORODIN AND P. A. TIWARI, On the Decidability ofSparse Univariate Polynomial Interpolation, Res. Report
RC 14923, IBM T. J. Watson Research Center, New York, NY, 1989.

[3] A.L. CHISTOV, An algorithm ofpolynomial complexityforfactoring polynomials andfinding the components

ofa variety in subexponential time, J. Soviet Math., 34, 4 (1986), pp. 000-000.
[4] A. L. CHISTOV AND O. YU. GRIGORIEV, Complexity of quantifier elimination in the first-order theory of alge-

braically closedfields, in Lecture Notes in Computer Science 176, Springer-Verlag, New York, 1984, pp.
17-31.

[5] R. J. EVANS AND I. M. ISAACS, Generalized Vandermonde determinants and roots of unity ofprime order, in
Proc. Amer. Math. Soc., 58 (1976), pp. 000-000.

[6] N. FITCHAS, A. GALLIGO, AND J. MORGENSTERN, Sequential and parallel complexity boundsfor the quantifier
elimination ofalgebraically closedfields, J. Pure Appl. Algebra, 67 (1990), pp. 1-14.

[7] D. Yu. GRIGORIEV, Factoring polynomials over a finite field and solving systems of algebraic equations, J.
Soviet Math., 34, 4 (1986), pp. 1762-1803.

[8] Complexity ofdeciding Tarski algebra, J. Symbol. Comput. 5 (1988), pp. 65-108.
[9] O. Yu. GRIGORIEV AND M. KARPINSKI, The matching problemfor bipartite graphs with polynomially bounded

permanents is in NC, in Proceedings of the 28th Annual Symposium on the Foundations of Computer
Science, Institute for Electrical and Electronics Engineers, New York, 1987, pp. 166-172.

10] D. Yu. GRIGORIEV, M. KARPINSKI, AND M. SINGER, Interpolation ofsparse rationalfunctions without knowing
bounds on exponents, in Proceedings of the 31 st Annual Symposium on Foundations of Computer Science,
1990, pp. 840-847.

11 Fast parallel algorithms for sparse multivariate polynomial interpolation overfinite fields, SIAM J.
Comput., 19 (1990), pp. 1059-1063.

12] The interpolation problemfor k-sparse sums of eigenfunctions of operators, Adv. in Appl. Math., 12
(1991), pp. 76-81.

13] D. Yu. GRIGORIEV AND N. N. VOROBJOV, Solving systems ofpolynomial inequalities in subexponential time, J.
Symbol. Comput., 5 (1988), pp. 37-64.

[14] J. HEINTZ, M.-E RoY, AND P. SOLERNO, Complexitd du principe de Tarski-Seidenberg, C.R.A.S. Paris, t. 309
(1989), pp. 825-830.

15] E. KALTOFEN, Uniform Closure Properties of P-computable Functions, Proceedings of the 18th Annual Sym-
posium on Theory of Computing, Association for Computing Machinery, New York, 1986, pp. 330-337.

16] E. KALTOFEN AND B. TRAGER, Computing withpolynomials given by black boxesfor their evaluations: Greatest
common divisors, factorization, separation ofnumerators and denominators, in Proceedings of the 29th
Annual IEEE Symposium on the Foundations ofComputer Science, Institute for Electrical and Electronics
Engineers, New York, 1988, pp. 296-305.

17] E. KALTOFEN AND L. YAGATI, Improved Sparse Multivariate Polynomial Interpolation, Report 88-17, Dept. of
Computer Science, Rensselaer Polytechnic Institute, New York, 1988.

18] I. KAPLANSKI, An Introduction to Differential Algebra, Hermann, Paris, 1957.
19] M. KARPINSKI, Boolean circuit complexity ofalgebraic interpolation problems, In Proc. CSL’88, Lecture Notes

in Computer Science 385, Springer-Verlag, New York, 1989, pp. 138-147.
[20] M. KARPINSKI AND F. MEYER AUF DER HEIDE, On the complexity ofgenuine polynomial computation, in Proc.

15th MFCS, Lecture Notes in Computer Science 452, Springer-Verlag, 1990, pp. 362-368.
[21 M. KARPINSKI AND Z. WERTHER, VCDimension andLearnability ofSparse Polynomials andRational Functions,

SIAM J. Comput., 22 (1993), pp. 1276-1285.
[22] K. MULMULEY, Afastparallel algorithm to compute the rank ofa matrix over an arbitraryfield, in Proceedings

of the 18th Annual Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1986, pp. 338-339.

[23] V. PAN AND J. REIF, Somepolynomial and Toeplitz matrix computations, in Proceedings ofthe 28th Annual IEEE
Symposium on the Foundations of Computer Science, Institute for Electrical and Electronics Engineers,
New York, 1987, pp. 173-184.

[24] H.L. ROYDEN, Real Analysis, 2nd ed., MacMillan, New York, 1971.
[25] V. STRASSEN, Vermeidung yon Divisionen, J. Reine und Angewandte Math., 65 (1973), pp. 182-202.
[26] I. SHAFAREVICH, Basic Algebraic Geometry, Springer-Verlag, New York, 1977.
[27] R. E. ZIPPEL, Probabilistic algorithms for sparse polynomials, in Lecture Notes in Computer Science 72,

Springer-Verlag, New York, 1979, pp. 21 6-226.
[28] Interpolation polynomialsfrom their values, J. Symbol. Comput., 9 (1990), pp. 375-403.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 12-23, February 1994

() 1994 Society for Industrial and Applied Mathematics
002

TIGHT UPPER AND LOWER BOUNDS ON THE
PATH LENGTH OF BINARY TREES*

ALFREDO DE SANTIS AND GIUSEPPE PERSIANO

Abstract. The externalpath length of a tree T is the sum of the lengths of the paths from the root to each external
node. The maximal path length difference, A, is the difference between the lengths of the longest and shortest such
paths.

Tight lower and upper bounds are proved on the external path length of binary trees with N external nodes and
maximal path length difference A is prescribed.

In particular, an upper bound is given that, for each value of A, can be exactly achieved for infinitely many values
of N. This improves on the previously known upper bound that could only be achieved up to a factor proportional to
N. An elementary proof of the known upper bound is also presented as a preliminary result.

Moreover, a lower bound is proved that can be exactly achieved for each value of N and A <_ N/2.

Key words, binary search trees, path length

AMS subject classifications. 68P05, 68P10

1. Introduction. Binary trees constitute the most important and widely used data struc-
ture for the storage and retrieval of information. The cost of accessing information stored
in a node is proportional to the distance of the node from the root. An important measure
of efficiency, often considered with respect to a binary tree T, is its external path length
EXTERNAL(T), which is the sum of the distances of the external nodes from the root as this
is related to the average cost of an unsuccessful search in the tree T. Moreover, the external
path length of T is related to the internal path length INTERNAL(T), which is the sum of the
distances of the internal nodes from the root and corresponds to the average cost of a successful
search in the tree T.

It is well known that the external path length of a binary tree with N external nodes is
(R)(N lg N) in the best case but can be as bad as (R)(N2) in the worst case. The large gap
between the best and the worst cases motivates the study of this important quantity when some
additional information about the tree is available. Nievergelt and Wong [7] proposed an upper
bound for the external path length of a tree T in terms of the number of external nodes and the
maximum weight balance of all its subtrees. More recently, Klein and Wood [5] obtained an
upper bound that requires much less information about the tree. Namely, they derived an upper
bound on the external path length of a T in terms of N, the number of external nodes, and
A, the maximum of the differences of the lengths of the paths from the root to each external
node. In the case A < x/, they also constructed trees whose external path length is within
O(N) from their upper bound.

In this paper we continue and extend the work of [5]. We present an upper bound on
the external path length of binary trees with N nodes and maximum path length difference A
and construct an infinite class of trees whose external path length matches our bound exactly.
Moreover, we present a lower bound on the external path length of these trees. For the case
A < N/2, there exist trees whose external path length matches exactly our bound.

*Received by the editors April 4, 1991; accepted for publication (in revised form) June 2, 1992.
tDipartimento di Informatica ed Applicazioni, Universit di Salerno, 84081 Baronissi (Salerno), Italy. Part of

this work was done while the author was visiting IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, New York 10598. This author’s research was partially supported by the Italian Ministry of University and
Scientific Research (MURST) and National Research Council (CNR).

tAiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138. Part of this work was
done while the author was visiting AT&T Bell Laboratories, Murray Hill, New Jersey 07947. This author’s research
was partially supported by National Science Foundation grant NSF-CCR-90-07677.

12

PATH LENGTH OF BINARY TREES 13

1.1. Organization of the paper and summary of the results. In this paper we study
the path length of (N, A)-trees, which are extended binary trees with N external nodes and
maximum path difference A.

In 2 we set up our notation and recall some elementary facts about binary trees.
In 3, we present our upper bounds. As a preliminary result, in 3.1 we give a simple

derivation of the upper bound presented in [5]. In 3.2 we improve on this result by giving a
better bound that, for each A, can be exactly achieved for infinitely many N.

In 4 we present our lower bound. We exactly compute, for each N and A _< N/2, the
external path length of the tree with shortest external path length. Our lower bound is the first
lower bound to improve on the banal lower bound obtained by considering the binary tree with
external nodes on two consecutive levels, which has the shortest external path length among
the trees with the same number of external nodes.

2. Background and notation. In this section we set up our notation and recall some
elementary facts about binary trees.

We denote the set of the natural numbers by A/’, the set of the positive natural numbers by
./V"+, and the set of the positive real numbers by 7Z+. The writing [x denotes the least integer
greater than or equal to x. Throughout this paper, the writing lg x denotes the logarithm to
base 2 of x.

All the trees considered in this paper are extended binary trees. An extended binary tree
is obtained from a binary tree by adding special nodes, the external nodes, so that every node
in the binary tree has exactly two children. The originary nodes of the binary tree are also
called internal nodes.

We say that an external node e is at level of a tree T if the length of the (unique) path
from the root to e is 1. Let T have N external nodes at levels [1 IN. Then, the external
path length of T, EXTERNAL(T), is defined as

N

EXTERNAL(T) 1;.
i=1

The internal path length of a tree INTERNAL(T) is defined as the sum of the levels of the
internal nodes.

The maximum path length difference of T, FRINGE(T), is defined as

FRINGE(T)- max li- min lj.
I<i<N I<j<N

Also, a level (other than the last one) is said to be dense if it has more than one external node,
while the last level is dense if it has more than two external nodes. An (N, A)-tree is a binary
tree with N external nodes and maximum path length difference A.

For 2 < A < N 2 define epl(N, A) and EPL(N, A) as

epl(N, A) min EXTERNAL(T)
T is a (N, A)-tree

and

EPL(N, A) max EXTERNAL(T).
T is a (N, A)-tree

In this paper we give bounds on epl(N, A) and EPL(N, A). We restrict our attention to
the cases when 2 < A < N 2 since if A > N 2 then there exists no (N, A)-tree and the
cases A 0, 1 can be completely characterized (see 4).

14 ALFREDO DE SANTIS AND GIUSEPPE PERSIANO

The following is a simple and well-known result about extended binary trees (see, e.g.,
[4]) that will be extensively used in the sequel.

FACT 2.1 (Kraft equality). Let 1 IN be a sequence ofpositive integers. Then there
exists an extended binary tree with N external nodes at levels 1 lN if and only if

2-li

We shall say that a (N, A)-tree T has configuration (L; a0, a a) if
1. a0, azx > 1;
2. T has ai external nodes at level L + i, 0 < < A; and
3. -.iA=oai N.

Two (N, A)-trees with the same configuration are said isomorphic, as for our purposes they
are the "same" tree. In what follows, we will omit L from a configuration when it is either
clear from the context or immaterial.

3. Upper bounds. In this section we present upper bounds on EeL(N, A). The problem
of computing EPL(N, A) can be stated as follows:

Find the maximum of Y-.iN= li subject to
1. li E .Aie+ for N;

2-ti= 1" and
3. max/li mina/ A.

Because of the constraints l; E A/"+, finding the exact maximum does not appear to be an
easy task.

3.1. A simple proof of a known upper bound. Recently, Klein and Wood [5] proved
the following upper bound on EPL(N, A).

BOUND 1.

EPL(N, A) _< N(lg N + A lg A q(A))

where

(A) lge- lglge
2x - > 0.6622,

and e is the base of the natural logarithm.
In [5], the bound above is derived by first proving that the external path length is related

to the ratio of the geometric and the harmonic means of certain integers and then applying a
theorem by Specht [8]. In this section, we re-derive Bound using only elementary calculus.

We obtain an upper bound on EPL(N, A) by allowing the li’s to range over the real
numbers.

To this end, for 2 < A < N 2, we define M(N, A, x) as the maximum of /N=I li over
the sequences ll lN satisfying the following constraints

1. li 7a,.+, for 1,2 N;
2-ti= 1" and2. iN=l

3. X <_ li <_ x + A, for 1,2 N.
A triplet (N, A, x) for which there exists a sequence N that satisfies the three con-
straints above is called admissible.

It is clear that an upper bound on the external path length of binary trees is given by

(1) EeL(N, A) _< max{M(N, A, x)l(N, A, x) is admissible and x

The following lemma gives a useful characterization of the maximum M(N, A, x).

PATH LENGTH OF BINARY TREES 15

LEMMA 3.1. Let (N, A, x) be an admissible triplet. The maximum M(N, A, x) is
achieved by a sequence ll, 12 In where all the li’s, but at most one, are equal either
tox orx +A.

Proof. Assume, by way of contradiction, that the maximum is reached by l’, l lv
such that x < l’ < l < x + A. Fix > 0, and define the sequence l’, l’ 1 as

l’- if/-- 1,

l’-- l+ if/=2,

l otherwise,

where is chosen so that the Kraft equality holds; that is, 2-l’l + 2-l’ 2-l’ + 2-l’ and thus
B lg(1 + 2/’t-/(1 2-)). Notice that for sufficiently small values of (i.e., < min{x +
A l, l’ x}), l’ and l’ are both in [x, x + A]. Since the function x lg(1 + 2/-/’, (1 2-x))
is increasing in x and is equal to 0 for x 0, it is positive for x > 0, and thus > 3 holds.
Therefore, if < min{x + A l, l’ x }, the sequence l’(l satifies the three constraints

in the definition of M(N, A, x) and iN=l lff > z/N=I l, contradicting the maximality of

The following lemma provides an upper bound on the maximum M(N, A, x).
LEMMA 3.2. Let (N, A, x) be an admissible triplet. Then

N- 2x
M(N, A,x) < Nx + A 2_-.

Proof. By Lemma 3.1, the maximum, is achieved when lm X -[- A,
lm+l X + y and lm+2 IN x, for some < m < N and 0 < y < A. By the Kraft
equality, we get

m N-m-1

2x+---- + + 2x
1,

from which we see that m is uniquely specified by N, A, y, and x. The maximum M(N, A, x)
is thus given by

M(N, A,x) n m(x + A) + (x + y) + (N m --1)x

=mA+Nx+y
N- 2

Nx+A
--2-zx +y--A

2-y

-2-zx"

The function f(y) y- A(1 2-Y)/(1 2-zx) is a convex function of y with f(0) 0
and f(A) 0. Thus f(y) <_ 0 for 0 _< y _< A. Hence the lemma is proved. [3

We are now ready to prove Bound 1.
THEOREM 3.3.

EPL(N, A) _< N(lg N + A lg A P (A))

where
A

q(A) lge--lglge
2x 1

and e is the base of the natural logarithm.
Proof. Combining Lemma 3.2 and (1) we get

(2) EPL(N, A) < max [Nx +A
xETZ+

16 ALFREDO DE SANTIS AND GIUSEPPE PERSIANO

The function to maximize is a concave function of x. It can easily be seen, using elemen-
tary calculus, that it reaches its maximum (for fixed values of N and A) at Xma lg N+
lg(1 2-zx) + lg lg e lg A. Substituting this into (2) we get Bound 1. [

3.2. An improved upper bound achievable by infinitely many values. In the previous
section all maximizations were carried over the real numbers. Now, we show that by restricting
x to be an integer we get a better bound. The bound presented in this section improves on
Bound on two accounts: first, it is more accurate; second, for each value of A, it can be
exactly achieved for infinitely many values of N.

BOUND 2. Let L [lg(N(1 2-X)/A)]. Then

N-2L

EPL(N,A) <NL+A
1-2-.

Moreover, for each A there exists an infinite subset N’A

N" such that for each N N’A there

exists a (N, A)-tree TN, with

N-2L

-2-zx"EXTERNAL(T<N, NL + A

Proof. From the analysis in 3.1, it is clear that an upper bound on the external path length
of binary trees is given by

From Lemma 3.2 we get

EPL(N, A) _< max M(N, A, x).
E./’+

EeL(N, A) < max x (X)
X E.//. ,A

where

dPN,,, (X) Nx +A
N 2

-2-A"

Let Y e N"+ be an integer at which N, (X) is maximum; i.e,

(3) u A (Y) max N 6 (X).
E.,/f"+

As N, (X) is a concave function of x, any integer such that

N,’, () > max dPN, (+ 1), *N,A (1)

satisfies (3). From the definition of N, (X), we obtain that any Y such that

-2-6 -2-zx
<2 <2N

A A

satisfies (3). However, N(1 2-zx)/A is not an integer power of 2; if it were equal to 2z,
for some z 6 Af+, then 2zx 1 would be a factor of A2z-A, thus of A, which is impossible.
Hence, the above inequalities uniquely determine 2 as 2 [lg(N(1 2-zx)/A)], proving the
bound.

PATH LENGTH OF BINARY TREES 17

Now, we prove that the bound is achievable. Let A and x be positive integers such that
2 < A < x. Set

/ 2-zx
h .x (Y) lg |(2 + y(2zx- 1))).

The function h ,x enjoys the following three properties.
(a) h ,x (1) < x. Indeed, this inequality is equivalent to

2 > (2A- 1)2/(2A(A- 1)+ 1)

that is satisfied for x > A.
(b) h ,x 2x 1) > x. Indeed, this can be written as

2 > (2A 1)2/(2/x(2A

that is satisfied for x > A > 2.
(c) h .x (Y + 1) < h,x (Y) + 1, for y 1, 2 2x 1. Indeed, simple algebra shows

that it is equivalent to y > 1 2x/(2A 1), which holds for y > 1.
Because of the above three properties, for each A > 2 and x > A, there exists some Y,,,x
1, 2 2 such that h,,,x (Y,,.x) < x < h,,,x (Y,,,x) + 1. (Actually, there can be several
such Y,,,x s, for instance, if A 5 and x 10, all integers s 6 [53,137] satisfy hs,10(s) <
10 < hs,0(s) + 1.)

For each A > 2, consider the infinite setN’ {N" 3L > A s.t. N 2c +(2zx- 1)y,L}.
Fix A and N N’, and consider the (N, A)-tree T with 2c y,L external nodes at level L
and y, 2zx at level L + A, where L is such that N 2c +(2zx 1)y,L. First of all, such a tree

exists. In fact, as y, < 2c 1, it follows 2c y, > 0 and the Kraft equality is satisfied.
From the definition of y, we obtain

h .,. (y,,.,) < L < h,,.z. (Y,,.,.) + 1,

and by the definition of the function h,

(’-2-x) (1-2-zx)_<L<lg Nlg N
A A

from which L [lg (N(1 2-/X)/A) follows.
We now compute EXTERNAL(T) which turns out to be exactly as in Bound 2. In fact, one

has that

2ZX(L + A)EXTERNAL(T) L(2

NL + y, A2’
N-2c

NL+A
-2-6.

It is clear that Bound 2 is more accurate than Bound 1. In fact, for every A > 2 and
N > A, (1) is the absolute maximum ofthe function ’N,,, (X) Nx + A(N-- 2x)/(1 2-’x),
while (2) is the maximum of the same function subject to the additional constraint x 6 jV"+.

Example 1. As an example, consider the case A 5. There are binary trees which satisfy
Bound 2 with equality for N 2c + 31y, where L 10 and y 53 137, L 11 and
y 105 274, L 12 and y 209 549, L 13 and y 418 1099, and so
on for all larger L.

18 ALFREDO DE SANTIS AND GIUSEPPE PERSIANO

Example 2. By plugging A 2 into Bound 2, we obtain that

[8N 2[lg(3N)]
EPL(N, 2) _< ([lg (3N)] 3) N +

3

Actually, it can be proved that the above bound is tight for all values of N (see [2], [3]).
Example 3. As a simple application of the Bound 2, we derive an upper bound on the

internal path length of red-black trees. The class of red-black trees constitutes an important
class of balanced binary trees that guarantee a worst-case search cost of 2 log(N + 1). The
bound we obtain is, up to terms of lower order, equal to the one presented in 1] that was
proved to be asymptotically tight.

The bound is obtained by observing that a red-black tree has FRINGE < log(N + 1) and
that Bound 2 is increasing in A.

BOUND 3. Let T be a red-black tree with N internal nodes. Then

INTERNAL(T) < (N + 1)(21g(N + 1) lglg(N + 1) + O(1)).

We refer the reader to [3] for a proof of the above bound.

4. Lower bound. In this section we present a lower bound that can be exactly achieved
for N > 4 and 2 _< A < N/2.

Before dealing with the general case, let us briefly discuss the cases A 0 and A 1
(see [6] for a more complete treatment). The case A 0 is easily settled: a (N, 0)-tree exists
if and only if N is a power of 2, in which case the N external nodes are located at level lg N
and the tree is unique. On the other hand, a (N, 1)-tree exists if and only if N is not a power of
2, in which case it is unique. The external nodes of the unique (N, 1)-tree are located at levels
[lg N] and Jig N], and its external path length is N([lg N] + 1) 2[lgN] The following
property of (N, 1)-trees can be easily proved using the Kraft equality.

LEMMA 4.1. If the (N, 1)-tree exists and has c > 0 external nodes at level [lg N]
then N + c is a power of 2 and, due to c < N, none of the integers in IN, N + c is a

power of2.
Let us now consider the case A < N/2 and N > 4. We start by characterizing the

(N, A)-trees with minimum external path length. As we will prove in Theorem 4.5, such trees

belong to a class of (N, A)-trees with a particular structure. Then we compute the external
path length of the trees with such a structure and obtain a lower bound by minimizing the so
obtained external path lengths.

LEMMA 4.2. Let T be a (N, A)-tree with minimum externalpath length and configuration
(L; ao a). Then

1. T has at most two dense levels. Moreover, if T has two dense levels, then these two

levels are consecutive.
2. If level L + is dense, for some 1 < <_ A, then aj Ofor all 0 < j < 1.

Proof. We only prove 1, as the proof of 2 is similar. Assume, by way of contradiction,
that T is a tree with two nonconsecutive dense levels and minimum external path length. That
is, ai, at > 2, for + < k < A (the case in which one of the two dense levels is the last one

,a’)whereis similar). Now, consider the tree T’ with configuration (L; a0, a

ai- 1 ifj i,
aj+3 ifj=k-l=i+l,
ai+l + 2 if j + and j - k- 1,

aj= at-l+l ifj=k-landjTi+l,
at 2 if j k,
aj otherwise.

PATH LENGTH OF BINARY TREES 19

T’ is still an (N, A)-tree and has external path length

EXTERNAL(T’) EXTERNAL(T) + + k < EXTERNAL(T).

Thus T cannot have minimum external path length.
Now, it is immediate that there cannot be more than two intermediate levels with

more than one external node even if they are consecutive. In fact, suppose that three
levels have more than one external node. Then, obviously, at least two of them must be
nonconsecutive. D

Before going any further, let us introduce the following notation. An (N, A)-tree of type
(L; > b0, al a) has an unspecified, but greater than or equal to b0, external node at level
L; more precisely, it has configuration (L; a0, al a) for some a0 > b0. We shall say

b0 b bkthat an (N, A)-tree has type (L" a0 a ak if it has a0 external nodes on each of the
first b0 levels, al external nodes on each of the following b levels, and so on; that is, it has
configuration

(L" ao,..., ao, al,..., al ak, ak

bo times b times bt times

The symbols < ab and > ab denote respectively b levels each of which have no more than
a external nodes and no less than a external nodes. As done with the configuration, we will

b bkomit L and just say that a tree is of type (a0, a a whenever L is either clear from
the context or immaterial.

LEMMA 4.3. Let T be a tree oftype (L; > 0a, < b, 2). Then iflevel L + a’, with a’ > a,
contains an external node then all levels L + a’ + 1 L + a’ + b contain exactly one
external node each; that is, T is oftype (L" > 0a’-I a+b-a’+l 2).

Proof. Consider the grandparent e of the two external nodes at level L + a + b. This node
has two children, one of which is the internal node which is the parent of the two external
nodes at level L + a + b. Now, the other child of e cannot be an internal node as this would
imply either that level L + a + b has more than two external nodes or that some successive
level has some external nodes. Thus, level L + a + b has exactly one external node. We
can prove by induction that this is the case also for levels L + a + b 2 L + a’ + 1, thus
proving the lemma, rq

We are now ready to characterize completely the configuration of (N, A)-trees with
minimum external path length. In fact, in Theorem 4.5 we will prove that such a tree must be
an (N, A, a)-tree defined as follows.

DEFINITION 4.4. For N > 4, 2 < A < N 2, and < a < min{A 2, lg N we
define an (N, ZX, a)-tree as follows.

1. An (N, A, --1)-tree is an (N, A)-tree of type (> 1, > 0, zx-2, 2).
2. Let 0 <_ a < min{A 3, log N 2}. An (N, A, a)-tree is an (N, A)-tree of type

(1, 0a, > 0, > 0, 1A-(a+3), 2).
3. If A 2 < log N 1, an (N, A, A 2)-tree is an (N, A)-tree of type (1, 0zx-2,_

0,_ 2).
Remark. Notice that in the above definition we have not considered the case a > log N- 1.

In fact, a tree oftype (L; 1, 0a, >_ 0, >_ 0, A-(a+3), 2)contains at least 2++ -2+ external
nodes. But L _> 1, and thus 2a+l _< N, from which a < lg N 1.

Also notice that using the Kraft equality it is easy to see that the (N, A, a)-tree, if it exists,
is unique. See also the discussion following Lemma 4.6.

THEOREM4.5. For N > 4, 2 < A < N-2, ifT isan (N, A)-tree with minimum external
path length then T is an (N, A, a)-treefor some a, -1 < a <_ min{A 2, lg N 1}.

20 ALFREDO DE SANTIS AND GIUSEPPE PERSIANO

Proof. In view of Lemma 4.2, an (N, A)-tree with minimum external path length has at
most two dense levels and the levels preceding the dense levels (except for the very first one)
are all empty.

We consider first the case in which there are two dense levels. If the dense levels are
the first two levels, then, because of Lemma 4.3, the tree is of type (> 2, > 2, x-2, 2) and
thus is an (N, A, --1)-tree. Instead, if the last two levels are dense, then the tree is of type
(1, 0zx-2, > 2, > 2) and is thus an (N, A, A 2)-tree. Finally, if the two dense levels are
intermediate then, because of Lemma 4.3, the tree is of type (1, 0a, > 2, > 2, A-(a+3), 2),
for some a, and thus is an (N, A, a)-tree.

Consider now the case in which there exists only one single dense level. Then, if this level
is the first, the tree is an (N, A, 1)-tree; ifit is the last level then the tree is an (N, A, A --2)-
tree; otherwise the tree is an (N, A, a)-tree for some 0 < a < min{ A 3, lg N 2}.

LEMMA 4.6. (a) For 0 < a < A 3, the (X, 1)-tree U with configuration (L; a0, al),
where ao > 2a+l exists ifand only if there exists an (X- 2a+l + A a 1, A)-tree T with
configuration (L (a + 1); 1, 0a, a0 2a+l al 1/x-(a+3) 2)

(b) The (X, 1)-tree U with configuration (L" ao, a) exists if and only if there exists an
(X + A 1, A)-tree T with configuration (L" a0, a 1, x-2, 2).

(c) The (X, 1)-tree U with configuration (L" ao, a), where ao >_ 2zx- exists ifand only
if there exists an (X- 2zx-1 + 1, A)-tree T with configuration (L (A 1); 1, 0zx-2, a0
2zx- a)

Proof. We prove only part (a) of the lemma, the proofs of parts (b) and (c) being very
similar.

For brevity, we denote the configuration of T by (L (a + 1)" co, cl czx) and A --a 2
by b. First, all the ci are nonnegative integers if and only if a0 > 2a+l Moreover,

/
ci ao 2a+l a

2L_(a+l)+i 2L_(a+l)
q"

2L 2L+l

ao al [1
2--L- -t

2L+l 2L+l
t- ,,2

ao al

2L 2L+l

By using the Kraft equality, the existence of one of the two trees implies that both sums are
equal to and thus both trees exist. [3

The above lemma implies that, for fixed N, A, and a, there exists a unique (N, A, a)-tree.
In fact, for each a, Lemma 4.6 naturally defines an invertible mapping on trees with A
to trees with greater A. Therefore, if for some N, A, and a there are two (nonisomorphic)
(N, A, a)-trees, then by inverting the mapping we would construct two (nonisomorphic) trees
with A and the same number of external nodes, which is not possible.

The next lemma gives necessary and sufficient conditions for the existence of the
(N, A, a)-tree and computes its external path length. To this aim, we define the function
F(a, N, A) as follows:

F(a, N, A) N([lg X(a, N, A)] + 1) 2[lgX(a’N’A)] + 2a+2 %

zx(zx 3)
+ -aA-2,

2

a(a + 1)

where

X(a, N, A) N A + 2a+l + a + 1.

PATH LENGTH OF BINARY TREES 21

LEMMA 4.7. For N > 4, 2 < A < N 2, and- < a < min{A 2, log N }, the
(N, A, a)-tree exists ifand only ifthe interval [X(a, N, A), X(a, N, A) + 2a+l 1] does not

contain any power of 2, in which case its external path length is F(a, N, A).
Proof. We will prove the lemma for 0 < a < min{A 3, log N }. The cases a

and A 2 < log N can be proved in a similar way.
Suppose that the interval [X(a, N, A), X(a, N, A) + 2a+l 1] does not contain any

power of 2. Then, by Lemma 4.1 and since N X(a, N, A) 2a+l + A a 1, the
unique (X(a, N, A), 1)-tree has at least 2a+l external nodes on its first level. Therefore, the
hypothesis of part (a) of Lemma 4.6 holds and, thus, the (N, A, a)-tree exists. The other
implication is proved in a similar way.

To compute the external path length of the (N, A, a)-tree, we use Lemma 4.6. The con-
figuration of the (N, A, a)-tree, and thus its external path length, is completely determined
by the configuration of the corresponding (X, 1)-tree. It can be expressed as a function of
L, a0, and a l, which, in turn, depend only on the value X. We can thus compute the ex-
ternal path length of the (N, A, a)-tree, that a tedious computation shows to be exactly
F(a,N, A).

We next study the behavior of the external path length of the (N, A, a)-tree, for fixed N
and A. We will see that the external path length of the (N, A, a)-tree is a bitonic function
of a; that is, it is nonincreasing up to a certain value c(A) of a and then it is nondecreasing.
ot (A) is the integer part of the unique solution to the equation x + 2x+ A, x 6 . It is
easily seen that c (A) is equal to either llg A] 2 or/lg AI 1.

LEMMA 4.8. Let N > 4, 2 < A < N 2, and 0 < a < min{A 2, lg N }. If the
(N, A, a 1)-tree exists then

< F(a-I,N,A) ifa <or(A),F(a,N,A)|> F(a I, N, A) ifa >or(A).

Proof. The difference F(a 1, N, A) F(a, N, A) is equal to

N([lg X(a 1, N, A)] [lg X(a, N, A)]) + 2[gx(a’N’/)q

+A 2a+l -a.

2[IgX(a-I,N,A)]

By hypothesis the (N, A, a 1)-tree exists. Therefore, by Lemma 4.7, the interval

[X(a 1, N, A), X(a 1, N, A) + 2a 1]

does not contain any power of 2.
If X(a 1, N, A) + 2 is a power of 2 then

[lg X(a 1, N, A)] lg(X(a 1, N, A) + 2a)

and

[lgX(a, N, A)] [lg (X(a 1, N, A) + 2 + 1)q
(from the definition of X(a 1, N, A))

lg(X(a-I,N,A)+2a)+l.

Therefore,

F(a 1, N, A) F(a, N, A) -N + X(a 1, N, A) + 2 + A 2a+ a 0,

and the lemma is proved.

22 ALFREDO DE SANTIS AND GIUSEPPE PERSIANO

Let us consider now the case when X(a 1, N, A) + 2a is not a power of 2. In this case
we have

Therefore,

[lgX(a, N, A)] [lg (X(a 1, N, A) + 2a + 1)q
[lg (X(a 1, N, A))q

(as the interval [X(a 1, N, A), X(a 1, N, A) + 2a]

does not contain any power of 2.)

F(a 1, N, A) F(a, N, A) A (a + 2a+l).

Now, if a < or(A) then a + 2a+ < A and F(a, N, A) < F(a 1, N, A). On the other hand,
if a > c(A) then a + 2a+l > A and F(a, N, A) > F(a 1, N, A).

LEMMA 4.9. Let N > 4, 2 < A < N- 2, and < a < min{A 2, lg N- }. If
the (N, A, a 1)-tree does not exist and the (N, A, a)-tree and the (N, A, a 2)-tree exist,
then

< F(a 2, N, A) ifa <or(A),F(a, N, A) F(a_2, N,A) ifa > c(A).

Proof. The proof of this lemma is very similar to that of the previous lemma and is
omitted. We refer the reader to [3] for a complete proof.

LEMMA 4.10. Let N > 4, A < N/2, and ot or(A). Ifthe (N, A, ot)-tree does not exist,
then both the (N, A, 1)-tree and the (N, A, ot + 1)-tree exist.

Proof. As the (N, A, c)-tree does not exist, then, by Lemma 4.7, the interval

[X(c, N, A), X(c, N, A) + 2+1 1]

contains a power of 2 and the previous power of 2 is in the interval

N, A) X(a, N, A) + 2+]
2 2 J

The interval

[X(c 1, N, A), X(ot 1, N, A) + 2 1]

does not contain any power of 2, and thus the (N, A,a--1)-tree exists, since
X(c 1, N, A) + 2 1 < X(c, N, A) and

X(c 1, N, A) >
X(a, N, A) + 2+

The first inequality follows from the definition of X(a, N, A), while the second is equivalent
to N A > 2+ or. As A < N/2 and c < log A 1, the above inequality holds, thus
proving that the (N, A, c 1)-tree exists.

The existence of the (N, A, c + 1)-tree is established in a similar way.
We can summarize the above lemmata by saying that if the (N, A, c)-tree exists, that is,

if the interval [X(c, N, A), X(c, N, A) + 2+ 1] does not contain any power of 2, then
epl(N, A) F(c, A, N). When the (N, A, ot)-tree does not exist, then, by Lemma 4.10,
both the (N, A, ot 1)-tree and the (N, A, ot + 1)-tree exist and the minimum path length is
obtained by either one.

PATH LENGTH OF BINARY TREES 23

We have thus proved the following:

BOUND 4. For all N > 4 and A < N/2,

epl(N, A) I F(ot, A, N)

F(ot + 1, A, N)
F(ot 1, A, N)

if [X(c, N, A), X(a, N, A) + 2+
does not contain any power of 2,

if F(ot + l, A, N) < F(ot l, A, N),
otherwise,

1]

where ot is the integer part of the (unique) solution of the equation x + 2x+l A,

X(a, N, A) N A + 2a+l d- a + 1,

and

F(a, N, A) N([lg X(a, N, A)] + 1) 2[lgx(a’N’h)l + 2a+2

a(a + 1) A(A 3)++ -aA-2.
2 2

Acknowledgments. The second author would like to thank Professor Harry Lewis for
his suggestions. We also thank Marios Mavronicolas for a careful reading of the manuscript.

REFERENCES

H. CAMERON AND D. WOOD, The Internal Path Length ofRed-Black Trees, Research Report CS-89-50, Computer
Science Department, University of Waterloo.

[2] A. DE SANTIS AND G. PERSIANO, Tight bounds on the path length of binary trees, in "STACS 91", LNCS, C.
Choffrut and M. Jantzen, eds., Vol. 480, Springer-Verlag, New York, pp. 478-487.

[3] Tight Upper and Lower Bounds on the Path Length of Binary Trees, Tech. report TR-07-91, Aiken
Computation Laboratory, Harvard University, February 1991.

[4] R.W. HAMMING, Coding and Information Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.
[5] R. KLEIN AND D. WOOD, On the path length ofbinary trees, J. Assoc. Comput. Mach., 36 (1989), pp. 280-289.
[6] D.E. KNUTH, The Art ofComputer Programming, Vol. 3 Sorting and Searching, Addison-Wesley, Reading,

MA, 1973.
[7] J. NIEVERGELT AND C. K. WONG, Upper bounds for the total path length of binary trees, J. Assoc. Comput.

Mach., 20 (1973), pp. 1-6.
[8] W. SPECHT, Zur Theorie der Elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 24--44, February 1994

() 1994 Society for Industrial and Applied Mathematics
003

UNIQUE BINARY-SEARCH-TREE REPRESENTATIONS AND EQUALITY
TESTING OF SETS AND SEQUENCES*
RAJAMANI SUNDAR ANO ROBERT E. TARJAN

Abstract. This paper studies the problem of representing sets over an ordered universe by unique binary search
trees, so that dictionary operations can be performed efficiently on any set. Although efficient randomized solutions
to the problem are known, its deterministic complexity has been open. The paper exhibits representations that permit
the execution of dictionary operations in optimal deterministic time when the dictionary is sufficiently sparse or
sufficiently dense. The results demonstrate an exponential separation between the deterministic and randomized
complexities of the problem.

Unique representations are applied to obtain efficient data structures for maintaining a dynamic collection of
sets/sequences under queries that test the equality of a pair of objects. The data structure for set equality testing
tests equality of sets in constant time and processes set updates in O(log m) amortized time and O(log m) space,
where m denotes the total number of updates performed. It is based on an efficient implementation of cascades of
CoNs operations on uniquely stored S-expressions. The data structure for sequence equality testing tests equality of

sequences in constant time and processes updates in O(v/n log m + log m) amortized time and O(f-) amortized
space where n denotes the length of the sequence that is updated and m denotes the total number of updates performed.

Key words, data structures, programming languages, unique representation, dictionary, binary search tree,
equality testing, sets, sequences, S-expressions

AMS subject classifications. 68P05, 68Q20, 68Q25, 68R05

1. Introduction. A unique representation of an abstract data type (e.g., a dictionary) by a
concrete data type (e.g., a binary search tree) consists of a one-to-one mapping of values of the
abstract data type (ADT) into values of the concrete data type (CDT) and an implementation
of the ADT operations by the CDT that preserves this mapping. A CDT implementation of
an ADT operation that changes an ADT value v to a value w preserves this mapping if the
implementation changes the image of v into the image of w. In this paper we are interested in
devising unique representations of dictionaries by binary search trees that support dictionary
operations (i.e., searches, insertions, and deletions of elements) efficiently and in applying our
unique representations to equality testing of sets and sequences.

Unique representations arise in the contexts of incremental evaluation and implementation
of high-level programing techniques. Incremental evaluation [14], [15] is the technique of
efficiently updating the value of a function when the input changes. A simple idea to speed
up incremental evaluation is to remember the results of previous function calls and thereby
avoid recomputation. If the input domain is uniquely represented and input data objects are
stored uniquely, then it becomes easy to check whether the function has already been evaluated
on a given input. In this context unique storage of data objects means that instances of the
same data object created at different times are all represented physically by the same storage
structure. Modem programming languages, such as SETL, support high-level data types, such
as sets and sequences, and permit testing whether two such objects are equal. Equality testing

*Received by the editors October 22, 1990; accepted for publication (in revised form) June 24, 1992. A pre-
liminary version of this paper appeared in the Proceedings of the Twenty-Second Annual Symposium on Theory of
Computing, 1990, pp. 18-25.

Department of Computer Science, Princeton University, Princeton, New Jersey 08544-2087. Research by this
author at Bellcore, DIMACS (National Science Foundation Science and Technology Center for Discrete Mathematics
and Theoretical Computer Science), and the Courant Institute was partially supported by an IBM graduate fellowship
and National Science Foundation grants CCR-8702271, CCR-8902221, CCR-8906949, and STC88-09648 and by
Office of Naval Research grant N00014-85-K-0046.

Department of Computer Science, Princeton University, Princeton, New Jersey 08544-2087. The work of this
author was partially supported by National Science Foundation grants DCR-8605962 and STC88-09648 and by Office
of Naval Research grant N00014-9 l-J- 1463.

24

BINARY-SEARCH-TREE REPRESENTATIONS 25

Rotate right

R,()tate left

B C

FIG. 1. Rotation in a binary tree.

can be implemented in constant time by devising a unique representation for the data type and
uniquely storing concrete data values.

We define some basic concepts. A dictionary is a set of items selected from a totally
ordered universe on which membership queries and update operations that insert or delete
items can be performed. We can represent a dictionary by a binary tree containing one item
per node, with the items arranged in symmetric order: each item in the tree is larger than the
items in its left subtree and smaller than the items in its right subtree. This data structure is
called a binary search tree. A binary search tree is represented in storage as a collection of
records, one per node, with a pointer to the record corresponding to the root. Each record
has a key field, left and right child pointers, and a fixed number of additional information and
pointer fields. A rotation of an edge [x, p] in a binary tree, where p is the parent of x, is a
transformation that makes x the parent of p by transferring one of the subtrees of x to p; see
Fig. 1.

We review previous work on unique representations. Snyder 18] studied unique repre-
sentations of sets over an ordered universe by search trees so that, for each set size, all sets of
that size have the same underlying tree. Search trees can be updated in various ways; in Sny-
der’s work search trees are updated by changing the pointers of a set of nodes. For his class of
unique representations Snyder showed that (R)() time is necessary and sufficient to perform
a dictionary operation, where n is the dictionary size. Munro and Suwanda 13] studied how
to implicitly represent sets over an ordered universe by an array so that, for each set size, all
sets of that size satisfy a unique partial order on the array locations. They showed that (R)()
time is necessary and sufficient to perform dictionary operations by using their representa-
tions. Recent work has focused on randomized unique representations. Pugh 14] and Pugh
and Tietelbaum 15] gave efficient randomized unique representations for sets, sequences, and
other abstract data types. Aragon and Seidel [3] gave a randomized binary-search-tree data
structure that has the unique representability property and supports dictionary operations in
O (log n) randomized time.

This paper studies the deterministic complexity of uniquely representing a dictionary over
an ordered universe U by a binary search tree. We explore the following methods of updating
a binary search tree during an insertion or deletion:

1. Performing a sequence of rotations: In this method we update the binary search tree
representing the dictionary by using the traditional algorithms for binary-search-tree insertion
and deletion 11], but we permit arbitrary rotations to be performed on the tree before and
after so that the final tree correctly represents the updated dictionary.

2. Nondestructive updating through CONS operations: In this method we perform a
sequence of dictionary operations on the null tree, and we maintain all the trees created
by the operations performed so far and their subtrees. An update operation constructs a
new tree by accessing some of its subtrees from the existing collection of trees and creating
the remaining subtrees from the accessed subtrees, proceeding bottom-up. Also, an update
operation may create any number of additional trees that may be needed in the future. A

26 RAJAMANI SUNDAR AND ROBERT E. TARJAN

CONS operation is used to create a new tree, given its left and right subtrees and root item.
This operation parallels the CONS operation on S-expressions occurring in LISP]. A unique
binary-search-tree representation that can be updated efficiently by means of CONS operaiions
can be used to devise a data structure for maintaining a collection of sets/sequences under
equality tests. In order to perform equality tests quickly, we assign signatures to binary search
trees representing sets/sequences so that identical trees get identical signatures. Since we are
using a unique representation, two sets/sequences are equal if and only if their binary search
trees are identical, in other words, if their signatures are identical. A CONS operation computes
the signature of a new tree it creates by matching it in the current collection of trees. If there
is an identical tree in the collection, its signature is assigned to the new tree; otherwise, a
new signature is assigned. CONS operations are the expensive part of the data structure since
they have to search in the collection of trees. At present we do not know whether CONS
operations can be implemented in constant time; later in this section we discuss the fastest
known methods of implementing CONS operations. In our unique representation we define
the cost of an update operation as the number of CONS operations performed instead of as
the actual time taken. This is reasonable since CONS operations are the bottleneck in equality
testing data structures and since we do not know their exact complexity.

For each updating method we seek representations that permit efficient implementation
of the dictionary by using that method. Since 2n 2 rotations suffice to transform any n-node
binary tree into any other n-node binary tree (see [7], [17]), any unique binary-search-tree
representation supports dictionary operations in O(n) time when rotations are used. We
provide a representation that supports searches in O (log n) time and updates in O (v/-) CONS
operations.

We prove lower bounds on the complexity of any unique binary-search-tree representation
that apply to sparse dictionaries (sets that are small compared to the universe). The lower
bounds are derived for the following cost metric. The cost of an update using one of the
aforementioned methods is, respectively, the number of rotations or the number of CONS
operations. The cost of searching for an item in a binary search tree is plus the depth of the
item in the tree. Under the assumption that the dictionary is sparse, we show that the O (n) and
O(/-) upper bounds mentioned in the last paragraph are optimal. Our proof technique also
extends Snyder’s f2 (v/-) lower bound in the pointer-changes model to unique representations
in which sets of equal cardinality need not have the same underlying tree. In light of Aragon
and Seidel’s representation, these lower bounds imply an exponential separation between the
deterministic and randomized complexities of the problem. The sparseness assumption in the
lower bounds is essential since we construct a representation that requires O(log IUI) cost
per dictionary operation using any update strategy. This representation is optimal on dense
dictionaries.

We apply unique representations to the problems of equality testing of sets and sequences.
Set equality testing problem: Maintain a collection of sets over an ordered universe under

the operations i) EQUAL(S, T)--test whether sets S and T are equal, ii) INSERT(S, x, T)
create a new set T by inserting element x into set S, and iii) DELETE(S, x, T)reate a new
set T by deleting element x from set S. Initially, the collection consists of only the empty set.

Sequence equality testing problem: Maintain a collection of sequences over an ordered
universe under the operations i) EQUAL(S, T)--test whether equences S and T are equal, ii)
INSERT(S, i, x, T)reate a new sequence T by inserting element x into sequence S as the
ith element between old positions and i, and iii) DELETE(S, i, T)---create a new set T
by deleting the ith element of sequence S. Initially, the collection consists of only the null
sequence.

For both problems we are interested only in data structures that test equality in constant
time. Wegman and Carter [20] proposed a randomized signature-based scheme for set equality

BINARY-SEARCH-TREE REPRESENTATIONS 27

testing that requires only constant time per operation but errs with a small probability. Pugh
14] and Pugh and Tietelbaum [15] gave randomized solutions to both problems that require
O (log n) expected time and O(log n) expected space per update operation, where n denotes
the size ofthe set or sequence. Their data structures also support more powerful operations (for
instance, union and intersection of sets) efficiently. For sequence equality testing, however,
the logarithmic bound is valid only if the sequences do not contain repeated elements. Yellin
[23] provided a deterministic solution for set equality testing that requires O (log2 m) time and
O(log m) space per update operation, where m denotes the total number of updates.

We devise a data structure for set equality testing with O(!og m) amortized time and
O(log m) space per update. The data structure is based on a solution to a more fundamental
problem involving S-expressions. S-expressions [1] constitute the staple data type of the
programming language LISP. An S-expression is either an atom (signifying a number or a
character string) or a pair of S-expressions. An atom is represented by a node in storage, and
a pair is represented by a node with left and right pointers that point to nodes representing
the component S-expressions. We store S-expressions uniquely, i.e., all instances of an S-
expression are represented by a single node. CONS(Sl, s2) returns the S-expression (Sl.S2). A
casade of CONS operations is a sequence of CONS operations such that the result of each CONS
operation is an input to the next CONS operation. For instance,

S1 CONS(S0, to),

$2 CONS(t1, S1),

$3 :-- CONS(t2, $2),

sf :-- CONS(Sf_I, tf-1)

is a cascade of f CONS operations. The S-expression problem in question is to devise a
data structure for efficiently implementing cascades of CONS operations on uniquely stored
S-expressions.

Unique storage of S-expressions makes CONS operations expensive. Single CONS opera-
tions can be implemented in O(v/log F) time and O(1) amortized space or, alternatively, in
O(1) time and O(F) space, where F denotes the total number of CONS operations performed
and is any positive constant. This implementation is based on Willard’s data structure [22]
for maintaining a dictionary in a small universe. Universal hashing [4] and dynamic perfect
hashing [8] offer alternative implementations that require O(1) randomized amortized time
and O(1) amortized space per CONS operation.

We develop a data structure that performs a cascade offCONS operations in O(f+log mc)
amortized time, where m denotes the total number of cascades performed. The total space
used is proportional to the number of distinct S-expressions present. When sets are represented
by binary tries, an update operation translates into a cascade of at most log m CONS operations
and requires O(log m) amortized time when this data structure is used. Many list-oriented
functions in functional languages (LISP, for instance) involve cascades ofCONS operations and
can be implemented efficiently by using this method. Function APPEND is a typical example:

APPEND([Vl, l)2 Vk], [Wl, W2 Wl])

S1 := CONS(Vk, [tO1, //)2 tO/]),

s2 := CONS(v_I, s),

Result CONS(v, s_).

28 RAJAMANI SUNDAR AND ROBERT E. TARJAN

Sequence equality testing can be solved in O (n +log rn) amortized time and O(1) space per
update operation by maintaining sequences in a lexicographic search tree 16]. Here n denotes
the length of the sequence that is updated and rn denotes the total., number of updates. Our
solution to this problem requires O(v/n log rn + log m) amortized time and O(v/-) amortized
space per update operation. When sequences are free from repetitions, sequence equality
testing is equivalent to set equality testing. This follows from the representation of sets by
sorted sequences and the representation of sequences by sets of ordered pairs of adjacent
elements. Therefore, sequence equality testing becomes truly hard only when sequences have
repetitions.

Recently, Andersson and Ottmann [2] have studied unique representation of a dictionary
by directed graphs with nodes of bounded outdegree. Their class of unique digraph represen-
tations encompasses Snyder’s and our classes of unique representations. They prove a tight
bound of O(n 1/3) on the time required by dictionary operations using their unique digraph
representations. Unfortunately, their unique representation cannot be used to test equality of
sets/sequences in constant time because the representation is updated through arbitrary pointer
changes instead of through CONS operations; in order to transform a unique representation
into an equality-testing data structure it should be updated by using CONS operations alone.

It might be possible to solve the sequence equality problem efficiently by devising a unique
representation of sequences by bounded-outdegree directed acyclic graphs (DAG’s) that can
be quickly updated through CONS operations when elements are inserted into or deleted from
sequences. It is natural to ask whether there is a unique DAG representation of sequences
that can be updated in O(polylog(n)) CONS operations; n denotes the length of the updated
sequence. We study the complexity of unique DAG representation of sequences in which all
sequences of the same length are represented by the same underlying DAG and show that
update operations in these representations require f2(q/-/logn) CONS operations. Hence
this restricted class of unique DAG representations cannot lead to a fast data structure for
sequence equality testing. Our lower bound extends to arbitrary unique DAG representations
of sequences if the underlying universe is sufficiently large.

The paper is organized as follows. Section 2 describes the results on unique binary-
search-tree representations. Sections 3 and 4, respectively, describe the data structures for set
and sequence equality testing. Section 5 describes the lower-bound result for unique DAG
representations of sequences. Section 6 poses open problems.

2. Unique binary-search-tree representations. In this section we describe the optimal
representations for sparse and dense dictionaries and establish the lower bounds for represent-
ing sparse dictionaries.

2.1. An optimal representation for sparse dictionaries. We describe a representation
that allows search in O(log n) time and permits updating the binary search tree in O(/-ff)
CONS operations. We represent the dictionary by an almost complete binary search tree.
Specifically, if n 2i + 2i2 + + 2i, such that i > i2 > > ik, then the binary search
tree representing an n-element dictionary comprises a k-node right path, with a sequence of
k complete binary trees of respective sizes 2i 1, 2i2 2i hanging off of it; see
Fig. 2a.

In order to be able to update the tree efficiently, we store some additional information.
Define a j-run to be a subset of 2j adjacent elements in the dictionary; a j-tree is a
complete binary search tree representing a j-run. For each j 1, 2 [log n/2/we store
the j-trees of the dictionary in a sorted list. This list is simply a doubly linked list of the
roots of the j-trees; the subtrees of the j-trees are represented by pointers to the roots of these
subtrees in the list of (j 1)-trees; see Figs. 2b and 2c. When n has the form 22i 2 + k,
where < k < 2i, in addition to the preceding lists we also store a sorted list of/-trees

BINARY-SEARCH-TREE REPRESENTATIONS 29

C,omplete binary trees

log n/2

lists of j-trees

2 3 4

3 2 4 3 5

15

14 16

FIG. 2. a. An almost complete binary tree having 2il W 2i2 -b- 2i3 elements, where il > i2 > i3. b. Lists of
j-trees, c. List of 2-trees in the representation ofset {1, 2 16}.

(i Llog n/2J 4- 1) corresponding to the first k2 /-runs. When an insertion causes n to
increase from 22i 1 to 22i (causing Llog n/21 to increase by 1), this list becomes the list of
Llog n/2/-trees. This completes our representation; the storage used is O (n log n).

It is obvious that this representation supports search in O(log n) time. To insert a new
element x we first locate the position of x in the list of 1-trees by searching the tree from top
to bottom, then update the lists of trees, proceeding bottom-up, and then create the rest of the
tree from trees in the updated lists. Updating the list of j-trees, for any j, involves locating
and deleting at most 2j 2 j-trees corresponding to old j-runs that contain the predecessor
as well as the successor of x and inserting in their place at most 2j 1 j-trees corresponding
to new j-runs that contain x. We locate the j-trees to be replaced by starting at the j-tree
encountered while searching for element x in the tree and traversing the list of j-trees left and
right; this takes O(2j) time. We create a new j-tree by performing a CONS operation on two

(j 1)-trees that are its subtrees and its root item. If n is of the form 22i 2 4- k, where
1 < k < 2i, we also extend the size of the list of/-trees from k2 to (k 4- 1)2 by creating
at most 2 new/-trees. The list of j-trees can be updated in O(2j) time plus O(2j) CONS
operations once the list of (j 1)-trees has been updated. The total cost of updating the lists
of trees is at most 0(2 4- 22 4- 4- 2 Llgn/2/+l) O(/-). To create the rest of the tree we
need to create the nodes of the tree at levels Llogn/2J + 1, Llogn/2J + 2 LlognJ + 1
and the nodes on the right path of the tree. We traverse the nodes of the old tree at these
levels, not on the right path, in postorder and replace them with nodes of the new tree by using

30 RAJAMANI SUNDAR AND ROBERT E. TARJAN

CONS operations. This gives us the subtrees of the right path of the new tree at the upper-half
levels. We locate the subtrees of the right path at the lower-half levels in the updated lists
of trees by traversing these lists top-down and left-to-right in staircase fashion. The subtrees
of the right path of the new tree are all available now, so we create this path from bottom to
top. It is easy to see that only O(/-) CONS operations are performed during an insertion and
only O(4Cff) extra work is performed in addition to the CONS operations; the storage used is

O(Cff). Deletion in analogous,

2.2. Lower bounds for sparse dictionaries. Our lower bounds are proved by using
Ramsey’s theorem [10], [12].

RAMSEY’S THEOREM. Let n, k, and s > n be arbitrary positive integers, and let U be an
arbitrary set. There exists a number Rn(k, s) with the following property: if lU[> Rn(k, s),
thenfor any partition of the n-subsets of U into k classes there is an s-subset S all ofwhose
n-subsets lie in a single class.

It is known that Rn(k, s) Tn(O(log(ks))) [10], [12], where Tn(x) is the tower function

First, we state a lower bound for updating the tree by means of rotations. Let bn
(2nn) / (n + 1) denote the number of distinct n-node binary trees [11]. Let n and d be positive
integers, and let U be an ordered universe of size at least Rn(bn, n + 1). For any unique
binary-search-tree representation of subsets of U, we have the following trade-off between
search and update times.

THEOREM 1. Ifthe n-subsets ofU are represented by binary search trees ofheight at most
d, then there is an n-subset on which an update operation requires f2 (n 2d) rotations.

The theorem implies that a dictionary operation requires f2 (n) time in the worst case if
the dictionary is sufficiently sparse and rotations are used to update the tree. It is easy to show
that the trade-off given by the theorem is optimal, up to a constant factor. The Ramsey number
Rn(bn, n + 1) is at most Tn+l (cn), for some constant c. Therefore, the trade-off is valid when
the dictionary size is at most (1 o(1)) log* UI.

The next theorem gives the lower bound on the cost of updating the tree by using CONS
operations.

THEOREM 2. Let n and m > 2n be positive integers, and let U be an ordered universe

of size at least Rn (bn, m). For any unique binary-search-tree representation of subsets of U
there is a sequence ofm update operations that involves only subsets of size at most n and
causes f2 (m v/if) CONS operations to be performed.

Snyder 18] showed a lower bound of f2 (/-) on the worst-case cost of a dictionary oper-
ation when updates are implemented through pointer changes. His lower bound is restricted
to the class of unique binary-search-tree representations in which all sets of equal cardinality
have the same underlying tree. When the dictionary is sufficiently sparse, the lower bound can
be extended to the class of all unique binary-search-tree representations by using Ramsey’s
theorem. The way to accomplish this is illustrated by the proofs of Theorems and 2.

ProofofTheorem 1. By Ramsey’s theorem there is a subset S {Xl, x2 Xn+l} of U
all of whose n-subsets are represented by a single underlying binary tree, say, B. We claim
that at least n 1 2d rotations are necessary to transform set S1 {x l, x2 X into
set $2 {x2, x3, Xn+l}. The claim is proved by using Wilber’s method [21] of deriving
lower bounds on rotations in binary trees.

Consider an n-node binary tree T whose nodes are labeled from 1 to n in symmetric order.
An interval [i, j] of nodes of T is a block of T. Any block [i, j] of T induces a binary tree,

BINARY-SEARCH-TREE REPRESENTATIONS 31

7 Block tree of blo,’k [4,9]

FIG. 3. Block tree.

called the block tree of block [i, j], obtained by contracting all edges of T having an endvertex
outside the block; see Fig. 3.

A rotation on T propagates into a rotation on a block tree of T only if both nodes of the
rotation lie in the block tree; otherwise, the block tree is unaffected. Let Tmin denote the binary
tree obtained by deleting the minimum element of T (equivalently, the block tree of block
[2, n] in T). Define Tmax similarly. Let drain(T) and dmax(T) denote, respectively, the depths
of the minimum and maximum elements of T.

LEMMA 1. For any binary tree T, at least TI dmin (T) dmax (T) rotations are

necessary to transform Tmin into Tmax.
Proof. The lemma is proved by induction on IT I.
Basis. TI < 2: Easy.
Induction step. TI >_ 3: Let x denote (the symmetric order number of) the node in T

that is closest to the root and that is not the maximum or the minimum element. Let L and
R denote, respectively, the block trees of blocks [1, x] and [x, ITI] in T. Divide the nodes of

Tmin and Tmax into a left block [1, ILl 1] and a fight block [ILl, ITI 1]. Then the left block
trees of Tmin and Tmax are respectively, Lmin and Lmax; see Fig. 4.

By the inductive hypothesis at least ILl 1 dmin (L) dmax (L) left block rotations must
be performed to transform Lmin into Zmax. Similarly, at least IRI 1 dmin(R) dmax(R)
right block rotations are needed to transform the right block tree Rmin of Tmin into the fight
block tree Rmax of Tmax. Hence the total number of rotations necessary to transform Tmin into

Tmax is at least ITI- ! -dmin(L) -dmax (L) -dmin(R) -dmax(R). The rest of the proof breaks
up into three cases according to the position of x in T.

Case 1. x is the root of T: In this case we have

dmin(L) dmin(T), dmax(L) dmin(R) 0, dmax(R) dmax(T).

The inductive hypothesis follows from these relations.
Case 2. x is the only child of the root: The root must be either the minimum or the

maximum element. Without loss of generality, assume that the root is the minimum element.
We have

dmin(L) dmin(R) dmin(T) 0, dmax(L) 1, dmax(R) dmax(T) 1.

The inductive hypothesis follows.
Case 3. x is the only grandchild of the root: The minimum and the maximum elements of

T constitute the root and its only child. Without loss of generality, let the minimum element
be the root and let the maximum element be its child. We have

dmin(Z) dmin(R) dmin(T) 0, dmax(L) dmin(R) dmax(T) 1.

32 RAJAMANI SUNDAR AND ROBERT E. TARJAN

C,a,se 1.

T

(s(: ’2. C3,se 3.

FIG. 4.

Since the roots of Trnin and Tmax are from different blocks, in addition to left and right block ro-
tations, at least one rotation involving nodes from both blocks must be performed in transform-
ing Tmin into Tmax. The inductive hypothesis follows from this observation and the preceding
relations. 0

When set $1 is transformed into set $2, the block tree induced by subset {x2, x3 Xn
is transformed from Bmi into Bmax. By Lemma 1 it follows that at least n 1 2d rotations
are required to transform S into $2.

Consider transforming S1 into $2 by deleting Xl and inserting Xn+ 1- The insertion of xn+
into set {x2, x3 Xn and the deletion of Xn+l from set $2 are inverse transformations and
require the same number of rotations. Hence f2 (n 2d) rotations are necessary for either the
deletion of Xl from set S or the deletion of xn_l_ from set $2. E]

Proof of Theorem 2. By Ramsey’s theorem there is a subset S {x, x Xm} of
U all of whose n-subsets are represented by the same underlying binary tree. Let T denote
an n-subset of S, to be specified later. The lower-bound construction inserts the elements of
T into the null tree, one by one, and then performs m n updates on the resulting tree by
repeating the following cycle of operations sufficiently many times:

1. Repeat /-ff- 1 times: Delete the minimum element ofthe tree and insert a fresh element
from S that is larger than the maximum element of tree. Throughout this construction, by
fresh element we mean an element that has never been in the tree before.

BINARY-SEARCH-TREE REPRESENTATIONS 33

2. Replace the elements of the tree with symmetric order numbers ./-ff, 2’d n by
fresh elements from S that occupy the same symmetric order positions in the tree.

This completes the construction. We now define set T and the fresh elements inserted
into the tree during the construction. Execute the construction, treating all elements used as
indeterminants, and determine their partial ordering. Next, assign specific values to these
elements from set S to fit the partial order.

An iteration of the cycle performs 4Vrd 2 update operations on the tree (the first step
performs 2(/-- 1) update operations; the second step performs 2Vcff update operations).
Since rn n > m/2 update operations are performed during all iterations of the cycle, it
follows that the number of iterations is at least m/(8/-ff). We claim that an iteration of
the cycle creates n new trees. This would imply that at least m.v/-ff/8 new trees are created
during the entire construction and would prove the theorem. Let us prove the claim. For

1, 2 let vi denote the highest node of the tree with symmetric order number in
the interval [(i 1)/-d + 1, i.v/d]. Consider an iteration of Step of the cycle. The subtrees
of nodes v, v2 v,/ after the iteration are all different from the subtrees of the tree at
any time before the iteration; this is caused by the leftward movement of the fresh elements
inserted during the preceding cycle. Since Step is iterated- times, it follows that
n new trees are created during this step. Step 2 creates new trees, so it follows that
n new trees are created during an iteration of the cycle. The proof of the claim is complete;
Theorem 2 follows. [3

2.3. An optimal representation for dense dictionaries. Aragon and Seidel’s represen-
tation [3] creates trees of height at least /]UI in the worst case. They choose a static, random
priority for each element in the universe and represent a set of items by the binary search tree
that is heap-ordered according to priorities. It is well known 12] that any sequence of p2 + 1
numbers contains a monotone subsequence of length at least p + 1. If we consider the longest
monotone subsequence of the sequence of priorities of elements in the universe, then the rep-
resentation of the set corresponding to this subsequence has height at least /IUI, Therefore,
Aragon and Seidel’s representation requires f2(U[) time in the worst case to perform a
dictionary operation. Furthermore, since it is possible to assign priorities to elements of the
universe so that the longest monotone subsequence has length at most UI + 1, there is a
static priority representation in which trees have height O(/UI). This representation allows
dictionary operations to be performed in O G,/UI) time.

We describe a more efficient representation, based on binary tries 11], that allows dic-
tionary operations to be performed in (O log IUI) time. Assume that U [1, 2P], and let
S denote the set being represented. If S

[1, 2P-], then S is represented in U by the tree

representing it in the universe [1, 2P-1]. Otherwise, let r min(S[2t’- + 1, 2’]). Then,
r is the root of the tree representing S, and its left and right subtrees are, respectively, the
trees representing subsets S[1, 2p-l] and S[r + 1,2’] in the universes [1,2’-] and
[2t’- + 1, 2P]. The height of the resulting tree is at most log IUI. To insert a new element
x, we compare x with the root of the tree, say, r. Let 2i- < r <_ 2i. We distinguish the
following cases"

Case 1. x > 2i" Make x the tree root with the old tree as the left subtree.
Case 2. r < x <_ 2i" Insert x into the right subtree recursively.
Case 3. 2i- + 1 < x < r: Place x at the tree root, substituting item r, and insert r into

the right subtree recursively.
Case 4. x < 2i- " Insert x into the left subtree recursively.
Deletion is analogous to insertion. It is easy to see that each operation requires only

O (log UI) rotations or CONS operations.

34 RAJAMANI SUNDAR AND ROBERT E. TARJAN

3. Set equality testing. In this section we describe a data structure for set equality testing
with O(log m) amortized time and O(log m) space per update operation, where m denotes the
total number of updates. The elements seen so far are numbered in serial order and define the
current universe U [1, lUll. Each set is represented by a binary trie [11] in this universe.
The binary trie representing a set S is an S-expression that stores the elements of S as atoms
and is defined recursively. Let 2p < IUI < 2p+. A singleton set is represented by an atom,
and the empty set is represented by the atom NIL. If lSI > 2, then S is represented by a pair
(s.s2), where s and s2 are, respectively, the S-expressions representing subsets S f3 1, 2p]
and S fq [2p + 1, lUll in their respective subuniverses. We store S-expressions uniquely so
that two sets are equal if and only if their S-expressions are represented by the same node.
Unique storage of S-expressions makes CONS operations expensive. Fortunately, a set update
operation translates into a cascade of at most log UI < log m CONS operations, which can be
implemented in O (log m) amortized time and O(log m) space by using the method described
in the following.

We now describe an efficient data structure for performing cascades of CONS operations
on uniquely stored S-expressions. The data structure requires O(f + log mc) amortized time
to perform a cascade of f CONS operations, where m denotes the total number of cascades
performed. Consider the collection of nodes representing S-expressions. Number the nodes
serially in order of creation. Say node p is a parent of node v if p points to v. Each node,
say, v, maintains a set parents(v) of all its parents. Each parent p parents(v) is assigned
a key equal to (serial#(w),b), where w is the other node (besides v) pointed to by p, and
b equals 0 or 1 depending on whether the left pointer of p points to v or not. To perform
a CONS operation on two nodes v and w, we search set parents(v) under key (serial#(w),0)
and return the matching parent (or, alternatively, we search the set parents(w,0) under key
(serial#(v),l)). If there is no matching parent, we create a new node p with pointers to v and
w, set parents(p) to empty, insert p into parents(v) andparents(w), and return p. In a cascade
of CONS operations we implement each CONS operation by searching in the set of parents of
the node returned by the previous CONS operation.

We represent each setparents(v) by a binary search tree and use the splay algorithm 16] to
perform searches. Insertion of a new item by using splay is implemented as follows. Maintain
a pointer to the maximum item in the tree (in addition to the root pointer). If the inserted
item is larger than the current maximum item, insert it as the right child of the maximum
item. Otherwise, insert the item into the tree in the standard way and splay at the item. The
two types of insertions are called passive and active, respectively. We implement passive
insertions more efficiently since they are more numerous than active insertions.

The following theorem summarizes the performance of the data structure.
THEOREM 3. The amortized cost ofa cascade of f CONS operations is O(f d- logmc),

where mc is the total number ofcascades performed on S-expressions.
Before proving the theorem, we need a few lemmas. The following technical lemma uses

the notion of blocks in a binary tree introduced in the proof of Theorem 1 and occurs implicitly
in the work of Cole, Mishra, Schmidt, and Siegel [6].

LEMMA 2. Consider a binary tree partitioned into blocks whose items have been assigned
arbitrary nonnegative weights such that every block has positive weight (the weight ofa block
is the sum of the weights of items in the block). Let n denote the number ofnodes in the tree,
and let nb denote the number ofblocks. The cost ofa sequence ofm splays performed on the

in
roots ofthe blocks is O(m q- n d- -j=l log(W/wj) h- -=1 log(W/i)), where W is the total
weight of all the items, wj is the weight of the block of the jth accessed item, and ff)i is the
weight of the th block of the tree.

Proof. Assign potentials to all nodes in the tree as described by Cole, Mishra, Schmidt,
and Siegel [6, 2], and analyze splays by using their analysis of global insertions. (An account

BINARY-SEARCH-TREE REPRESENTATIONS 35

of this analysis can also be found in Cole [5].) The amortized cost of splaying at the root of a
block with weight w is O(1 + log(IV/w)), and the drop in potential over the entire sequence
is O(Yinb log(W/i) + n). The result follows. [3

The next lemma bounds the cost of the sequence of operations performed on a single
parent set and is the key step in the analysis.

LEMMA 3. Consider a sequence of insertions and searches performed on an (initially
empty) binary search tree by using splays. Let f be the number of searches of item i, F be
the total number ofsearches, na be the number ofactive insertions, and n be the total number
of insertions. The cost of this sequence if O(n + na logna + F + Yf>_l f log(F/f)).

Proof. We modify the sequence by preinserting all items into the initial tree according to
their order of arrival (without splaying). On this tree we perform the searches and simulate
the insertions. Active insertions are simulated by splaying at the corresponding items, and
passive insertions are simply ignored. We obtain a sequence of splays corresponding to active
insertions and searches (active splays and hot splays, respectively). It suffices to bound the
cost of this sequence.

We bound the cost of this sequence by partitioning the tree into blocks and applying
Lemma 2. Partition the tree into blocks as follows. Call the items accessed by active and
hot splays active and hot, respectively. Every active or hot item forms a singleton block.
Each nonempty interval of nodes between consecutive singleton blocks forms apassive block.
Choose an item from each passive block, and call it the block representative. Note that n is
the number of active items. The weight of item is defined by

f if the item is hot,

F/(na q- 1) if the item is active but not hot,

0 if the item is in a passive block

but not the representative.

The representatives of na + passive blocks are assigned a weight of F/(na -Jr 1) each, and
the representatives of the remaining passive blocks are placed in one-to-one correspondence
with the set of hot items and assigned the weights of their mates. The total weight of the tree
is at most 4F. If Lemma 2 is applied, the cost of the sequence of splays is

O na + F + n + log + nalog(4(na + 1))

+2 log + (2ha + 1)log(4(na + 1))

O(n+nalogna+F+log())
Remark. The lemma is an extension of Sleator and Tarjan’s static optimality theorem

[16]. The theorem is restricted to sequences of searches in which all items of the tree are
accessed at least once. Use of the analysis of Cole, Mishra, Schmidt, and Siegel [6] is what
made our extension possible.

LEMMA 4. Consider a digraph G (V, E), and consider a collection ofwalks in G. Let
Fe be the number of traversals of edge e in the walks, F be (v,w)ee F(,w), for any vertex
v, Wo be the number ofwalks originating at vertex v, and id be indegree(v) + 1. Then,

(Fv) <Fvlogidv+WvlogF.(v,w)E

36 RAJAMANi SUNDAR AND ROBERT E. TARJAN

Proof. Let ff(v,w) be F(v,0) minus the number of walks with (v, w) as the last edge. Then,

WologFo+ ff(x,o) logFo
Fo (x,v)eE

+ ;(,w) log
F(m)(v,w)eE

vlogFv+ (v,wlog
F F (v,w)eE

v log Fv + Fw log idw,
Fv wV

where the first inequality holds because x log(1 Ix) is decreasing in 1/e, cxz] and the second
follows from the entropy inequality. [3

ProofofTheorem 3. Consider a sequence of me cascades of CONS operations comprising
F CONS operations totally. The cost of a cascade of f CONS operations is O (f) plus the cost of
operations on parent sets. During any cascade of CONS operations, there are at most two active
insertions into parent sets. These insertions are performed when the first node is created by
the cascade, and all subsequent insertions are passive. Thus out of at most 2F insertions into
parent sets during the entire sequence of cascades, at most 2m are active. Applying Lemma
3 to the sequence of insertions and searches performed on each parent set and summing the
costs over all parent sets, we see that the total cost of parent set operations is

0 F+mclogmc+ Z flog
nodes iparents(v)/xf fi

where F(v) denotes the total number of searches performed on parents(v) and f denotes the
number of searches of item among these. The double summation bounds the total cost of all
searches performed on the parent sets. We bound the summation, in turn, by using Lemma 4.
The collection of nodes at the end of the sequence of cascades induces a directed graph with
the nodes as vertices and edges from nodes to their parents. The indegree of each node in the
graph is at most 2. For each edge (v, w) define F(,w) to be the number of searches of node w
performed on parents(v). Delete all edges e such that Fe 0. If Lemma 4 is applied to the
resulting graph, the summation is bounded by F log 3 + rn c log rn c. It follows that the cost of
the sequence of cascades is O(F + me log me). The theorem follows. [3

4. Sequence equality testing. In this section we describe a data structure for sequence
equality testing with O(x/n log m + log m) amortized time and O(/-ff) amortized space per
update, where n denotes the length of the sequence that is updated and m denotes the total
number of updates. We represent a sequence by an almost complete binary tree analogous to
the set representation described in 2.1. The th node of the tree in symmetric order stores
the ith element of the sequence. A j-run is a subsequence of 2j adjacent elements in the
sequence. For each j < [log n/2] we maintain a list of j-trees representing the j-runs of
the sequence; this will allow us to update a sequence by creating O(V) new trees through
CONS operations. In this representation a node can belong to several sequences and hence can
have left and right pointers corresponding to several lists of j-trees. This makes navigation
through the list of j-trees of a particular sequence expensive. We make the data structure
persistent so that it permits efficient navigation. A data structure is fully persistent [9] if it

BINARY-SEARCH-TREE REPRESENTATIONS 37

maintains all versions of the data structure created by the update operations so far and permits
accesses and updates (that create new versions) to any existing version. Driscoll, Sarnak,
Sleator, and Tarjan [9] show how to make a purely pointer-based data structure that has nodes
ofconstant bounded indegree and constant bounded number of access points fully persistent by
weakening the time and space per update operation to amortized bounds (the original bounds
must be worst case). Their method is to split a node when it has to maintain too many fields
corresponding to different versions of the data structure. In our data structure, nodes have
indegree at most 4 since a node has at most two parents and at most two adjacent nodes in its list
of j-trees that point to it. Also, the data structure is always accessed from the root of the binary
tree. Therefore, it can be made fully persistent by using their technique. The persistent data
structure maintains the representations of all sequences created so far and permits navigating
in and updating any of them. The data structure supports an update operation on a sequence
in O (v/-d) amortized time plus the time needed for O (V/-) CONS operations.

We now discuss how to test equality of sequences by using this data structure. Two
sequences are equal if and only if their binary trees are isomorphic; here we define isomorphic
trees as trees having the same shape and the same labels on the nodes. To facilitate isomorphism
testing of binary trees, we serially number each class of isomorphic binary trees in order of
creation and store the serial number of a binary tree at its root. Two sequences are equal if
and only if their binary trees have identical serial numbers. When a node of the persistent data
structure is split, its serial number is stored in the resulting nodes. Let us see how to compute
the serial number of a new tree created by a CONS operation. Number all elements seen so far in
serial order, and store them in a balanced search tree so that the serial number of an element can
be computed in O(log m) time. Associate with each tree a triple (l, r, x) of serial numbers of
its two subtrees and root element. If the triple of the new tree equals the triple of some existing
tree, its serial number is obtained from the serial number of the matching tree. Otherwise, the
new tree forms a new isomorphism class, so it is assigned the next available serial number.
We have reduced the computation of the serial number of a new tree to testing membership of
its triple in the collection of triples of all the trees. The collection of triples associated with
the trees is a subset of[l, cm 3/2] [1, cm 3/2] [1, m] for some constant c. Willard [22] gives
a data structure for maintaining a dictionary over an ordered universe U in O(v/log IUI) time
andO(1) amortized space per operation. If the collection of triples is maintained by using
this data structure, the serial number of a new tree can be computed in O(v/log m) time and
O(1) amortized space. Willard’s data structure requires a priori knowledge of the universe
size. If the number of updates is not known a priori, we estimate this quantity tentatively and,
whenever the actual number of updates overshoots the estimate, we square the estimate and
reconstruct the data structure. This increases the amortized time per dictionary operation in
Willard’s data structure by only a constant factor.

The persistent data structure, in conjunction with the data structure for serial number
computation, solves the sequence equality testing problem. The cost of testing equality of two
sequences is O(1). The amortized time to update a sequence of length n is O(v/n logm +
log m); the amortized space required is O

5. Unique DAG representation of sequences. In this section we study unique repre-
sentations of sequences by DAG’s with nodes of bounded outdegree that are updated by using
CONS operations. We show that any representation that represents all sequences of the same
length by the same underlying DAG requires g2 (,//log n) CONS operations per update op-
eration.

We describe our class of unique DAG representations. A unique DAG representation
of sequences over a universe represents sequences by rooted, ordered DAGs with nodes of
bounded outdegree. A DAG is a rooted DAG if all nodes of the DAG are reachable from

38 RAJAMANI SUNDAR AND ROBERT E. TARJAN

a single node that is called the root. An ordered DAG is one in which the outgoing edges
of any node are ordered. Let G be an ordered DAG, and let x be a node of the DAG with a
sequence ofoutgoing edges (x, yl), (x, y2) (x, Yk). Node Yk is called the ith outneighbor
of x. Represent a sequence of length n by an n-node rooted, ordered DAG whose nodes
have outdegree at most c, and store the elements of the sequence, one element per node,
in a way that is unique to the sequence; c is a fixed constant, independent of n. A unique
DAG representation also has an additional property that makes it useful for equality testing:
the representation represents distinct sequences by nonisomorphic DAG’s; nonisomorphic
DAG’s are DAG’s that either have different shapes or have different arrangements of elements
in nodes. A collection of sequences is represented by a common DAG that contains the DAG’s
representing the individual sequences as its subgraphs. When a new sequence is created from
an existing sequence by inserting or deleting an element, the DAG representing the new
sequence is created by accessing some of its nodes from the common pool and creating the
remaining nodes bottom-up from the accessed nodes. An update operation is also permitted
to create any additional nodes that may be needed in the future. A CONS operation is used
to create a new node given its element and its outneighbors. The cost of an update operation
equals the number of CONS operations performed.

We seek a unique DAG representation of sequences that permits sequences to be updated
in O(polylog(n)) CONS operations; n denotes the length of the updated sequence. Such
a representation might lead to a polylogarithmic-time data structure for sequence equality
testing. We study a restricted class of unique DAG representations, called length-unique DAG
representations. A unique DAG representation is length-unique if it represents sequences of
the same length by a fixed underlying DAG and it arranges the elements of these sequences
in the nodes of the DAG according to a fixed permutation. Our main result in this section is
the following theorem.

THEOREM 4. Let n and m > n be positive integers, and let U be a universe of size at
least m. For any length-unique DAG representation ofsequences over U, there is a sequence
ofm update operations on sequences of length at most n that causes f2 (m V/if/log n) CONS
operations to be performed.

This lower bound says that the complete-binary-tree representation of sequences used in
our sequence equality data structure is optimal, up to a log factor, among the class of length-
unique DAG representations. The log factor in the denominator of the lower bound arises for a
technical reason; we believe that the lower bound holds even without it. The lower bound can
be extended to arbitrary unique DAG representations if the underlying universe is sufficiently
large, with the help of Ramsey’s theorem. This is not a direct consequence of Theorem 4,
but it follows because the proof of the theorem also works for unique representations that
represent sorted sequences of each length (not all sequences) over an ordered universe by a
fixed underlying DAG, according to a fixed permutation.

The proofofthe theorem uses two technical combinatorial lemmas. The first one concerns
integer sequences. Define the slope of an integer sequence a l, a2 an to be (an a l)/n.
Define the sum oftwo sequences a an andb b to be the sequence al +b an +
bn.

LEMMA 5. Every sequence of n integers has a subsequence of length n 1(5 log n) that
is the sum of an increasing sequence with slope at most 5 log n and a sequence of distinct
elements.

Proof ofLemma 5. The proof idea is that perturbing the sequence by a random linearly
growing sequence gives a sequence with many distinct elements. Let h (a, a2 an) be
the sequence we want to decompose. Select a random number k from 1, 2 n }. Define a
sequence (r rn) by r lik/nl. The sequence has slope at most 1. We claim that

BINARY-SEARCH-TREE REPRESENTATIONS 39

the sequence d (a rl an rn) is likely to have at least n / (5 log n) distinct elements.
This would give the lemma.

Let us prove the preceding claim. Let p denote the number ofdistinct elements in sequence
d, and let k, ke kp denote the respective numbers of occurrences of these p elements in
d. For a fixed pair of integers i, j such that 1 < < j < n let us compute the probability of
the event di dj.

Pr[di dj] Pr[ai r aj rj]
Pr[aj ai ljk/nJ [ik/nJ]

< Pr[aj- ai- < (j- i)k/n < aj- ai-I- 1]

Pr[n(aj -ai 1)/(j- i) < k < n(aj -ai -+- 1)/(j 1)]
< 2/(j i).

We estimate the expected value of --i k/2"

i<j

<2 +n
j-i

< 5n log n.

We estimate E[p] as follows:

i k2i ki /p n2/p

by the Cauchy-Schwarz inequality. Hence,

by Jenson’s inequality. It follows that E[p] is at least n/(5 log n), completing the proof of the
claim. The proof of the lemma is complete. D

The second technical lemma used in proving Theorem 4 concerns DAG’s. Let G be a
rooted, ordered DAG with node set 1, 2 n }. We say that two nodes v and w of G are
shape-isomorphic if the subgraphs of G rooted at v and w are isomorphic as unlabeled, ordered
diagraphs. We say that two nodes v and w are rank-isomorphic if the subgraphs of G rooted
at v and w are shape-isomorphic and the shape-ismorphism between these subgraphs maps
the th largest labeled nodes in the subgraphs to each other, for all i.

LEMMA 6. Let G be a rooted, ordered DAG with node set 1, 2 n }. There exist node
triples (Ul, v, w), (U2, 1)2, l/)2) (Up, Vp, Wp) in G, where p .v/-h/(12(c + 1)), and c
is an upper bound on the outdegree of the nodes of G, such that all ofthefollowing hold:

1. [wi vii > /-fffor all i.
2. Either vi < wi for all or vice versa.

40 RAJAMANI SUNDAR AND ROBERT E. TARJAN

3. [Wi Vj[for all :/: j.
4. vi and wi are descendants of ui for all i.
5. Ifui and uj are rank-isomorphic, then the isomorphism between the subgraphs rooted

at these nodes matches (vi, wi) and (vj, wj).
ProofofLemma 6. We construct the desired node triples by using the following algorithm.

We call a DAG node narrow if the labels of any two of its descendants differ by less than 2/-;
otherwise, we call the node wide. We call a DAG node i-narrow if it is the descendant of a
narrow node that is the ith outneighbor of some wide node. Since every node is either wide
or/-narrow for some i, it follows that either there are at least n/(c + 1) wide nodes or there
are n ! (c + 1)/-narrow nodes for some i. We consider the two cases separately:

Case 1. The number of wide nodes is at least n ! (c + 1): We scan the wide nodes, one by
one, marking them and simultaneously creating node triples (ui, vi, toi that satisfy Conditions
1, 3, 4, and part of Condition 5 of the lemma. Initially, none of the wide nodes is marked.
Each scan step picks an unmarked wide node u, it adds a new triple (u, u, w), where to is
the descendant of u whose label differs from u’s label by the maximum amount, and it marks
u as well as all wide nodes whose labels differ from u’s label by less than x/ft. The scan
continues until all wide nodes are marked. Since each scan step marks at most 2q’-ff- wide
nodes and there are at least n/(c + 1) wide nodes to be marked totally, the total number of
scan steps as well as the total number of triples created is at least ,/-ff/ (2(c + 1)). The set of
triples satisfies Conditions 1, 3, and 4 of the lemma. Instead of Condition 5, the triples satisfy
the following weaker condition: For two triples (ui, vi, toi) and (uj, vj, toj) such that ui and
uj are rank-isomorphic, the isomorphism between the subgraphs rooted at u and uj always
matches vi and vj but matches toi and wj only if vi toi and vj wj have the same sign. We
can make the triples satisfy Conditions 2 and 5 by eliminating at most half of them.

Case 2. The number of/-narrow nodes is at least n/(c + 1) for some i: We create the
triples by scanning the wide nodes in a way analogous to Case 1. Each scan step picks a wide
node u whose th outneighbor, say, v, is an unmarked narrow node, it creates a new triple
(u, v, to) where to is the descendant of u whose label differs from v’s label by the maximum
amount, and it marks v as well as all/-narrow nodes whose labels differ from v’s label by less
than 4rff. When the scan terminates, the ith outneighbors of all wide nodes that are narrow
nodes are marked. Hence at the end of the scan, for every/-narrow node, say, x, there is a
marked/-narrow node whose label differs from x’s label by less than 2-d; in fact, there is a
triple (u, v, w) such that x’s label differs from v’s label by at most 3x/-d 2. For any triple
(u, v, to) there are at most 6- 3/-narrow nodes whose labels differ from v’s label by at
most 3-d 2. It follows that the total number of triples created is at least x/’ff/6(c + 1)). We
eliminate at most half of these triples in order to make then satisfy Conditions 2 and 5 of the
lemma.

This completes the description ofthe algorithm. The algorithm creates at least
1)) node triples that satisfy the conditions of the lemma.

Let us prove Theorem 4. The proof involves extending the ideas used in the proof of the
lower bound for unique binary-search-tree representations (Theorem 2) in a nonobvious way.
We would like to motivate the proof, first, by mentioning some preliminary approaches that
do not work. Following the proof of Theorem 2 we can try to devise an adversary operation
sequence consisting only of substitutions of elements in the sequence and shift operations that
shift the entire sequence to the left or right by one position. This approach does not work
since there is a unique binary-tree representation of sequences that processes substitutions and
shifts in O (log n) CONS operations. This representation represents a sequence by a complete
binary tree and arranges the elements in the tree according to the bit-reversal permutation; that
is, the ith element of the sequence is stored in the node with symmetric order number equal to

BINARY-SEARCH-TREE REPRESENTATIONS 41

the reverse of the binary representation of i. We leave the proof that the representation works
as an exercise. Another class of adversary operation sequences to try are those consisting of
substitutions and shifts of a fixed segment ofthe sequence. This approach also does not give the
lower bound we are aiming at since there is a unique binary-tree representation that supports
substitutions and shifts of any fixed segment of the sequence in O(n 1/3) CONS operations;
we leave this representation as an exercise. Hence the only adversaries that have a chance of
giving a ,rd lower bound are ones that shift several different segments of the sequences in an
intermixed fashion.

Proof of Theorem 4. We devise an adversary that performs a sequence of O(n) opera-
tions involving sequences of length n and causes the performance of S"2 (n v/d/log n) CONS
operations. The theorem will follow immediately once we have such an adversary. The ad-
versary partitions the sequence into about adjacent blocks, each consisting of adjacent
positions, and performs an intermixed sequence of global shift operations that shift the entire
sequence to the right by inserting a new element at the left end and deleting the rightmost
element and local shift operations that shift an individual block to the left by inserting a new
element at the right end and deleting the leftmost element of the block. The global and lo-
cal shift operations will be so designed that a specific set of x/d/log n nodes of the DAG
representing the sequence will have to be re-created during most global shift operations.

We define a set of x/if/log n nodes of the DAG representing the sequences that the
adversary will cause to be re-created many times during the adversary operation sequence.
Let G be the DAG representing sequences of length n. We label the nodes of G by the positions
in a sequence of length n to which they correspond. From now on, we will refer to nodes of
G by their labels (or positions in a sequence of length n). By Lemma 6 there is a set of node
triples (ul, vl, wl) (Up, Vp, Wp), for some p f2 (/-), such that the five conditions of
the lemma are satisfied. Without loss of generality, we can strengthen the second condition of
the lemma and assume that vi < wi for all i. We call each node triple (ui, vi, wi) a tripole; vi
and wi are called the minus pole and the plus pole of the tripole, respectively, and ui is called
its head. We delete all the tripoles with minus poles in the set 1, 2 pv/-ff/2} and use
only the remaining tripoles; the number of remaining tripoles is at least p/2. We renumber
the remaining tripoles from 1 to a number q >_ p/2 in ascending order of their minus poles.
Consider the sequence of lengths of the tripoles {wi vi 1, 2 q }. By Lemma 5
this sequence has a subsequence of wi, ui UOir l)ir where r q/(5 log q), that is
the sum of a sequence of integers 0 _< Sl < < sr _< q and a sequence of distinct positive
integers. We delete all tripoles whose indices are not in the set {i l, i2 ir and renumber
the remaining tripoles from to r in ascending order of their minus poles.

Our next task is to define the adversary operation sequence so that the nodes u 1, u2 Ur
will be re-created many times. The idea is to send many distinct pairs of sequence elements
into nodes vi and wi of G.

Partition the positions of a sequence of length n into p/2 blocks B1, B2 Bp/2 each
consisting of adjacent positions and a block Bp/2+l consisting of the remaining positions
{px/-ff/2 + 1 n }. For a set of integers S, define S+ to be the set {x + x 6 S}. Suppose
we color the positions in each of the blocks either red or blue; for each block, all the positions
in the block get the same color. For a tripole (u, v, w) and a block Bi, for some < p/2, we
say that the tripole-block pair ((u, v, w), Bi) is compatible if the positions in Bi are all red
positions and the positions in (Bi + (w v)) are all blue positions. We seek a coloring of the
blocks that has a large number of compatible tripole-block pairs. A random coloring of the
blocks achieves this. So let us randomly color the positions in each of the blocks B1 Bp/2
either red or blue with probability 1/2, independent of the other blocks; block Bp/2+l alone is
always colored blue. The probability that a fixed tripole-block pair is compatible is at least

42 RAJAMANI SUNDAR AND ROBERT E. TARJAN

1/8. It follows that the expected number of compatible tripole-block pairs is at least pr! 16.
We conclude that there is a coloring of the blocks that has at least pr/16 (n/log n)
compatible tripole-block pairs.

The significance ofthe coloring ofthe blocks and ofthe notion of compatible tripole-block
pairs is the following. The red blocks are the blocks that undergo local shift operations, and
the blue blocks are the blocks that remain static during the adversary operation sequence. A
red block gets repeatedly shifted to the right through global shift operations. When the block
sweeps through a minus pole position v corresponding to a compatible tripole (u, v, w), the
head node u of the tripole gets re-created -ff times. Since there are f2 (n / log n) compatible
tripole-block pairs, we will get (nv/-ff/logn) total node creations during the adversary
operation sequence.

We describe the adversary. Let us assume that the universe is totally ordered. The
adversary initially creates a sorted sequence of n elements in the universe, partitions it into
p/2/ 1 red/blue blocks as described previously, and repeats the following operation sequence
n times:

1. Local shift: For each block ofred positions that is immediately followed by a minus pole
position of a tripole do the following. Let be the index of the tripole (recall that the tripoles
are numbered from 1 to r in ascending order of their minus poles). Perform S Si_ left-shift

operations on the red block; assume so 0. Each left-shift operation deletes the smallest
element of the block and inserts a fresh largest element at the other end while maintaining the
sortedness of the whole sequence; here a fresh element is an element that was never in the
sequence before.

2. Global shift: Shift the entire sequence one position to the right by deleting the largest
element and inserting a fresh smallest element at the other end. This operation also shifts the
blocks and their coloring one position to the fight; it does not assign a color to the new first
position.

The total number of operations performed by the adversary is O (n).
Let us analyze this adversary. We will show that for any compatible tripole-block pair

((u, v, w), B) and element x within block B, a new copy of node u is created when element
x moves to position v in the sequence. It will follow that f2 (n-ff/log n) CONS operations
are performed in creating new copies of the head nodes. Let x be an element of a block
B, and let (ui, vi, wi) and (uj, vj, wj) be tripoles that are compatible with B. Let Gi(ui)
(Gj(uj)) be the subgraph rooted at node ui(uj) when element x reaches position vi(vj) of
the sequence. We claim Gi(ui) and Gj(uj) are not identical, that is, either their shapes are
different or they have different arrangements of elements in their nodes. Let us prove this
claim. If the two subgraphs are not shape-isomorphic, there is nothing to prove. If they are
shape-isomorphic alone, not rank-isomorphic, then since the elements of the sequence are
sorted, the arrangements of elements in the two subgraphs must be different. The last case to
handle is when Gi(ui) and Gj(uj) are rank-isomorphic. In this case the elements stored in
positions wi and wj, respectively, at the times when x is at positions vi and vj, respectively, are
different. This is ensured by the shift operations (sj si in number) performed on B between
these two times and by the positions wi and wj lying in blue blocks at these respective times.
It follows that the subgraphs are not identical, proving the claim. Hence, for each compatible
tripole-block pair ((u, v, w), B) and element x within B, anew copy of node u is created when
element x moves to position v in the sequence. Some elements that are ever in B reach
position v of the sequence during the adversary operation sequence. Hence the total number
of copies of the head nodes of the tripoles that are created during the adversary operation
sequence is at least prV/if/16 (n V/if/log n). The theorem follows.

BINARY-SEARCH-TREE REPRESENTATIONS 43

6. Open problems. Our work raises some interesting open problems:
1. Our proofs of the lower bounds for unique binary-search-tree representations use

Ramsey’s theorem; as a consequence, they require the universe to be extremely large relative
to the dictionary (IUI must be at least a tower of n 2’s). If IUI is only exponential in n, do the
lower bounds still hold?

2. Is there a data structure for performing CONS operations on S-expressions in constant
amortized time and constant amortized space, in general?

3. Prove (or disprove) that the problem of maintaining sets over a small, finite universe
U under the complete repertoire of set operations (i,e., union, intersection, difference, etc.)
has no efficient solution. An efficient solution is one that implements all set operations in
O(polylog(I UI)) time.

4. Is there a data structure for sequence equality testing with O(polylog(n)) time and
space per update operation, where n is the length of the updated sequence? If we are will-
ing to use randomization and tolerate a probability of error in answering queries, then this
can be achieved by representing sequences by using the standard signature method of taking
the remainder modulo a randomly chosen prime. View each sequence as the base-m repre-
sentation of a number, where m is the total number of update operations performed on the
sequences. The resulting numbers are at most mm each. Choose a random prime p in the
range [m3+c log m, 2m3+c log rn], where c is a constant, and define the signature of a sequence
s to be s mod p. Then, any particular set of rn sequences will be assigned distinct signatures
with probability at least 1/m. In order to efficiently update the signature of a sequence
we represent a sequence by the leaves of a balanced binary search tree (in left-to-right order)
and store at each node the signature of the subsequence corresponding to its subtree. Leaving
mundane details to the reader, we see that the resulting data structure requires only O(log rn)
time and space per update operation and errs during a sequence of operations with probability
at most 1/mc. Alternatively, Sundar [19] gives an error-free randomized representation of
sequences that supports joins/splits in O (log2 n) expected time/space.

5. Is there a unique representation of sequences over {0, of DAG’s by bounded out-
degree that can be updated in O(polylog(n)) CONS operations, where n is the length of the
updated sequence?

Acknowledgment. We thank Mike Fredman for valuable discussions.

REFERENCES

J. ALLEN, Anatomy ofLISP, McGraw-Hill, New York, 1978.
[2] A. ANDERSSON AND T. OTTMANN, Faster uniquely represented dictionaries, in Proc. 32nd Annual IEEE Sympo-

sium on Foundations ofComputer Science, IEEE Computer Society, Washington, DC, 1991, pp. 642-649.
[3] C.R. ARAGON AND R. G. SEIDEL, Randomized search trees, in Proc. 30th Annual IEEE Symposium on Foun-

dations of J. Computer Science, IEEE Computer Society, Washington, DC, 1989, pp. 540-545.
[4] J.L. CARTER AND M. N. WEGMAN, Universal classes ofhashfunctions, J. Comput. System Sci., 18 (1979), pp.

143-154.
[5] R. COLE, On the dynamicfinger conjecturefor splay trees, in Proc. 22nd Annual ACM Symposium on Theory

of Computing, Association for Computing Machinery, New York, 1990, pp. 8-17.
[6] R. COLE, B. MISHRA, J. SCHMIDT, AND A. SIEGEL, On the Dynamic Finger Conjecture for Splay Trees. Part I:

Splay sorting log n-block sequences, Courant Institute Tech. Report, September 1989.
[7] K. CULIK II AND D. WOOD, A note on some tree similarity measures, Inform. Process Lett., 15 (1982), pp.

39-42.
[8] M. DIETZFELBINGER, A. KARLIN, K. MEHLHORN, F. MEYER AUF DER HEIDE, H. ROHNERT, AND R. E. TARJAr, Dy-

namic perfect hashing: Upper and lower bounds, in Proc. 29th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society, Washington, DC, 1988, pp. 524-531.

44 RAJAMANI SUNDAR AND ROBERT E. TARJAN

[9] J.R. DRISCOLL, N. SARNAK, D. D. SLEATOR, AND R. E. TARJAN, Making data structures persistent, J. Comput.
System Sci., 38 (1989), pp. 86-124.

[10] R.L. GRAHAM, B. L. ROTHSCHILD, AND J. SPENCER, Ramsey Theory, John Wiley, New York, 1980.
[11 D.E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading,

MA, 1973.
12] L. LovAsz, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
13] J.I. MUNRO AND H. SUWANDA, Implicit data structuresforfast search and update, J. Comput. System Sci., 21

(1980), pp. 236-250.
[14] W. PUGH, Incremental Computation and the Incremental Evaluation of Functional Programs, Ph.D. thesis,

Comell University, Ithaca, NY, 1988.
[15] W. PUGH AND Z. TIETELBAUM, Incremental computation via function caching, in Proc. 16th Annual ACM

Symposium on Principles of Programming Languages, Association for Computing Machinery, New
York, 1989, pp. 315-328.

[16] D.D. SLEATOR AND R. E. TARJAN, Self-adjusting binary search trees, J. Assoc. Comput. Mach., 32 (1985), pp.
652-686.

17] D.D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON, Rotation distance, triangulations, and hyperbolic geometry,
J. Amer. Math. Soc., (1988), pp. 647-682.

18] L. SNYDER, On uniquely representable data structures, in Proc. 18th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society, Washington, DC, 1977, pp. 142-146.

[19] R. SUNDAR, Maintaining sequences under equality-tests in polylogarithmic randomized time, in Proc. 12th
Conference on Foundations of Software Technology and Theoretical Computer Science, New Delhi,
India, December 1992, Lecture Notes in Computer Science, Springer-Verlag, Berlin, to appear.

[20] M. N. WEGMAN AND J. L. CARTER, New hash functions and their use in authentication and set equality, J.
Comput. System Sci., 22 (1981), pp. 265-279.

[21] R. WILBER, Lower boundsfor accessing binary search trees with rotations, SIAM J. Comput., 18 (1989), pp.
56-67.

[22] D.E. WILLARD, New trie data structures which support veryfast search operations, J. Comput. System Sci.,
28 (1984), pp. 379-394.

[23] D. YELLIN, Representing sets with constant time equality testing, IBM Tech. Report, April 1990; also in Proc.
1st Annual ACM-SIAM Symposium on Discrete Algorithms, Association for Computing Machinery,
New York, 1990, pp. 64-73.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 45-49, February 1994

() 1994 Society for Industrial and Applied Mathematics
004

A COMPLEXITY INDEX FOR SATISFIABILITY PROBLEMS*

E. BOROSt, Y. CRAMAt, P. L. HAMMER, AND M. SAKS

Abstract. This paper associates a linear programming problem (LP) to any conjunctive normal form p, and shows
that the optimum value Z(cp) of this LP measures the complexity of the corresponding SAT (Boolean satisfiability)
problem. More precisely, there is an algorithm for SAT that runs in polynomial time on the class of satisfiability

logproblems satisfying Z(cp) _< + for a fixed constant c, where n is the number of variables. In contrast, for any
fixed fl < 1, SAT is still NP complete when restricted to the class of CNFs for which Z(cp) _< + (1/n).

Key words. Boolean satisfiability, polynomial algorithms, NP completeness

AMS subject classifications. 90C09, 68Q15, 68T99

1. Introduction. We consider Boolean formulae in conjunctive normalform (CNF), that
is, formulae of the type

(1) q(X1 Xn kl-- X -where x Y are Boolean variables, Y Y are their complements, and P Pro,
N1 Nm are subsets of {1 n} satisfying Pk ["] Nk 0 for k 6 [m] {1 m }.
Each of the terms Ck ViPk xi ViNk - for k 6 [m] is called a clause of q, and the quantity
Pk [,.J Nkl is called the degree of the clause. The degree of p is the maximum degree of its
clauses. The size of 4), denoted 141, is the sum of the degrees of its clauses. The satisfiability
problem for 4) is to determine whether or not b is satisfiable, i.e., whether or not there is an
assignment (a an) {0, }n to the variables such that

(2) q(a an) 1.

The satisfiability problem is well known to be NP complete, even when the input is
restricted to the class of degree 3 CNFs [3]. It is solvable in polynomial (linear) time in

141 when b is restricted to belong to the class of degree 2, or quadratic CNFs [1], [3], [5],
and when 4) is restricted to the class of Horn CNFs, i.e., to CNFs that satisfy Pk] < for all
k [m] [4], [61, [7].

The complexity index of the CNF b (or of (2)) is the optimal value Z(4) of the linear
programming problem

(3) Z (4)) min Z

*Received by the editors April 1, 1992; accepted for publication (in revised form) July 9, 1992.
DIMACS and RUTCOR, Rutgers University, New Brunswick, New Jersey 08903. The research of this author

was supported in part by National Science Foundation grant DMS 89-06870, Air Force Office of Scientific Research
grants 89-0512 and 90-0008, and Office of Naval Research grant N0001492J 1375.

;Department of Quantitative Economics, University of Limburg, 6200 MD Maastricht, The Netherlands. The
research of this author was supported in part by National Science Foundation grant DMS 89-06870, Air Force Office
of Scientific Research grants 89-0512 and 90-0008, and Office of Naval Research grant N0001492J 1375.

RUTCOR, Rutgers University, New Brunswick, New Jersey 08903. The research of this author was supported
in part by National Science Foundation grant DMS 89-06870, Air Force Office of Scientific Research grants 89-0512
and 90-0008, and Office of Naval Research grant N0001492J1375.

Department of Computer Science and Engineering, University of California at San Diego, La Jolla, California
92093, and Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903. The research of
this author was supported in part by National Science Foundation grant CCR89-11388.

45

46 E. BOROS, Y. CRAMA, R HAMMER, AND M. SAKS

such that

(k m), and

(5) 0 C (i n).

We refer to the above linear program as L P(q). We call a CNF q-Horn if its complexity
index is at most 1. It is easy to verify that both the quadratic and the Horn forms are in this
class. Q-Horn formulae were introduced in [2].

The purpose of this paper is to show that the complexity index sharply delineates between
classes of "easy" and "hard" satisfiability problems. In particular, we shall see that, for any
fixed e > 0, the class of satisfiability problems with complexity index smaller than + e forms
an NP-complete class. This is to be contrasted with the fact that the satisfiability problem for a
q-Horn formula is polynomially solvable, as shown in [2] (see also 2). To express our results
more precisely, let us introduce one more definition.

Given a function f" N+ -- R, we define the problem SAT(f) as follows"
Instance: a CNF formula q(xl xn) with Z(q) < f(n).
Question: is 4 satisfiable?

We shall prove:
THEOREM 1.1. SAT(1 + logn) ispolynomially solvable for all c R.

n
THEOREM 1.2. SAT(1 + (1/nt)) is NP completefor all fl < 1.
Theorem 1.2 implies, in particular, that SA T (1 + e) is NP complete for any fixed e > 0.

Theorems 1.1 and 1.2 follow from more general results that will be stated and proved in 3
and 4.

2. Preliminaries. If 4 is a Boolean formula on variable set X, and W is a subset of
variables, we define the reflection of q with respect to W to be the formula qw obtained from
q by complementing all occurrences of the variables in W. We say that q and p are congruent
if 7t qw for some subset W. Trivially, two congruent formulae are either both satisfiable
or not.

Suppose that q is a Boolean formula and T (Z, c1 cn) is a solution to L P(b).
Let W be the set of variables xj such that otj < 1/2. If W 0 we say that the solution S(b)
is aligned. Otherwise, if we define flj j for j 6 W and/3j cj otherwise, then
S (Z, fin) is an aligned solution to L P(ckw). We refer to the pair (4)w, S) as the
aligned reflection of (b, T).

We now review some basic facts about q-Horn formulae (more details on this topic can be
found in [2]). A QHY-partition for the CNF 4 is a partition of the variables into three disjoint
sets Q, H, and Y that satisfy the following conditions:

1. No clause contains more than two variables (complemented or uncomplemented)
from Q.

2. Every clause contains at most one uncomplemented variable from H.
3. Every clause containing an uncomplemented variable from H contains no variables

from Q.
If Y 0 then we say that (Q, H) is a QH-partition. It is easy to see that if q has a

QH-partition then q is q-Horn, by setting cj 1/2 for each xj Q and cj for each

xj H. More generally, 4 is q-Horn if it is congruent to a formula that admits a QH-
partition. Conversely, if 4 is q-Horn, then 4 is congruent to a formula with aligned solution
S (Z, Cl c,) with Z < 1. Setting Q to be the set of variables with cj 1/2 and H
to be the set of variables with otj > 1/2, yields a QH-partition of ap. Thus we have:

A COMPLEXITY INDEX 47

THEOREM 2.1 [2]. A Booleanformula is q-Horn ifand only if it is congruent to aformula
that admits a QH-partition of its variables.

In particular, this implies that quadratic, Horn, and so-called renamable or disguised Horn
formulae [8] are q-Horn.

THEOREM 2.2 [2]. Given a QH-partition ofqb, there is an algorithm that tests satisfiability
of dp in time O(141).

We describe this algorithm informally and leave the details of the linear time implemen-
tation to the reader.

Phase 1: While there is a clause involving exactly one variable, assign to this variable the 0-1
-value required to satisfy the clause; if some clause becomes unsatisfiable due to such
successive assignments, then stop the CNF is not satisfiable.

Phase 2: Assign the value 0 to all remaining variables in H.
Phase 3: Solve the remaining (quadratic) satisfiability problem.

Finally, we note a corollary to Theorem 2.2.
COROLLARY 2.3. Given a QHY-partition (Q, H, Y) of, there is an algorithm that tests

satisfiability of dp in time

Proof. Each of the 2Irl assignments A to the variables of Y determines a Boolean function

bA on variable set Q H. Trivially, is satisfiable if and only if at least one of the functions

ba is satisfiable. It is easy to see that (Q, H) is a QH-partition of each of the qA, SO each of
these satisfiability problems can be solved in time O(ll) by Theorem 2.2.

3. A simple satistiability algorithm. In this section, we prove Theorem 1.1 by describ-
ing a simple algorithm for satisfiability, whose running time on any n-variable CNF 4) is
bounded above by 26n() 141 / P(14I), where p(-) is a polynomial function, and where

0 ifZ(4) < 1,
e(4)

Z(4))- if Z(q) > 1.

This implies that the algorithm runs in polynomial time on the set of SAT instances with
Z(q) < -t cogn.

The first step of the algorithm is to compute a solution S (Z, c Cn) to L P(b).
By replacing the pair (4), S) by its aligned reflection, we may assume that Ctj 1/2 for each
j 6 [n]. The running time of this first step is bounded by a polynomial function of I1.

The second part of the algorithm is provided by:
THEOREM 3.1. There is a polynomial time algorithm A, which takes as input a CNF

dp(xl Xn) and an aligned solution S (Z, Otl an) to L P(49) and produces a QHY-
partition of the variables such that IYI < 6ne(4).

The third and final part of the algorithm is now provided by Corollary 2.3: given a
QHY-partition with IYI < 6he(4)), the satisfiability problem for 4 can be solved in time
O ([b126n()).

ProofofTheorem 3.1. If Z _< then is q-Horn and we are done. So suppose that Z >
and set e Z (-- e()). If J is an interval, let Xj denote the set of variables xj for which
otj J. Define L- L and R 2+2, We will need the following lemma.

LEMMA 3.2. Let a and b be real numbers such that (a, b) c_ (L, R) and b a > . Then
Q X[1/2,a], H X[b,1], and Y X(a,b is a QHY-partition of the variables.

Proof. It suffices to check the three defining conditions of a QHY-partition.
To verify Condition 1, assume (for contradiction) that for some k, Pk td Nk contains the

indices, say u, v, and w, of three variables of Q. Then for this clause we obtain the following
contradiction:

48 E. BOROS, Y. CRAMA, R HAMMER, AND M. SAKS

ZO/i -- Z(I O/i) (1 -o/u) + (1 O/v) + (1 -o/) > 3(1 (R-e)) +e.
iP iNk

To verify Condition 2, assume (for contradiction) that for some clause of index k there are
two variables Xu, xv H such that u 6 Pk and v Pk. Then again we have a contradiction:

Eo/i + E(1 --O/i) O/u "-[- O/v 2b > 2(L +) + .
Pk Nk

To verify Condition 3, assume (again for contradiction) that for a clause of index k, there
are variables Xu Q and xv 6 H, such that u 6 Pk U N/, and v 6 Pk. Then for this clause, we
obtain the contradiction:

ZO/i+ E(1-O/i) > (1-O/u)+O/v > (1-a)+b > l+e.
Pk N,

To complete the proof of Theorem 3.1, we use Lemma 3.2 to find a QHY-partition with
Y sufficiently small. Select p to be the largest integer such that A R-L is greater than

p
e. Forq 6 {0,1 p},setcq L+qA. For eachq 6 [p], the pair cq_l, Cq satisfies
the hypotheses on a, b in Lemma 3.2. Thus it is possible to construct a QHY-partition with
Y X(cq_l,cq), for any q 6 [p]. Because the intervals (Cq-1, Cq) are disjoint, one of them
satisfies [X(c_,,)[_< n/p. The definition of p implies that p+ >_ R-__.L > + , and hence
n__ <6n.
p

It remains to observe that we must have p < n, which implies that the index j such that

]X(c._,,j) is smallest can be found in linear time. This is true since if p > n then one of the
sets X(q_l,q is empty and there would exist a QHY-partition with Y 0, contradicting the
fact that Z(q) > 1, i.e., that 4 is not a q-Horn formula. B

4. Proof of Theorem 1.2. Theorem 1.2 will follow easily from the following"
THEOREM 4.1. Given a positive integer and a CNF 49 (Xl xn) of degree d, d >_ 3,

a CNF 7t on (1 + t)n variables such that
(i) is satisfiable ifand only if ap is satisfiable, and

2(ii) Z() < + (1 3)7,
can be constructed in time polynomial in and I1.

Proof. Let b be given by (1). Let be the CNF on variable set {Yijll < < n, 0 < j <

whose clauses are:

(6) V Yio V it (k--1 m),
a P, N,

(7) Y ij V Yi,j+l (i n’j--0 1), and

(8) Yio V yit (i n).

Clauses (7) and (8) ensure that in any satisfying assignment of , Yio Yi yit for
each 6 [n]. Identifying Yio yit with xi, one easily concludes that 4’ is satisfiable if and
only if ap is satisfiable.

To show that Z(Tt) < + (1) 7, let us define

(i 1 n; j --0 t).

A COMPLEXITY INDEX 49

Consider now a clause of type (6). Since Otio 2 and Olit 1 2, we obtain

_Oio + (1 IOtit) IPkUNkI 1.
P Nk

Similarly, for the clauses of type (8),

2
Olio + (1- olit - < 1.

Finally, for the clauses of type (7)

(2) 1
(1 Ol j "at- Oli, j+ "a

t- - -ProofofTheorem 1.2. Recall that the satisfiability problem for CNFs of degree 3 (3-SAT)
is NP complete. Let r be a positive integer. By Theorem 4.1, there is a polynomial time
reduction that maps any CNF 4 of degree 3 on p variables to a CNF ap on n pr+l + p
variables with Z(p) _< (1 + 1/3pr). For a fixed/3 < we choose r- [t], which implies

n (pr+l + p)# < (2pr+l) < 3p(r+)t < 3pr,

and therefore Z0P) < + (1/n#). Thus any instance of 3-SAT can be reduced in polynomial
time to an instance of SAT(1 + (1/n)), implying the theorem. V1

REFERENCES

B. ASPVALL, M. E PLASS, AND R. E. TARJAN, A linear-time algorithmfor testing the truth ofcertain quantified
booleanformula, Inform. Process. Lett., 8 (1979), pp. 121-123.

[2] E. BOROS, Y. CRAMA, ANDP. L. HAMMER, Polynomial-time inference of all valid implications for Horn and
relatedformulae, Ann. Math. Art. Intell., (1990), pp. 21-32.

[3] S. A. CooK, The complexity of theorem proving procedures, Proc. Third Annual Symposium on Theory of
Computing (1971), pp. 151-158.

[4] W.F. DOWLING AND J. H. GALLIER, Linear time algorithms for testing the satisfiability ofpropositional Horn
formulae, J. Logic Programming, 3 (1984), pp. 267-284.

[5] S. EVEN, A. ITAI, AND A. SHAMIR, On the complexity oftimetable and multicommodityflow problems, SIAM J.
Comput., 5 (1976), pp. 691-703.

[6] A. ITAI AND J. A. MAKOWSKY, Unification as a complexity measurefor logic programming, J. Logic Program-
ming, 4 (1987), pp. 105-117.

[7] N.D. JONES AND W.T. LAASER, Complete problemsfor deterministic polynomial time, Theoret. Comput. Sci.,
3 (1977), pp. 105-117.

[8] H.R. LEwis, Renaming a set ofclauses as a Horn set, J. Assoc. Comput. Mach., 25 (1978), pp. 134-135.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 50--70, February 1994

() 1994 Society for Industrial and Applied Mathematics
005

THE SET UNION PROBLEM WITH UNLIMITED BACKTRACKING*
ALBERTO APOSTOLICOt, GIUSEPPE F. ITALIANOt, GIORGIO GAMBOSI, AND MAURIZIO TALAMO

Abstract. An extension of the disjoint set union problem is considered, where the extra primitive backtrack(i)
can undo the last unions not yet undone. Let n be the total number of elements in all the sets. A data structure
is presented that supports each union and find in O(log n / log log n) worst-case time and each backtrack(i) in O(1)
worst-case time, irrespective of i. The total space required by the data structure is O(n). A byproduct of this
construction is a partially persistent data structure for the standard set union problem, capable of supporting union,
find, and find-in-the-past operations, each in O(log n/log log n) worst-case time. All these upper bounds are tight
for the class of separable-pointer algorithms as well as in the cell probe model of computation.

Key words, disjoint set union, deunion, unlimited backtrack, design and analysis of algorithms

AMS subject classification. 68C25

1. Introduction. The disjoint set union problem has been studied extensively during the
past two decades [1], [2], [5], [10], [19], [20], [22]. The problem consists of maintaining an
efficient internal representation for a dynamic partition of an n-element set S that undergoes
a sequence of operations of the following kinds:

union(A, B, C): combine the two subsets of S named, respectively, A and B into a new
set named C.

find(x): return the name of the unique subset of S that currently contains the element x.
Initially, the partition of S consists of the n singleton sets }, {2} {n }, and the name

of set {i is i. Various conventions can be made about the way in which the name C is chosen in
a union, and they give rise to a small number of variations of the problem. Typically, the name
of every set at any time is maintained to coincide with the name (an integer in 1, n]) of one
of the elements of that set. Also, the name C in a union is usually one of the names of the two
input sets. Along these lines, C can be rigidly identified with A, or it can be left unspecified
and result in either A or B at runtime, depending on the details of the implementation of a
union. All such classes of restrictions do not affect the substance of the set union problem, but
they allow the withdrawal of the third argument C from the format of a union. Throughout
this paper we reason in terms of the primitive union(A, B), which combines the two subsets
named .4 and B into a new set named either .4 or B.

The most efficient algorithms for the set union problem were devised by Tarjan and van
Leeuwen 19], [22]. Such algorithms run in O (n+mc(m +n, n)) time on a sequence consisting
of at most n unions and m finds. Here c is a functional inverse of the Ackermann function.
No better performance is possible for the class of separable-pointer algorithms [20], [22],
i.e., in the pointer-machine [12], [18], [20] model of computation. The storage of a pointer
machine consists of an unbounded collection of records connected by pointers. Each record
can contain an arbitrary amount of additional information, but no arithmetic is allowed in the
computation of the address of a record. Separable-pointer algorithms must obey the following
rules [21, [20]:

Received by the editors November 13, 1989; accepted for publication (in revised form) July 29, 1992.
Department ofComputer Science, Purdue University, West Lafayette, IN 47907, and Dipartimento di Elettronica

e Informatica, Universit di Padova, Padova, Italy. The research of this author was supported in part by the French
and Italian Ministries of Education, by National Science Foundation grants CCR-89-00305 and CCR-92-01078, by
National Institutes of Health Library of Medicine grant R01 LM05118, by U.S. Air Force Office of Scientific Research
grant 90-0107, and by British Research Council grant SERC-E76797.

Dipartimento di Informatica e Sistemistica, Universit di Roma "La Sapienza," Roma, Italy. Present address,
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598.

Dipartimento di Matematica Pura e Applicata, Universith de L’Aquila, L’Aquila, Italy.
Dipartimento di Informatica e Sistemistica, Universith di Roma "La Sapienza," Roma, Italy.

50

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 51

(i) The operations must be performed on line.

(ii) Each set element is a node of the data structure. There can also be additional nodes.
(iii) (Separability) After each operation the data structure can be partitioned into subgraphs

such that each subgraph corresponds exactly to a current set. No edge leads from a subgraph
to another.

(iv) To perform find(x) the algorithm obtains the node v containing x and follows paths
starting from v until it reaches the node that contains the name of the corresponding set.

(v) During any operation the algorithm may insert or delete any number of edges. The
only restriction is that rule (iii) must hold after each operation.

Recently, Fredman and Saks [5], [6] showed that even in the powerful cell-probe model
of computation, which encompasses the power of a random-access machine, no better perfor-
mance than O(n + mot(m + n, n)) is possible for a sequence of n unions and m finds.

Despite the low amortized [21 bounds, Blum [2] showed that the worst-case bound per
operation for the set union problem is O (log n/log log n).l Also, this upper bound is known
to be tight for the class of separable-pointer algorithms [2] and in the cell-probe model of
computation [6].

In recent years, some variants of the set union problem have been considered, where
individual unions or sequence of unions can be backtracked upon [7], [8], [13], [15], [24].
Such extensions are motivated by problems arising in the memory management by Prolog
interpreters [9], [13], [14], [23], in the incremental execution of logic programs [15], and in
the implementation of search heuristics for resolution 11], 17]. Along these lines, Mannila
and Ukkonen 13] proposed the set union problem with backtracking, where a third operation,
deunion, which undoes the last union not yet undone, is introduced.

Westbrook and Tarjan [24] proved that any separable-pointer algorithm for the set union
problem with backtracking requires f2 (m log n / log log n) time in performing a sequence ofm
find, union, and deunion operations. They also gave several algorithms with O(log n/ log log n)
amortized running time, thus matching this lower bound. The overall space required by these
algorithms is O(n) [24].

An extension of the set union problem with backtracking is considered in [7], [8]. In this
extension a real number is assigned to each union as the weight of that union, and it is possible
to backtrack either to the union of maximal weight or to a generic union performed in the past.
This extension has both a static [7] and a dynamic [8] version, depending on whether or not
the weights can be dynamically updated. Both versions can be solved in O (log n) worst-case
time per operation and in O(n) overall space [8]. Also, this upper bound is tight for the class
known as non-separable-pointer algorithms 16].

In this paper we consider a generalization of set union with backtracking where, in addition
to the usual union and find operations, a primitive backtrack(i) that undoes the last unions
not yet undone is introduced. We call this problem the set union problem with unlimited
backtracking. An efficient solution to this problem is desirable in several applications, notably,
in the implementation of search heuristics for Prolog interpreters [9], 11], 17], [23]. In that
framework, sequences of unions correspond to unifications between terms 14], and a multiple
deunion would enable one to quickly recover from an unsuccessful search by returning to one
of the most promising states among those examined so far.

Since backtrack(I) is simply a deunion operation, the algorithms in [24] can be easily
adapted to handle unlimited backtracks, within the same amortized time and space perfor-
mance. If, however, backtrack(i) is regarded as a single operation, then such an implementa-
tion requires f2 (n) time in the worst case.

1Throughout this paper all logarithms are taken to the base 2, unless explicitly noted otherwise.

52 THE SET UNION PROBLEM

Our implementation of the set union problem with unlimited backtracking takes worst-
case time O(log n/log log n) for each union or find operation and constant time for each
backtrack(i), irrespective of i. We use O(n) overall space. Clearly, the f2 (log n / log log n)
per-operation lower bounds of [2] and [6] still hold for our problem, so that our bound is tight
both in the separable-pointer and cell-probe models of computation.

A byproduct of our construction is a partially persistent [4] data structure that supports
each union, find, and find-in-the-past operation in O(log n/log log n) worst-case time, with
O(n) space usage. This is faster than the bound achieved in 15], but the specifications of a
union used in [15] are slightly different.

2. Union-find with deunion. As mentioned in [24], the data structure proposed by
Blum [2] could be easily adapted to support deunions in O(logn/loglogn) time per op-
eration and in overall space O (n). In this section we carry out the details of this extension that
will serve as a basis for the subsequent developments. We start by recalling the tree structure
used in [2].

For any k >_ 2 a k-UF tree is a rooted tree T such that
(i) the root has at least two children;
(ii) each internal node has at least k children;
(iii) all leaves are at the same level.
Clearly, the height of a k-UF tree with n leaves is bounded by [logk hi. We say that a

node of a k-UF tree is slim if it has fewer than k children and isfat otherwise. A consequence
of the aforementioned definitions is that only the root of a k-UF tree can be slim. Disjoint sets
are represented by k-UF trees as follows. The elements of the set are stored in the leaves, and
the name of the set is stored in the root. Furthermore, the root also contains the height of the
tree and a bit specifying whether it is fat or slim.

A find(x) is performed by first climbing up the tree from the leaf containing x and then
returning the name stored in the root. This takes O (logk n) time.

To perform union(A, B) for two nonsingleton sets//and B, we need access to the roots rA
and rE of the corresponding k-UF trees TA and Tn. Blum assumed that his algorithm obtained

r and re in constant time, prior to performing a union(A, B). If this is not possible, r and
re can be obtained by means of two finds (i.e., find(//) and find(B)), because of the property
that the name of a set is one of the elements of that set. Once r and rE are available, the two
k-UF trees T and Ta are combined as follows.

Assume without loss of generality that height(Ta) _< height(TA). Let v be the node on
the path from the rightmost leaf of T to r such that the subtree of T rooted at v has the same
height as T. Node v is found by starting at r and then following the leftmost downward
branch of each node for exactly height(TA)- height(Ta) steps. After node v is reached, the
manipulations to be performed depend on the type of union, according to the following.

Type Root r is fat (i.e., has no fewer than k children), and v is not the root of T.
Then re is made a sibling of v.

Type 2 Roots r and rE are fat, and v is the root of T. A new (slim) root r is created
and both r and rE are made children of r.

Type 3 This type covers all remaining possibilities. Specifically, if root rE is slim, then
the children of rE are made the rightmost children of v. If root re is fat, then, since we are not
in type or 2, we have that v rA and v is slim. In this case all the children of r are made
rightmost children of

Note that new arcs are created only as part of a type or 2 union. Type 3 unions
involve instead what we call redirecting existing arcs. We make the assumption that the node
representing a singleton set is a fat node. From now on, we fix k [log n/log log n. This
choice of k is motivated by the following theorem by Blum [2].

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 53

THEOREM 2.1 [2]. UF trees support either union orfind in O(logn log log n) time and
O(n) space.

Blum [2] proved also that this bound is tight for the class of separable-pointer algorithms.
Recently, this result was extended to the cell-probe model of computation by Fredman and
Saks [6].

THEOREM 2.2 [2], [6]. Any separable-pointer algorithmfor the disjoint set union problem
has single-operation worst-case time complexity f2 (log n/log log n). The same lower bound
holds in the cell-probe model ofcomputation.

A UF tree can be easily adapted to support deunions. We list the few upgrades needed.
The resulting structure will be called a DUF tree. For each node v the children of v are also
linearly ordered from left to right in a doubly linked list. Two DUF trees TA and TB are
combined in much the same way as UF trees, except that type 3 unions are now expanded as
follows. Assume root rB is slim. All the children of rB are made the rightmost children of
v. The arc connecting the leftmost child of rB to V is marked a separator, and the label of rB
(i.e., the old name of the set represented by TB) is recorded in that arc. Similar manipulations
are performed when rA is slim.

Because of the linear order on the children of each node, each union can be implicitly
described by its characteristic arc, defined as follows. The characteristic arc of a type union
is (rB, parent(v)). The characteristic arc of a type 2 union is (rA, r). Finally, the characteristic
arc of a type 3 union is the separator associated with that union. With the help of a stack P,
characteristic arcs allow quick deunions to be performed. Following each union, a pointer to
its characteristic arc is pushed onto P, along with the type identifier (1, 2, or 3) of that union.
Type and type 2 unions are then easily undone in constant time, following the pointer to the
characteristic arc. To undo a type 3 union we access the separator pointed to by the top of the
stack and disconnect this arc and all the arcs to its right. All the nodes so detached from the
tree are made children of a new root to which the name stored in the separator is assigned. By
the definition of type 3 union, this requires O(k) time. Note that O(n) nodes and arcs can be
in the structure at any time. The stack records correspond to unions not yet undone, and there
can be at most n 1 such unions. Therefore, the total space required is O (n). In conclusion,
the following theorem holds.

THEOREM 2.3. DUF trees support each union, find, and deunion in 0 (log n / log log n)
time and 0 (n space.

3. Upgrading DUF trees. In the set union problem with unlimited backtracking, de-
unions are replaced by backtracks: for any integer > 0 backtrack(i) undoes the last valid
unions performed. Backtrack(i) is performed on DUF trees in O(i logn/loglogn) time,
simply by carrying out deunions as described in 2. This is clearly undesirable, since can
be (R)(n). On the other hand, as long as we insist on deleting arcs the moment that they are
invalidated by backtracking (i.e., in the eager mode [24]) the cost of backtrack(/) is f2 (i), since
at least one arc must be removed for each erased union. To sidestep this lower bound, the
removal of arcs invalidated by backtracking must be deferred to some possible future operation.
This mode of operation is called lazy. In a strict sense, the lazy approach infringes on the
separability condition stated in the introduction. However, the substance of that condition
would still be met if one maintains that an arc is never traversed once it is invalidated (see,
e.g., [24]). Our approach guarantees this fact and thus does not depart substantially from the
separability assumption.

In what follows we present a data structure suitable for storing a collection of disjoint
sets in such a way that the identity of each set in the collection is preserved. We call this data
structure a k-BUF tree or, with the implicit assumption that k Flog n / log log n], simply a
BUF tree. We will show that BUF trees support union and find in O(logn/loglogn) time
and backtrack(i) in constant time, independent of i.

54 THE SET UNION PROBLEM

We begin by describing the main features ofBUF trees and by highlighting the associated
implementation of the union, find, and backtrack operations. BUF trees retain the basic
structure of DUF trees but differ from them primarily because of some implicit attributes
defined on the arcs. With BUF trees a union is still performed according to one of three
different patterns of management, as with DUF trees. In particular, we will have that type
and type 2 unions create new arcs, whereas type 3 unions only redirect already existing

arcs. With BUF trees, however, a union must perform some additional manipulations on arcs,
besides those pertaining to the mere aggregation of the two input subsets. In the following
we say that an arc e is handled by a certain union only if e is either created or redirected by
that union during the aggregation stage of that union. The main difference with DUF trees is
that now, because of the lazy approach, we allow arcs and separators to possibly survive in the
data structure also after the union that introduced them has been invalidated by backtracking.
At any given time we call a union valid if it has not yet been undone by backtracks, and we
call it void otherwise. We further partition void unions as follows. A void union is persisting
if the arcs handled by that union have not yet been actually removed from the data structure,
and it is dissolved otherwise. This classification of unions induces a corresponding taxonomy
on arcs and separators as follows. In a BUF tree an ordinary arc can be live, dead, or cheating,
and a separator arc can be, in addition, either active or inactive. Informally, live arcs represent
connections not yet invalidated by backtracks; this happens when the last union that handled
them is still valid. Dead arcs instead represent connections that, although still in the structure,
only await destruction; this happens when the first union that created them is a void persisting
union. Between live and dead arcs lie cheating arcs. They occur when the first union that
created them is valid but the last union that handled them is a persisting type 3 union. Therefore,
they represent faulty connections that do not have to be destroyed but have only to be replaced
by the corresponding correct connections. As in DUF trees, separators are associated with
type 3 unions. At any given time a separator is active if its associated union is valid and is
inactive otherwise. A node of a BUF tree is live if there is at least one live arc entering it and
is persisting otherwise. In analogy with the nodes of DUF trees, the live nodes of BUF trees
can be slim orfat, but this is decided based only on the number of live arcs entering each node.
Specifically, a node is slim if the number of live arcs entering it is less than k and is fat if the
number of live arcs entering it is at least k.

Assume that we perform an intermixed sequence r ofunion, find, and backtrack operations
starting from the initial partition of S into n singletons. The partition of S that results from
cr is the same as that produced by applying to S, in the same order as in or, only those unions
that are valid (i.e., not undone by backtracks) at the completion of r. The subsequence of r
consisting only of unions that are still valid by the end of cr (i.e., by neglecting the unions made
void by backtracking) is called the virtual sequence ofunions. The following rules ensure that
at any time each currently valid union u is assigned a unique integer ord(u) representing the
ordinal number of u in the current virtual sequence of unions:

(i) The first union performed gets ordinal number 1.
(ii) When a union is made void by backtracking, it relinquishes its ordinal number.

(iii) A new union gets an ordinal number equal to plus the ordinal number of the last
valid union performed.

At some point of the execution of or, let /max be the ordinal number of the last valid
union performed so far. Backtrack(i) consists of removing the effect of the last valid unions,
that is, the effect of the last unions in the current virtual sequence of unions. We perform
backtrack(i) simply by setting/max max{imax i, 0}, i.e., in constant time irrespective of
i. This implementation of backtrack does not affect any arc in the forest, but its effect is
implicitly recorded in the change of status of some arcs and separators. Part or all of these arcs

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 55

might be removed or redirected later, while subsequent union operations are performed. In
any event, we need to ensure the consistency of the forest of trees under this newly introduced
operation. By the forest being consistent we mean that each tree in the forest stores a collection
of sets in the current partition in such a way that, for any x, a find(x) executed as specified
in the following correctly returns the name of the set currently containing x. We refer to the
consistency of the forest as Invariant 0. The complete specification of this invariant requires
some additional notions.

First, each arc e in a BUF tree T has two unions associated with it, as follows. The first
union, denoted first_ union(e), is the union that created e. The second union, last_ union(e), is
the last union not yet actually undone (i.e., either a valid or a persisting union) that handled e.
We will maintain that ord(first_ union(e)) < ord(last_ union(e)) for every arc e. In a consistent
BUF tree an arc e is dead if and only if first_union(e) is void (i.e., e has to be destroyed since
it gives a connection made void by some intervening backtrack). Similarly, arc e is cheating
if and only if first_union(e) is valid and last_union(e) is void (i.e., e gives a faulty connection
and hence has to be replaced but not completely destroyed). Finally, e is live (i.e., it gives
a connection not yet affected by backtracking) if and only if last_union(e) is still valid. In
addition to first_union and to last_union, each separator s also has associated the type 3 union
that made it a separator. In the following, such a union will be referred to as separate_ union(s).
A separator s is active if and only if separate_union(s) is valid and is inactive otherwise.

To complete our description of a consistent BUF tree T, let S, $2 Sp be the disjoint
sets stored in T. We specify the mapping from the set of leaves of T to the set of names of
$1, $2 Sp. Let x be a leaf of T and also a member of the set Sq, < q < p. Let Y be the
name of Sq. Ascend from x towards the root of T following live arcs until a node without an
outgoing live arc is met. Call this node apex(x). In a consistent BUF tree an apex falls always
in one of the following three classes.

1. Live apex There is no arc leaving apex(x), i.e., apex(x) is the root r of T. We will
maintain that the name Y of Sq is stored in r.

2. Dead apex The arc leaving apex(x) is dead. We will maintain that the name of Sq
is stored in apex(x).

3. Cheating apex The arc e leaving apex(x) is cheating. In this case we will maintain
that at least one inactive separator falls within k arcs to the left of e and that the name of
Sq is stored in the rightmost such separator.

The preceding description explains how a find is performed on a BUF tree. Throughout
the sequence of union, find, and backtrack operations we need to maintain the forest of BUF
trees in such a way that any arbitrary find would give a consistent answer. We formalize this
condition as Invariant 0.

INVARIANT 0 (find consistency). Prior to the execution of each operation of a sequence r
ofoperations and for every element x of S, the following holds. If apex(x) is either dead or
live, then the name of the set containing x is stored in apex(x). If apex(x) is cheating, then the
name of the set containing x is stored in the rightmost inactive separator to the left of apex(x),
and such a separator falls within k arcs to the left of apex(x).

The following fact is an immediate consequence of Invariant 0.
FACT 3.1. BUF trees support eachfind operation in time O((k + h)t), where is the time

needed to test the status ofan arc and h is the maximum length of an ascending pathfrom a

leafx to its apex in the tree.

In the following sections we show that it is possible to implement BUF trees in such a way
that is O(1) and h is O (logk n). This immediately yields the claimed O(log n / log log n)
time bound for each find.

56 THE SET UNION PROBLEM

We now examine what is involved in performing union operations. Let A and B be two
different subsets of the partition of S, such that A - B. In the collection of BUF trees that
represents this partition, let T and T2 be the trees storing, respectively, A and B. We remark
that two disjoint sets can happen to be stored in the same tree, so that T and T2 may coincide
even if A B. The first task of union(A, B) consists of finding in T and T2 the roots of the
smallest subtrees that store, respectively, A and B. These roots are located by performing two
finds. The associated subtrees have to be detached from their host trees and then combined
into a single tree. Once the two subtrees have been located and detached, their unification
requires a treatment quite similar to that of the union procedure described for DUF trees in

2. The most delicate part of the process, however, is in the first stage. The correctness of the
two initial finds depends on our ability to preserve Invariant 0 through each union, find, and
backtrack. This is discussed in the next sections.

4. Dominance trees and the procedure Restore. As said, we follow the lazy approach
of undoing unions made void by backtracks not immediately, but rather during the execution
of subsequent unions. Within the claimed time bounds, however, a single union cannot undo
all the currently persisting unions. On the other hand, this is also not strictly necessary. What
is necessary for a union is to undo all the persisting unions that undermine its own consistent
execution, along with the validity of Invariant 0 on the resulting forest of BUF trees. It turns
out that such a reduced task can be performed within the claimed time and space bounds, at
the expense of some additional bookkeeping.

Our technique consists ofmaintaining the edges in every BUF tree T grouped into clusters,
a cluster being defined as a maximal set E of consecutive sibling arcs with the property that
last_union is the same for all the elements of E. We will maintain that the size of any cluster
is at most k at any given time. At any point in the computation, a cluster is persisting
if the field last common to its arcs exceeds the current value of/max (i.e., if the last_union of
its arcs is void), and it is live otherwise. This section describes the structure of such clusters
and then details the operation of a procedure, called Restore, that will carry out a recurrent
subtask of our BUF-tree implementation of a union. In informal terms, the task of Restore is
that of removing all dead arcs from the input cluster, and then partitioning the remaining arcs
in a certain number of smaller, yet live clusters. We will see that any union involves at most a
constant number of calls to Restore and that the cost of each such call is O (log n / log log n)
time.

Before describing the structural properties of clusters, we need to make some additional
assumptions on the structure of BUF trees. To each arc e, two integers first(e) and last(e)
are assigned. They represent, respectively, the ordinal number given to first_union(e) and to
last_union(e). Besides first(s) and last(s), each separator s contains the following additional
information. An attribute separate(s) is the ordinal number given to separate_union(s). Fur-
thermore, label(s) is the name destroyed by separate_union(s), and number(s) is the total
number of arcs moved during the execution of separate_union(s). These latter arcs will be
maintained to fall immediately to the right of s. Since separate_union(s) is a type 3 union,
number(s)< k. By the definition of a cluster, all the edges in a cluster E have the same value
of last field. We refer to last(E) as the value shared by the last fields of all the arcs in E.

For each node v, fat(v) is the ordinal number of the last union that made v a fat node,
provided that the effects of that union have not been actually removed from the data structure
(i.e., that union is not a dissolved union). If no such union exists, then fat(v) is undefined.
According to this convention, a slim node that was once fat may have a defined fat number.
In addition to Invariant 0, we will maintain the invariants given below.

INVARIANT 1 (the/max invariant). At any time, the following properties hold. For every
arc e in a BUF tree, arc e is dead if and only if/max < first(e), is cheating if and only if

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 57

first(e) < /max < last(e), and is live if and only if/max >_ last(e). If, in addition, e is a
separator, then e is inactive if and only if/max < separate(e) and e is active if and only if
/max > separate(e). For every node v in the tree such that fat(v) is defined, fat(v) < /max if
and only if v is fat.

Maintaining Invariant enables us to test the status of an arc in constant time. One more
important consequence of this invariant is that either all arcs in a cluster are live or none is.
Let now e and f be two arcs in a cluster E. We write e < f if e precedes f in the left-to-fight
order, and we denote by If el the number of consecutive arcs between e and f (including
both). If s is a separator in E, then we say that s dominates f if and only if s < f and

If- sl < number(s). We maintain also the following invariant.
INVARIANT 2 (the nesting invariant). Let E be a cluster. If lEI 1, then the only element

of E is not a separator. Assume now EI > 1. Then, if the leftmost arc of E is a separator,
say, s, then separate(s) last(s) and number(s) IEI. If the leftmost arc of E is not a
separator, then E[2, E is the leftmost one among its sibling clusters, and E contains no
other separators. In general, if s’ and s" are any two separators in E and s’ dominates s", then
s’ also dominates any arc e dominated by s".

The nested structure of a cluster E delimited by a left separator is described in detail with
the aid of a rooted, ordered tree called the dominance tree D(E) of E. The leaves of D(E) in
preorder correspond bijectively to the arcs of E (including separators) from left to right; the
internal vertices of D(E) correspond bijectively to the separators. Thus, given a simple arc
e in E, there is only one leaf e in D(E) corresponding to e, while there is a leaf e and also
an internal vertex v in D(E) in correspondence with each separator of D(E). If s is such a
separator, then is the leftmost leaf in the subtree of D(E) rooted at v.

The main feature of D(E) is the following. Let be the leaf of D(E) that corresponds
to arc e 6 E. Then, the internal vertices on the path from to the root of D(E) correspond to
the separators that dominate e, in the same succession as such separators are met in E starting
from e and scanning E from right to left (see Fig. 1). In the following we will not distinguish
between an arc or separator of E and its corresponding vertex in D(E) whenever our meaning
is made clear by the context.

Besides representing the nestings of separators, dominance trees encapsulate some mono-
tonicity properties that form the object of our next invariant. Specifically, each vertex v in
a dominance tree D(E) gets assigned an integer r(v) (1 < r(v) < n), with the following
meaning. If v is a leaf, then r(v) first(v). If v is an internal vertex (hence it maps a sepa-
rator), then r(v) separate(v). We now consider all the arcs entering a node in a BUF tree
as partitioned into clusters, and we assign similar numbers, denoted by R, to such clusters.
Specifically, if either E is the leftmost cluster or IEI 1, then R(E) first(e), where e is
the leftmost arc in E. Otherwise, R(E) is separate(s), where s is the separator that coincides
with the leftmost arc in E (cf. Invariant 2). The numbers assigned in this way to the vertices
of dominance trees and clusters of arcs entering a node will satisfy the monotonicity condition
given below.

INVARIANT 3 (the monotonicity invariant). Let the dominance tree D(E) of cluster E be
defined. Hence IEI > 1. Then the two leftmost children of each internal vertex of D(E) are
always two leaves. Moreover, every internal node s (which must correspond to a separator) has
number(s) equal to the number of leaves of the subtree of D(E) rooted at s. Furthermore, if v
and v’ are sibling vertices of D(E) with v < v’, then one of the following two cases applies: (i)
if v and v’ are the two leftmost vertices among their siblings (and thus leaves by the preceding
part of this invariant) with v < v’, then r(v) r(v’); (ii) otherwise, r(v) < r(v’). We also
have that if p is the parent of v, then r(p) > r(v). The individual clusters entering a slim
node of a BUF tree obey the following rules. The leftmost cluster of arcs entering a slim node

58 THE SET UNION PROBLEM

25

(a}

FIG. 1. BUF trees and dominance trees. (a) The BUF tree produced for k > 10, by applying to an initial
singleton partition the ordered sequence of unions: union(A, B), union(H, I), union(L, M), union(C, D), union(E,
F), union(F, G), union(F, I), union(D, G), union(A, E), union(B, L). The first two numbers at the bottom right of
each arc represent, respectively, the first and lastfieldfor that arc. Separators are also labeled with a third number,
representing their separatefield. This sequence produces 3 clusters and the 4 separators (C, X), (E, X), (H, X), and
L, X). (b) Dominance trees associated with the clusters of (a). The number on the left ofnode v represents r(v).

contains two arcs and no separators. Furthermore, if E and E’ are clusters of arcs entering the
same slim node and E is on the left of E’, then R(E) < R (E’).

As one of the consequences of Invariant 3 we get that if f is an arc dominated by a
separator s, then first(f) < separate(s). Our last two invariants are as follows.

INVARIANT 4 (the slim compression invariant). The live arcs entering any slim node are
leftmost among their siblings and have nondecreasing last fields, from left to right. For fat
nodes this property holds for all the arcs that were directed to that node while the node was
slim, including the arcs that made the node fat.

The slim compression invariant enables us to decide in O (k) time whether a node is slim
or fat simply by examining the at most k leftmost arcs entering that node.

INVARIANT 5 (the numbering invariant). For any integer i, 1 < < n 1, there are either
at most two sibling arcs with first field equal to or at most one arc with separate field equal
to i. Moreover, there are at most k 1 sibling arcs with last field equal to i, and such arcs
are in a cluster. Let E be this cluster. If E contains only one arc e, then first(e) last(e).
If lEI > 1, then the first two arcs of E have the same first field, the second arc of E is not
a separator, and the remaining arcs possibly existing in E have first fields different from that
of the first two arcs. Moreover, if the leftmost arc of E is not a separator, then EI 2 and

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 59

the first fields of its two arcs are equal to their last fields. Otherwise, each arc in E has last
field strictly greater than first field, and the leftmost arc has separator field equal to i. Finally,
given we can access in constant time the arcs with first field equal to or with separator field
equal to i.

The numbering invariant guarantees that the size of each cluster is at most k and that
no two distinct clusters can have arcs with identical last fields. The last part of the invariant
implies that a singleton cluster or a cluster not delimited by a left separator cannot contain
cheating arcs. Thus such types of clusters contain either live or dead arcs.

We are now ready to describe how a persisting cluster of rn arcs is detached from its host
BUF tree in O(m) time, maintaining Invariants 0-5 on the resulting dismembered structure.
This is accomplished by the procedure Restore, which takes as input some arc e and an integer
value/max. The specific tasks of Restore are as follows:

1. to identify the cluster E containing e;
2. to delete the dead arcs possibly existing in E;
3. to redirect the cheating arcs possibly existing in E towards newly introduced roots,

in such a way that, by letting F be the forest of trees into which T has been dismembered,
the following hold: (3.1) F represents, through Invariant 0, precisely the same collection
of subsets of S formerly represented by T, and (3.2) all nondead arcs of E become live
arcs in F.

To analyze what is involved in a Restore(e,/max), let E be the cluster containing e. If e
is already live, then, by the/max invariant, so are all the other arcs in E, so that Restore does
not need to do anything. Henceforth we assume last(e) > /max, i.e., e is either cheating or
dead. Then, by the definition of cluster, there cannot be any live arc in E. To deal with the
most general case, assume that D(E) is defined (i.e., E has a left separator) and let e be a
leaf of D(E). With reference to the BUF tree T containing E, let v be the node from which
arc e originates, and let T’ be the subtree of T rooted at v. Assume that e is a dead arc of E.
By Invariant 0 any leaf of T’ connected to v by a path consisting solely of live arcs belongs
currently to the set whose name is stored in v. Thus Restore can accomplish its task just by
deleting e. Assume now that e is a cheating arc, and let as(e) and is(e) be, respectively, the
highest active and lowest inactive separator on the path from e to the root of D(E). Observe
that Invariants 2 and 5 guarantee that is(e) is always defined in the case being considered. In
the following, the expression "to the left of" is used to mean "to the left of and including."

LEMMA 4.1. In E, is(e) is the rightmost inactive separator to the left of
Proof. The assertion follows trivially from the definition of D(E) if e itself is an inactive

separator in E. Thus we concentrate on the case where e is not an inactive separator. Assume
for a contradiction that the rightmost inactive separator to the left of e in E is some s’ such
that s’ is(e) and s’ e (see Fig. 2). By Invariant 2 and our choice of is(e), separator s’
cannot be on the path from e to the root of D(E) and thus does not dominate e. Since s’ falls
in E between is(e) and e and since is(e) dominates e, then is(e) dominates s’, whence s’ must
lie in the subtree of D(E) rooted at is(e). Since s’ is to the left of e in E and s’ e, then
in such a subtree of D(E) we have that s’ or an ancestor of s’ is a left sibling of either e or
an ancestor of e. Then let v stand for s’ or the ancestor of s’, and let v’ stand for e or the
ancestor of e, according to the case. By Invariant 3 and the/max invariant, s’ being an inactive
separator implies that v is an inactive separator. By the same invariants, if v’ is not e, then v’
is an active separator. If v’ is an active separator, then always, by Invariant 3, r(v) < r(v’),
whence v’ active forces v to be active too, a contradiction. If v’ coincides with e, then the
fact that e is a cheating arc (i.e., first(e) _< /max), along with the conditions r(v’) first(e),
r(v) separate(v), and r(v) < r(v’) (cf. Invariant 3), leads again to the contradiction that v
is inactive.

60 THE SET UNION PROBLEM

FIG. 2. Illustration ofLemma 4.1.

LEMMA 4.2. If as(e) is defined, then as(g) is a direct son of is(e). Moreover, the subtree

of D(E) rooted at as(g) does not contain any inactive separator

Proof. If as(e) and is(e) are both defined, then from the fact that as(e) is active and is(e) is
inactive we get that separate(as(e)) < separate(is(g)). By Invariant 3 is(e) is then an ancestor
of as(e). That as(g) is a son of is(g) then follows straightforwardly from their respective
definitions. The second part of the claim is an easy consequence of Invariant 3. l

Once D(E) is given, it is easier to specify the operation of Restore so as to carry out tasks
1-3 consistently with Invariant 0. For this, let E {el, e2 eh }, h < k, be the cluster
handled by Restore, and let xi, < < h, be the node of the BUF tree T from which arc ei
originates. As already observed, if one of the ei’s is live, then all the ei ’S are live and Restore
can terminate without affecting the structure of T. Assume therefore that E contains only
cheating and dead arcs. The only leaves of T for which something must change are those
whose previous apex was one of the xi’s. If xi was a dead apex, then Restore will make xi a
live apex by simply deleting ei. In this way the name of the set of leaves having apex in xi
remains the same. If xi was cheating, then Restore will move the arc ei tO a new root with
name label(is(e/)) and will reset the last field of ei to separate(as(e/)). By Lemma 4.1, is(e/)
is the rightmost inactive separator to the left of ei, so that also in this case all the nodes with
apex xi preserve their name. Each one of the aforementioned cases can be handled trivially in
O(k) time, but Restore must update all the arcs of E within this bound. The main handle for
this is given by the nested structure of D(E). To clarify this point, we describe a computation
on D(E) that we call Dismember (see Fig. 3).

The goal of Dismember is threefold. First, it will disconnect from its father every internal
node of D(E) that corresponds to an inactive separator. Thus in the forest of trees produced
by Dismember no internal vertex other than a root can be an inactive separator. Second,
Dismember will delete every leaf corresponding to a dead arc. Finally, Dismember will reset
the last field of every surviving leaf e to the separate field of the highest active separator on
the path from e to the root of D(E) if such a separator exists and to first(e) otherwise. Thus

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 61

9

FIG. 3. The effect ofa dismember with/max 5 on the second cluster ofFig. (b).

there will be only live leaves in the output forest. Observe that these goals are unambiguous
and mutually consistent, in force of Lemmas 4.1 and 4.2. The computation can be scheduled
according to the preorder visit of the vertices of D(E). It starts thus at the root of D(E) and
proceeds with the help of a stack P, which is used to store the inactive separators encountered
in the visit. An inactive separator s is pushed onto P the first time it is visited and is popped
from P immediately after all nodes in the subtree rooted at s have been handled. When a
separator is popped from P, it is also disconnected from its father in D(E) and it relinquishes
its attributes as a separator in E. Assume that separator s was just pushed onto P. The
computation considers all the children of s from left to right. If the child being considered is a
leaf, then its last field is immediately updated. If it is an active separator, then Dismember visits
the subtree of D(E) rooted at such a separator updating all leaves in that subtree. Finally, if the
child being considered is an inactive separator, then it is pushed onto P and the computation
proceeds recursively on the children of such a separator.

It is clear that Dismember takes time O(IEI). Assume that whenever Dismember deletes
a leaf of D(E) it also removes the corresponding arc of E. This accomplishes subtask 2 of
Restore. The following few extra manipulations on the forest at the outset of Dismember
suffice to accomplish subtask 3. First, for each tree D in that forest, the root x of a new BUF
tree is created. Next, the arcs of E that are mapped into the leaves of D are considered in
their left-to-right order, and each arc is redirected to x in succession, along with its applicable
attribute fields (i.e., first and last and, for separators, also label, separate, and number). The only
exception to this rule is represented by the leftmost arc, which corresponds to the leftmost leaf
of D and also to the root of D. This arc surrenders its separator attributes, thus relinquishing

62 THE SET UNION PROBLEM

its status as a separator, but its label field is stored into node x. The remaining separators are
active, and they retain their attributes. Observe, incidentally, that the number field of each
such separator is still consistent, in force of the second part of Lemma 4.2 (no pruning of
D(E) takes place below an active separator). At this point Lemma 4.1 and Invariant 0 yield
that subtask 3.1 of Restore is accomplished provided only that every surviving arc of E is live.
Recall that the only field changed by Dismember is the last field of cheating leaves and their
associated separators. Specifically, the last field of a leaf e is set equal to separate(as(e)) if
as(e) is defined and is set equal to first(e) otherwise. Invariant 3 guarantees then that every
leaf of D has become live in this way, which accomplishes subtask 3.2.

We now consider subtask 1, and we also dispose of the cases where D(E) is not defined.
Clearly, Restore(e,/max) can check the status of e in constant time by the/max invariant. For
live e the procedure does nothing more. Thus we concentrate on the cases where e is either
dead or cheating. By Invariant 5 and the definition of a cluster, the cluster E containing e is
formed by at most k arcs. Thus E can be identified trivially in O (k) time by checking the
last fields of the arcs in an interval containing e and of size at most k + 1. If E is not delimited
by a left separator, then (cf. Invariant 5 and the comment following it) we have EI 2, and
the arcs in E are dead. The procedure deletes these two arcs and terminates, in constant time.

As is easily checked, there is no need to maintain dominance trees explicitly. The traversal
of D(E) performed by Dismember can be simulated by scanning E from left to right with an

auxiliary stack. The stack is used as before to store the separators encountered in the scanning,
a separator being kept in the stack until all the arcs within its dominion have been updated.
Although D(E) is not given explicitly, the procedure can use some easy bookkeeping on the
number fields of the separators in order to detect the condition that the dominion of a separator
has been exhausted. In conclusion, we can record the following theorem.

THEOREM 4.3. There is an implementation ofRestore(e,/max) that takes time O(k).
We now show that Restore preserves our invariants.
THEOREM 4.4. The procedure Restore maintains Invariants 0-5.

Proof. Let E {e, e2 eh }, h < k, be the cluster handled by Restore, and let xi,

< < h, be the node of the BUF tree T from which arc ei originates. Since Restore does
nothing if one (hence every) ei is live, we assume henceforth that E contains only cheating
and dead arcs.

That Invariant 0 is maintained by Restore follows straightforwardly from the discussion

preceding Theorem 4.3. That discussion also shows that Restore preserves the part of Invariant
that involves/max- Consider now the part of Invariant that involves the fat field. Since all

newly introduced nodes are slim by construction, these nodes do not have a defined fat field.
The only other node of T whose fat field could be possibly affected by Restore is the node
v that the arcs in the cluster E were entering prior to Restore. Since the arcs of E are not

live, however, they did not contribute in any way to the fatness of v (only live arcs do). Since
the procedure does not change the value of/max, then v will remain slim or fat after Restore,
consistent with before.

To discuss the next invariants, consider the forest of trees produced by Dismember. We
have already seen that every nontrivial tree in such a forest represents a collection of formerly
cheating arcs of E that were changed into live arcs. We show now that Restore has actually
done more than just resuscitate those arcs. Specifically, we claim that every nontrivial tree

in the forest produced by Restore represents a collection of live clusters that obey, with their
associated dominance trees, every applicable property in Invariants 2-5.

For this, let D be one of the trees produced by Dismember, and let s be the inactive
separator of E that corresponds to the root of D. Consider the children of s in D(E), from
left to right. The first observation is that if s became the root of nontrivial tree D, then s has

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 63

at least two children and the two leftmost children of s in D are precisely the two leftmost
children of s in D(E). In fact, let e and e’ be the two leftmost children of s in D(E). Then,
Invariant 3 guarantees that first(e) first(e’). If e and e’ are both dead, then they are deleted.
However, no sibling of e in D(E) could be a live leaf or an active separator in this case because
of the monotonicity of the r-values prescribed by Invariant 3 for e and its siblings. Hence s
could not be the root of a tree in the forest built by Dismember. Assume now that e and e’ are
cheating. Then, as(e) and as(e’) are not defined and is(e) is(e’) s. In this case s will be
the root of a tree, within which e and e’ will still be the two leftmost children of the root. Thus
s has at least two children in D, and such children are leaves of D. These two leaves form the
leftmost cluster in the new BUF tree created by Restore. By the horizontal monotonicity of
Invariant 3, the size of this cluster is 2. By the operation of Restore, neither arc in the cluster
is a separator. This cluster complies with every applicable part of Invariants 2-5.

The other children of the root s of D are either leaves or active separators that did not fall
within the dominion of any other active separators of E. Let s’ be one such child of s, and
consider the two possible cases below.

Case 1" s’ is a leaf. Then Dismember set last(s’) first(s’). Recall that, in D(E), first(s’)
r(s’). If s" is the immediate right sibling of s’, then r(s") > r(s’) by Invariant 3. Hence s’

becomes a singleton cluster in D, with R-number equal to the old r-number of s’.
Case 2: s’ is an active separator of E. Recall that Dismember assigns to s’ and all of

its descendants a last field equal to separate(s’) and leaves number(s’) untouched. The subset
of E that is represented by the leaves of D forms a cluster delimited by a left separator and
with a consistent separator nesting. The R-number of such a cluster is the old r-number of s’.
Clearly, the subtree of D rooted at s’ is the consistent dominance tree of such a cluster.

In view of Lemmas 4.1 and 4.2, the preceding analysis shows that Invariant 2 is preserved
by Restore. Since no number field or r-number is altered, then the part of Invariant 3 that
concerns these fields and numbers is preserved. By the operation of Restore, the leaves in the
subtrees rooted at the children of s will be directed towards the same root of a newly created
BUF tree. Our analysis of cases and 2 displays that the monotonicity of the r-numbers on
the children of s before Dismember guarantees the monotonicity of the R-values of clusters
entering this root. With regard to the node of the BUF tree that the arcs of E entered before
Restore, clearly, the R-values of the former siblings of E were not affected, whence their
relative order is preserved. Thus Invariants 2 and 3 are thoroughly maintained.

We now turn to Invariant 4. Since [EI < k and all the redirected arcs will enter new
nodes, no fat node is introduced by Restore. The novel slim nodes vacuously comply with
Invariant 4 since all arcs entering them are live. The nondecreasing ordering of the last fields
of such arcs is secured by Invariant 3. In fact, the new last fields are former r-numbers (i.e.,
either separate or first fields, depending on the type of node--an internal active separator or
a leafncountered by Dismember), and these r-numbers obeyed Invariant 3. Consider now
the BUF-tree node v that arcs in E entered before Restore. The only situation under which
such arcs are disconnected from v is when they are not live. But in such a situation the arcs of
E did not contribute in any way to the fatness or slimness of v. Thus Restore also preserves
Invariant 4.

Finally, we deal with Invariant 5. Recall that Restore does not introduce new values for
either first or separate fields. Furthermore, all the redirected arcs that get the same last field are
siblings because of the implementation of Restore and do not exceed k since EI < k by
hypothesis. We have seen that a new cluster E’ created by Restore contains only one arc e only
if e was a leaf in the input dominance tree D(E) and as(e) was not defined. In this case last(e)
was updated by Restore to first(e), consistent with Invariant 5. A new cluster E’, IE’I > 1,
without a left separator is created by Restore only when the two leftmost leaves of D(E) are

64 THE SET UNION PROBLEM

encountered, and such leaves are assigned identical last and first fields. Otherwise, if IE’I > 1,
E’ was obtained as a subtree of D(E) rooted at some active separator s. In this case, since
Invariant 3 is already established, it follows that the two leftmost arcs in E’ have the same first
field and that the second arc in E’ is not a separator. We have also seen that in this case all the
arcs in E’ get separate(s) as their new last field and that such a new last field is greater then
all their first fields, also by Invariant 3. By definition of dominance tree, the leftmost arc in E’
is the separator s. Thus for every leaf e in E’ we get that last(e) separate(s) as prescribed
by Invariant 5. In conclusion, Invariant 5 is also preserved. [3

Before we continue with our discussion it is instructive to revisit the outline of a BUF-tree
union given at the end of 3. In that outline we said that a necessary preliminary stage of a
union(A, B) consists of locating and detaching the roots of the two subtrees that contain A
and B. But our description of Restore implies that in general the procedure also locates and
detaches other trees that are not needed in the union. This is necessary in order to maintain a
consistent record of the history encoded in the nested structure of clusters. Detaching only the
subtrees of the BUF trees that are needed to perform the current union besets the consistency
of the clusters that account for those subtrees at that moment. In particular, an edge e could
be subtracted from the dominion of some separators without those separators becoming aware
of this fact. This would infringe on the consistency of the number fields that are affected by
the loss of e, thus undermining the consistency of future detachments.

5. Union-Find with unlimited backtracking. In this section we show that BUF trees

support any union or find in O(log n! log log n) worst-case time and that they backtrack(i) in
constant time, irrespective of i.

We study unions first. In terms of BUF trees, union(A, B) transforms the current input
forest F of BUF trees into a new forest F’ that meets the following specifications. First, F’
represents, through Invariant 0, the same partition of S as F, except for the fact that A and B
are consolidated into a single set. Second, Invariants 1-5 still hold on F’. Before proving this
we describe how to support union(A, B).

To deal with the most general case, we assume that A and B are stored in two subtrees
of some BUF tree(s) in F. The management of simpler cases is similar and will be omitted.
Recall that union(A, B) must increment/max by 1, the updated value of/max being assigned to
this union as its ordinal number. This increment of/max may infringe on Invariant 5. To restore
this invariant the procedure must remove from the forest F possibly existing arcs either with
first field or separate field equal to/max. By Invariant 5 there were originally either at most
two sibling arcs e’ and e" with first field equal to/max or at most one arc e"’ with separate field
equal to/max, and such arcs can be accessed in constant time. The procedure deletes these
arcs by means of either a Restore(e’,/max) or a Restore(e"’,/max), depending on the case. As a
result, the forest F is transformed into an equivalent forest F" no arc of which is labeled/max.
By Theorems 4.3 and 4.4, F" still satisfies Invariants 0-5, and F" was produced in O (k) time.

The next task consists of locating in F", from input A and B, both apex(A) and apex(B).
This stage is accomplished by performing two finds at a cost O (k + h) (cf. Invariant 0) in the
worst case, where h is the maximum possible length for a path originating at a leaf in a BUF
tree and containing only live arcs. Clearly, Invariants 0-5 are not affected by this stage.

Next, union(A, B) transforms F" into an equivalent forest F’" with the property that
apex(A) and apex(B) are live in F’". If we let eA and e be the arcs, respectively leaving
apex(A) and apex(B), this involves the two calls Restore(eA,/max) and Restore(e,/max). Thus
F’" is produced in O(k) time, and it meets Invariants 0-5 because of Theorems 4.3 and 4.4.

Now let TA and T be the BUF (sub)trees of F’" storing, respectively, A and B, and let rA
and r be their respective roots. The final task of union(A, B) is that of combining TA and T
into a single (sub)tree, thus producing the final forest F’. Assume without loss of generality

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 65

that height(Te) < height(TA). Observe that height(TA) cannot exceed h since there is a live
path from leaf A to rA. Our BUF-tree union locates a live node v in TA having the same height
as re. This takes O(h) steps, e.g., by retracking the find that produced rA for height(Te) steps.
The procedure now selects one of the following three modes of operations, in analogy with a
DUF-tree union.

Type re is fat and v - rA. Root re is made a sibling of v, according to the following
rule. If parent(v) is fat, re is made the rightmost child of parent(v). If parent(v) is slim,
re is attached to the right of the rightmost live arc entering parent(v). At this point it is set

first((re, parent(v))) last((re, parent(v))) /max. Finally, fat(parent(v)) is set to/max if
appropriate.

Type 2 re and v rA are both fat nodes. A new node r is created, and the name of r is
copied from the name of either r or re. Next, both r and re are made children of r, thereby
relinquishing their respective names. Finally, first((ra, r)), first((re, r)), last((rA, r)), and
last((re, r)) are all set to/max.

Type 3 This type covers all remaining possibilities, i.e., either root re is slim or root
v ra is slim. We describe only how the case of a slim re is handled, the other case being
symmetric. By proceeding from left to right, every live child x of re is made a child of v, with
the following policy. If v is fat, the newcomer arcs will be the rightmost arcs entering v. If v
is slim, these arcs will be the rightmost live arcs entering v. The arc s connecting the leftmost
child of re to v is marked a separator with separate(s) /max. Moreover, the old name of
re is stored into label(s), and number(s) is set to the total number of arcs moved. For every
redirected arc e, last(e) is set to/max. Finally, fat(v) is set to/max if appropriate.

To complete the management ofunion(A, B), a pointer indexed by/max is directed towards
the arc(s) (cf. type or 2) or separator (type 3) introduced by the procedure. The fatness of a
node can be tested in O(k) time by a walk starting at its leftmost child (cf. Invariant 4).

We now prove the following lemma.
LEMMA 5.1. Let h be the maximum possible length for a path originating at a leaf in

a BUF tree and containing only live arcs. The preceding implementation of union(A, B)
requires O(k + h) time and preserves Invariants 0-5.

Proof. The time bound is immediate from the preceding discussion. Therefore, we are
left to show that a union preserves all the invariants. Since the three initial possible calls to
Restore preserve the invariant, it is enough to show that the invariants are preserved after any
of the three types of manipulations. Consider first type and type 2 unions. They introduce
new clusters with one and two arcs, respectively.

To see that find consistency is maintained, observe that only nodes in A and B may have
their apex changed. If this change occurs, the new apex will be live and it will consistently
store the name of A tA B.

Consider now the/max invariant. The only arcs for which something has changed are the
newly introduced arcs: they are at most two, have last value equal to/max, and are live. Also,
the last part of Invariant 1 still holds. For this, consider first a type 1 union, which introduces
only the arc (re, parent(v)). The field fat(parent(v)) is unaffected if either parent(v) was fat or
parent(v) was slim and did not become fat through the union. If, on the other hand, union(A, B)
made parent(v) fat, then we have seen that it also sets fat(parent(v))= /max, thus preserving
the last part of Invariant 1. In the case of a type 2 union, the new node r is introduced, and r is
reached by the two arcs ((rA, r) and (re, r)). Node r is thus slim, and fat(r) is, consistently,
undefined. This completes the analysis of Invariant for type 1 and type 2 unions.

Consider now the impact on Invariant 2 of type and type 2 unions. A new cluster E with

EI > 1 can be created only by a type 2 union. In this case E does not contain any separator,
and, having no siblings, it is vacuously the leftmost cluster. If E has only one arc, then E has
been created by a type union. Again, E contains no separators.

66 THE SET UNION PROBLEM

Invariants 3 and 4 are trivially maintained by a type 2 union, as well as by a type union,
the new arc introduced by which enters a fat parent(v). Consider now a type union, the
new arc introduced by which reaches a slim parent(v). In this case the new arc e

parent(v)) is inserted immediately after the rightmost live arc entering parent(v), and we have
first(e) last(e) =/max. Thus first(e) will be larger than the first and separate fields of all
of its left siblings, which consist only of live arcs or active separators in force of the slim
compression and numbering invariants. Similarly, last(e) will be larger than the last field of
every left sibling of e.

It is easily checked that a type or type 2 union also maintains Invariant 5.
We turn now to type 3 unions. Let ei (xi, v), < < h < k, be the arcs redirected by

union(A, B) as they appear in the forest F’. Clearly, Invariant 0 is still valid in F’. In fact, the
only nodes of F that had their apex changed are the nodes the old apex of which was one of
the xi’s. The procedure provided for these nodes to have a new and consistent live apex.

The arcs el, e2 eh are live and have last field equal to/max- Moreover, separate(e)
/max, and e is an active separator. The fat field of node v is correctly updated following a type
1 or type 3 union. Thus Invariant 1 is preserved.

A type 3 union introduces one new cluster E {e, e2 eh by ordered aggregation
of the clusters of edges entering a slim node of F’’t. In the new cluster E the leftmost edge
e is made a separator. Furthermore, the last field of all the arcs in E will be set to/max, and
therefore last(E) separate(e), as required by Invariant 2. Since Invariant 2 was valid in
F’t’ for each one of the individual clusters contributing to E, number(el) IEI. Thus E
satisfies Invariant 2. By reasoning along the same lines, it is easy to check that E also satisfies
Invariants 3 and 4.

The first part of Invariant 5 is preserved by the first call to Restore, while the rest of this
invariant follows from the validity of Invariant 3 at the inception of the union.

We now focus on the BUF-tree implementation of backtracks.
LEMMA 5.2. For any values of/max and i, backtrack(i) can be performed on a forest of

BUF trees in constant time, preserving Invariants 0-5.

Proof. As said, backtrack(i) is performed by setting /max max(imax i, 0), i.e., in
constant time for any value of i. Hence we need to prove only that backtrack(i) maintains
Invariants 0-5. Since the effect of a backtrack is null unless the value of/max is altered, we
can safely assume/max > 0. Then, we may regard a backtrack(i) as a sequence of
consecutive backtrack(I), and we need to prove only that if Invariants 0-5 were valid before
performing a backtrack(I), they are still valid immediately afterwards. To fix the ideas, let
iod and :new :old be the values of/max immediately before and after backtrack(I),max tmax tmax
respectively.

We distinguish two cases, depending on the type of union undone. Let u be this union,
and let A and B be the two sets unified by u.

If u is a type or 2 union, then u introduced at most two arcs and such arc(s) are now made
dead by the backtrack. Assume, for generality, that two arcs, say, el (Xl, v) and e2(x2, v),
were introduced by u. Clearly, first(el) first(e2) ..old > :old :new. hence thesemax max max,

arcs become consistently dead. If el and e2 were cheating, then their death did not affect the
fatness of v. If they were live, then v may have become, from fat, slim. But this implies that
u was the last surviving union that made v fat; whence after backtrack fat(v) ..old exceedsmax

l’max t:neWmax. Since no arc other than el and e2 is affected by this backtrack, this guarantees
the validity of Invariant 1.

Invariant 0 is also preserved. In fact, the only leaves the apex of which was possibly
changed are those ending up with apex at either X or x2. The union operation u that the
backtrack is voiding, however, did not delete the old names A and/or B stored in these nodes.

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 67

The leaves in the subtrees rooted at x and/or x2 are thus given back the old name A and/or
B. This consistently reflects that u was made void.

The slim compression invariant is propagated by the validity, prior to backtrack(I), of
Invariant 4 itself and of the part of Invariant 3 that concerns the R-numbers of clusters entering
slim nodes. No part of Invariant 2, 3, or 5 is affected by a backtrack operation, so that these
invariants are maintained too.

Assume now that u is of type 3, and let el (x, v), e2 (x2, v) eh (xh, v),
with h < k, be the arcs issued by u. By hypothesis, the last field of these arcs was equal to

;new :old 1. Hence these arcs..oa prior to backtrack and therefore is strictly larger than tma tmaxmax

become consistently cheating (recall that, by Invariant 5, the first field of each arc in a cluster
is strictly smaller than the last field of that arc).. Since these arcs were live, v may become,
from fat, slim. This means that u was the last surviving union that made v fat, and therefore

:new This settles Invariantfat(v) ..old is now greater than tmax.tmax
Clearly, only the leaves that, prior to operation u, had apex at one of the xi’s are affected

by the backtrack. By the structure of a type 3 union, however, the name of each such leaf was
stored in label(el) as part of the execution of u. Having assumed Invariant 3 valid prior to the
backtrack, we are guaranteed that, afterwards, el is the rightmost inactive separator to the left
of each ei, 1 < < h. Thus Invariant 0 is preserved. Slim compression descends from the
validity of Invariants 2 and 5 and of Invariant 4 itself prior to backtrack(I), while Invariants
2, 3, and 5 are all maintained vacuously.

In order to prove our claimed time bounds, we show now that, at any time in a BUF-
tree forest, the length of a path consisting of live arcs cannot exceed O(logk n). This clearly
establishes our bound for finds, and it combines with Lemma 5.1 to yield an identical bound
for the union. Our desired property shall follow from the following lemma.

LEMMA 5.3. At any time andfor every arc e (x, v) in a BUF-tree forest, ifx is not a

leaf, then fat(x) is defined and, moreover, fat(x) < first(e).
Proof. We proceed by induction on the number of operations performed. Initially there

are n singleton trees and the claim holds vacuously since there are no arcs and no fat nodes in
the structure.

Assuming now that the claim holds before the th operation, > 1, we prove that it also
holds afterwards. The proof is straightforward in the case of finds and backtracks since these
operations do not alter any of the parameters in the claim. Thus we concentrate on unions.

Then let the th operation be union(A, B), where .4 and B are two arbitrary sets in the
current partition of S.

We first show that the procedure Restore preserves the property of the claim. To see this,
let E el, e2 eh, 1 < h < k, be the cluster of arcs managed by a Restore. As we know
(see Invariant 1 and the definition of cluster), either all arcs in E are live or none is. Since
Restore does nothing on live arcs, we concentrate on the case where E contains a mixture of
dead and cheating arcs. We need to show that the claim holds after Restore for the arcs in E
only, since every other arc or node was not affected.

Let xi (1 < < h) be the node from which the arc ei originated immediately prior
to Restore. By the inductive hypothesis, fat(x/) < first(e/) (i 1, 2 h). We now
distinguish two cases for each arc ei in E, depending on whether ei is dead or cheating. If
arc ei is dead, then Restore simply deletes ei, leaving a BUF tree rooted at xi. The nodes of
such a BUF tree still satisfy the invariant, by the inductive hypothesis. If, on the other hand,
arc ei is cheating, then by Invariant 1 first(e/) < /max. By assumption fat(x/) < first(e/), so
that fat(x/) < /max. As a consequence, the union that made xi fat is still valid and therefore xi
is still fat. The procedure Restore redirects ei to a new node, as explained in its description,
which does not modify fat(x/) and first(e/). Since fat(x/) and first(e/) remain unchanged for

68 THE SET UNION PROBLEM

each re-directed cheating arc ei, the claim holds after Restore for every such arc. The nodes
introduced by Restore are slim nodes and thus do not have a defined fat field. Clearly, no arc
leaves such newly created nodes. In conclusion, Restore maintains our claim.

Recall that Restore is called for three times at the beginning of a union, .the second and
third time in order to produce the two trees TA and Te. We need now to show that the unification
of TA and Te preserves the claim. Let rA and re be the respective roots of TA and Te, and
let/max be the ordinal number of the present union. As usual, we distinguish three types of
unions.

If a type union is performed, then re is fat and therefore by Invariant fat(re) </max.
A new arc e leaving from re is introduced, and first(e) is set to/max. As a consequence,
fat(re) < first(e). Since this is the only change in the data structure, the claim is maintained.

If a type 2 union is performed, then rA and re are both fat. Therefore, fat(rA) < /max
and fat(re) < /max. The only change in the data structure is that a new node r and two new
arcs (rA, r) and (re, r) are introduced. Since first(r,, r) first(re, r) is set to /max, then
fat(rA) < first(rA, r) and fat(re) < first(re, r). Hence the claim is maintained.

If a type 3 union is performed, then either rA is slim or re is slim. Assume to fix the
ideas that re is slim. Then, at most k 1 nodes (i.e., all the children x of re for which the
arc (x, re) is live) are given a new parent v, but neither the first field of the redirected arcs
(x, re) nor the fat field of the previous children of re is affected. As a consequence, we have
only to check that the node v still fulfills the claim. If v was fat, then fat(v) < /max, and, by
the inductive hypothesis, the arc leaving v (if any) had first field greater than fat(v). If v was
slim and there is no arc leaving v, then the claim will trivially still hold for v. Assume now
that v is slim and there is an arc e leaving v. Then we claim that e must be dead. In fact,
assume by contradiction that e is either live or cheating. This implies that, because of Invariant
1, first(e) < /max and, because of the inductive assumption, fat(v) < first(e) < /max, which
contradicts the hypothesis of v being slim. Therefore, the arc e leaving v must be dead. By
Invariant this is equivalent to saying that first(e) >/max- If the new children of v do not make
it fat, then fat(v) remains unchanged and the claim still trivially holds for v by propagation of
the inductive hypothesis. On the other hand, if because of the type 3 union being performed v
becomes fat, then fat(v) changes to/max. But since e is dead, then first(e) >/max and therefore
fat(v) < first(e). As a consequence, v will fulfill the claim in this case, too.

This completes the induction step ofthe union operation and establishes the lemma.
Remark. The crucial implication of Lemma 5.3 is that live arcs can originate only from

either leaves or fat nodes. Therefore, in any path composed only of live arcs, only the node at
the top can be slim. Since, by definition, all arcs traversed by find(x) except the last one are
live, it follows that a find(x) encounters only fat nodes on the path from x to apex(x), with the
only possible exception of apex(x) itself. Then let x v0, v,/32 Uh-1, vh apex(x) be
the ordered sequence ofnodes visited by a generic find(x) while climbing a path of length h up
to apex(x). Then vh- has at least k live edges entering it, i.e., at least k fat children. Iterated
application of Lemma 5.3 to these children, their own children, and so on yields that there are
at least kh-1 leaves connected to vh-1 by means of paths consisting only of live edges. Since
kh- < n, it follows that h is O (logk n).

THEOREM 5.4. BUF trees support each union andfind in O(log n/log log n) time and
support backtrack(i) in O(1) time, irrespective of i. The overall space required is O(n).

Proof. The time bounds follow from Lemmas 5.1, 5.2, and 5.3. The space complexity of
the data structure is dictated by the maximum number of arcs that may be present in it at any
given time. New arcs are introduced only by unions, and each union can introduce at most
two arcs. However, we have seen that when a union getting ordinal number is performed,
the arcs possibly created by a past union with the same ordinal number are removed from the

APOSTOLICO, ITALIANO, GAMBOSI, AND TALAMO 69

data structure. This guarantees that at any time at most 2(n 1) arcs may exist in the data
structure. If persisting nodes are removed as soon as there are no edges entering them, then
the total space required by the data structure is O (n).

6. Conclusion. We have introduced a data structure for the efficient management of set
union with unlimited backtracking. Our approach stays within the guidelines of separable-
pointer algorithms if one only relaxes the separability condition to an extent that is deemed
acceptable [24]. Our per-operation worst-case bounds are tight both for this model and for the
more powerful cell-probe model of computation.

BUF trees also represent a partially persistent [4] data structure to be used in the following
variant of the set union problem. In this variant the set union is defined as usual, but a find
operation is formatted as find(x, k), where x is the name of an element of S and k is a
nonnegative integer not exceeding the ordinal number of the last union so far performed. The
task of find(x, k) is to return the name of the subset that contained the element x at the time
when only the first k unions had been performed. To perform a find(x, k) on a BUF tree it is
sufficient to temporarily set/max tO/max k and then proceed as per an ordinary find(x).

Acknowledgments. Moti Yung read an early version of this paper and gave several useful
comments. A referee pointed out that a partially persistent set union algorithm for the RAM
with logarithmic word size was recently given in [3].

REFERENCES

A.V. Ano, J. E. HOPCROFT, AND D. ULLMAN, The Design andAnalysis ofComputerAlgorithms, Addison-Wesley,
Reading, MA, 1974.

[2] N. BLUM, On the single operation worst-case time complexity ofthe disjoint set unionproblem, SIAM J. Comput.
15 (1986), pp. 1021-1024.

[3] E DIFTZ AND S. RAMAN, Persistence and amortization, in Proc. 2nd ACM-SIAM Symposium on Discrete

Algorithms, Association for Computing Machinery, New York, 1991, pp. 78-88.

[4] J.R. DRISCOLL, N. SARNAK, D. D. SLEATOR, AND R. E. TARJAN, Making data structures persistent, J. Comput.
System Sci., 38 (1989), pp. 86-124.

[5] M. L. FREDMAN, On the Cell Probe Complexity of the Set Union Problem, Tech. Report TM-ARH-013-570,
Bell Communications Research, Red Bank, NJ, January 31, 1989.

[6] M. L. FREDMAN AND M. SAKS, The cell probe complexity of dynamic data structures, in Proc. 21st ACM

Symposium on Theory of Computing, Association for Computing Machinery, New York, 1989, pp. 345-
354.

[7] G. GAMBOSI, G. F. ITALIANO, AND M. TALAMO, Worst-case analysis of the set union problem with extended

backtracking, Theoret. Comput. Sci., 68 (1989), pp. 57-70.

[8] The set union problem with dynamic weighted backtracking, BIT, 31 (1991), pp. 382-393.

[9] C.J. HOGGER, Introduction to Logic Programming, Academic Press, New York, 1984.

[10] J.E. HOPCROFT AND J. D. ULLMAN, Set merging algorithms, SIAM J. Comput. 2 (1973), pp. 294-303.
11 T. IBARAKI, M-depth search in branch and bound algorithms, Internat. J. Comput. Inform. Sci., 7 (1978), pp.

313-373.

12] D.E. KNUTH, The Art ofComputer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley, Reading,
MA, 1968.

13] H. MANNLA AND E. UKKONEN, The set unionproblem with backtracking, in Proc. 13th International Colloquium
on Automata, Languages and Programming, European Association for Theoretical Computer Science,

Rennes, France, 1986, pp. 236-243.

14] Unifications, deunifications, and their complexity, BIT, 30 (1990), pp. 599-619.

15] Time parameter and arbitrary deunions in the set union problem, in Proc. st Scandinavian Workshop
on Algorithm Theory, Halmstad, Sweden, 1988, pp. 34-42.

16] K. MEHLHORN, S. NAHER, AND H. ALT, A lower boundfor the complexity ofthe union-split-findproblem, SIAM
J. Comput., 17 (1988), pp. 1093-1102.

70 THE SET UNION PROBLEM

17] J. PEARL, Heuristics, Addison-Wesley, Reading, MA, 1984.

[18] A. SCHONHAGE, Storage modification machines, SIAM J. Comput., 9 (1980), pp. 490-508.
19] R.E. TARJAN, Efficiency ofa good but not linear set union algorithms, J. Assoc. Comput. Mach., 22 (1975), pp.

215-225.

[20] ,A class ofalgorithms which require non linear time to maintain disjoint sets, J. Comput. System Sci.,

18 (1979), pp. 110-127.

[21 Amortized computational complexity, SIAM J. Alg. Discrete Meth., 6 (1985), pp. 306-318.

[22] R.E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis ofset union algorithms, J. Assoc. Comput. Mach., 31

(1984), pp. 245-281.
[23] D.H.D. WARREN AND L. M. PEREIRA, Prolog--4he language and its implementation compared with LISP, ACM

SIGPLAN Notices 12 (1977), pp. 109-115.

[24] J. WESTBROOK AND R. E. TARJAN, Amortized analysis of algorithms for set union with backtracking, SIAM J.
Comput., 18 (1989), pp. 1-11.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 71-81, February 1994

() 1994 Society for Industrial and Applied Mathematics
006

THE PROFILE MINIMIZATION PROBLEM IN TREES*
DAVID KUO AND GERARD J. CHANGt

Abstract. The profile minimization problem is to find a one-to-one function f from the vertex set V (G) of a
graph G to the set of all positive integers such that xeV(G) {f(x) minyN[x] f(y)} is as small as possible, where

N[x] {x} t3 {y y is adjacent to x} is the closed neighborhood of x in G. This paper gives an O(n 1"722) time
algorithm for the problem in a tree of n vertices.

Key words, sparse matrix, profile, labeling, tree, leaf, centroid, basic path, algorithm

AMS subject classifications. 05C78, 05C85, 68R10

1. Introduction. The profile minimization problem was introduced by [5], [6] as a tech-
nique for handling sparse matrices. For instance, in the finite element method [8], [9], we want
to solve a system of linear equations Ax b where A is a sparse symmetric n n matrix.
Suppose for each row i, aii 0 and Pi is the position of the first non-zero element in this row.
We call

UO Pi min{j aij 0}

the width of row i, and call

n

P(A) Z 11)i

i=1

the profile of matrix A. To store A, we need only store L0 J- elements in each row i, which are
from position Pi to position i. The total amount of storage for this scheme is then P(A) + n.
In order to reduce the amount of storage, we need only permute the rows and columns of
A simultaneously such that the resulting matrix has minimum profile, i.e., we need to find a
permutation matrix Q such that the profile P(QA Qt) is minimized.

We can reformulate this problem in terms of graphs. Associate the matrix A with a graph
G such that V(G) {v,/)2 On} and E(G) {(1)i, l)j) :/: j and aij 0}. Note that

P(A)- wi -(i-
i=1 i=1

min j)vjEN[vi]

where N[vi] {1)i} I,.J {1)j l) is adjacent to vj} is the closed neighborhood of 1) in G.
The row and column permutation Q corresponds to a one-to-one function f from V(G)
onto {1, 2 n} and P(QAQt) yxEv(6) (f(x) minyENtxl f(Y)). This motivates the
definition of the profile of a graph given below.

For technical reasons, however, we shall give a slightly more general definition than that
described in the previous paragraph. A labeling of a graph G is a one-to-one function f from
the vertex set V (G) to the set of all positive integers. A labeling is simple if it maps V (G)
onto {1, 2 V(G)I}. For a labeling f, the profile-width of a vertex x is defined as

wf(x)- f(x)- min f(y).
yEN[x]

*Received by the editors March 11, 1991" accepted for publication (in revised form) July 30, 1992. This work
was supported in part by the National Science Council of the Republic of China under grant NSC79-0208-M009-31.

Institute of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China
(gjchang@cc. nctu. edu.tw).

71

72 DAVID KUO AND GERARD J. CHANG

The profile ofG with respect to f is

Pu(G) Z wf(x)
xEV

and the profile of G is

P(G) min{Pf(G) f is a labeling of G}.

A labeling f is optimal if Pf(G) P(G).
The purpose of this paper is to study the profile minimization problem, i.e., the problem

of determining the profile P(G) of a graph G, from an algorithmic point of view. The profile
minimization problem is analogous to the linear arrangement problem, which is to find a

labeling f of a graph G such that ’{If(x) f(Y)l (x, y) is an edge in G} is minimized
(see [1], [3], [7]). Reference [5] proved that the profile minimization problem is equivalent to
the problem of interval graph completion, which is known to be NP-complete even when G is

stipulated to be an edge graph (see [4]). The main result of this paper is to give an O(n 1"722)
time algorithm for the problem when G is a tree of n vertices.

The rest of this paper is organized as follows. In 2, we establish several basic properties
that motivate the development of our algorithm. In particular, we prove that for a tree T
there exists a basic path c(x, y) such that P(T) P(T -or(x, y)) + IE(T)I. So the problem
becomes that of finding a path c (x, y) such that P(T -or (x, y)) is minimized. For the purposes
ofrecurrence, we also introduce the problem of finding a path c(x, y) such that P(T-ot(x, y))
is minimized, with the boundary condition that y is fixed. In order to determine the basic path,
3 develops theorems that narrow the possibilities for the basic path. For instance, we prove
that c (x, y) contains centroids of the tree. This also means that the number of vertices of each
component of T ot (x, y) is no more than half the number of vertices of T. This is important
in determining the speed of our recursive algorithm. Section 4 uses these results to design an
algorithm, and 5 analyzes the time complexity of the algorithm.

2. Motivating properties. This section shows the existence of a basic path c (x, y) such
that P(T) P(T a(x, y)) + IE(T)I and introduces the problem of finding a minimum
such path with the boundary condition that y is fixed. The following properties are obvious
and their proofs are omitted.

PROPOSITION 2.1. An optimal labeling ofa connected graph G maps V (G) onto a set of
consecutive integers.

PROPOSITION 2.2 ([5]). If H is a subgraph of G, then P(H) < P(G).
PROPOSITION 2.3 ([5]). If G has m components G1, G2 Gm, then P(G) Eim=l

P(Gi).
We can in fact assume that an optimal labeling of a graph is simple even if it is not

connected. Suppose T is a tree of n vertices. For any leaf x and any vertex y in T, consider
the unique (x, y)-path c(x, y) (v0, vl vr), where v0 x and vr y. Suppose that
for each i, < < r, T c (x, y) has n components Til, T/2 Tin each with a vertex vii
adjacent to vi in T (see Fig. 2.1). Let f be an optimal simple labeling of F/ tO<_j<_niTij.
We consider a simple labeling fxy defined by

fxy(1)) Ly(Vi_I) + J(/))
Ly(Ui-1) -" IV(F/)I +

if v v0,

if v 6 V(Fi),

ifv vi.

PROFILE MINIMIZATION PROBLEM 73

See Fig. 2.2 for an example of fxy with oe(x, y) (a, b, c, d). Note that the numbers beside
the vertices are their labels. Then

and

w./..,. (vo) 0,

w,.;,.(v) fx(V) fxy(V_) -IV(F,.)I + forl <i _<r,

for v V(F,-).

Consequently

(2.1)

We call oe(x, y) the basic path (with respect to the labeling fy). Note that

fxy(Vo) < Ly()l) <"" < Ly(Vr)- n.

In general, an optimal labeling of a tree is of this type.

FIG. 2.1. Tree T.

THEOREM 2.4. If f is an optimal labeling ofa tree T of n vertices, then f .Ly where
x f- (1) is a leafand y f- (n) is adjacent to at most one non-leaf vertex.

Proof. Let oe(z, u) (vo, Vl v) be a longest path containing both x and y, say,
x v and y vt for 0 _< s < _< r. Note that since r is the maximum, v0 and v,. are leaves.
In this case n 0 and PU:,, (T) PJi,,, (T), where u’ v,._.

Suppose T and oe(z, u) are as shown in Fig. 2.1. Let fj f[v(r/) be the labeling f
restricted on V (Tij). Then, by definition,

(2.2) P(T) Pu(T) > wf(vi) +
i=0 i=! ./’=1

74 DAVID KUO AND GERARD J. CHANG

2(1 1

Tll T2 Ta

1 7 8 13

T

FIG. 2.2. An example off y.

Note that

(2.3) Wf(Ui) Wf(Ui) > {f(vi) f(vi-1)} n IE(T)I.
i=0 i=s+l i=s+l

Consequently, by (2.1),

(2.4)
ni

P(T) > IE(T)I + P(Tij)- PL.(T) > P(T).
i=1 j=l

Therefore, all inequalities in (2.2) to (2.4) are equalities. This implies the following:
(1) each fj is an optimal labeling for T/j,
(2) wf(vo) wf(Vl) tof(Vs) O,
(3) Wf(l)t+l) //)f(l)t+2) Wf(Ur) O,
(4) f(vi-1) minyeN[vi] f(y) for s + < < t.
Statement (2) implies that s 0, otherwise wf(Vs-1) f(vs-1) f(Vs) > 0. That is,

x z, which is a leaf. Statement (3) implies that r < t, otherwise either f(vt+ > f(vt+2)
or f(vt+l) < f(vt+2), i.e., either Wf(1)t+l) > 0 or tof(vt+2) > 0. So either y u or y u’.
In the former case, y u is a leaf. In the latter case, y u’ is adjacent to at most one non-leaf
vertex, otherwise we can choose a longer c(z, u). In this case, since Pfz,, (T) Pfz, (T), we
replace u by u’ and assume y u. Note that in this case nr > 0. So, now cg(x, y) or(z, u).
Finally, statement (4) implies the following"

(5) f(vo) < f (v) <... < f(Vr)"--n,
(6) f(vi-1) < f(vij) for < < r and < j < hi.
On the other hand, statement (1) and Proposition 2.1 imply that each f(V (Tij)) contains

consecutive integers. From this, together with statements (5) and (6), we obtain f fz,
fxy" [-]

PROFILE MINIMIZATION PROBLEM 75

COROLLARY 2.5. For any tree T there is an optimal labeling fxy in which both x and y
are leaves.

From now on, all optimal labelings we consider are as specified in Corollary 2.5. The
path a(x, y) is called a basic path for P(T).

Theorem 2.4 and (2.1) tell us that in order to find the profile of a tree T we need only find
a basic path ct (x, y) whose deletion results in a forest with the smallest possible profile.

For technical reasons, we now consider the following restricted path deletion problem.
Suppose y is a fixed vertex in tree T; find a path ot (x, y) ending at y such that P(T ct (x, y))
is minimum. We use P’(T, y) to denote this minimum value. We also call a (x, y) the basic
path for P’(T, y).

Suppose fxy is an optimal labeling of T and the tree T is as shown in Fig. 2.1. Denote
by k T (respectively Tk) the subtree of T that contains v0, vl vk, F1 Fk (respectively
vk vr, Fk Fr). From Theorem 2.4 and (2.1), we obtain the following corollary.

COROLLARY 2.6. For a basic path (vo, Vl v) for P(T), thefollowing hold:
(1) (vo, Vl Vk) is a basic path for P’(kT, vk) and P’(kT, vk) Eki__l P(Fi)

Ei=, Y.=, P(Tij) for 1 < k < r.

(2) (vk, vk+l v) is a basic path for P’(T, vk) and P’(Tk, vk) .i=k P(Fi)
Ei= ET-_, P(T,.) for 1 <_ k <_ r.

t-1(3) P(T) --IE(T)I + P’(ST, vs) + P’(T vt) + i=s+l P(Fi) for < s < <_ r.
PROPOSITION 2.7. P(T) < P’(T, y) + IE(T)lfor any vertex y in T.

3. Main theorems. This section develops theorems that restrict the possibilities of the
basic paths for P(T) and P’(T, y). In particular, the basic path or(x, y) for P(T) contains the
centroids of T. We also prove that the basic path for P’(T, u) is either ct(x, u) or or(y, u), and
the deletion of the basic path for P’ (T, u) from T results in a forest each of whose components
has at most 21V (T) I/3 vertices. These results are the keystone of our algorithm for the profile
maximization problem.

A centroid of a tree of n vertices is a vertex whose deletion results in a forest each of
whose components has at most / vertices. It is well known that a tree has either exactly one
centroid or exactly two adjacent centroids (see [2]). A "from leaves to center" method can be
employed to derive the centroids of a tree. This method requires linear time.

THEOREM 3.1. Any basic path t (x, y) for P(T) contains all centroids of T.
Proof. Suppose there is a centroid of T not in the basic path

or(x, y) (x l)1, u, v y).

Then T is of the form shown in Fig. 3.1, with IV (T’)I >_ n/2 where n V (T)1. By Corollary
2.6 (3), we have

(3.1)
k

P(T) IE(T)I-t- P’(T1, 1)1) -’ P’(T2, v2) + E P(T/) + P(T’).
i=3

Up to a symmetric argument, we may assume that IV(T1)I IV(T2)I. Let a(z, v) be a basic
path for P(T’). Corollary 2.6 (3) and Proposition 2.2 give

(3.2) P(T’) > IE(T’)I + P’(Ta, a) + P’(Tb, b) + Z P()"
j--1

We also assume that IV (Ta)l -< IV (T6)I. Now consider the labeling fry for T. By (2.1) and
Corollary 2.6, we have

76 DAVID KUO AND GERARD J. CHANG

(3.3)
k

Pfoy(T) --IE(T)I + P’(Tb, b) 2r- P’(T2, /)2) - P(Ta) 2t- y P(Fj) + P(T1) + P(Ti).
j=l i=3

Equations (3.1)to(3.3)togetherleadtothat E T’) < P Ta P’ Ta a +P TI P’ T v
Then IE(T’)I < IE(Ta)I q- IE(T)[by Proposition 2.7. Thus

IE(T)I > IE(T’)I- IE(Ta)I
> IE(T’)[/2 (since IE(Ta)I <_ IE(Tb)I and T’- (Ta t3 Tb) 5 0)
> (n --IE(T’)I)/2 (since IE(T’)[>_ n/2)
>_ IE(T)I (since IE(T1)I _< IE(T2)]),

which is a contradiction.

FIG. 3.1.

Similar arguments lead to the following theorem.
THEOREM 3.2. Suppose y is a fixed vertex ofa tree T of n vertices. For any basic path

ot (xy) of P’ (T, y), every component of T ot (x, y) has at most 2n /3 vertices.

Proof. The proof of this theorem is exactly the same as that for Theorem 3.1, except
now we assume IE(T’)I > 2n/3 and IE(Ta)I < IE(Tb)[, and there is no assumption that
IE(T1)I < IE(T2)I. However, we still have IE(T’)I < IE(Ta)I + IE(T)I. Then

IE(T1)I >_ IE(T’)I- IE(Ta)I
>_ IE(T’)I/2 (since IE(T)I _< IE(T)I)
> n- IE(T’)I (since IE(T’)I > 2n/3)
>_ IE(T)I,

which is a contradiction.

PROFILE MINIMIZATION PROBLEM 77

Figure 3.2 gives an example in which a basic path cg(x, y) for P’(T, y) does not contain
the centroid z of T.

FIG. 3.2.

THEOREM 3.3. Ifot(x, y) is a basic pathfor P(T) and u is afixed vertex in T, then either
or(x, u) or or(y, u) is a basic pathfor U(T, u).

Proof. Suppose or(x, y) (x vl, ul, v2 y) and (u, u2 Ur u) is the
unique path from c(x, y) to u, as shown in Fig. 3.3. Let or(z, u) be a basic path for P’(T, u).

FIG. 3.3.

Case 1. z V(Tx). In this case, us u, v3 v, and Tz Tx. By Corollary 2.6 (1),
or(x, v) is a basic path for P’(Tx, Vl), and so P(Tx or(x, vl)) < P(Tz c(z, v3)). Then

P’(T, u) P(T or(z, u))

P(Tz -or(z, v3)) q- P(Ty) q- P(Fi)
i=1

> P(Tx -or(x, v)) + P(Ty) + P(Fi)
i=1

P(T o(x, u)).

Hence c(x, u) is also a basic path for P’(T, u).
Case 2. z V (Ty). By a similar argument, or(y, u) is also a basic path for P’ (T, u).

78 DAVID KUO AND GERARD J. CHANG

Case 3. z V(Tx) and z T(Ty). Let T’, T", and T’" be subtrees, as shown in Fig. 3.3.
Note that in the case of s 1, T’ Tx tO Ty is not a tree. Now

(3.4) P(T -a(z, u)) P’(Tz, v3) + P(T’) +

_
P(Fi).

i--s

Note that P’ (Tz, v3) P(Tz a (z, v3)). By Proposition 2.2, we have

(3.5)
s-1

P(T’) >_ P(T) + P(Ty) +

_
P(Fi).

i--I

Since ct(x, y) is a basic path for P(T), we have Pfxz(T) > efxy(T). By (2.1) and Corollary
2.6 (3) we have

(3.6) IE(T)I + P(Tx -or(x, Vl)) + P(Ty) + L P(Fi) + P(T") + P(Tz -or(z, v3))
i=1

> IE(T)I + P’(Tx, v) + P’(Ty, v2) + P(F) + P(T"’).

Note that P’(Tx, vl) P(Tx or(x, vl)). Again, by Proposition 2.2,

(3.7) P(T’) > L P(F) + P(Tz) + P(T").
i=2

Equations (3.4) to (3.7) together lead to

P(T -a(z, u)) > P’(Ty, /32) q- P(Tx) + P(Fi) + P(T) P(T -or(y, u)).
i--1

Hence ct(y, u) is a basic path for P’(T, u).]

4. The algorithm. We can use the theorems in 3 to design an efficient algorithm for the
profile minimization problem in a tree T. By Theorem 3.1, the basic idea of our algorithm is
to find a centroid z first in linear time. Suppose T z tO<i<m Ti, where u; is the only vertex
of T,. that is adjacent to z in T (see Fig. 4.1). To use Corollary 2.6 (3), we need to find all

FIG. 4.1.

PROFILE MINIMIZATION PROBLEM 79

profiles P(T/) and P’(T/, ui) recursively. In the following, Algorithm PROFILE finds P(T)
and Algorithm PROFILE1 finds P’(T, u). Note that, in order to make use of Theorem 3.3,
Algorithm PROFILE not only has to output the value P(T) but also a basic path.

ALGORITHM PROFILE
Input: A tree T of n vertices.
Output: A basic path c(x, y) (v0, v, ,1)r) for P(T) and the values P(T) and P(Tij)
for 1 < < r- and <_ j < hi.
Method:

1. find a centroid z of T.
2. let T z U<k<m Tk and z be adjacent to uk V (Tk) for < k < m.
3. for each 1 < k < m, recursively call PROFILE for Tk to get a basic path ot(xk, Yk)

and values P(Tk) and P(Tkij), where Tkij are the components of Tk ot(Xk, Yk).
4. for each < k < m, recursively call PROFILE1 for (Tk, Uk) to get a basic path

c(zk, uk) and values P’(Tk, uk) and P(Tij), where Tij are the components of Tk
(z, u).

5. let P(T) n + minl<_p<q<_m{P’(Tp, Up) + P’(Tq, Uq) -+- Zip,q(Ti)}, where p* and
q* attain the above minimum.

6. let c(x, y) ot(Zp,, Up,) + z + ot(Uq,, Zq,).
7. combine profiles P(Tp,ij), P(T,) for k : p*, q*, and P(Tq,ij) to get profiles P(Tij).

To find P’(T, u), we note that by Theorem 3.3, either or(x, u) or c(y, u) is a basic path
for P’ (T, u). So we consider the configuration in Fig. 3.3 with Tz omitted.

ALGORITHM PROFILE
Input: Tree T of n vertices with a basic path c(x, y) (v0, Vl Vr) for P(T) and the
values P(Tij) for 1 < < r and < j < ni. u is a fixed vertex in T.
Output: A basic path or(z, u) (Vo, v’ V’r,) for P’(T, u) and the values P’(T, u) and

P(Ti.)forl <i <r’andl <j<ni.
Method:

1. identify the path (u, u2 Ur) as in Fig. 3.3.
2. recursively use PROFILE to solve P(Tx), P(Ty), P(Fi) (in fact P(Tij) for each

component in Fi) for < < r.

3. a P’(Tx, v) + P(Ty) + Yi= P(Fi),
b P’(Ty, l)2) + P(Tx) + Yi=, P(Fi),
where P’(Tx, v) and P’(Ty, 1)2) can be computed from the input values P(Tij).

4. P’(T, u) min{a, b}.
if a < b then z x else z y.

5. combine part ofthe profiles P(Tij), P Tx), or P(Ty), and P Fi to get profiles P(T,.}).
5. Time complexity. This section shows that the time complexities of the above two

algorithms are O(n1"722). Let f(n) (respectively, g(n)) be the time complexity for Algorithm
PROFILE (respectively, PROFILE1).

In Algorithm PROFILE, Step 3 (respectively, 4) needs Yim__ f(ni) (respectively, Yim__
g(ni)) time, where n V (Ti)[for 1 < < m. All other steps need O(n) time. Note that for
Step 5 we only have to find the smallest and the second smallest values of P’(Ti, wi) P(Ti).
Therefore

(5.)
m

f(n) Z{f(ni) + g(ni)} + cn,
i=1

where

80 DAVID KUO AND GERARD J. CHANG

m

E ni n and ni < n/2 for
i=1

l<i<m.

Similarly, in Algorithm PROFILE1, Step 2 needs zim___l f(ni) time and all other steps
need O(n) time. Thus, by Theorem 3.2,

m

(5.2) g(n) f(ni) + c2n,

i=1

where

m

Z ni n and ni 2n/3 for
i=1

l<i<m.

To solve (5.1) and (5.2), we first choose a number cr > 1, which is very close to 1, say,
cr 1.001. Then choose <) < 2 such that

e= + <1

and

6= (1 + o-e)2 ()
x

Note that a simple computer program gives that)v 1.722 for r 1.001.
THEOREM 5.1. There exists a constant c such that f(n) < cn and g(n) < ctren for all

n, i.e., f(n) O(n) and g(n) O(nX).
Proof. The proof is by induction on n. Assume that there exists a constant c such that

f(n’) < cn’ and g(n’) < cren’z for all n’ < n. We also assume that c > Cl/(1 3) and

> C2/(0" 1).
For 0 < a _< b, consider the function h(x) (b + x) + (a x) b a where

0 < x < a. Note that h’(x) ,k(b + x)- ,k(a x)- > O. So h is an increasing function
and then h (x) > h (0) 0 for 0 < x < a. Thus

b+aZ<(b+x)+(a-x) for O<x<a<b.

By (5.1) and the induction hypothesis, we have f(n) < c(1 + re) ’im=l n} + cln where

Yi=I n _<i= ni n 1 and ni < n/2 for 1 < < rn Repeatedly apply (5.3) to get
n);k n(7) + (7 1) z. Therefore f(n) <_ c(1 + r)2 (+ cn c3n + c,n. By the choice

of c, cn < c(1 -6)n < c(1 -6)nz. Then f(n) < cn.
m mBy (5.2) and the induction hypothesis, we have g(n) < c -,i= nczn where i=1 ni <

n 1 and ni < 2n/3 for 1 < < rn. Repeatedly apply (5.3) to get Y.i= n < (2n/3)z +
n Also, by the choice of c, czn <_ c(1)n < c(r 1)nz. Then g(n) <

cen + c(cr 1)en caen.
Acknowledgments. We thank the two anonymous referees for many useful suggestions

on the revision of this paper.

PROFILE MINIMIZATION PROBLEM 81

REFERENCES

[1] D. ADot,ISOrq ,ND T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math., 25 (1973), pp. 403-423.
[2] F. BucKIE ArqD E HARAR, Distance in Graphs, Addison-Wesley, Reading, MA, 1990.
[3] E R. K. CHtJtqG, On optimal linear arrangements oftrees, Comput. Math. Appl., 10 (1984), pp. 43-60.
[4] M. R. GARE ArqD D. S. Jonrqsorq, Computer and Intractability: A Guide to the Theory ofNP-Completeness,

Freeman, San Francisco, CA, 1979.
[5] Y. LIN hYD J. YUAN, Profile minimizationproblemfor matrices andgraphs, preprint, Dept. of Math., Zhengzhou

University, People’s Republic of China, 1990.
[6] ,Minimum profile ofgrid networks in structure analysis, to appear.
[7] Y. SHIIOACH, A minimum linear arrangement algorithm for undirected tree, SIAM J. Comp., 8 (1979), pp.

15-32.
[8] R.P. TWAgSON, Sparse Matrices, Academic Press, New York, 1973.
[9] O.C. ZmyIinwicz, Finite Element Method in Engineering Science, McGraw Hill, London, 1971.

SlAM J. COMPOT.
Vol. 23, No. 1, pp. 82-96, February 1994

() 1994 Society for Industrial and Applied Mathematics
007

MODIFICATIONS OF COMPETITIVE GROUP TESTING*

D.-Z. DUtt, G.-L. XUEt, S.-Z. SUN AND S.-W. CHENG

Abstract. Many fault-detection problems fall into the following model: There is a set of n items, some of which
are defective. The goal is to identify the defective items by using the minimum number of tests. Each test is on a
subset of items and tells whether the subset contains a defective item or not. Let Ma(d, n)(M(d In)) denote the
maximum number of tests for an algorithm ot to identify d defectives from a set of n items provided that d, the number
of defective items, is known (unknown) before the testing. Let M(d, n) mina Ma(d, n). An algorithm c is called
a competitive algorithm if there exist constants c and a such that for all n > d > 0, Ma(d In) _< cM(d, n) + a. This
paper confirms a recent conjecture that there exists a bisecting algorithm A such that MA(d In) < 2M(d, n) + 1.
Also, an algorithm B such that Me(din) <_ 1.65M(d, n) + 10 is presented.

Key words, group testing, competitive algorithm

AMS subject classification. 68P10

1. Introduction. A feature of on-line problems 12], 15] is that information about input
is not completely given at the beginning but is collected during the process ofseeking a solution.
This feature makes an optimal solution very hard to attain; an option is to consider competitive
algorithms, which take responsibility for producing a reasonable solution. A similar situation
occurs in some searching problems.

Consider a set of n items. Some items are defective, and others are good. The problem is
to identify the defective items by a sequence of tests. Each test is on a subset of items and tells
us whether the subset contains a defective item or not. In the former case the subset is said to be
contaminated, and in the latter case the subset is said to be pure. The problem has applications
in high-speed computer networks [4], string pattern recognition 11], medical examination
[5], and quantity searching [3]. It also occurs in statistics [16], information theory [8], and
related areas [1], [2], [10]. In the literature, the problem has been named group testing. It has
two categories based on whether the tests have errors or are error free [3], 14]. In this paper
we study error-free tests.

A classic model for such a searching problem is to assume that the number of defective
items is known. This assumption is somewhat artificial since in practice this number is usually
unknown a priori and it can be known only after testing. If the number of defective items
is unknown at the beginning, how do we design and analyze algorithms? Motivated by the
study of on-line problems 12], 15], Du and Hwang [7] proposed the concept of competitive
algorithms for the group-testing problem.

Let N(s d, n)(N(s In)) be the number of tests that an algorithm c spends on a sample
s of n items under the condition that d, the number of defective items, is known (unknown).
Denote

M(d,n)= max N(sld, n),
sE.A(n,d)

M(d, n) min M(d, n),

M(d n) max N(s n),
sE.A(n,d)

*Received by the editors March 16, 1991; accepted for publication (in revised form) August 4, 1992. Supported
in part by NSF grant CCR-9208913.

Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
Also at Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China.

82

MODIFICATIONS OF COMPETITIVE GROUP TESTING 83

when 4(n, d) is the set of samples of n items containing d defective items. An algorithm
t is called a c-competitive algorithm if there exists a constant a such that for 0 < d < n,
M(d In) < c .M(d, n) + a. Note that in the definition we exclude two cases, d 0 and
d n, because M(0, n) M(n, n) 0. A c-competitive algorithm for a constant c is simply
called a competitive algorithm, and c is called the competitive ratio of the algorithm.

Du and Hwang [7] proposed a bisecting algorithm with competitive ratio 2.75 and con-
jectured that there exists a bisecting algorithm A such that M(dln) < 2M(d, n) + 1 for
< d < n 1. Soon thereafter, Bar-Noy, Hwang, Kessler, and Kutten [4] discovered a

doubling algorithm D such that MD(dln) < 2M(d, n) + 5 for 1 < d < n 1. In this
paper we confirm Du and Hwang’s conjecture by presenting a bisecting algorithm A such
that M(dln) < 2M(d, n) + 1. Also, we present an algorithm B such that MB(dln) <

1.65M(d, n) + 10.

2. Preliminaries. The analysis of competitive group testing involves both lower-bound
and upper-bound problems. In this section we list some results about the lower bound for
M(d, n) that will be used in other sections.

There are () samples for n items containing d defectives. Each test divides those samples
into two sets. Therefore, we have the following information lower bound.

LEMMA 2.1. For n > d > 0

M(d,n) > log2 >dlog2.
A more useful bound derived from the aforementioned information lower bound is stated

in the next lemma.
LEMMA 2.2. For 0 < d < pn, p 6 (0, 1),

(n)M(d, n) >_ d log2 + log2(ev/1 p 0.5 log2 d 0.5 log2(1 p) 1.568.

Proof. Note that the information lower bound is log2 (]) for M(d, n). since n/d <
(n i)/(d i) for 0 < < d, we have M(d, n) > d logz(n/d). Now, we use Stirling’s
formula, n! 2.v/--(n/e)ne/(zn)(O < e < 1) [13], to obtain the following estimation.

12(n d)

(1)

Thus

(n)M(d, n) > d log + log2(ev/1 p 0.5 log d 0.5 log(1 p) 1.568.

Applying Lemma 2.2 to the case of p 8.21, we have the following.
COROLLARY 2.3. For O < d < (8/21)n

(n)M(d,n) >d log2+1.096 -0.51og2d-1.222.

84 D.-Z. DU, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG

Sometimes the information lower bound is too rough. Then the bound in the following
lemma may be useful. This lemma can be found in [9].

LEMMA 2.4. For 1 < d < n

Hu, Hwang, and Wang [9] conjectured that for n < 3d, M(d, n) n 1. Du and Hwang
[6] obtained the following from Lemma 2.4.

LEMMA 2.5. Ifn > d > (8/21)n, then M(d, n) n 1.

3. Tight bound for bisecting. Let S be a set of n items. The principle of the bisecting
algorithm is that at each step, if a contaminated subset Xof S is discovered, then X is bisected
and the resulting two subsets X’ and X" are tested. The method of bisecting will affect the
competitive ratio. Here, we choose X’ to contain 2Fog2 ISlq- items and X" AX’, where

XI denotes the number of elements in X.

Algorithm A;
input S;
G := 0; {a container of good items}
D :-- 0; {a container of defective items}
TEST(S);
if S is pure then G "= S and Q "= 0

else Q := {s};
repeat

choose the frontier element X of queue Q;
bisect X into X’ and x";
TEST(X’);
if X’ is contaminated then TEST(X");
{If X’ is pure, then it is known that X" is contaminated.}
for Y X’ and X" do begin

if Y is pure then G :-- G U Y;
if Y is a contaminated singleton then D D t3 Y;
if Y is contaminated but not a singleton

then put Y into the rear of queue Q
end-for;

until Q 0
end-algorithm.

We will show the following.
THEOREM 3.1. For < d < n

() MA(d n) <_ 2M(d, n) + 1.

A binary tree is a rooted tree with the property that each internal node has exactly two
sons. A node is said to be the kth level of the tree if the path from the root to the node has
length k 1. So the root is on the first level. Let be the number of nodes in a binary tree,
and let j be the number of internal nodes in the tree. It is well known that 2j + 1.

Let T denote a binary tree with nodes denoted by X’s in Algorithm A such that two nodes
X’ and X" are sons of X if and only if they are obtained by bisecting X. Note that each
leaf of T must identify at least one item. So T has at most n leaves. It follows that T has
at most 2n- nodes. Therefore, MA(d In) < 2n- 1. By Lemma 2.5 if din > 8/21, then

MODIFICATIONS OF COMPETITIVE GROUP TESTING 85

MA(dln) < 2M(d, n) + 1. Before proving Theorem 3.1 for d/n < 8/21, let us first show
some lemmas.

For convenience we assume that the value of function d log2 at d 0 is 0 because

limao d log2 0. The following lemma is an important tool for our analysis.
LEMMA 3.2. Let d d’ + d" and n n’ + n", where d’ > O, d" > O, n’ > O, and

n" > O. Then

n n" n
d’ log2 + d" log2 < d log2 .

Proof. Note that (d2/dx2)(-x log2x) xln2 < 0 for x > 0. So -xlog2x is a
concave function. Thus

d’ log2 -7 + d" log2 7 n --n-7 lg2 -7 -t-

< n (nd- log2)

n" d" n" \
log2)n ntt -

n
d log2 .

Clearly, when n is a power of 2, the analysis is relatively easy. So we first study this case.
LEMMA 3.3. Let n be a power of 2. Thenfor < d < n

(n)M(dln) <_ 2d log2 -+- 1.

Proof. Consider the binary tree T defined before Lemma 3.2. Clearly, every internal node
must be contaminated and there exist exactly d contaminated leaves. Next, we count how many
contaminated nodes we can have. Denote u [log2 nl, v [log2 d], and v’ v log2 d.
Then the tree T has u + levels, and the th level contains 2i-1 nodes. Note that each level
has at most d contaminated nodes and the (v + 1)st level is the first level that has at least d
nodes. Thus the number of contaminated nodes is at most

(n)2i-1 + (u v + 1)d 2 + d log2 + v’
i=1

n v’)=-l+d log+l- +2’

(n)<-l+d log2+2
The last inequality sign holds since f(v’) -v’ + 2v’ is a convex function of v’ and v’ is

nbetween 0 and 1. Thus T has at most -1 + d(log2 3 + 1) internal nodes and hence at most
n2d(lg2 3 + 1) nodes.

According to the way the bisection was done, each level of T contains at most one node
that is a set whose size is not a power of 2. This property plays an important role in the
following.

LEMMA 3.4. For 0 < d < n

M(d ln) < 2d loga+l +1.

86 D.-Z. DU, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG

Proof. We prove the lemma by induction on n. For n the proof is trivial. For n >
let S be the set of n items. If d 0, then one test is sufficient so that the lemma holds
obviously. If d > 0, then we consider two cases corresponding to S’ and S" that are obtained
by bisecting S.

Case 1. S’ is contaminated. Since the number of items in S’ is a power of 2, Algorithm
A spends at most 2d’(logz(lS’l/d’) + 1) tests on S’, where d’ is the number of defective
items in S’. Let d" be the number of defective items in S". By the induction hypothesis,
Algorithm A spends at most 2d"(logz(lS"l/d") + 1) + tests. Adding one for testing S, we
obtain that the total number of tests is at most

n t2d’ log2--+1 + log2-+1 +1 _<2d log2+1 +1.

Case 2. S’ is pure. In this case Algorithm A spends a test on S’ and at most 2d(log2 I’__AI +
1) + tests on S". So, adding one more test for S, we obtain that the total number of tests is
at most

2+2d log--j-+l +1 =2d log2 d

(n)<_2d logg.+l +1.

To prove Theorem 3.1, by the remark that we made after the proof of Theorem 3.1, we
need only to consider the case for which d/n < 8/21. In this case, by Corollary 2.3 we have

(n)M(d,n) >d log2+1.096 -0.5log2d-1.222.

Thus by Lemma 3.4

MA(d In) < 2M(d, n) + 2(0.5 log2 d + 1.222 0.096d) + 1.

0.5 0.096. So h (d) isLet us look at the function h(d) 0.5 log2 d 0.096d. h’(d) d oln2
decreasing for d > 8. We want h (d) < -1.222. This yields d > 41. Therefore, for d > 41,
MA(d n) < 2M(d, n) + 1.

Next, we use a more accurate analysis to deal with the case of < d < 41.
Define

(2) f(n, d)

If f(n, d) > 1, then from Lemma 3.4 and the information lower bound for M(d, n) it is easy
to see that

MA(d n) < 2M(d, n) + 2.

Since both sides of the inequality are integers, we have

MA(d n) <_ 2M(d, n) + 1.

Next, we study the case of f(n, d) < 1.

MODIFICATIONS OF COMPETITIVE GROUP TESTING 87

21d > 8n

X
n

157

FIG. 1. All (n, d) for f(n, d) <_ are contained in the polygon oxyz.

Consider the following ratio:

f(n, d + l) n-d()df(n, d) 2n
+

It is easy to see that

n-d f(n,d+l) n-d(d)
/2

2n
.e >

f(n, d)
>

2n d +
.e.

Thus we have the following lemma.
a > 1_2LEMMA 3.5. For -ff -d, f(n, d) is decreasing with respect to d. For an <

27/(d + 1)/d, f(n, d) is increasing with respect to d.
This lemma tells us the behavior of function f(n, d) with respect to d. Next, we study

its behavior with respect to n; Consider

n+lf(n + 1, d) n-d+g(n, d)
n+l]df(n d) (_,

Note that

g(n, d + 1) n(n d + 1)
> 1

g(n, d) (n + 1)(n d)

because

n(n d + 1) (n + 1)(n d) d.

Moreover, g(n, 1) 1. Thus for d > 1, g(n, d) > 1. Therefore, we have the following
lemma.

LEMMA 3.6. For d > 1, f(n, d) is increasing in n.
From Lemmas 3.5 and 3.6 we see that if f(n*, d*) > 1, then for every n > n* and
2(1--/d/(d-1))n + 1 > d > d*, f(n,d) > 1. Note that f(157,5) > 1 and (1-

2/41/40) .157 + > 41 It follows that for n > 157 and d > 5, f(n d) > 1 (see Fig. 1).
Unfortunately, the preceding argument does not help in the case of d < 4. In fact, it is easy to

prove that for 1 < d < 4, f(n, d) < 1. Actually, we need a more accurate upper bound for
MA (din) for < d < 4. The details can be found in Appendix 1. Now, the remainder is a
finite set of pairs (n, d)’s located in the polygon oxyz as shown in Fig. 1.

88 D.-Z. DU, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG

(3)

For such finitely many pairs we compute MA (d In) by the following formula:

MA (d n) max + MA (d’ n’) + Ma (d" n") },
0<dt<d

(4) MA (O n 1,

() MA (1 n) 2 [log n + 1,

where n’ 2rlgnT-1, n" n n’, and d" d d’. We also compute a lower bound of
M(d, n) by the following formula:

Comparing two computational results, we find that MA (d In) < 2e (d, n) + 1. (We can save
some computation by a careful analysis; see Appendix 2 for details). This completes the proof
of Theorem 3.1.

4. 1.65-Competitive algorithm. Bar-Noy, Hwang, Kessler, and Kutten [4] discovered
another way to design a competitive group-testing algorithm. Their basic idea is as follows.
Because d, the number of defective items, is unknown, the algorithm tries to estimate the value
of d. If d is small, the algorithm would like to find large pure sets, whereas if d is large, the
algorithm would like to find small contaminated sets. To produce this behavior, the algorithm
uses a doubling strategy. It tests a disjoint set of size 1, 2 2 until a contaminated set is
found. Namely, the first sets are pure and the last set is contaminated. So the algorithm finds

+ 2 + + 2i-1 2 good items and a contaminated set of size 2 by using + tests.
Next, the algorithm identifies a defective item from the contaminated item by a binary search
with tests as follows.

Procedure DIG(X);
repeat

g’ := IYI/2] items from X;
TEST(X’);
if X’ is contaminated then X’-- X’

else X := XX’;
S := S\X’;
G := G t2 X’;

until X is a singleton;
S := S\X;
D:=DUX;

end-procedure;

Thus, the algorithm used a total of 2i + tests and identified 2 items.
Here, we introduce a new idea as follows: Instead of testing disjoint sets of size 2i,

the algorithm tests disjoint sets of size 1 +2, 4+8 2 -+-2 + for even until a contaminated
set is found. In this way the algorithm detects 2 good items by using i/2 tests instead of
tests. However, it found a contaminated set of size 3.2 instead of 2 which requires only one
more test on a subset of size 2 in order to reduce the contaminated set to either size 2 or size
2i+1 with 2 more good items. This idea is an extension of an idea given in [4] for combining
the first two tests to further combining.

MODIFICATIONS OF COMPETITIVE GROUP TESTING 89

Let us first describe a procedure for three items, which is given in [4]. The input for this
procedure is a contaminated set of three items. With two tests the procedure identifies either
two defective items or at least one good item and one defective item.

Procedure 3-TEST({x, y, z});
TEST(x);
TEST(y);
if x is defective then D := D tO {x}

else G := G tO {x};
if y is defective then D := D tO {y}

else G := G tO {y};
if x and y both are good

then S := S\{x, y, z}
D := D tO {z}

else S := S\{x, y};
end-procedure;

An extension of Procedure 3-TEST is as follows. The input is a contaminated set of 3.2
items (k > 0). The procedure first finds either a contaminated set of size 2 or a pure set of
size 2t and a contaminated set of size 2+ and then digs out a defective item from the resultant
contaminated set.

Procedure 3-SET-TEST(X);
X’ := min(2k, IXI) items from X;
TEST(X’);
if X’ is contaminated

then X := X’
else X := XX’

G := G to X’
S := S\X’;

DIG(X);
end-procedure

Now, we describe the main body of the algorithm.

Algorithm B;
input S;
D:=0;
G :=0;
while SI >_ 3 do

k:=0;
repeat {jumping process}
X := min(2k + 2k+l, ISI) items from S;
TEST(X);
if X is pure then G’-GtOX

S:= S\X
k:=k+2;

if k 10 then TEST(S)
if S is pure then G := GtoS

S :=0;

90 D.-Z. DU, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG

until X is contaminated;
if k 0 then 3-TEST(X);
if k > 0 then 3-SET-TEST(X);

end-while;
while S - 0 do

x := an item from S;
TEST(x);
if x is good then G := G to {x};
if x is defective then D "= D tO {x};
S := S\{x};

end-while;
end-algorithm

Next, we analyze Algorithm B in a way similar to that in 3.
LEMMa 4.1. M,(dln) <_ 1.65d(loge + 1.031) + 5.
Proof. We prove the lemma by induction on d. For d 0, since the algorithm will test

S when k 10, it takes at most five tests to find that S is pure. Thus M, (0In) _< 5.
For d > 0 suppose that the first time that the computation goes out from the jumping

process is with k i. So a contaminated set X of size at most 2 + 2i+1 (i is even) and 2
good items are found with i/2 + tests. Next, consider three cases.

Case 1. O. Procedure 3-TEST identifies either two defective items or at least one
good item and one defective item by two tests. Applying the induction hypothesis to the
remaining n 2 items, we obtain that in the former subcase the total number of tests is at most

3+1.65(d-2) lOgd_2 +1"031 +5

(2) (n--2
1.5.2 log2+1 +1.65(d-2) log2d 2

+1"031 +5

_< 1.65a (log: + 1.031) + 5;

in the latter subcase the total number of tests is at most

n-2
3 + 1.65(d- 1) log:z d + 1.031) + 5

n-2
1.5(log22+1)+1.65(d-1) lg2d-1 + 1.031) + 5

(n)< 1.65d log+1.031 +5.

Case 2. 2 < < 8. Procedure 3-SET-TEST finds either one defective item by using
at most -t- tests or one defective item and 2 good items by using at most + 2 tests. In
the former subcase the total number of identified items is 2 and the total number of tests for
detecting them is at most

(i/2 + 1)+ (i + 1) < 1.65(log 2 + 1.031);

MODIFICATIONS OF COMPETITIVE GROUP TESTING 91

in the latter case the total number of identified items is 2i+1 and the total number of tests for
identifying them is at most

(i/2 + 1) + (i + 2) < 1.50(log2 2
i+1 + 1).

Applying the induction hypothesis to the remaining unidentified items and using Lemma 3.2,
we can obtain the upper bound 1.65d(log2 + 1.031) + 5 for the total number of tests.

Case 3. > 10. This case is similar to Case 2. The difference is that the algorithm uses
one more test for testing on S when 10. So, corresponding to the two subcases in Case 2,
we have that in the former subcase the total number of tests for identifying 2 good items
and one defective item is at most

(i/2 + 1) + (i + 2) < 1.65(log2 2 -+- 1.031);

in the latter subcase the total number of tests for identifying 2i+l good items and one defective
item is at most

(i/2 + 1) + (i + 3) < 1.65(1og2 2
i+1 -t- 1.031).

The proof is completed by applying the induction hypothesis to the remaining unidentified
items and using Lemma 3.2.

LEMMA 4.2. For 0 < d < n, MB (d In) < 1.5n.
Proof. We prove the lemma by induction on d. For d 0 the algorithm needs one

test when n < 3, two tests when 4 < n < 15, and at most five tests when n > 16, so that

MB (0In) < 1.5n. For d > 0 suppose that the first time that the computation goes out from
the jumping process is with k i. So a contaminated set X of size at most 2 -+- 2i+1 (i is
even) and 2 1 good items are found with i/2 + tests. Next, we follow the trace of the
proof of the last lemma to verify that in each case the number of tests is at most 1.5 times the
number of identified items.

Case 1. O. Two items were identified by using three tests.
Case 2. 2 < < 8. Either 2 items were identified by using 1.5i + 2 tests or 2i+1 items

were identified by using 1.5i +3 tests. Since/ > 2, 1.5i+2 < 1.5.2 and 1.5i+3 < 1.5.2i+1.
Case 3. > 10. Either 2 items were identified by using 1.5i + 3 tests or 2i+1 items were

identified by using 1.5i + 4 tests. Since > 10, 1.5i + 3 < 1.5.2 and 1.5i + 4 < 1.5 -2i+.
The proof is completed by applying the induction hypothesis to the remaining unidentified

items and adding the bound to the inequality in each of the cases or subcases.
THEOREM 4.3. For < d < n 1, M(d n) < 1.65M(d, n) + 10.

Proof. If din > 8/21, then M(d, n) n 1. The theorem then follows from Lemma
4.2. If din < 8/21, then by Lemma 4.1 and Corollary 2.3 we have

M(dln) < 1.65M(d, n) + 5 + 1.65(0.5 log2 d 0.065d + 1.222).

Denote h(d) 0.5 log2 d-0.065d. Then h(d) increases for d < 11 and decreases for d > 12.
Thus h(d) < max(h(11), h(12)) < 1.015. Hence M(d In) < 1.65M(d, n) + 9.3.

By modifying Algorithm B, the competitive ratio could be further improved to approach
1.5. The modification can be done through studying the competitive group testing for a small
number of items. For example, if instead of Procedure 3-TEST we use a procedure for testing
12 items, the competitive ratio can be decreased to be less than 1.6. However, how to push
the competitive ratio down from 1.5 is unknown.

92 D.-Z. DU, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG

Appendix 1: Proof of Theorem 3.1 for 1 _< d _< 4. Let us prove the following lemmas.

LEMMA 3.7.

MA(ll2")--2u+I for u > O,

Ma(212u)=4u-1 for u > 1,

MA(312u)=6u-5 foru>2,

MA (412u) 8U 9 for u > 2.

Proof. We prove the lemma by induction on u. It is easy to check each initiation. For
induction we employ formulae (3), (4), and (5) to yield the following:

MA(112u) 1 + MA(112u-) + MA(OI2u-l)

l+2(u-1)+l+l

=2u+l,

MA(212u) max(1 + MA(212u-l, + 2MA(112u-1)))

max(4u --4, 4u 1)

=4u- 1,

M(312u) max(1 + MA(312u-1), + MA(112"-) + MA(2[2u-1))

max(6u 10, 6u 5)

=6u--5,

Ma(412u) max (MA(d’I2u-l) + MA(4 d’ 12u-1))
0<d’<4

max(8u 17, 8u 11, 8u 9)

8u-9. S

LEMMA 3.8. Let u + [logn], v [log(n 2u)], and w [log(n 2" 2v-)[.
Then

MA(1 n) < 2(u + 1) + 1,

Ma(21 n) < max(4u + 1, 2(u + v + 1)+ 1),

MA(31n) < max(6u 3, 4u + 2v + 1),

MA(4In) _< max(8u 7, 6u + 2v 3, 4u +4v 3, 4u + 2v + 2w + 1).

Proof. Use the recursive formula (3), and note that MA (din 2u) _< MA (d 2v). q

Now, we prove Theorem 3.1 in the case of < d < 4 as follows. Note that u and v are
defined the same as in Lemma 3.8.

MODIFICATIONS OF COMPETITIVE GROUP TESTING 93

For d 1, MA(1 In) < 2(u + 1) + 2M(1, n) + 1.
For d 2, if v < u, then MA(21n) < 4u + and

M(2, n)> IIg()l > IIg (2u + 1)2ul --2u.
2 /

So MA(21n) < 2M(2, n). If u v, then MA(21n) 2(2u + 1) + and

(2 + 2u- + 1)(2u + 2u-) 1log
2

> [log(22u + 22u-3)1 2u + 1.

Thus (1) holds.
For d 3 verification is trivial for u 1. Next, we consider u >_ 2. If v < u, then

MA(31n) <_ 2(3u 2) + and

M(3, n)> IIg(;)l
(2 + 1)2u(2u- 1)]log

6

[log((2 + 1)22u-3)

> 3u-2.

Thus (1) holds. If u v, then MA(3 In) _< 6u + and

M(3, n)> IIg(;)l

I 1> log
(2" + 2u- + 1)(2u + 2u-1)(2u + 2u-- 1)

6

>_ Flog((22u+l q-22u-2 1)2u-2)1

> 3u.

For d 4 it is trivial to verify (1) for u and 2. Next, consider u > 3. If v < u and
to < u 1, then Ma(41 n) < 2(4u 3) + and

I"g(;)l > IIg (2u + 1)2 (2 1)(2 2) -1
/8.3

(23u 22u 2u- + 1)2u-2 1log
3

> 4u-3.

94 D.-Z. DU, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG

Thus (1) holds. If u v and w < u 1, then MA(41n) < 2(4u 2) + and

> [log ((2u + 2u-l)2- 1)((2u + 2u-- 1)2- 1)]
[3.8

(22u+ + 22u-2-
log

3

22u+ + 22u-2 _2u 2u- -]
)/8

> [log((22u- + 1)22"-2)]

> 4u-2.

So (1) holds. If w u 1, then we must have u v and MA(41n) < 2(4u 1) + 1. Note
that n > 2u + 2u-1 + 2u-2 + 1. Thus

((2u + 2u-1 + 2u-2)2- 1)((2u + 2u-1 + 2u-2- 1)2- 1)-]
/3-8

[(22u+l + 22u + 22u-4 --1 22u+l -+- 22u + 22u-4 2u 2u-l 2u-2)]> log
3 8

>_ [log((22u + 1)22u-2)]

>4u- 1.

Therefore, (1) holds.

Appendix 2: Proof of Theorem 3.1 for 5 <_ d <_ 40. To save some computation, let
us first compute na min{n If(n, d) > 1} for 5 < d < 40, where f(n, d) is the function
defined by (2). The result is shown in the following.

n5 73, n6 44 n7 38, n8 37, n9 37, n l0 37,

nl 39, n12 40, n13 42, n14 43, n15 45, n16 47,

rtl7 49, n 18 50, //19 52, rt20 54, rt21 56, //22 58,

n23 60, n24 62, n25 64, n26 66, n27 68, n28 70,

n29 72, n30 74, n31 76, n32 78, n33 80, n34 82,

n35 84, n36 86, n37 88, n38 90, n39 92, n40 94.

From the preceding equations we see that for 21 < d < 40, d/na > 8/21. Therefore, for
21 < d < 40, (1) holds. Now, for 5 < d < 20 and (21/8)d < n < na we compute Ma(d In)
and (d, n). The results are given in Table and show that M. (din) < 2g.(d, n) + 1.

MODIFICATIONS OF COMPETITIVE GROUP TESTING 95

TABLE
(d, n, l(d, n), MA(d In)) valuesfor 5 < d < 20 and (21/8)d < d <

(5, 14, 12, 23) (5, 15, 13, 25) (5, 16, 13, 25) (5, 17, 13, 27) (5, 18, 14, 27) (5, 19, 14, 29)

(5, 20, 14, 29) (5, 21, 15, 31) (5, 22, 15, 31) (5, 23, 16, 31) (5, 24, 16, 31) (5, 25, 16, 33)

(5, 26, 17, 33) (5, 27, 17, 33) (5, 28, 17, 33) (5, 29, 17, 35) (5, 30, 18, 35) (5, 31, 18, 35)

(5, 32, 18, 35) (5, 33, 18, 37) (5, 34, 19, 37) (5, 35, 19, 37) (5, 36, 19, 37) (5, 37, 19, 39)

(5, 38, 19, 39) (5, 39, 20, 39) (5, 40, 20, 39) (5, 41, 20, 41) (5, 42, 20, 41) (5, 43, 20, 41)

(5, 44, 21, 41) (5, 45, 21, 41) (5, 46, 21, 41) (5, 47, 21, 41) (5, 48, 21, 41) (5, 49, 21, 43)

(5, 50, 22, 43) (5, 51, 22, 43) (5, 52, 22, 43) (5, 53, 22, 43) (5, 54, 22, 43) (5, 55, 22, 43)

(5, 56, 22, 43) (5, 57, 22, 45) (5, 58, 23, 45) (5, 59, 23, 45) (5, 60, 23, 45) (5, 61, 23, 45)

(5, 62, 23, 45) (5, 63, 23, 45) (5, 64, 23, 45) (5, 65, 23, 47) (5, 66, 24, 47) (5, 67, 24, 47)

(5, 68, 24, 47) (5, 69, 24, 47) (5, 70, 24, 47) (5, 71, 24, 47) (5, 72, 24, 47) (6, 16, 15, 27)

(6, 17, 15, 29) (6, 18, 15, 29) (6, 19, 16, 31) (6, 20, 16, 31) (6, 21, 16, 33) (6, 22, 17, 33)

(6, 23, 17, 35) (6, 24, 18, 35) (6, 25, 18, 37) (6, 26, 18, 37) (6, 27, 19, 37) (6, 28, 19, 37)

(6, 29, 19, 39) (6, 30, 20, 39) (6, 31, 20, 39) (6, 32, 20, 39) (6, 33, 21, 41) (6, 34, 21, 41)

(6, 35, 21,41) (6, 36, 21, 41) (6, 37, 22, 43) (6, 38, 22, 43) (6, 39, 22, 43) (6, 40, 22, 43)

(6, 41, 23, 45) (6, 42, 23, 45) (6, 43, 23, 45) (7, 19, 17, 33) (7, 20, 18, 33) (7, 21, 18, 35)

(7, 22, 18, 35) (7, 23, 19, 37) (7, 24, 19, 37) (7, 25, 20, 39) (7, 26, 20, 39) (7, 27, 20, 41)

(7, 28, 21, 41) (7, 29, 21, 43) (7, 30, 21,43) (7, 31, 22, 43) (7, 32, 22, 43) (7, 33, 23, 45)

(7, 34, 23, 45) (7, 35, 23, 45) (7, 36, 23, 45) (7, 37, 24, 47) (8, 22, 20, 37) (8, 23, 20, 39)

(8, 24, 21, 39) (8, 25, 21, 41) (8, 26, 22, 41) (8, 27, 22, 43) (8, 28, 22, 43) (8, 29, 23, 45)

(8, 30, 23, 45) (8, 31, 23, 47) (8, 32, 24, 47) (8, 33, 24, 49) (8, 34, 25, 49) (8, 35, 25, 49)

(8, 36, 25, 49) (9, 24, 22, 41) (9, 25, 23, 43) (9, 26, 23, 43) (9, 27, 24, 45) (9, 28, 24, 45)

(9, 29, 24, 47) (9, 30, 25, 47) (9,31,25,49) (9, 32, 25, 49) (9, 33, 26, 51) (9, 34, 26, 51)

(9, 35, 27, 53) (9, 36, 27, 53) (10, 27, 25, 47) (10, 28, 26, 47) (10, 29, 26, 49) (10, 30, 26, 49)

(10, 31, 27, 51) (10, 32, 27, 51) (10, 33, 27, 53) (10, 34, 28, 53) (10, 35, 28, 55) (10, 36, 29, 55)

(11,29,28,51) (11,30,28,51) (11,31,28,53) (11,32,29,53) (11,33,29,55) (11,34,29,55)

(11,35,30,57) (11,36,30,57) (11,37,31,59) (11,38,31,59) (12,32,30,55) (12,33,31,57)

(12, 34, 31, 57) (12, 35, 31, 59) (12, 36, 32, 59) (12, 37, 32, 61) (12, 38, 33, 61) (12, 39, 33, 63)

(13, 35, 33, 61) (13, 36, 33, 61) (13, 37, 34, 63) (13, 38, 34, 63) (13, 39, 35, 65) (13, 40, 35, 65)

(13, 41, 35, 67) (14, 37, 35, 65) (14, 38, 36, 65) (14, 39, 36, 67) (14, 30, 27, 67) (14, 41, 37, 69)

(14, 42, 37, 69) (15, 40, 38, 69) (15, 41, 39, 71) (15, 42, 39, 71) (15, 43, 39, 73) (15, 44, 40, 73)

(16, 43, 41, 75) (16, 44, 41, 75) (16, 45, 42, 77) (16, 46, 42, 77) (17, 45, 43, 79) (17, 46, 44, 79)

(17, 47, 44, 81) (17, 48, 45, 81) (18, 48, 46, 83) (18, 49, 47, 85) (19, 50, 49, 87) (19, 51, 49, 89)

(20, 53, 51, 93)

REFERENCES

R. ArtSWEOE AND I. WEGENEg, Search Problems, John Wiley, New York, 1987.
[2] M. AIGNEg, Combinatorial Search, John Wiley & Sons, New York, 1988.
[3] J. A. AStAM AND A. Dr,GAa’, Searching in the presence of linearly bounded errors, in Proc. 23rd Annual

ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1991,
pp. 486-493.

[4] A. BAR-Nov, F. K. HWANG, I. Ksstg, AND S. KUTTEr, A New Competitive Algorithm for Group Testing,
manuscript.

[5] R. DOgFMAN, The detection of defective members in a large population, Ann. Math. Statist., 14 (1943), pp.
4436-4440.

[6] D.Z. DtJ AND F. K. HWANG, Minimizing a combinatorialfunction, SIAM J. Alg. Discrete Math., 3 (1982), pp.
523-528.

96 D.-Z. DU, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG

[7] D. Z. DtJ AND F. K. HWANG, Competitive group testing, in On-Line Algorithms, L. A. McGeoch and D. D.
Sleator, eds., Association for Computing Machinery, New York, 1992, pp. 125-134.

[8] P. ERDOS AND A. RENYI, On twoproblems ofinformation theory, Publ. Hung. Acad. Sci., 8 (1964), pp. 241-254.
[9] M.C. Hu, F. K. HWANG, AND J. K. WANG, A boundaryproblemfor group testing, SIAM J. Alg. Discrete Math.,

2 (1981), pp. 81-87.
10] R.M. KARP, E. UPFAL, AND A. WIGDERSON, Are search and decision problems computationally equivalent? in

Proc. 17th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery,
New York, 1985, pp. 464-475.

[1 l] K.-I. Ko, Searchingfor two objects by underweightfeedback, SIAM J. Discrete Math., (1988), pp. 65-70.
12] M. S. MANASSE, L. A. MCGEOCI, AND D. D. SLEATOR, Competitive algorithmsfor on-line problems, in Proc.

20th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1988, pp. 322-333.

13] E. M. PALMER, Graphical Evolution: An Introduction to the Theory ofRandom Graphs, John Wiley & Sons,
New York, 1985.

[14] R. L. RIVEST, A. R. MEYER, D. J. KLEITMAN, K. WINKLMANN, AND J. SPENCER, Coping with errors in binary
search procedures, J. Comput. System Sci., 20 (1980), pp. 396-404.

15] D. D. SLEATOR AND R. E. TARJAN, Amortized efficiency of list update and paging rules, Comm. ACM, 28
(1985), pp. 202-208.

[16] M. SOBEL AND P. A. GROLL, Group-testing to eliminate efficiently all defectives in a binominal sample, Bell
Syst. Tech. J., 38 (1959), pp. 1179-1252.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 97-119, February 1994

() 1994 Society for Industrial and Applied Mathematics
008

THE COMPLEXITY OF DECISION VERSUS SEARCH*

MIHIR BELLARE AND SHAFI GOLDWASSER

Abstract. A basic question about NP is whether or not search reduces in polynomial time to decision. This

paper indicates that the answer is negative: Under a complexity assumption (that deterministic and nondeterministic
double-exponential time are unequal) a language in NP for which search does not reduce to decision is constructed.

These ideas extend in a natural way to interactive proofs and program checking. Under similar assumptions,
the authors present languages in NP for which it is harder to prove membership interactively than it is to decide this
membership, and languages in NP that are not checkable.

Key words. NP-completeness, self-reducibility, interactive proofs, program checking, sparse sets, quadratic
residuosity

AMS subject classifications. 68Q15, 03D15, 94A60

1. Introduction. The work on interactive proofs brought back to light a basic question:
How powerful does a prover need to be to convince a verifier of membership in a language L ?
Clearly, the prover needs at least the power to decide the language for himself. The question
we focus on is whether this is enough.

There are interactive proofs known for complete problems in NP, P#’, and PSPACE where
it is sufficient for the prover to be able to decide membership in the language. Such power is
also sufficient for almost all of the languages in IP that have been closely examined (specif-
ically, the languages of graph isomorphism, graph nonisomorphism [GMW], and quadratic
nonresiduosity [GMR]). On the other hand, all known interactive proofs for complete lan-
guages for coNP require the prover to do more than decide membership in the language.
Similarly, all known interactive proofs for the language of quadratic residuosity require the
prover to do more than decide quadratic residuosity.

As we will see, this is essentially a generalization of the old question of whether search
problems reduce to their decision counterpart for NP. Namely is computing a witness for
membership in L NP any harder than establishing the existence of such a witness? For
NP-complete problems it is well known that the answer is no: given an oracle for membership
a witness can be computed in polynomial time. But for general L NP the problem remains
open.

In this paper we use natural complexity assumptions to indicate that proving membership
may be harder than deciding it. As a first example we look at decision versus search in NP.
We then turn to interactive proofs and finally apply the same ideas to derive results on the
difficulty of program checking.

Let us proceed to describe our results in detail.

1.1. Decision versus search in NP. Before we can present our results, we need to say
what we mean by "search," "decision," and the "reduction" of the former to the latter. We will

*Received by the editors March 23, 1992; accepted for publication (in revised form) August 21, 1992. These
results appeared in preliminary form in [BG]. Later, merged with [BF], they appeared in [BBFG].

tlBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598 (rn+/-h+/-r
@watzscn. +/-bin. ccrn). Part of the research of this author was performed at the Massachusetts Institute of Tech-
nology. This author was partially supported by the National Science Foundation grant CCR-8719689 and Defense
Advanced Research Projects Agency grant N00014-89-J- 1988.

Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge,
Massachusetts 02139 (shaf+/-@t:hecry. :]_cs .rn+/-t:. edu). This author was partially supported by National Sci-
ence Foundation grant 25801, Defense Advanced Research Projects Agency grant 71949, the Princeton University
Department of Computer Science, and U.S.-Israel Binational Science Foundation grant 86-00301.

97

98 MIHIR BELLARE AND SHAFI GOLDWASSER

keep the discussion here informal; for formal definitions we refer the reader to 2.1. We start
with some terminology.

Suppose p(., .) is a polynomial-time computable binary relation. We let p(x) {w
p(x, w) be the set of all p-witnesses for x. We say that p is an NP-relation if there
exists a constant c such that for all x 6 {0, 1}* it is the case that p(x) {0, 1} Ixlc. We let
Lp {x {0, 1}* p(x) 0}.

Now let L

{0, }* be a language. We say that p defines L if L Lp. Clearly, L 6 NP

if and only if there exists an NP-relation that defines L. It is important to note, however, that
for any particular NP language L, there are many (different) NP-relations that define it.

Associated to any NP language L is a (single) decision problem and a class of search
problems. The decision problem is, of course, just the problem of deciding membership in L.
As for the search problems, there is one for each NP-relation that defines L, and the search
problem corresponding to a particular NP-relation p that defines L is the following: given
x 6 L, find a p-witness for x. For example, if L is SAT, then the decision problem is to
decide whether or not a given formula is satisfiable. One of the associated search problems is
to determine a truth assignment of a given satisfiable formula (but there are other associated
search problems as well).

We are interested in defining what it means for search to reduce to decision for L. As
a means for obtaining the definition and understanding the issues involved, we begin by
discussing a less general notion: that of reducing search to decision for an NP-relation p
(defining L).

Fix a particular NP-relation p that defines L. We say that "search reduces to decision for
p" if the search problem for p is solvable in polynomial time, given an oracle for the decision
of L L,. More precisely, search reduces to decision for p if there exists a polynomial-time
oracle machine W such that for all x 6 L it is the case that WL (x) (the output of W with
oracle L and input x) is a p-witness for x. Intuitively, the search problem for p is no harder
than the decision problem for the corresponding language.

We are now ready to state what it means for search to reduce to decision for a language
L 6 NP. We recall that there are many different NP-relations defining L. In general, search
might reduce to decision for some of these and not for others. Our definition is to say that
search reduces to decision for L as long as there is some NP-relation p (defining L) such that
search reduces to decision for p. In other words, we say that search reduces to decision for
L as long as at least one of the (many different) search problems associated to the decision
problem for L is no harder than this decision problem.

The motivation for this definition, which stems from the question of whether proving
membership can be harder than deciding it, will become clearer as we go on. For the moment,
it is more important to stress the generality of our definition and the strength of negative
conclusions that are based on it. In particular, to say that search does not reduce to decision
for a particular language L (as in the conclusion of the theorem that follows) is to make a
strong statement indeed, because it means that for all p defining L it is the case that search does
not reduce to decision for p. That is, all the search problems corresponding to the decision
problem of L are harder than this decision problem. In particular, the existence of a language
for which search does not reduce to decision certainly implies the existence of an NP-relation
for which search does not reduce to decision.

To state the theorem we first need the following definitions:

EE U DTIME(2C2") and NEE U NTIME(2C2")"
c>O c>O

THEOREM 1.1. Suppose EE NEE. Then there is a language in NPfor which search does
not reduce to decision.

THE COMPLEXITY OF DECISION VERSUS SEARCH 99

Note that the conclusion (of Theorem 1.1) implies P : NP. Whether the assumption could
be reduced to P NP (or even E NE) remains an open question.

We note that if L is NP-complete, then for any NP-relation/9 that defines L, it is the
case that search reduces to decision for/9 (a consequence of the self-reducibility and NP-
completeness of SAT as well as certain features of the proof of Cook’s theorem [Co]; this
is one of the most basic and well-known facts in the theory of computation). In particular,
by our definition search certainly reduces to decision for any NP-complete language. So the
hard problems (from the point of view of search versus decision) will necessarily be non-NP-
complete. In particular, the language of the conclusion of Theorem 1.1 is not NP-complete.

The decision-versus-search question has attracted the attention of researchers ever since
NP was introduced (we survey some of the work on this subject in 1.5). However, we note
that previous work has focused on the question of whether search reduces to decision for
NP-relations (not NP-languages), and the conclusions have been weaker than ours.

1.2. Competitive proof systems" The natural extension. NP represents the simplest
kind of proof system. An NP proof system for L is defined by a polynomial time verifier
V. This verifier talks to a prover who, on an input x common to both parties, is allowed to
send the verifier a single message of length polynomial in n Ix l. As a function of this
message and the common input, the verifier decides whether or not to accept (this decision of
the verifier is a polynomial-time binary predicate p evaluated on the common input and the
prover’s message). In the case that x L there must exist some deterministic prover P who
can convince the verifier to accept (this is the completeness condition). In the case that x L
no prover should be able to convince the verifier to accept (this is the soundness condition).
We usually specify an NP proof system by a pair (P, V), where P is a prover satisfying the
completeness condition. Clearly, L NP if and only if it possesses an NP proof system.

How powerful need the prover P be in an NP proof system for L ? It is clear the prover
must have at least the ability to decide L for himself. Let us call an NP proof system (P, V)
competitive if this minimal ability is also sufficient; more precisely, (P, V) is competitive if
P runs in polynomial time given an oracle for L. It now becomes clear that the question of
whether or not search reduces to decision for L NP captures the computational difficulty of
the prover’s task under this competitive measure of complexity. More precisely, we observe
that L has a competitive NP proof system if and only if search reduces to decision for L. Thus
Theorem 1.1 indicates that there is a language L NP to give an NP proof of which any prover
must use power over and above that necessary to decide L.

NP proof systems, however, are very restrictive. It becomes natural to ask, would the
prover’s task be alleviated if the parties were allowed interaction and the proof was now only
required to be correct with high probability? In other words, we now consider interactive
proofs (see [GMR]). We recall that in an interactive proof both parties are allowed to be
probabilistic and the parties are allowed to exchange messages, for a polynomial number of
rounds, before the verifier decides whether or not to accept. Completeness and soundness are
required to hold only with high probability (see 4.1 for precise definitions). Let us call an
interactive proof system competitive if the prover runs in probabilistic polynomial time, given
access to L as an oracle. Then does every language in NP (and more generally in IP) have a
competitive interactive proof?. In other words, does the extra leeway provided by interaction
and randomness reduce the burden on the prover, or does the discrepancy between proving
and deciding remain even if coins and interaction are allowed?

Quadratic residuosity provides a telling example. Let QR (x, N) qy Zv s.t. x
y(mod N)}, and let QNR {(x, N) -3y Zv s.t. x _---- y2(modN)}. Search is not known

The prover here refers, of course, to the "honest" prover of the completeness condition; the soundness condition
of the proof system is, as usual, required to hold with respect to any (computationally unbounded) prover.

100 MIHIR BELLARE AND SHAFI GOLDWASSER

to reduce the decision for QNR; in all known NP proof systems for QNR the prover requires
the ability to factor N, and factoring is not known to be reducible to quadratic residuosity. Yet,
we do know of interactive proofs for membership in QNR where it suffices for the prover to be
able to tell membership in QR (i.e., QNR does have competitive interactive proofs) [GMR].
On the other hand, there is no known interactive proof for QR where it suffices for the prover
to be able to decide membership in QR (i.e., QR is not known to have a competitive interactive
proof).

Our next result indicates that, in general, interaction and randomness will not make the
prover’s task easier. More precisely, we indicate that not all languages in NP have competitive
interactive proofs. Letting BPEE denote the class of languages recognized with bounded error
by a probabilistic TM running in time 2c2" for some constant c > 0, we have the following
theorem.

THEOREM 1.2. If NEE BPEE, then there is a language in NP that does not have a

competitive interactive proof
The complexity of a prover in an interactive proof system is a basic question that is

attracting a fair amount of attention (see 1.5). The notion of competitive interactive proofs
that we introduce provides an new angle from which to understand this question; whereas past
work has focused on providing upper bounds on the complexity of provers, we are instead
trying to understand the comparative complexity of proving versus deciding.

1.3. Program checking. We briefly mention our results on program checking that are
in the same vein as the preceding.

Blum and Kannan [BK] introduced the notion of program checkers (see 5 for full def-
initions). Negative results in this domain begin with Yao [Ya], who presented a language in
deterministic space 2ng’gn that does not have a checker. Beigel and Feigenbaum [BF] and
Krawczyk [Kr] improved this to deterministic space nlg* n. The question of whether there
are languages of reasonable complexity that are not checkable was answered by Beigel and
Feigenbaum [BF] under an assumption" they showed there was one such in NP provided
that nondeterministic triple exponential time is not contained in bounded probabilistic triple
exponential time. We improve the assumption to double exponential time. Namely, we have
the following.

THEOREM 1.3. If NEE BPEE, then there is a language in NP that does not have a
checker.

1.4. A natural candidate? Clearly, it would be most interesting to exhibit an example
of a natural problem in NP for which there are no competitive interactive proofs. A candidate
exampleuas we indicated in 1.2uis the quadratic residuosity problem. Let us consider the
interactive proofs known for membership both in QR and QNR in more detail.

First, for membership of (x, N) in QNR, the following protocol is repeated k times (see
[GMR]). The verifier tosses a coin c 6 {0, 1 }. If c 1, then the verifier sends the prover
z xr2 mod N for random r Zv; else the verifier sends the prover z r2 mod N for
random r 6 Zv. The prover is then asked to guess the value of c. If the prover guesses
correctly in each repetition of the protocol, then the verifier accepts. Clearly, if (x, N) 6

QNR, then c if and only if (z, N) QR. Thus it is sufficient for the prover to be able to
determine membership in QR in order to guess c, and the prover is competitive. On the other
hand, if (x, N) QNR, then the probability that the verifier accepts is no greater than 2-k.

How about proving that (x, N) 6 QR? A simple proof would be the factorization of
N or a y 6 Z such that x =_ y2 (mod N). In fact, all known interactive proofs of this
fact require the ability to factor N. Because we do not know whether factoring reduces to
deciding quadratic residuosity, it remains an intriguing open problem whether membership

THE COMPLEXITY OF DECISION VERSUS SEARCH 101

in QR can be interactively proved by a probabilistic polynomial-time prover with access to
a QR oracle. In particular, if the answer to this question were negative, we would get the
following interesting number-theoretic implication: integer factorization is not polynomial-
time reducible to deciding quadratic residuosity.

We note that there are special classes of integers N for which (x, N) 6 QR can be
interactively proved be a probabilistic polynomial-time prover with access to a QR oracle. For
example, this can be done when N is the product of a constant number of primes (see 6).

1.5. Related work. We discuss related work on decision versus search and the complex-
ity of provers.

1.5.1. Decision versus search for NP. The decision-versus-search question has attracted
the attention ofresearchers ever since NP was introduced. It has been studied in many different
contexts and from many angles, and, in particular, many results have indicated that for NP,
search is likely to be harder than decision. We stress that all these results are about search
versus decision for NP-relations, not NP-languages. So, in that sense, the conclusions are
weaker than ours.

Let us now describe some of this work. In what follows we let p denote a polynomial-time
computable binary predicate.

Valiant [Va] appears to have been the first to indicate that there are NP-relations p for
which search is unlikely to reduce to decision; specifically, assuming P - NP N coNP, he
presents a particular NP-relation p with the property that search does not reduce to decision
for p. However, the underlying language Lp in Valiant’s result is easy; in fact, it equals
{0, }*. Borodin and Demers [BD] strengthen Valiant’s result in this regard by showing that
under the same assumption there is an NP-relation p for which Lp NP P, but search still
does not reduce to decision for p. Hartmanis and Hemachandra [HH] present results similar
to Valiant’s but assume P :A UP N coUP.

Impagliazzo and Naor [IN] indicate that, at least in relativized worlds, the assumption P
:A NP coNP is not necessary for the conclusion of Valiant’s result. More precisely, they
present a relativized world in which P NP A coNP, but there exists an NP-relation p such
that L {0, }* and search does not reduce to decision for p.

The assumption P - NP suffices to indicate that the usual method of self-reduction (in
which one constructs a witness bit by bit, given an oracle for the language) may not always
work: Selman [Se] shows that under this assumption there is an NP-relation p for which L
NP P, but, given a pair of strings (x, u) and an oracle for Lp, it is impossible to decide in
polynomial time whether or not there is an extension of u that is a p-witness for x.

We stress again that none of the preceding work addresses the problem we consider.
These other authors focus on NP-relations, asking whether there exist (specific) NP-relations
p for which it is impossible to reduce the search problem for p to the corresponding decision
problem for L. We focus on NP languages, asking whether there exists a language L for
which, for any associated search problem p, it is impossible to reduce the search problem for
p to its corresponding decision.

1.5.2. Decision versus search in other settings. The usual reduction of search to deci-
sion has a strong sequential flavor, and Karp, Upfal, and Wigderson [KUW] investigate the
degree to which this is necessary. Ben-David, Chor, Goldreich, and Luby [BCGL] investigate
the decision-versus-search question in the context of the average-case complexity. Impagli-
azzo and Tardos [IT] consider the decision-versus-search question in the exponential case and
present an oracle relative to which E NE, but there is an exponential-time binary predicate
whose search problem is not solvable in exponential time.

102 MIHIR BELLARE AND SHAFI GOLDWASSER

1.5.3. The complexity of provers. Several recent works present results on the complex-
ity of provers in interactive proofs. Let us describe some of them.

Shamir’s [Sh] result implies that polynomial-space provers suffice to prove PSPACE
languages. The best upper bound on the complexity of a prover of a coNP language, due to
Lund, Fortnow, Karloff, and Nisan [LFKN], is probabilistic, polynomial time with a #P oracle.

Bellare and Petrank [BP] investigate the complexity of zero-knowledge (ZK) provers and
indicate that such provers can be reasonably efficient; specifically, they show that any language
possessing a statistical ZK interactive proof possesses one with a prover that is a probabilistic,
polynomial-time machine with access to an NP oracle.

In the Case ofmultiple-prover proofs, Babai, Fortnow, andLund [BFL] show that exponenti-
al-time provers suffice for exponential-time languages.

We stress that all these works are concerned with upper bounding the complexity of
provers in an absolute sense. The model of competitive interactive proofs that we introduce
here is for the purpose of studying the complexity of provers in a different way, namely, in
terms of the comparative complexity of proving versus deciding.

1.5.4. Recent work. Independently of this work, Impagliazzo and Sudan [IS] show that
if NE coNE, then there is a language in NP for which search does not reduce to decision.
Here the conclusion is the same as in Theorem 1.1, but the assumption is different (and not
known to be either weaker or stronger). They also show that if E - NE, then there is an NP-
relation p for which search does not reduce to decision; this is the same conclusion as in the
aforementioned result of Borodin and Demers [BD] but under an assumption that is different
from that of [BD] (but, again, not known to be either weaker or stronger). Finally, Spielman
[Sp] has constructed an uncheckable set in under the assumption that ’ -7e FI.

1.6. Relations to other notions. We focus in this paper on (competitive) interactive
proofs and checking. Related notions are function-restricted interactive proofs [BK], multiple-
prover interactive proofs [BGKW], and coherence [Ya]. Here we discuss how these notions
relate to ours and also how our results impinge on them. First, let us list (the complexity
classes corresponding to) the notions in this area.

1.6.1. The complexity classes in this area. The following are the (main) complexity
classes on which the ensuing discussion will focus.

compNP {L L has a competitive NP-proof system}

{L 6 NP search reduces to decision for L },

IP {L L has an interactive proof system},

complP {L L has a competitive interactive proof system},

frlP {L L has a function-restricted interactive proof system},

MIP {L L has a multi-prover interactive proof system},

Check {L" L is checkable},

Coh- {L" L is coherent}.

1.6.2. Function-restricted interactive proofs. Function-restricted interactive proofsys-
tems are a variant of interactive proof systems introduced by Blum and Kannan [BK]. Like
competitive interactive proofs, they make the restriction that the honest prover be a probabilis-
tic, polynomial-time machine with access to an oracle for the language in question. But, in
contrast to competitive interactive proofs, they also restrict the dishonest prover. Specifically,

THE COMPLEXITY OF DECISION VERSUS SEARCH 103

they ask that a dishonest prover be a function from verifier messages to strings. In particular,
the response of the dishonest prover to a verifier message is not allowed to depend on previous
questions of the verifier (that is, its messages are independent of the history).

As we will see (Lemma 4.3) it is the case that comlP

frlP. Blum and Kannan also

established that Check

frlP. On the other hand, on the basis of the techniques of [FRS] one

can show that frlP c MIP.
Function-restricted interactive proofs were introduced in order to relate program checking

to interactive proofs. We introduce competitive interactive proofs to address the question of
how much power is necessary for the honest prover to prove membership interactively; whence
it is imperative to not weaken the definition of interactive proofs by making assumptions on
the power of the dishonest prover. However, we use the notion of function-restricted proof
systems to provide a unified treatment of our results. We establish the main technical lemmas
needed for our proofs in terms of the equivalent notion of "deciders" (see 3) and then use
these lemmas to derive our results on competitive interactive proofs and checking in a simple
way. In particular (improving [BF]; see the following), we do show that if NEE BPEE, then
there is a language in NP frlP.

1.6.3. Competitive multiple-prover proofs. One could define competitive multi-prover
proofs. However, using techniques of [FRS], one can show that the corresponding class of
languages is identical to frlP.

1.6.4. Coherence. The notion of coherence was introduced by Yao [Ya]. Informally, a
language L is coherent if the membership of x in L can be decided in probabilistic polynomial
time and bounded error by a machine (called the "examiner") that has access to L as an oracle
but is allowed to query this oracle only on points different from x. If L is not coherent, we
say it is incoherent. Beigel and Feigenbaum [BF] prove the existence of incoherent languages
in NP under the assumption that nondeterministic triple exponential time is not contained
in bounded probabilistic triple exponential time. Since checkable languages and languages
in frlP are coherent (see [Ya], [BF]), they thereby establish the existence of uncheckable
languages in NP, and languages in NP frlP, under the same assumption.

One can show that if search reduces to decision for L or if L has a competitive inter-
active proof, then also L is coherent. So the construction of incoherent sets yields nega-
tive results about these notions as well. However, the fact that our stronger results on all
these notions (namely, decision versus search, competitive interactive proofs, checking, and
function-restricted proofs) are obtained more directly (i.e., avoiding incoherence) indicates
that coherence may not be the best approach to negative results in this area.

We note that, intuitively, coherence has a flavor different from that of the other notions we
have considered; whereas the common underpinning of these others is the notion of a proof
(interactive or noninteractive), coherence is not a form of proof. Indeed, the examiner gives
no proof that x 6 L--there is no guarantee as to what would happen if the examiner is run
with an oracle different from L. It is by exploiting this prooflike quality of the notions we
consider that we are able to derive results that are stronger than those derived by the coherence
approach.

In this context we note also that one can separate the classes of checkable and coherent
languages inside NP, assuming NEE BPEE (see Theorem 5.4).

1.6.5. Summary. We summarize relationships among the various complexity classes we
have discussed. First, we introduce some notation. We define the triple-exponential time class

U NTIME(222)"NEEE*
c>_0

104 MIHIR BELLARE AND SHAFI GOLDWASSER

Similarly, we let BPEEE* denote the class of languages recognized with bounded error by

a probabilistic Turing machine (TM) running in time 222"c for some constant c > 0. The
following inclusions are known or are easily derived from known techniques"

(1) compNP NP (q complP.
(2) NP t3 complP __c IP

MIP.

(3) complP t3 Check

_
frlP

MIP N Coh.

Under the assumption NEE BPEE we establish the following:
(4) NP is not contained in any of the following: compNP, complP, Check, frlP.
(5) NP q Coh is not contained in any of the following" compNP, complP, Check, frlP.
For the results of line (4), see Theorems 2.9, 4.4, 5.3, and 3.6. For those of line (5), see

(Theorem 5.4 and) the discussion at the end of 5. Finally under the assumption NEEE*
BPEEE* [BF], establish the following:

(6) NP Coh.

2. Decision versus search in NP. In this section, we present a simple construction of a
language in NP for which search does not reduce to decision if it is assumed that EE - NEE.
In later sections we will extend the argument to interactive proofs and program checking. Let
us begin with the definitions.

2.1. Definitions. The goal of this section is to make precise what we mean by "search
reduces to decision for an NP language L." Since the issues were discussed at length in 1.1,
we will here be brief, stating the (formal) definitions and limiting the discussion to essentials.

It is convenient to proceed in steps. We begin by defining NP-relations and saying what
it means for search to reduce to decision for them. We then use this to say what it means for
search to reduce to decision for an NP language.

DEFINITION 2.1. Let p(., .) be a polynomial-time computable binary relation, and let
x {0, }*. We let p(x) {w {0, }* p(x, w) and call the members of this set
p-witnesses for x. We say that p is an NP-relation if there exists a constant c 6 N such
that for all x 6 {0, 1}* it is the case that p(x)

_
{0, 1} Ixlc. The language defined by p is

{x 6 {0, }* p(x) - 13} and is denoted Lp.
Note that if p is an NP-relation, then Lp 6 NE
Notation. If W (.) is an oracle machine, then WL (x) denotes the output of W with oracle

L

_
{0, }* and input x 6 {0, }*.
We now say what it means for search to reduce to decision for an NP-relation. An

equivalent formulation of the definition that follows appears in [BD].
DEFINITION 2.2. Suppose p is an NP-relation and W(.) is a polynomial-time oracle

machine. Let L Lp. We say that W is a p-witnessfinder if for each x 6 L it is the case that
Wc (x) p(x). We say that search reduces to decisionfor p if there exists a p-witness finder.

Note that the witness finder is not restricted to any particular method (for example, it is
not required that the length of queries be decreasing with time). Rather, any polynomial-time
computation is allowed. This strengthens negative results.

We now wish to say what it means for search to reduce to decision for an NP-language
(as opposed to an NP-relation). Begin with the following terminology.

DEFINITION 2.3. Suppose p is an NP-relation and L _c {0, }* is a language. We say that
p defines L if L L.

Clearly, L 6 NP if and only if there exists an NP-relation that defines L. However, for
any particular language L 6 NP there may be many different NP-relations that define L. If L
is NP-complete, then search reduces to decision for any of these NP-relations. However, if L
is not NP-complete, then search might reduce to decision for some of them but not for others.

THE COMPLEXITY OF DECISION VERSUS SEARCH 105

In defining what it means for search to reduce to decision for L we have chosen to be liberal:
we ask only that there be some NP-relation p defining L for which search reduces to decision.

DEFINITION 2.4. Suppose L c_ {0, }*. We say that search reduces to decision for L if
there exists an NP-relation p such that p defines L and search reduces to decision for p.

As we indicated in 1, our definition is motivated by interactive proofs and the question of
whether proving membership is harder than deciding it. Proving membership in L is easy (in
the sense that L has a competitive NP-proof system) as long as search reduces to decision for
some NP-relation defining L, so that we are led to Definition 2.4. We note, in this context, that
there are languages (such as {0, }*) that are easy but that have an associated search problem
that is hard [Va], and we certainly do not wish to think of search as being harder than decision
for these languages. Appropriately, search does not reduce to decision for these languages
according to our definition.

Finally, we note that the existence of a language for which search does not reduce to
decision does, of course, imply the existence of an NP-relation for which search does not
reduce to decision, so that negative results under our definition are stronger than those that
simply conclude the existence of NP-relations for which search is harder than decision.

Whenever p is understood, we will say "witness" or "witness finder" rather than "p-
witness" or "p-witness finder."

2.2. Uniformly log-sparse languages. Our proof will use languages that combine loga-
rithmic sparseness with the property that it be possible to efficiently identify a logarithmic-sized
superset of the strings below any given length. Let us proceed to the formal definitions.

DEFINITION 2.5. The census function/zL N -- N of L

{0, }* of a language L is

defined by/zc (n) Yin=0 IL f3 {0, }i I" We say that L is log-sparse if/zc (n) O(log n).
That is, /zc (n) is the number of strings in L that have length < n, and a language is

log-sparse if it contains at most O(log n) strings of length at most n. Log-sparse languages
are used in [HSI], where they are called "super-sparse."

The next definition formalizes the idea ofbeing able to efficiently identify some superset of
a language and then specifies the notion of uniform log-sparseness in which we are interested.

DEFINITION 2.6. We say that C c_ {0, }* is a candidate selector for L if C is polynomial-
time decidable and L

C. We say that a language L is uniformly log-sparse if it has a

log-sparse candidate selector.
As we will see in 2.3, the interest of uniformly log-sparse languages is that they form a

class for which the problem of reducing search to decision is particularly hard. Let us end this
section by stating a lemma that we will use later. This lemma generalizes work of Hartmanis,
Sewelson, and Immerman [HSI], who show that there is a log-sparse language in NP P
if EE - NEE. Log-sparseness is weaker than uniform log-sparseness in that no candidate
selector is required, but it is easy to see that a uniform log-sparseness language in NP P
nonetheless exists under the same assumption. For completeness we provide a sketch of the
(entirely standard) proof.

LEMMA 2.7. IfEE 7A NEE, then there is a uniformly log-sparse language in NP P.
Proof. We use a standard downward-separation argument. Assume EE :/: NEE and

suppose L’ 6 NEE EE. Define L {y.Og(lyl)-Iyl y L’}, where g(k) 22k. We claim
that L is uniformly log-sparse and L 6 NP P.

Define A to be the logarithm that on input x 6 {0, }n behaves as follows. If n is not in
the range of g, then A outputs 0. Else it computes k g-1 (n) and outputs if and only if

2Hartmanis, Sewelson, and Immerman [HSI] claim the converse as well, but Allender [A1] points out that their
proof is flawed and that the theorem cannot be proved by using techniques that relativize.

106 MIHIR BELLARE AND SHAFI GOLDWASSER

the last n k bits of x are zero. Then C {x A (x) is a candidate selector for L, and

/zc (n) < 21 +g-t (n) O (log n), SO that L is uniformly log-sparse.
The fact that L NP P follows directly from the fact that L’ NEE EE.

2.3. A language for which search does not reduce to decision. The following, which is
the main lemma of this section, shows that the reduction of search to decision for a uniformly
log-sparse language is possible only in the trivial case for which the language is already in P.

LEMMA 2.8. Suppose L is a uniformly log-sparse languagefor which search reduces to

decision. Then L P.
Proof. By assumption there exists an NP-relation p and a polynomial-time oracle machine

W such that/9 defines L and W is a p-witness finder. We will construct a polynomial-time
machine M that decides L. We begin by describing the idea informally.

The idea is to use W as a subroutine to find a witness. The difficulty is, of course, that
W makes oracle queries about L itself. Not having access to an oracle for L, our machine
M certainly cannot correctly answer these queries. To see how it can nonetheless exploit
W, suppose for a moment that W is guaranteed to make only one oracle query in its entire
computation on input x. Then M can try both possible answers. That is, it branches into a
pair of parallel computations. In the first it answers the query by 0, in the second it answers
it by 1, and in both it then runs W until W halts. Clearly, x L if and only if at least one of
these runs outputs a witness, and the strategy is polynomial time.

This idea extends to W making O(log n) queries. In reality, however, W could make
polynomially many queries, so that this strategy is not efficient. This is the point at which we
invoke the uniform log-sparseness of L (which we have not used so far). This implies that
there are really only O(log n) effective queries that W can make; since W can write down only
queries of polynomial length, we can use the log-sparse candidate selector of L to identify a
set of at most O(log n) strings that include all the strings in L that W could possibly query,
and we need branch only on these.

With this overall strategy in mind let us now specify the operation of M more precisely.
Since p is an NP-relation, there exists a constant c N such that for all x {0, }* it is the
case that p(x) {0, 1 Ixlc. We can assume that there is a constant d > 0 such that on any
input x 6 {0, }* the machine W will halt in < dlxld steps and output a string of length Ix] c,
regardless of how the oracle queries of W are answered. We also assume (without loss of
generality) that all queries made by W are distinct. Let C be a log-sparse candidate selector
for L. Now, on input x 6 {0, }n the machine M behaves as follows:

(1) M runs W on input x. Each time W makes an oracle query q, the machine Mprovides
a response as follows:

(1.1) If q C, then M responds with 0.
(1.2) Else it continues by trying in parallel both possible answers 0 and 1. That is,

M branches into two parallel computations. In the first it lets the response to q
be 0, and in the second it lets the response to q be 1. It then continues to run
W in each computation.

In this manner M generates a number of parallel computations. After dnd steps all of these
computations have halted and each has yielded an n-bit output (the output of W).

(2) M now examines the set of outputs from the previous step. It accepts if at least one
of these outputs to satisfies p(x, to) 1 and rejects otherwise.

This completes the description of the machine M. The fact that it works should be clear,
but for completeness let us spell it out.

First, to see that M accepts x if and only if x 6 L, it suffices to check that on at least one
of the parallel computations all oracle queries are correctly (that is, according to L) answered.

THE COMPLEXITY OF DECISION VERSUS SEARCH 107

But Step (1.1) is obviously correct by definition of the candidate selector and in step (1.2)
everything is being tried, so that one of the runs will certainly end up having all the right query
answers.

The next thing to check is whether M runs in polynomial time. It suffices to show that
the total number of parallel computations is n1. For this it suffices to show that the number
of branches on any path is O (log n). We now argue the latter. First note that any query q has
length at most dna (the running time of W). But branching occurs only when q C, and we
have assumed that all W"s queries are distinct. So the number of times branching occurs is at
most the size of {q C Iql _< dna}, which is at most lzc(dna) O(logn). This completes
the proof.

We can now put the pieces together to obtain the following result.
THEOREM 2.9. If EE - NEE, then there exists a language in NPfor which search does

not reduce to decision.

Proof. By Lemma 2.7 there exists a uniformly log-sparse language L NP P. By
Lemma 2.8 search cannot reduce to decision for L.

Note that the fact that search does not reduce to decision for L implies that L is not
NP-complete. The existence of a non-NP-complete language in NP P can, however, be
established by assuming only P :/: NP (see [La]).

3. Deciders and their properties. Before extending the ideas of the previous section to
interactive proofs and checking, we pause to develop some technical material. This material
will be useful in proving the results of later sections. In particular, we introduce the notion of
a decider, which will enable us to give a unified and more concise treatment of the rest of the
results of this paper. We begin with the definition.

DEFINITION 3.1. Let D be a probabilistic, polynomial-time oracle machine. We say that
D is a decider for language L if for each x 6 {0, 1 }* the following are true:

(1) If x 6 L, then DL (x) accepts with probability < 2/3.
(2) If x L, then the probability that DA (x) accepts is < 1/3 for all oracles A.
We note that L has a decider if and only if it is in function-restricted IP (see [BK]).

So deciders are just a way of characterizing languages in frlP. They can also be viewed as
checkers for YES instances. They are weaker that multiple-prover interactive proofs: the
results of [FRS] imply that if L has a decider, then it has a multiple-prover interactive proof.
For us the motivation of Definition 3.1 is to generalize the notion of a witness finder in the
light of our proof of Lemma 2.8. The property of the witness finder that was important in that
proof was that it was correct for x L as long as oracle queries were answered correctly (i.e.,
according to L), and it was correct for x L no matter how oracle queries were answered. As
for a witness finder, correctness of the decider on inputs x L is guaranteed (except here only
with high probability) as long as oracle queries are correctly answered. On the other hand,
if x L, then again correctness is guaranteed with high probability, no matter how oracle
queries are answered. As we will see, these properties will suffice for us to approximately
extend Lemma 2.8 to Lemma 4.3.

The error probability of 1/3 in Definition 3.1 is not always sufficient. It is convenient also
to define the following.

DEFINITION 3.2. Let D be a probabilistic, polynomial-time oracle machine. We say that
D is a strong decider for L if for each x {0, }* the following are true:

(1) If x e L, then DL(x) accepts with probability > (1 2-1xl).
(2) If x L, then the probability that DA (x) accepts is < 2-Ixl for all oracles .4.
Standard error reduction, of course, says that strong deciders exist whenever deciders

exist. For completeness let us state this as a proposition and provide a sketch of the proof.
PROPOSITION 3.3. If L has a decider, then it has a strong decider

108 MIHIR BELLARE AND SHAFI GOLDWASSER

Proof. Let D be a decider for L. We define machine D’ as follows. On input x, machine
D’ runs D on input x a total ofm O (n) times, each time with independent coin tosses. The
oracle queries made by D’ are answered by D’ by way of his own oracle (that is, if D makes
oracle query q, then D’ makes oracle query q and provides the answer received to D). D’
outputs the majority vote of the outputs of D in the rn trials. To see that D’ is a strong decider
for L, let XA X denote the sequence of random variables representing the outcomes of
D with oracle A in these successive trials. These are independent, and for each 1 m
they satisfy Pr[X 1 > 2/3 in the case that x 6 L, and they satisfy Pr[X/ 1 _< 1/3 for
all oracles A in the case that x L. An application of standard Chernoff bounds yields the
desired conclusions. [3

We saw in 2 that reducing search to decision for uniformly log-sparse languages is hard.
Here we show that these same languages also do not have deciders unless they are in BPP.

LEMMA 3.4. Suppose L is uniformly log-sparse and has a decider. Then L BPP.
Proof. By Proposition 3.3, L has a strong decider D. We show how to use D to construct

a BPP machine M to decide L. The idea is very much the same as that in the proof of Lemma
2.8, with the decider here playing the role that the witness finder played in that proof. That is,
on input x the machine M will run D on input x and will answer its oracle queries according
to the same rules as those used in the proof of Lemma 2.8. M accepts if and only if the
decider accepts on at least one of the parallel computations. The main difference (with respect
to Lemma 2.8) lies in the fact that there is no way to tell whether a particular output of the
decider is correct (in Lemma 2.8 one can always check whether or not the output of the witness
finder is really a witness). Instead, the correctness of the procedure follows from the fact that
the error probability of D is very small (2-n). Details follow.

Let d be a constant such that D always halts in <dna steps on inputs of length n. Let C
be the log-sparse candidate selector for L. We assume without loss of generality that all oracle
queries made by D are distinct. On input x 6 {0, }n the machine M behaves as follows:

(1) M runs D on input x. Each time D makes an oracle query q, the machine M provides
a response as follows:
(1.1) If q C, then D responds with 0.
(1.2) Else it continues by trying in parallel both possible answers 0 and 1. That is,

M branches into two parallel computations. In the first it lets the response to q
be 0, and in the second it lets the response to q be 1. It then continues to run
W in each computation.

In this manner M generates a number of parallel computations. After dna steps all of
these computations have halted and each has yielded an output of or 0 (the output
of D).

(2) M now examines the set of outputs from the previous step. It accepts if at least one
of these outputs is 1.

Since the answers in one of these parallel computations correspond to L, machine M
accepts with probability > (1 2-n) if x 6 L. Now suppose x L. Let Q {q 6 C
Iql _< dnd}, and let ,A denote the set of all subsets of Q. Each parallel computation of M
corresponds to running D with some oracle A 6 jr. It follows that the probability that M
accepts is at most YAt Pr[DA accepts]. By assumption D is a strong decider for L, so
that we can bound this by IAI- 2-n. But we claim that IAI _< n (), and so the probability
that M accepts is o(1), completing the proof. To justify the claim, note that I.AI _< 2101 and
QI _< #c(dnd) O(log n). S

Recall that BPEE denotes the class of languages accepted in time 2c2n for some constant
c > 0 by a probabilistic machine with bounded error. By an argument analogous to that used
in the proof of Lemma 2.7 we can show the following.

THE COMPLEXITY OF DECISION VERSUS SEARCH 109

LEMMA 3.5. IfNEE BPEE, then there exists a uniformly log-sparse language in NP
BPP.

Combining this with Lemma 3.4, we obtain the following theorem, which we will use in
the next two sections.

THEOREM 3.6. IfNEE BPEE, then there exists a language in NP that does not have a
decider.

We remarked earlier that L has a decider if and only if L 6 frlP, and so Theorem 3.6 says
that NEE BPEE implies NP f frlP. In later sections we will use Theorem 3.6 to show that
(NEE BPEE implies) NP complP and check by showing that languages in complP and
Check have deciders (see Lemmas 4.3 and 5.2).

4. Competitive interactive proofs. We begin by recalling the notion of an interactive
proof. We then define competitive interactive proofs and present our results.

4.1. Interactive proofs. Interactive proofs are extensions of NP ones, so let us begin by
recalling the latter. An NP proof system for a language L is defined by a polynomial-time
verifier V. We imagine this verifier talking to a prover. The parties receive a common input x,
and the prover’s goal is to convince the verifier to accept. To this end he is allowed to send the
verifier a (single) message of length n Ol. The verifier’s decision as to whether or not to accept
is made as a function of the common input and this message (since the verifier is deterministic,
this decision is a polynomial-time binary predicate p evaluated on the common input and the
prover’s message). In the case that x 6 L we ask that there exist some deterministic prover
P who can convince the verifier to accept (this is the completeness condition). In the case
that x L no prover should be able to convince the verifier to accept (this is the soundness
condition). We usually specify an NP proof system as a pair (P, V), where P is a prover
satisfying the completeness condition. Clearly, L 6 NP if and only if it possesses an NP proof
system.

Interactive proofs, which were introduced by Goldwasser, Micali, and Rackoff [GMR], are
a natural extension of such NP proof systems. Both parties are now allowed to be probabilistic.
Moreover, they are allowed to interact (that is, they exchange messages for a polynomial
number of rounds, and it is only at the end of this exchange that V decides whether or not
to accept). We say that (P, V) is an interactive proof for a language L if (1) on common
input a string in L, it is possible for P to induce V to accept with high probability, and (2)
on common input a string not in L, there is no prover who can prevent V from rejecting with
high probability.

Let us now proceed more formally. A party A in an interactive proof may be viewed as
a (probabilistic) function of the common input and the conversion so far. The outcome of
this function on input x (the common input) and c (transcript of conversation so far), which
we denote by A(x, c), is the next message computed by A (and sent to the other party).
We assume that the transcript of the conversation at any point may be uniquely parsed into
its constituent messages. We may discuss the complexity of such parties in the usual way,
viewing them as being computed by (probabilistic) TM’s. For example, the verifier is a party
computable by a probabilistic, polynomial-time TM. Complexity is measured as a function of
the length of the common input (which we usually denote by n). The total number of moves
(a move consists of a party computing and sending a message) as well as the length of all
messages are assumed to be bounded by a polynomial in n. At the end of the interaction, the
verifier accepts or rejects by applying a (deterministic) binary predicate to the common input
and transcript of conversation. Suppose a prover A interacts with a verifier B on common

3When we say that this function is probabilistic, we mean that to any x, c party A actually associates a distribution
on strings and A (x, c) is a random element of this distribution.

110 MIHIR BELLARE AND SHAFI GOLDWASSER

input x. The "probability that B accepts in its interaction with A on common input x" is the
probability the B accepts given the common input x and transcript otfll ...Otg_ flg_ otg chosen
according to the following experiment:
r2 B(x, otflla2) ag A(x, otfl cg_flg_). (Here g g(n) is the total number
of moves, . is the empty string, and we are assuming for simplicity that A speaks first and
last. The probabilities are over the random choices of both parties in this conversation.)

DEFINITION 4.1 (interactive proofs [GMR]). Let (P, V) be a pair of (probabilistic) func-
tions. We say that (P, V) is an interactive proof system for language L if V is probabilistic,
polynomial time and the following hold:

(1) For every x 6 L the probability that V accepts in its interaction with P on common
input x is > 2/3.

(2) For every x L and every function/3 the probability that V accepts in its interaction
with/5 on common input x is < 1/3.

The first condition is the completeness condition, and the second is the soundness condi-
tion.

We note the strength of the soundness condition: the quantification is over all functions
/3 (we call them "cheating" or "dishonest" provers), even noncomputable ones.

We note that an NP proof system is a special kind of interactive proof system. Specifi-
cally, an NP proof system is an interactive proof system (P, V) in which both P and V are
deterministic, the interaction is restricted to a single message from the prover to the verifier,
and the probabilities in the completeness and soundness conditions are 1 and 0 (rather than 2!3
and 1/3), respectively. The addition of interaction and randomness, however, seems to add
significantly to the language-recognition power of the system. It was established by Lund,
Fortnow, Karloff, and Nisan [LFKN] that IP (the class of languages possessing interactive
proofs of membership) contains the polynomial-time hierarchy, and Shamir [Sh] extended
this to show that IP equals PSPACE.

4.2. Competitive interactive proofs. A basic complexity-theoretic question is to de-
termine how efficient the prover P can be in an interactive proof (P, V) of a language L.
Certainly, the prover would need at least the ability to decide the language himself. We define
a competitive interactive proof system as one where the prover is allowed no more than this.
Specifically, he must run in probabilistic polynomial time given access to L as an oracle. As
we will see, competitive interactive proofs represent the natural generalization of the problem
of decision versus search.

DEFINITION 4.2. Let P be a probabilistic polynomial-time oracle machine, and let V be a
probabilistic polynomial-time machine. We say that (P, V) is a competitive interactive proof
system for a language L if the following hold:

(1) For every x 6 L the probability that V accepts in its interaction with pC on common
input x is > 2/3.

(2) For every x L and every interactive TM /3 the probability that V accepts in its
interaction with P on common input x is < 1/3.

The first condition is the completeness condition, and the second is the soundness condi-
tion. We call P a competitive prover.

We note that the soundness condition remains the same as in the definition of interactive
proofs. In particular, we do not restrict the computational power of the cheating prover/3 in
the case of x L. Our goal is to understand the difficulty of providing a correct proof, and
unrestricted soundness would appear to be an inherent property of proofs.

Competitive NP proof systems are defined in the natural way. That is, a competitive NP
proof system is a competitive interactive proof system in which both parties are determinis-

THE COMPLEXITY OF DECISION VERSUS SEARCH 111

tic, the interaction is restricted to a single message from the prover to the verifier, and the
probabilities in the completeness and soundness conditions are and 0 (rather than 2/3 and
1/3), respectively. Equivalently, it is an NP proof system in which the prover is restricted to

polynomial time plus an oracle for L. We now note that search reduces to decision for L if and
only if L has a competitive NP proof system (the prover in the competitive NP proof system
corresponds to the witness finder). It is in this sense that competitive interactive proofs are
the natural extension of the problem of decision versus search.

4.3. An NP language not possessing a competitive interactive proof. In 2 we pre-
sented a language L NP for which search is unlikely to reduce to decision. In other words,
L is unlikely to have a competitive NP proof system. The truth, however, is that proving mem-
bership in NP languages remains hard even when interaction and randomness are allowed: we
will show here that there is probably an NP language that does not even have a competitive
interactive proof system. Given the results of 3 we need only the following lemma, which
shows that any language possessing a competitive interactive proof also has a decider (or,
equivalently, that complP c_ frlP).

LEMMA 4.3. Suppose L has a competitive interactive proofsystem. Then it has a decider.

Proof. Let (P, V) be a competitive interactive proof for L. We note that in probabilistic
polynomial time we can run both P and V. So given an oracle A, the machine D on input x
can sample the space of conversations between pn and V on input x and accept if and only if
the conversation obtained is accepting. Details follow.

Let r(n) denote (a polynomial bound on) the number of coin tosses used by P and V on
any input of length n. D picks, uniformly at random, an r(n)-bit string Re and an r(n)-bit
string Rz. D now runs P and V on common input x, using Re as the coins for P and Rz as
the coins for V. That is, assuming for example that P sends the first message, D would run
P (with coins Re) to get P’s first message. D would then run V (with coins Rz) to get the
response, and so on. Oracle queries made by P in this process are answered by D by way of
his own oracle (that is, if P makes oracle query q, the D makes oracle query q and provides
the answer he receives to P). Eventually D obtains the output of V (1 if V accepts and 0
otherwise) and outputs this value. Given any particular oracle A, it is the case that D (x) is
a 0/1 random variable, and clearly the probability that it is equals the probability that V
accepts in its interaction with p,4 on common input x. By the assumption that (P, V) was a
competitive interactive proof for L it follows that Pr[Dc (x) > 2!3 in the case that x L
and that Pr[DA(x) 1] < 1/3 for all oracles A in the case that x

Combining Lemma 4.3 and Theorem 3.6 yields the theorem.
THEOREM 4.4. IfNEE BPEE, then there exists a language in NP that does not have a

competitive interactive proof
We note that we have done more than simply show that interactive proofs may be more

powerful than competitive ones, because the language L of Theorem 4.4 is in NP, a subclass of
IP that possesses particularly simple interactive proofs. To show only that interactive proofs
are more powerful than competitive ones, it would suffice to present a language in IP (but not

necessarily in NP) that does not have a competitive interactive proof. This can be done under
weaker assumptions, by an extension of the same argument we used previously. For example,
let

EESPACE U SPACE(2C2")"
c>_0

Then we can show that if EESPACE BPEE, then there exists a language in IP that does not

possess a competitive interactive proof.

112 MIHIR BELLARE AND SHAFI GOLDWASSER

In general, to construct a language L that lies in some particular complexity class C
but does not possess a competitive interactive proof, it suffices to assume that the "double-
exponential counterpart" ofC is not contained in BPEE. We put the phrase "double-exponential
counterpart" in quotation marks because it, of course, does not always make sense (many
classes have no such counterpart). But there are many natural classes (such as those used
here) for which this paradigm does make sense.

4.4. Zero-knowledge aspects. The competitive aspects of zero-knowledge proofs may
also be worth investigating. To initiate such an investigation, let us try to discuss briefly what
one can easily infer from known work and what are the open questions.

Do NP languages have competitive zero-knowledge interactive proofs? In general, of
course, they probably do not since by Theorem 4.4 they probably do not even have com-
petitive interactive proofs (let alone ZK ones). An appropriate question then is whether NP
languages that possess competitive interactive proofs also possess competitive zero-knowledge
interactive proofs. The answer depends on the kind of zero-knowledge one considers and on
the kind of cryptographic assumptions one is willing to make.

Let us first consider computational ZK. The result of Goldreich, Micali, and Wigderson
[GMW] implies that NP-complete languages have competitive ZK interactive proofs, given the
existence ofone-way functions (more generally, it implies that if search reduces to decision for
L, then L has a competitive ZK interactive proof, given the existence of one-way functions).
We do not know whether the assumption that there exist one-way functions suffices to show
that any language that possesses a competitive interactive proof also possesses a competitive
ZK interactive proof. But we do know that the latter conclusion may be established with
stronger assumptions such as the existence of ideal secure circuit evaluation or the existence
of oblivious transfer. This follows from the result of Kilian [Ki] (and we refer the reader to
that paper for details on what exactly are these assumptions).

All statistical ZK languages known to possess competitive interactive proofs are also
known to possess statistical ZK competitive interactive proofs (these languages are graph
isomorphism [GMW], graph nonisomorphism [GMW], and quadratic nonresiduosity [GMR]).
We do not, of course, know whether or not quadratic residuosity has a competitive statistical
ZK interactive proof, given that we do not know whether or not it has a competitive interactive
proof at all.

5. Program checking. Blum and Kannan [BK] introduce the notion of program check-
ers. Informally, a checker for a function f is a probabilistic, polynomial-time oracle machine
that receives as an oracle a program P that purports to compute f. The checker also receives
an input x. If the program is entirely correct (that is, P(y) f(y) for all y), then the checker
is supposed to accept with high probability. However, if the program disagrees with f on the
particular input x provided to the checker, then the checker should reject with high probability.
The definition follows. We note that by a "program" we mean a deterministic machine that
halts on all inputs. We also recall that the characteristic function of a language L is the function
XL {0, 1}* - {0, 1} defined by XL(X) if x 6 L and 0 otherwise.

DEFINITION 5.1 [BK]. Let C be a probabilistic polynomial-time oracle TM. C is a checker
for f {0, }* -- {0, if for all programs P and all x 6 {0, 1 }* the following hold:

(1) If P(y) f(y) for all y 6 {0, 1}*, then Ce(x) accepts with probability > 2/3.
(2) If P(x) f(x), then the probability that CP (x) accepts is < 1/3.
We say C is a checker for a language L if it is a checker for the characteristic function of

L. L is checkable if it has a checker.
The definition is close in spirit to that of (competitive) interactive proofs, but there are

two important differences. First, unlike interactive proofs, checking is a symmetric notion

THE COMPLEXITY OF DECISION VERSUS SEARCH 113

in which the checker for language L must be able to determine that P is correct on x not

only when x 6 L but also when x L. Second, programs are history-independent objects,
whereas (cheating) provers are not. Thus if L and L both have competitive interactive proofs,
then L has a checker, whereas we do not know whether or not every checkable language has
a competitive interactive proof.

Checkers are also related to multiple-prover interactive proofs [BGKW]. In particular,
results of [FRS] imply that the class of languages that possess checkers is contained in MIP
N coMIP (where MIP is the class of languages possessing multiple-prover interactive proofs
of membership). We note that MIP NEXP by the result of [BFL].

Blum and Kannan [BK] showed that Check frlP n cofrlP. It follows that checkable
languages have deciders. For completeness, however, let us see this directly.

LEMMA 5.2. Suppose L has a checker. Then it has a decider.

Proof. Let C be a checker for L. Let D be the probabilistic polynomial-time oracle
machine that on input x works as follows. D begins by querying its oracle with the string x.
If the oracle returns 0, then D rejects. Else it runs C on input x, uses its own oracle (denoted
A) to answer C’s oracle queries, and accepts if and only if C accepts. We claim that D is a
decider for L. To see this we need to check that for each x 6 {0, }* the two conditions of
Definition 3.1 hold. The first condition is clear. To see that the second is true, suppose x L,
and suppose first that A (x) 0. In this case D rejects with probability 1. Now suppose
A (x) 1. Then the probability that D accepts is at most 1/3 because C is a checker. Cl

Combining Lemma 5.2 and Theorem 3.6 yields the theorem.
THEOREM 5.3. IfNEE BPEE, then there exists a language in NP that is not checkable.
Similarly, if EESPACE BPEE, then there exists a language in PSPACE that is not

checkable.
We recall that a language L is coherent if the membership of x in L can be decided in

probabilistic polynomial time and bounded error by a machine (called the examiner) that has
access to L as an oracle but is allowed to query this oracle only on points different from
x. If L is not coherent, we say it is incoherent. Previous negative results on checking were
established by first exhibiting incoherent sets and then exploiting Yao’s observation that any
incoherent set is uncheckable (see [Ya], [BF]). We note that our (stronger) results are obtained
more directly. Moreover, our techniques indicate that even within NP the class of coherent
sets could be much larger than the class of checkable ones. Let us sketch why this is so.

The disjoint union of languages A and B, denoted A B is {0x x 6 A U lx x 6 B};
this construct is widely used in complexity theory (see, e.g., [BD], [HH]). It is easy to see (see
[BF]) that L L is coherent for any language L. It is also easy to see that the transformation
L - L @ L preserves many complexity characteristics of L, for example, membership in
NP, compNP, compIR Check, frIE In particular, combining this observation with Theorem
5.3 yields the claimed separation.

THEOREM 5.4. IfNEE BPEE, then there exists a language in NP that is coherent but
not checkable.

6. Towards competitive proofs for quadratic residuosity. In this section we return to

the unresolved question of whether the language of quadratic residuosity has a competitive
interactive proof system, and we present a special case of the problem for which competitive
proofs are possible.

6.1. Definitions. We will be looking at promise problems rather than problems of lan-
guage membership. The difference is that in the former we begin with a promise that the input
already belongs to some set, and we have only to "decide" whether or not it falls in a given
subset of this set. Such problems have been considered in many works; see, e.g., [ESY]. The

114 MIHIR BELLARE AND SHAFI GOLDWASSER

formalization we use is different from (but equivalent to) the ones used in these works and is
as follows. The problem is specified by a pair of disjoint sets (A, B). Intuitively, the input is
promised to be in A tO B, and we have to decide whether it is in ‘4 or in B. Corresponding to
promise problems are promise oracles that are guaranteed to be correct only when the promise
is true.

DEFINITION 6.1..4 promise problem is a pair of disjoint sets (.4, B)..4 promise oracle
(for a promise problem (.4, B) is an oracle that given a query q returns if q A and 0 if
qB.

Note that whereas promise problems are, intuitively, easier than language-recognition
problems, promise oracles are correspondingly weaker than (normal) oracles. In particular,
a promise oracle for (‘4, B) is weaker than an oracle for just .4 (or B) in that its response on
queries outside .4 tO B is indeterminate.

A competitive interactive proof for a promise problem (.4, B) is just an interactive proof
that x .4 given that x .4 tO B and having the property that the competitive prover gets only
a promise oracle for (.4, B). The more formal definition follows.

DEFINITION 6.2. Let P be a probabilistic polynomial-time oracle machine, and let Y" be a
probabilistic polynomial-time machine. We say that (P,/z) is a competitive interactive proof
for promise problem (.4, B) if the following hold:

(1) For every x .4 and every promise oracle O for (.4, B), the probability that/z accepts
in its interaction with pO on common input x is > 2/3.

(2) For every x B and every interactive TM P, the probability that lz accepts in its
interaction with P on common input x is < 1/3.

6.2. Results. We recall that x Zv is a quadratic residue (or square) mod N if x ------ y(mod N) for some y Zv and a quadratic nonresidue (or nonsquare) mod N otherwise.
Also, recall from 1.2 that

QR {(x, N) x is a square mod N},

QNR {(x, N) x is a nonsquare mod N}.

The special case we are interested in is when N is the product of a constant number of distinct
odd primes. To be more precise, first define

QRs {(x, N) 6 QR N is a product of s distinct odd primes},

QNR {(x, N) 6 QNR N is a product of s distinct odd primes}.

We will present a competitive interactive proof that (x, N) 6 QRs, given that it is already in
QRstO QNR. Note that QR and QNR are not complements of each other, so that, formally,
we are talking of a competitive interactive proof for the promise problem (QR, QNRs) in the
sense of Definition 6.2.

THEOREM 6.3. Let s be an integer > 1. Then thepromiseproblem (QR, QNRs) possesses
a competitive interactive proof

In related work, Kompella and Adleman [KA] present checkers for this same special case
of quadratic residuosity when the modulus is the product of a constant number of primes (i.e.,
they present checkers for the promise problem (QR, QNR)). Their construction does not,
however, extend to competitive interactive proofs, because the correctness of their checker
uses the fact that a program (in contrast to a cheating prover) is history independent.

To prove Theorem 6.3 we begin by recalling some basic number-theoretic facts. We refer
the reader to [An], [NZ] for number-theoretic background and justification of these facts.

THE COMPLEXITY OF DECISION VERSUS SEARCH 115

For x 6 Zv we let QN(X) 0 if x is a quadratic residue mod N, and we let QN(X) 1
otherwise. Suppose N pl""ps, where pl ps are distinct odd primes. Define the
binary relation (___) on Zv by

x’y iff Vi 1 < < s Qpi(x md pi) Qpi(y mod pi).

This is an equivalence relation. The equivalence class of x under this relation (namely,
{y 6 Zv x y}) is called its residue class. The product xy mod N of two elements
x, y Zv is a square mod N if x, y are from the same residue class and is a nonsquare mod N
otherwise. The total number of residue classes is U, and they are all of the same size. We will

2denote them by R R, with the convention that the last RN, is the class of quadratic
residues mod N.

We recall that there exists a competitive interactive proof for quadratic nonresiduosity.
We will exploit this fact by reducing the proof of (x, N) 6 QR to a polynomial number of
proofs of nonresiduosity in such a way that the prover need use only probabilistic, polynomial
time and a promise oracle for (QR, QNR). The first step is the following definition.

DEFINITION 6.4. Let N be a product of s distinct odd primes, and let 2s. We call a
vector (yl Yt-) (Z*u)t- representative of Zv if the following conditions hold:

(1) Yi is a nonsquare mod N for each 1.
(2) Yi Yj mod N is a nonsquare mod N for each pair of indices i, j satisfying 1 < < j <

t-1.
This leads us to a way to reduce a residuosity test to a collection of nonresiduosity tests

as long as we are in possession of a representative vector.
PROPOSITION 6.5. Let N be a product ofs distinct odd primes, and let x Z*u. Suppose
(Y Yt-) is representative of Z*N (where 2s). Then (x, N) QR ifand only if

xyi mod N is a nonsquare mod Nfor each 1.

Proof. xyi mod N will be a nonsquare mod N for each if and only if
its residue class differs from the residue class of Yi for each 1. But since f is
representative, this happens if and only if x is a square mod N. q

To use this, however, we have to be able to get representative vectors. It suffices to show
how the prover can construct a representative vector and then convince the verifier that it is
indeed representative, all by using only probabilistic, polynomial time and a promise oracle
for (QR, QNR).

PROPOSITION 6.6. There is a probabilistic, polynomial-time oracle machine R that on
input (x, N) QR tO QNR and access to a promise oraclefor (QRs, QNRs) outputs either
a representative vectorfor Z*N or the special symbol I, with the probability ofthe latter event
being at most 1/4.

Proof. R picks at random 2 (Z’N)t-, where 2 and m is a constant
to be defined later. For each m the machine R then uses the promise oracle to
test whether or not the conditions of Definition 6.4 hold for fi. If some vector i passes the
test, then the first such vector is output. If all vectors fail the test, then R outputs _1_. The
probability that a particular vector passes the test is (t 1) ! t- 1, which is a positive constant.
So it suffices to choose m to be a constant such that

-! 4"

(A (crude) calculation shows that m O((2e)) suffices.) That R runs in probabilistic,
polynomial time is clear. [3

We can now proceed to describe the protocols. We begin by recalling (following [GMR])
the basic (competitive) protocol to prove nonresiduosity.

116 MIHIR BELLARE AND SHAFI GOLDWASSER

PROTOCOL QNR.
Input: (x, N) and lk

(V1) V picks at random cl ck 6 {0, and rl rg Zv, sets zi x C’ rZi mod N
(for 1 k), and sends Zl zk to P.

(P 1) P sets di to 0 if zi is a quadratic residue mod N and to 1 otherwise (for k)
and sends dl dk to V.

(V2) V accepts if and only if ci di for all 1 k.

PROPOSITION 6.7. Protocol QNR has thefollowing properties:
(1) If (X, N) QNR, then the probbility that V accepts in its interaction with P is 1.
(2) If (x, N) QNR, thenfor any P the probability that V accepts in its interaction with

is < 2-.
(3) P is competitive (that is, it runs in probabilistic, polynomial time, given an oraclefor

QNR).
Proof. The first two items follow from basic properties of modular residues, and we refer

the reader to [GMR] for proofs. The last item is clear.]

We now proceed to the competitive interactive proof for QRs. We will use Protocol QNR
as a subprotocol.

PROTOCOL QR(s)
Input: (x, N) 6 QR t_)QNR
Notation: We let 2s.

(P1) P runs the algorithm of Proposition 6.6 and sends the output to V.
(V l) If V receives 2_ from P, then it rejects. Ifinstead it receives a vector f (yl Yt-

6 (Zv)t-l, then the parties proceed to the next step.
Subprotocol: P uses Protocol QNR (with security parameter k set to 2) to prove the
following to V:
(1) Yi is a nonsquare mod N for each 1.
(2) YiYj mod N is a nonsquare mod N for each pair of indices i, j satisfying

l<_i<j<_t-1.
(3) xyi mod N is a nonsquare mod N for each 1 1.

(This is a total of (t 1)(t + 2)/2 invocations of the QNR protocol.)
(V2) V accepts if and only if each of the preceding subproofs was accepting.

The correctness of the protocol follows from the results established in the preceding.
Details follow.

Suppose (x, N) 6 QR. Proposition 6.6 implies that the parties get a representative vector
and proceed to the subprotocol with probability > 3/4. Definition 6.4 and Proposition 6.5
imply that the inputs to the nonresiduosity subproofs are all indeed nonsquares mod N, and
thus Proposition 6.7 implies that these subproofs all succeed with probability 1. So V accepts
with probability > 3/4.

Suppose (x, N) 6 QNR. If/3 sends 2_ in its first step, then V rejects; so suppose/3 sends
a vector f (yl yt-1) c=_ (Z*N)t-1. If f is not representative, then by Definition 6.4 either
there is an such that Yi is a square mod N or there is a pair < j such that Yi Yj mod N is a
square mod N. In either case the corresponding nonresiduosity subproof fails with probability
> 3/4, and V rejects. So suppose is representative. But the Proposition 6.5 implies there is
an such that xyi mod N is a square mod N. So the corresponding nonresiduosity subproof
fails with probability > 3/4, and V again rejects.

The competitiveness of P follows from Propositions 6.6 and 6.7.
The reason this does not extend to arbitrary N is, of course, that the number of residue

classes is in general exponential in the length of N, and in polynomial time we could not even

THE COMPLEXITY OF DECISION VERSUS SEARCH 117

write down a representative list. On the other hand, working through the proofs shows that the
result does extend to the case for which s N N is a polynomial-time-computable function
of N that is bounded above by lg lg lg N lg lg INI. For simplicity we have stuck to the case
of constant s.

Clearly, the weakness ofthis result is in the promise that N is already a product of (exactly)
s odd primes; this is what may be hard to prove competitively if one wants a competitive
interactive proof of QR.

7. Open questions. Quadratic residuosity. We think that the most interesting open
question is whether or not the language of quadratic residuosity has a competitive interactive
proof. Conditional results on the subject would also be interesting; for example, could one
show that ifquadratic residuosity has a competitive interactive proof, then factoring is reducible
(in probabilistic, polynomial time) to deciding quadratic residuosity? (Note that an affirmative
answer to this last question would imply that if QR has a competitive interactive proof, then
it has an NP proof through the simple factorization witness.)

Reducing assumptions. Another open question is whether one can reduce the assumptions
required for our results. In particular, can one show that there is a language for which search
does not reduce to decision given P NP or even E :fi NE? Or could cryptographic assumptions
such as the existence of one-way functions be used to establish the existence of languages in
IP that do not have competitive interactive proofs?

Other settings. What is the relationship of decision to search in the context of optimization
problems and approximation algorithms, and does search reduce to decision in this setting?
For example consider the traveling salesman problem. Let co(G) denote the weight of an
optimal tour on a (weighted) graph G, and suppose # > is a constant. Suppose A is an
oracle satisfying co(G) < A(G) < tz co(G) for all graphs G. Is there a polynomial-time
procedure that with oracle access to A and input G, outputs a tour (in G) of weight at most

/z .co(G)?
Perfect completeness. An interactive proof (P, V) for L is said to have perfect com-

pleteness if the probability of acceptance in the completeness condition is 1. We know that
any language L possessing an interactive proof also possesses one with perfect completeness
[FGMSZ]. Does any language possessing a competitive interactive proof also possess a com-
petitive interactive proof with perfect completeness? (One of the motivations for this question
is the fact that our competitive proof for the special case of quadratic residuosity in 6 does
not possess perfect completeness.)

Zero knowledge. We discussed the open questions in 4.4.
Acknowledgments. Many people pointed out to us the error in [HSI]: we thank Eric

Allender, Juris Hartmanis, Jack Lutz, and Osamu Watanabe in this regard. We thank Muli
Safra, Lance Fortnow, and Jack Lutz for helpful discussions, and we thank Silvio Micali for
suggesting the term "competitive interactive proofs." We thank Oded Goldreich for many
helpful comments on this paper. We thank Satish Thate for drawing our attention to the results
of [La] mentioned in 2. Finally, we thank a pair of (anonymous) referees for many valuable
comments on the paper.

[An]

[A1]

REFERENCES

D. ANGLUIN, Lecture Notes on the Complexity ofSome Problems in Number Theory, Tech. Report 243,
Department of Computer Science, Yale University, New Haven, CT, August 1982.

E. ALLENDER, Limitations of the Upward Separation Technique, Math. Systems Theory, 24 (1991),
pp. 53-67.

118 MIHIR BELLARE AND SHAFI GOLDWASSER

[BFL]

[BBFG]

[BF]

[BG]

[BP]

[BCGL]

[BGKW]

[BK]

[BD]

[Co]

[ESY]

[FRS]

[FGMSZ]

[GMW]

[GMR]

[HH]

[HSI]

[IN]

[IS]
[IT]

[KUW]

[Ki]

[KA]

[Kr]
[La]

[LFKN]

[NZ]

L. BABAI, L. FORTNOW, AND C. LUND, Non-deterministic exponential time has two-prover interactive

protocols, Computational Complexity, (1991), pp. 3-40.
R. BEIGEL, M. BELLARE, J. FEIGENBAUM, AND S. GOLDWASSER, Languages that are easier than their

proofs, in Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Washington, DC, 1991.

R. BEIGELAND J. FEiGENSAUM, ImprovedBounds on Coherence and Checkability, Tech. Report TR-819,
Department of Computer Science, Yale University, New Haven, CT, September 11, 1990.

M. BELLARE AND S. GOLDWASSER, The Complexity ofDecision versus Search, Tech. Memo TM-444,
Laboratories of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, April
1991.

M. BELLARE AND E. PETRANK, Making zero-knowledge provers efficient, in Proc. 24th Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York, 1992.

S. BEN-DAVID, B. CHOR, O. GOLDREICH, AND M. LUBY, On the theory of average case complexity, J.
Comput. System Sci., 44 (1992), pp. 193-219.

M. BEN-OR, S. GOLDWASSER, J. KILIAN, AND A. WIGDERSON, Multiprover interactive proof systems:
How to remove intractability assumptions, in Proc. 20th Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1988.

M. BLUM AND S. KANNAN, Designing programs that check their work, in Proc. 21st Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York, 1989.

A. BORODIN AND A. DEMERS, Some Comments on Functional Self-Reducibility and the NP Hierarchy,
Tech. Report TR76-284, Department of Computer Science, Cornell University, Ithaca, NY, 1976.

S. COOK, The complexity of theorem proving procedures, in Proc. 3rd Annual ACM Symposium on

Theory of Computing, Association for Computing Machinery, New York, 1971.
S. EVEN, A. SELMAN, AND Y. YACOBI, The complexity ofpromiseproblems with applications topublic-key

cryptography, Inform. and Control, 2 (1984), pp. 159-173.
L. FORTNOW, J. ROMPEL, AND M. SIPSER, On the power ofmultiprover interactive protocols, in Proc. 3rd

IEEE Conference on Structures, IEEE Computer Society, Washington, DC, 1988.
M. FURER, O. GOLDREICH, Y. MANSOUR, M. SIPSER, AND S. ZACHOS, On completeness and soundness

in interactive proofsystems, in Advances in Computer Research Vol. 5, S. Micali, ed., JAI Press,
Greenwich, CT.

O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their validity, J. Assoc.
Comput. Mach., 1991.

S. GOLDWASSER, S. MICALI, AND C. RACKOFF, The knowledge complexity ofinteractive proofs, SIAM J.
Comput., 18 (1989), pp. 186-208.

J. HARTMANIS AND L. HEMACHANDRA, Complexity classes without machines, Theoret. Comput. Sci., 58
(1988), pp. 129-142.

J. HARTMANIS, V. SEWELSON, AND N. IMMERMAN, Sparse sets in NP-P: EXPTIME versus NEXPTIME,
Inform. and Control, 65 (1985), pp. 158-181.

R. IMPAGLIAZZO AND M. NAOR, Decision trees and downward closures, in Proc. 3rd IEEE Conference
on Structures, IEEE Computer Society, Washington, DC, 1988.

R. IMPAGLIAZZO AND M. SUDAN, Private Communication, May 1991.
R. IMPAGLIAZZO AND G. TARDOS, Decision versus search problems in super-polynomial time, in Proc.

30th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, 1989.

R. KARP, E. UPFAL, AND A. WIGDERSON, The complexity ofparallel search, J. Comput. System Sci., 36
(1988), pp. 225-253.

J. KILIAN, Achieving zero-knowledge robustly, in Advances in Cryptology--Proc. CRYPTO ’90, A. J.
Menezes and S. Vanstone, eds., Lecture Notes in Computer Science 537, Springer-Verlag, Berlin,
1990.

K. KOMPELLA AND L. ADLEMAN, Fast checkers for cryptography, in Advances in Cryptology--Proc.
CRYPTO ’90, A. J. Menezes and S. Vanstone, eds., Lecture Notes in Computer Science 537,
Springer-Verlag, Berlin, 1990.

H. KRAWCZYK, Personal Communication.
R. LADNER, On the structure of polynomial time reducibility, J. Assoc. Comput. Mach., 22 (1975),

pp. 155-171.
C. LUND, L. FORTNOW, H. KARLOFF, AND N. NISAN, Algebraic methods for interactive proof systems,

in Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Washington, DC, 1990.

I. NIVEN AND H. ZUCKERMAN, An Introduction to the Theory ofNumbers, John Wiley, New York, 1960.

THE COMPLEXITY OF DECISION VERSUS SEARCH 119

[Se]
[Sh]

[Sp]
[Va]

[Ya]

A. SEIMArq, Natural self-reducible sets, SIAM J. Comput., 17 (1988), pp. 989-996.
A. SHAMIR, IP--PSPACE, in Proc. 31 st Annual IEEE Symposium on Foundations of Computer Science,

IEEE Computer Society, Washington, DC, 1990.
D. S’IEIMAN, Private Communication via Beigel and Feigenbaum, June 1991.
L. VAIANT, On the Relative Complexity ofChecking and Evaluating, Tech. Report LS29JT, University

of Leeds, Leeds, England, October 1974.
A. YAO, Coherentfunctions andprogram checkers, in Proc. 22nd Annual ACM Symposium on Theory

of Computing, Association for Computing Machinery, New York, 1990.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 120-132, February 1994

1994 Society for Industrial and Applied Mathematics
009

HOMEOMORPHISM OF 2-COMPLEXES
IS GRAPH ISOMORPHISM COMPLETE
JOHN SHAWE-TAYLOR ArqD TOMA PISANSKI

Dedicated to A.W. Tucker

Abstract. It is shown that the problem ofdetermining whethertwo 2-complexes are homeomorphic is isomorphism-
complete.

Key words. 2-complex, homeomorphism, graph, isomorphism, computational complexity, simplicial complex,
triangulation

AMS subject classifications. 57M20, 57Q15, 68 15, 68Q25, 68R10

1. Introduction. There has been much interest focused on the position of GRAPH ISO-
MORPHISM in the complexity hierarchy. As yet it has neither been shown to be in P or to be
NP-complete. As such it is one of the few "classical" problems that have not been classified
as either "easy" or "hard". Various adaptations of the problem have been classified as NP-
complete, while for others polynomial algorithms have been found. For example, Luks [4] has
shown that if the valency is bounded by a constant then the problem is in P, while Lubiw [3] and
others have considered slight adaptations that result in the problem becoming NP-complete.
Thus subgraph isomorphism is NP-complete, as is the problem of determining the existence
of an isomorphism with restrictions and the existence of a fixed point free automorphism.

The above considerations have led to the introduction of the class ISOMORPHISM-
complete, which has been studied by Booth and Colbourn [1] and Lubiw [3]. They have
identified a number of problems in this classmamong others, automorphism with a fixed
number of restrictions, finding generators of Aut(G), calculating IAut(G)l, Automorphism
with edge fixed, and so on. This paper extends the class of ISOMORPHISM-complete to
include a new problem with a novel flavor--namely, 2-complex homeomorphism or homeo-
morphism between the carriers of 2-complexes. This problem has not been previously studied
in the context of complexity theory, though it was shown to be decidable by Whittlesey [9],
who worked under A. W. Tucker on this problem.

The paper is organized as follows. In 2 we introduce the definitions of the various
structures and classes and state the main theorem and some known results that we will require.
Section 3 develops the techniques that we require to complete our algorithm and proof. This
is then presented in 4. We finish with some conclusions and directions for future research.

2. Definitions. In order to reduce a 2-complex homeomorphism to an isomorphism or-
acle, we will build a canonical invariant for a 2-complex. The invariant structure will be a
labeled graph, which will encapsulate sufficient information for the construction of a topo-
logical space homeomorphic to the original complex. This will enable the definition of an
algorithm to determine whether two complexes are homeomorphic. The algorithm first con-
structs the invariant graph for both complexes and then tests, using the isomorphism oracle,
whether the two graphs obtained are isomorphic.

Note that a related problem of determining whether two complexes have isomorphic
fundamental groups is algorithmically unsolvable. It reduces to the well-known word problem
for group presentations.

*Received by the editors May 6, 1991; accepted for publication (in revised form) August 21, 1992. Supported
in part by the Research Council of Slovenia Contract DMS-8717441.

Department of Computer Science, Royal Holloway and New Bedford College, University of London, Egham,
Surrey TW20 0EX, United Kingdom.

Department of Mathematics, University of Ljubljana, Jadranska 19, 61111 Ljubljana, Slovenia.

120

HOMEOMORPHISM OF 2-COMPLEXES 121

DEFINITION 1. A set X together with a collection O of subsets of X is a topological space
if O contains 0 and X and is closed under finite intersections and arbitrary unions of sets. The
collection (9 are termed open sets.

A mapping h between two topological spaces X and Y is a homeornorphism if it is a
bijection on both elements and open sets.

It should be noted that the definition of topology and, in particular, the Euclidean topolo-
gies considered in simplicial complexes are not finite or even countably infinite and so are
not obviously open to combinatorial manipulation. This is even more apparent in the case
of homeomorphisms of 2-complex carriers, which are not a priori constrained by the finite
descriptions that we give of a complex. The results obtained here show that not only can we
find a finite combinatorial way of describing the topologies considered, but that it enables us
to assess the computational complexity of the homeomorphism problem for 2-complexes. In
this context it is worth mentioning that changes in the precise combinatorial description used
would affect the details of the algorithm and construction, but the significance of the results is
not in the detailed choice of representation, but in the fact that the topological properties can
be captured at all and, in particular, in such a way that the computational complexity can be
determined.

We begin with the definition of a (purely) 2-dimensional complex. We will follow the
notation and definitions of Gross and Tucker [2].

DEFINITION 2. A k-simplex is the convex hull of k + affinely independent points in
Euclidean n-space.

A geometric simplicial complex K is a finite collection of simplices in 7Z satisfying two
conditions:

1. Every face of every simplex in K is a simplex of K.
2. The intersection of any two simplices in K is a simplex in K.
The carrier of a simplicial complex K is the topological space with point set KI

s: S.
An abstract simplicial complex K (V, C) is a finite set V together with a collection C

of subsets of V whose union is V and which is closed under taking subsets.
The dimension of a complex is the dimension of the largest simplex or the size of the

largest subset in the collection C minus one.
A purely k-complex is a simplicial complex for which each simplex is contained in a

k-dimensional simplex (each subset is contained in a subset of size k + 1).
A triangulation of a topological space X is a homeomorphism h from the carrier of a

simplicial complex K to the space X.
Every geometric simplicial complex gives rise to an abstract simplicial complex by tak-

ing the sets to be the vertices of simplices. Likewise for every abstract simplicial complex a
geometric complex can be constructed so that the simplices correspond to the subsets of the
abstract complex. The corresponding dimensions of the abstract and geometrical complexes
agree, and one is a pure k-complex if and only if the other is. Further, if two geometrical com-
plexes have the same abstract complex, they are homeomorphic. In view of the close relation
between an abstract and geometrical complex, we will use the term complex ambiguously to
refer to either. In fact, we extend this ambiguity to the carriers of complexes and hence to

spaces that have a triangulation.
In this paper we are interested in (< 2)-dimensional complexes. We now state our main

result.
THEOREM 2.1. Homeomorphism of 2-complexes is graph isomorphism complete.
Proof. We must show that homeomorphism of 2-complexes is equivalent to graph iso-

morphism modulo polynomial time reductions.

122 JOHN SHAWE-TAYLOR AND TOMA PISANSKI

Given an instance ofgraph isomorphism, we can view the graph as a 2-complex by placing
a distinct label on all the 2-valent vertices. The complexes constructed will be homeomorphic
if and only if the the original graphs were isomorphic.

The reverse direction of the proof will require significantly more effort. [3

To motivate our approach we first consider what is known about simpler complexes and
their carriers.

Example 1. 1. Closed surfaces can be constructed from polygons so that all edges
involved are identified in pairs and the resulting space is connected. Each surface can be
characterized by a single integer (or a pair of an integer (genus) and a bit (orientability type)).
Hence homeomorphism involves computing the genus and orientability. This can be done
using Euler’s formula for the genus and by attempting to fix an orientation.

2. Disconnected closed surfaces. Finite number of surfaces. Homeomorphism can be
decided as above followed by a comparison of two sets of numbers.

3. Surfaces with boundary. They can be characterized by a triple: genus, orientabil-
ity type, number of boundary components. Homeomorphism involves computing the genus,
orientability, and number of boundary components. This can again be done using a straight-
forward algorithm. This characterization can be extended to the disconnected case as above.

We now introduce some more definitions that will prove useful in our reduction.
DEFINITION 3. Each graph G and a natural number d give rise to a d-complex K(G, d) so

that each k-clique (0 < k < d + 1) determines a (k 1)-simplex, and the incidence relation
is defined in the obvious way.

For a vertex v of a complex K we define

Star(v) to be the minimal subcomplex of K that contains every simplex incident with v;
Link(v) to be the maximal subcomplex of Star(v) that does not contain v itself.

For a vertex v of a graph G, Link(v) is defined to be Link(K(G, 2)) and is the graph
induced by G on the neighbors of v in G.

For a complex K, Kk is the collection of all simplices of K with dimension less than or
equal to k. Kk is called the k-skeleton of K. In the case of the 1-skeleton K1, we also view it
as a graph.

A triangulation K of a d-dimensional topological space is called clean if K(K, d) is
homeomorphic to K.

For triangulations of 2-complexes, being clean is equivalent to saying that not only is each
face a triangle but also each triangle (of the 1-skeleton) is a face. If a triangulation that is not
clean is given, we need only take a subdivision (see below) to ensure that there are no longer
any triangles in the 1-skeleton that are not faces in the complex. Hence, every 2-complex
admits a clean triangulation.

Example 2. Clean triangulations are nice because we can use them to characterize various
types of complexes just by looking at the Link(v) of each vertex v of its 1-skeleton.

O-Dimensional complexes. All links are void.

1-Dimensional complexes. Each link is an empty graph or void.

Purely 1-dimensional complexes. Each link is an empty graph.
Closed surfaces. Connected graph. Each link is a cycle.
(Disconnected) closed surfaces. Each link is a cycle.
Surfaces with boundary. Each link is either a cycle or a path.

Pseudosurfaces. Each link is a union of cyles.

Pseudosurfaces with boundary. Each link is a union of cycles and paths.
In order to obtain a clean triangulation it is sometimes necessary to subdivide a given

triangulation. We therefore introduce the concept of a subdivision.

HOMEOMORPHISM OF 2-COMPLEXES 123

DEFINITION 4. The subdivision of a complex K’ is a complex K with g’l K I, and for
each simplex s of K there exists a simplex s’ of K’ such that s c__ s’.

The definition of subdivision is given for a geometric complex, though a corresponding in-
terpretation for abstract complexes is immediate. Note that this implies the triangles ofthe orig-
inal complex have been subdivided to form a number of triangles in the subdivision, namely,
those contained in the original triangle. Likewise, the edges have been subdivided, and of
course the subdivision is compatible with that on triangles incident with the edge. For an exam-
ple see the Su functions in Fig. 3. The subdivision process also provides an answer to whether
two complexes with homeomorphic carriers are related in any way. In the 2-dimensional case
this was answered by Papakyriakopoulos [6], see also Gross and Tucker [2, pp. 97-98].

THEOREM 2.2. If two 2-complexes K1 and K2 have homeomorphic carriers, then they
have a common subdivision.

Purely 2-dimensional complexes are complexes in which each point and line are contained
in a 2-dimensional object. A triangulation of such a complex can be given as a collection of
triples of points that constitute the triangles of the triangulation, with the understanding that
the points and lines of each triangle are also in the complex.

In the next section we will construct a combinatorial description of purely 2-complexes
starting from a clean triangulation. We will show that the description obtained is independent
of the triangulation used, hence by the above theorem making it a combinatorial invariant
under homeomorphism of purely 2-complexes.

3. Combinatorial description of 2-complexes. In this section we will describe a method
of decomposing a complex K into a collection of surfaces with boundaries, together with in-
formation about how to reconstruct K from those surfaces. This will enable a complete
description of K by a labeled graph. We will show that each homeomorphism type of a
2-complex corresponds uniquely to a particular labeled graph.

We begin by describing the algorithm for decomposing a purely 2-complex K.

ALGORITHM 1. Complex Splitting Algorithm.
Input: Clean triangulation T of a complex K is given as a set of triples of vertices.
Algorithm:

Stage 1: The triangles are completely dismantled in a new triangulation Sp (T) (see
Fig. 1), obtained from T by taking the vertex set

and triangles

{(v, t)lv is a vertex of T lying in triangle

{{(1)1, t), (l)2, t), (V3, t)}lt {Vl, l)2, 1)3} is a triangle of T}.

Stage 2: The second stage of the process is to reidentify vertices that lie on parts of the
complex that are locally a simple surface to create a triangulation Sp(T). The collection of
triangles remains the same. Vertices (v, t) and (v’, t’) will be reidentified if and only if the
following two conditions hold (see Fig. 1):

(i) v v’,
(ii) there is a sequence of triangles of T, tl, t2 tn t’ and vertices 1)1 1)n-,

such that the edge {1), 1)j} is contained in precisely two triangles tj and tj+, j
1,2 n-1.

Output: The triangulation obtained is denoted by Sp(T).

It corresponds to reidentifying copies of vertices where a vertex in its link has valency
two, but note that we reidentify vertices at the center of the link. The only vertices of T that

124 JOHN SHAWE-TAYLOR AND TOMA PISANSKI

T Sp(T) Sp(T)

FIG. 1. Stages in the splitting algorithm.

are not split in Sp(T) are those whose Link is a simple circuit. This motivates the following
definition.

DEFINITION 5. A vertex of a pure 2-complex is called simple if its link consists of a simple
circuit. A vertex is called splitting if it is not simple.

PROPOSITION 3.1. After the above splitting operation the complex obtained is a collection

ofsurfaces possibly with boundaries.

Proof. Consider a vertex (v, t) of the complex created. The vertices in Link(v, t) in the
new complex are

{(u, s) n > 1, vertices v0 vn-1,

and triangles tn S {13, U, U 1}
such that for < < n 1, {v, ve lies in precisely te and te+l }.

Clearly, these vertices form either a path or a circuit, so by the result mentioned in the first
section, the complex is a collection of surfaces possibly with boundaries.

There is, however, a danger that information may be lost in the splitting operation as the
next example shows.

Example 3. Two sphere example. Consider the triangulation (see Fig. 2)

{{123}, {134}, {124}, {234}, {126}, {125}, {156}, {256}}.

This is a 2-complex made oftwo tetrahedrons identified along the edge 12}. After the splitting
operation all but the vertices 1 and 2 are completely reidentified since they are simple vertices.
The copies of vertex 1 for triangles 156}, 125}, and 126} are all reidentified to a vertex that
we will denote 156 since vertices 5 and 6 both have degree 2 in Link(l). Similarly the copies
of vertex for triangles 123 }, 124}, and 134} are identified to a vertex 134. Hence, in the
split complex there are two copies of vertex 1 (156 and 134) and similarly two copies of vertex
2 (denoted 256 and 234 using a similar notation, where the indices refer to neighbors in the
split complex). So the triangles of the split complex are

{{ 1562566}, {1562565}, {15656}, {25656},

{1342344}, {1342343}, {13434}, {23434}},

which is a complex consisting of two disjoint tetrahedra.
The problem with this example is that exactly the same split complex and the same linking

information obtained from the split vertices would have been obtained from two spheres with
just the two anomalous points identified (and no points on the line 12} joining them). The
type of anomaly of the above example will occur if there are links with only one vertex having

HOMEOMORPHISM OF 2-COMPLEXES 125

6 6

4 4 134

315 3 5

2 234 2 56

FIG. 2. Splitting ofExample 3.

valency greater than two and if two such vertices are adjacent in the triangulation. We can
remove the problem by taking a subdivision of the complex. In the two spheres example the
new vertex on the edge joining the two anomalous vertices would be (two copies of) a split
vertex in the case of two spheres joined on a line and two distinct vertices in the case of two
spheres joined at two points. The standard pattern for a link is a number of paths between two
vertices. This fact motivates the following definition.

DEFINITION 6. A vertex will be termed standard if its link consists of a number of
paths joining two distinct vertices. Simple vertices are a special case of standard vertices.
Nonstandard vertices are called anomalous vertices.

We will call a triangulation in which anomalous vertices are adjacent an anomalous
triangulation.

The problem with anomalous triangulations can, however, be avoided by taking a subdi-
vision of a triangulation in which anomalous vertices are adjacent. To see this is the case we
will show that no new vertex of a subdivision is an anomalous vertex. The new vertices lie in
the middle of edges or triangles of the old triangulation. For vertices in the middle of an old
triangle the new vertex has link a simple circuit and so is not anomalous. For vertices in the
middle of an old edge, let the old edge lie on p > triangles. Therefore, the link of the new
vertex consists of p paths between two vertices (the two vertices at the end of the edge of the
old triangulation). Hence, the new vertices are not anomalous. We have proved the following
lemma.

LEMMA 3.2. Let Su(T) be a subdivision of a triangulation T. Then Su(T) is not an
anomalous triangulation.

The first stage in our proof that the surfaces and boundary regluing information will
characterize the original complex will be to show that homeomorphic complexes give rise to
the same collection of surfaces with boundaries after splitting, if we start with nonanomalous
triangulations. We begin with a useful lemma.

LEMMA 3.3. Let s {Vl, v2, v3} and {Vl, v2, v4} be two adjacent triangles in
a triangulation in which vl is a standard vertex. The vertices (vl, s) and (Vl, t) will be

reidentified in the split complex ifand only if the edge {Vl, v2} is contained only in s and t.

Proof. Since vl is a standard vertex, its link consists of a number of paths joining two
distinct vertices. If {v, v2 is contained only in s and t, then by the definition of the second
stage of the splitting algorithm, Algorithm 1, the vertices (Vl, s) and (Vl, t) will be reidentified
in the split complex. Suppose now that (Vl, s) and (Vl, t) are reidentified in the second stage
of the splitting algorithm. If v2 has degree greater than 2, then v3 and v4 must be on distinct
paths joining the two vertices of degree greater than 2 in Link(Vl). It is also possible that
one of v3 or v4 is the second vertex with degree greater than 2. In either case there will be
no path involving only vertices of degree two from v3 to v4 in Link(v) contradicting the
reidentification. We conclude that the edge {Vl,/)2} is contained only in s and t.

126 JOHN SHAWE-TAYLOR AND TOMA PISANSKI

PROPOSITION 3.4. For a nonanomalous triangulation of a pure 2-complex the splitting
operation commutes with subdivision.

Proof. Let T be a triangulation of a complex K with no adjacent pair of vertices both
anomalous. Let Su(T) be a subdivision of T. Hence, we must show that Sp(Su(T))
Su(Sp(T)), where it is understood that the same subdivision is performed on the triangles of
Sp(T) as was performed on T (see Fig. 3).

Since triangles are preserved by the splitting operation, there is clearly a natural mapping
r from the triangles of Sp (Su(T)) to the triangles of Su(Sp(T)); see Fig. 3. Further, all the
vertices in the triangles of Sp (Su(T)) are distinct, so r induces a mapping

vert" V (Sp (Su(T))) --+ V (Su(Sp(T))),

where V (T) is the set of vertices of a complex T. To complete the proof we must show that
for (u, s), (u, t) E V (Sp (Su(T))), vert(u, s) vert(u, t) (u, s) and (u, t) are identified
in the second stage of Algorithm 1, i.e., in Sp(Su(T)). This will imply that the mapping
vert induces a triangle-preserving bijection between Sp(Su(T)) and Su(Sp(T)).

Su

FIG. 3. Subdivision and splitting in Proposition 3.5.

CLAIM. For (u, s), (u, t) V (Sp (Su(T))), vert(u, s) vert(u, t) (u, s) (u, t) in
Sp(Su(T)).

(=) First observe that it will be sufficient to show that the property holds for (u, s),
(u, t), where s and are triangles sharing a common edge {u, v} in Su(T), since the full
reidentification is the transitive closure of this type of identification. If s and both lie in the
same triangle of T, the edge {u, v} lies only in s and t, so (u, s) and (u, t) are identified. But
in this case vert(u, s) vert(u, t) as required. Suppose therefore that s and lie in distinct
triangles s’ and t’ respectively of T. The edge {u, v} is therefore contained in an edge {u’, v’}
that lies in both s’ and t’. If u is a standard vertex and (u, s) and (u, t) are identified, then by
Lemma 3.3 {u, v} lies only in s and t. Hence, {u’, v’} lies only in s’ and t’. This means that
(u’, s’) and (u’, t’) are identified in Sp(T). Likewise, (v’, s’) and (v’, t’) are identified and so
the copy of the vertex u associated with s in Su(Sp(T)) is the same as that associated with t,
giving vert(u, s) vert(u, t) as required. Consider finally the case when u is an anomalous

HOMEOMORPHISM OF 2-COMPLEXES 127

vertex. In this case, by the comment after Definition 6, it must be a vertex of the triangulation
T. Again assume that s (t) lies in a triangle s’ (t’) of T. If (u, s) and (u, t) are identified,

:Is t, t2 tn and v Un_l,

such that {u, v lies in precisely two triangles ti, ti+. Let the triangle ti be contained in the
triangle of T. Note that for some we may have ti+ 1. Where ti+ 1, the two
triangles meet in an edge {u, v} containing {u, vi} and contained only in t[and t[+ 1. We
therefore have a sequence of triangles that indicates (u, s’) and (u, t’) are identified in Sp(T).
Hence, vert(u, s) vert(u, t), as required.

(=:) We consider the case now when two vertices (u, s) and (u, t) in Sp (Su(T)) are
not identified in Sp(Su(T)). We must show that in this case vert(u, s) vert(u, t). By the
argument at the beginning of the proof of the claim, the fact that the two vertices are not
identified implies that s and must lie in distinct triangles s’ and t’ of T. We will assume
that vert(u, s) vert(u, t) and obtain a contradiction. We distinguish two cases according to
whether u is a vertex of T or not. Ifu is a vertex of T, vert(u, s) vert(u, t) implies (u, s) and
(u, t) are the same vertex in Su(Sp(T)), which implies that (u, s’) and (u, t’) were identified
in Sp(T). But this implies the existence of a sequence of triangles s’ tl,’ k’ t’ with

and ti+ sharing a common edge containing u and contained only in and ti+ We can
therefore find a sequence of triangles

S tl,1 tl,n, t2,1 tk-l,nk_, /’k,1, lk,nk

with ti,j contained in t and each adjacent pair in the sequence sharing a common edge con-
taining u and unique to the pair in Su(T). This implies that (u, s) and (u, t) are identified in
Sp(Su(T)), a contradiction.

Finally consider the case when u is not a vertex of T. We must have u contained in an edge
{u’, v’} of T since s and are in distinct triangles of T. We again assume vert(u, s) vert(u, t)
and obtain a contradiction. The edge {u’, v’} of the triangles s’ and t’ must have been identified
in Sp(T), or we would not have vert(u, s) vert(u, t). But this implies that both (u’, s’),
(u’, t’) and (v’, s’), (v’, t’) were identified. Since T does not have adjacent anomalous vertices,
we may assume without loss of generality that u’ is a standard vertex. By Lemma 3.3, the
edge {u’, v’} is contained only in s’ and t’. Now we may find a sequence of triangles

s S1, Se, tl, tk t,

with S (ti) contained in s’ (t’) and each adjacent pair sharing a common edge unique to them
which contains u. For all but se and t this follows as the two triangles are contained in the
same triangle of T, while for se and t the common edge is contained in {u’, v’}, which is
common to only s’ and t’. We conclude that (u, s) and (u, t) are identified, a contradiction.
This completes the proofs of the claim and the proposition. [

COROLLARY 3.5. The collection of surfaces obtained by the splitting operation are in-
variant under subdivision of the original complex provided it was not anomalous.

Proof. By the proposition the subdivision operation commutes with the splitting operation
when the original complex is not anomalous. But we know that the collection of surfaces is
invariant under subdivision, so if we apply the subdivision first (i.e., to the original complex)
and then perform the splitting operation, we do not affect the collection of surfaces that is
obtained. [3

COROLLARY 3.6. Any two homeomorphic 2-complexes K and K2 with any nonanoma-
lous triangulations T1 and T2 respectively give rise to the same collection of surfaces with
boundaries after splitting.

128 JOHN SHAWE-TAYLOR AND TOMA PISANSKI

Proof. Since K1 and K2 are homeomorphic, there is a subdivision T’ of T1 and subdivision

T of T2 such that T’ and T are isomorphic. But by Corollary 3.5, the collection of surfaces
created by splitting is invariant under subdivision, so T1 and T2 give rise to the same col-
lection.

Each component surface created by splitting a triangulation T corresponds uniquely to
some closed (compact) orientable or nonorientable surface with a finite number of holes with
boundaries.

ALGORITHM 2. Graph Construction Algorithm.
Input: The split triangulation Sp(T) of a triangulation T together with the triangulation T.
Algorithm: We create a labeled graph G(T) to represent how components of Sp(T) arose
from T.

Stage 1: The component surfaces of the triangulation Sp(T) are classified according
to genus, orientability type, and number of boundary components. Each of the component
surfaces will be represented in G(T) by a vertex (vertices of layer one) labeled with the genus
and orientability.

Stage 2: The vertices of layer 2 of G (T) will consist of vertices for each vertex of Sp(T)
that arose from a splitting vertex. These vertices are interconnected if they are adjacent in
Sp(T) and are connected to the vertex for the component in which they lie. Hence each
boundary of a surface will correspond to a circuit of vertices all adjacent to the surface’s
vertex in the graph.

Stage 3: Finally there is a layer of vertices corresponding to each splitting vertex of the
original complex. These vertices are connected to all the vertices in layer 2 that arose from
them.
Output: The labeled graph G (T).

For a vertex v of layer two we will denote by sib(v) the set of vertices in layer two
connected to the same vertex in layer three, that is, the set of vertices arising from the same
splitting vertex.

LEMMA 3.7. Given the triangulation Sp(T) created by the splitting ofa triangulation T,
and the labeled graph G(T) defined above, we can reconstruct T.

Proof. We can clearly reconstruct the vertices of T; they are the vertices of Sp(T)
with identifications performed between those having a common neighbor in the third layer of
G(T). As each triangle of T mapped to a unique triangle in Sp(T), we can also reconstruct
the triangles of T once the vertex identification has been made.

COROLLARY 3.8. Given only the labeled graph G(T) we can reconstruct a complex that
is homeomorphic to T.

Proof. We can construct a triangulation To of the surfaces with boundaries given by the
labeled vertices of G(T), which will be homeomorphic to Sp(T). Moreover, we can ensure
that the number of vertices around each boundary corresponds to the number of vertices in
the circuit for that boundary in G (T) and that isolated images of splitting vertices in Sp(T)
correspond to vertices of the triangulation To. Let q Sp(T) ----+ To be a homeomorphism
that maps the boundary vertices and lines as well as the isolated vertices of G(T) to the
corresponding vertices and lines of To. We can construct a topological space from To using
the same procedure as outlined in the lemma, that is, topologically identifying vertices arising
from the same splitting vertex and lines arising from the same lines of T. The space created
will be a triangulation To such that Sp(T0) To. Because we have identified closed subsets
of points in the topological space, we can lift the homeomorphism 4 to a homeomorphism

4t T -----+ To*. This completes the proof.
We now introduce a simplification procedure for the graph G(T), which will be shown

to give a canonical graph for each homeomorphism class of complex.

HOMEOMORPHISM OF 2-COMPLEXES 129

ALGORITHM 3. Simplification Algorithm.
Input: The graph G(T)arising from a triangulation T.

Algorithm: The following simplification is applied to all vertices of the second layer of
G (T) until no change occurs during a complete sweep.

Given a vertex v of layer two in G(T). For each neighbor u of v with u in layer
two, if sib(u) can be paired with sib(v), so that each pair is adjacent in G(T), we
identify each of these pairs, the vertices u and v, and their respective neighbours in
layer three. The edges from identified vertices are left incident with the new vertex,
even if this creates a multiple edge. If two vertices connected by a pair of edges are
identified then the new vertex retains a loop.

Output: The simplified graph ((T).

The order in which the vertices are scanned does not alter the effect of the algorithm.
This is because if a pair of vertices can be merged the merging of any other pair of vertices
will not alter this fact (unless of course it correspondsto the same merge) even if one of the
vertices merged was from the pair. We will denote by G (T) the graph obtained from applying
the algorithm to the graph G(T) of a triangulation T.

PROPOSITION 3.9. Let {u, v} be an edge ofa nonanomalous triangulation T. Then if T’
is the triangulation obtainedfrom T by subdividing the edge {u, v}, then (T) (T’).

Proof. First, by Corollary 3.10, subdivision does not affect the collection of surfaces with
boundaries that are obtained. Hence, we need only check that the structure of the graphs ((T)
and ((T’) are the same.

We consider cases according to the number p of triangles containing the edge {u, v}. If
this number is two then the new vertex v’ has Link(v’) a simple circuit and so is not a splitting
vertex. It therefore does not feature in G(T’), which is unchanged from G(T).

If {u, v} lies on one triangle, then the new vertex v’ has one copy of itself in G(T’) adjacent
to a copy of u and a copy of v in the boundary of one of the surfaces. If one of u and v only
has one copy, then the copy of v’ can merge with that vertex under the algorithm given above.
We can therefore reduce G(T’) to G(T) by one simplification. It follows that ((T) ((T’).
However, w.l.o.g, let v be nonanomalous. Since the edge {u, v} lies on one triangle, the vertex
u has degree one in Link(v). It therefore follows that Link(v) is a path both in T and T’ and
therefore that v has only one copy in Sp(T’) as required.

Finally consider the case when {u, v} lies on p > 2 triangles t tp. The new vertex
v’ will split into p copies in Sp(T’). Assume that v is not anomalous. Since the edge {u, v}
lies on p triangles, u has degree.p in Link(v). Therefore, Link(v) is a collection of p paths
joining two vertices of degree p both in T and T’. Therefore, the vertex v also splits into p
copies in Sp(T’), each of which is adjacent to one of the copies of v’ in G(T’). It follows
that the copies of v and v’ can be merged using the above algorithm, again reducing G(T’) to
G (T) by one simplification.

COROLLARY 3.10. If two complexes K1 and K2 are homeomorphic and we choose
nonanomalous triangulations T ofK and T2 of K2, then (T) (T2).

Proof. Since the triangulations T and T2 are of homeomorphic 2-complexes, there exists
a subdivision T’ of T and a subdivision T of T2 such that T’ and T are isomorphic. By the
proposition

as required.
Ourprogram ofclassification of2-complexes will be complete ifwe can prove the converse

of the above corollary, namely, that given any two complexes K, K2 and nonanomalous

130 JOHN SHAWE-TAYLOR AND TOMA PISANSKI

triangulations T1, T2 of them, such that ((T1) 0(T2), then K1 is homeomorphic to K2.
This will clearly follow from the following proposition.

PROPOSITION 3.11. Given a graph (T) arisingfrom a triangulation T, we can construct

a topological space V from (T) such that V is homeomorphic to T.

Proof. In Corollary 3.6 we saw how a complex could be reconstructed from G(T) and
that the proof that the reconstructed complex was homeomorphic to T was topological. In this
proof we will do the same thing for G (T) or rather for each simplification stage of G (T). Let
G(T) G1 Gk G(T) be one of the sequences of graphs obtainable when simplifying
G(T) to 0(T). For each Gi, k, we will construct a topological space. First,
however, take a fixed collection S of surfaces with boundaries and the correct number of
isolated points dictated by the layer one structure of the graphs. Note that this does not change
in the simplification process since the number of circuits attached to each surface remains
the same even when the number of vertices on a circuit is reduced to two or one (a loop will
represent a boundary circuit). Now choose the correct number of points on the boundaries
of S, one for each vertex in the corresponding boundary circuit of G(T). The surface with
the chosen points will be called $1. Given the surface collection Si, 1 k 1, which
will be the surface S with points chosen on the boundary for each vertex of the corresponding
circuit in Gi, we construct Si+l from Si by deleting one of each pair of points corresponding
to pairs of vertices that are identified in the simplification of G to Gi+I. We will prove that
we can perform the topological identification of the points and lines of Si that are identified
by the third layer structure of G to create a topological space Vi and, furthermore, that it is

homeomorphic to T.
By Corollary 3.6 V1 is homeomorphic to T, while we will take V to be Vk. Note that the

construction of Vk is not affected by our knowledge of G(T); so if we prove this result, it will
follow that whatever Sk we chose, the resulting space V will be homeomorphic to T. We will

proceed by induction. The base case is Corollary 3.6.

Suppose that we have constructed the space Vi-1. Let uj, vj, j m, be the
pairs of vertices identified as mergeable in Gi-1 to give Gi, and suppose w.l.o.g, that those
corresponding to uj were deleted from Si- 1. Let wj be the other neighbor of uj on its boundary
(note that wj could in some cases be vj). Since the lines of Si-1 could be identified to create the
space Vi-, all of the uj, vj, and wj were identified amongst themselves, and the collections
of edges

{{Uj, ZOj}}jm=l and {{uj, vj}}jm=l

were also identified. But then the edges vj, wj of Si can also be identified by the same recipe
and in such a way that the chosen points uj are identified amongst themselves. The space Vi
created along with the other identifications performed on Si-1 is then homeomorphic to Vi-.

This completes the proof.]

4. Proof of main result. We are now ready to prove our main result.

Proof of Theorem 2.1. We are given two 2-complexes and are required to reduce the
problem of deciding whether they are homeomorphic to an isomorphism oracle. We first

perform a subdivision so that any singular simplices are removed. Singular simplices are
those in which two distinct faces are identified. A subdivision will always remove this type
of singularity. A further subdivision will ensure that the triangulation is not anomalous as
guaranteed by Lemma 3.2. The next stage is to separate the purely 2-dimensional part of the
complex from any lower-dimensional simplices. Zero-dimensional simplices that are not part
of a one-dimensional simplex can be counted and, provided there are the same number in
both complexes, can be ignored. The set of one-dimensional simplices that are not edges of

HOMEOMORPHISM OF 2-COMPLEXES 131

two-dimensional simplices form a number of graphs, which may or may not be connected to
two-dimensional simplices. Those that are not connected to any 2-dimensional simplices can
be treated as a single graph in both complexes, and after removing 2-valent vertices we may
call the graph isomorphism oracle to decide whether they are homeomorphic. This will be a
necessary condition for the two complexes as a whole to be homeomorphic.

Finally we consider those component graphs that are connected to 2-dimensional sim-
plices. These are disconnected from the 2-dimensional part of the complex, but the points
of attachment are labeled. We are left with a purely 2-dimensional complex, with a number
of labeled points. We perform the construction of the combinatorial invariant using Algo-
rithms 1, 2, and 3 described in the previous section with two slight adaptations. The first
adaptation concerns the transfer of labeled points into the graph G(T). For such points that
are not on a boundary in the split complex an extra vertex is created in layer two of the graph
G(T) connected to the vertex in layer one corresponding to its surface. This vertex will for
the time being receive the point’s label. For points that lie on a boundary the corresponding
vertex of layer three receives the point’s label.

The second adaptation concerns the simplification algorithm and requires that labeled
vertices cannot be concatenated during the simplification process.

Once the simplified graph G(T) has been created we connect the graph sections that
were removed from the original complex back onto the vertices with corresponding labels in
((T) after concatenating any 2-valent vertices in these graph sections. We then call the graph
isomorphism oracle to decide if the two graphs are isomorphic. The fact that the vertices
of layer one are labeled ensures that any isomorphism will be an isomorphism of the graphs
created from the 2-complexes, together with a homeomorphism of the graph sections retained
from the original complex. Hence, by the results of the previous section, the graphs will
be isomorphic if and only if the original 2-complexes are homeomorphic. It therefore only
remains to show that the reduction algorithm can be performed in polynomial time.

PROPOSITION 4.1. Algorithms 1, 2, and 3 run in time polynomial in the size of the
triangulation T.

Proof. Stage 1 of Algorithm 1 consists of a simple manipulation and can clearly be
performed in polynomial time. Stage 2 requires examining pairs of vertices which arose from
the same original vertex. By initially labeling edges that appear in only two triangles, this
computation becomes equivalent to finding the connected components of a graph and is clearly
polynomial.

Stage 1 ofAlgorithm 2 is a standard computation, while Stages 2 and 3 are straightforward
translations using only local information about the connectivity of splitting vertices. All three
stages clearly involve only polynomial time computations.

During all but the last sweep of the simplification algorithm (Algorithm 3) the number of
vertices in the graph is reduced by at least three. Clearly the number of reductions is therefore
at most a third of the total number of vertices in the original graph, which is in turn bounded
by the number of vertices and triangles in the original triangulation. It remains therefore to
show that each sweep of the algorithm requires at most polynomial time. Checking pairs of
vertices for concatenation involves looking at all pairs of adjacent vertices in layer two and
examining their sibling sets. The matching of the sibling sets can be checked simply because
each sibling has only two neighbors in layer two that are candidate siblings for the second
vertex. This computation can clearly be performed in polynomial time. The actual vertex
deletion is also a local operation and can be performed in constant time.

5. Conclusions. Wehave considered the problem ofdetermining whethertwo 2-complex-
es are homeomorphic and investigated its position in the complexity hierarchy. Whereas the
closely related problem of determining whether two complexes have isomorphic fundamental

132 JOHN SHAWE-TAYLOR AND TOMA PISANSKI

groups is algorithmically unsolvable, we have shown that the problem of 2-complex homeo-
morphism is not only decidable but of equivalent complexity to graph isomorphism modulo
polynomial time reductions.

From a practical point of view there exist very efficient heuristic algorithms for testing
whether two graphs are isomorphic [5]. Our reduction will therefore facilitate efficient testing
of 2-complex homeomorphism.

From a theoretical point of view our results suggest that the problem of 2-complex home-
omorphism may be of interest in the on-going investigation of the precise status of graph
isomorphism in the complexity hierarchy. We feel that future research could profitably con-
sider which variations of2-complex homeomorphism retain the same complexity status, which
become NP-complete, and which, if any, become undecidable. Some results in this area have
been obtained recently. For example, Thomassen has shown that deciding the genus of a
graph is NP-complete [8]. This would parallel the studies performed on the complexity status
of variants of graph isomorphism, but in the case of 2-complex homeomorphism there is the
additional attraction that a closely related problem has already been shown to be undecidable.

REFERENCES

[1] K. S. BOOTJ AND C. J. COLBOURN, Problems polynomially equivalent to graph isomorphism, Tech. report
CS-77-04, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, 1979.

[2] J.L. GRoss AND T. W. TUCIER, Topological Graph Theory, Wiley-Interscience, New York, 1987.
[3] A. Lu13Iw, SomeNP-completeproblems similar to graph isomorphism, SIAM J. Comput., 10 (1981), pp. 11-21.
[4] E.M. LUKS, Isomorphism ofgraphs ofbounded valence can be tested in polynomial time, J. Comp. Sys. Sci.,

25 (1982), pp. 42-65.
[5] B.D. McKA’, Practical graph isomorphism, Congr. Numer., 30 (1981), pp. 45-87.
[6] C. D. PAr’AKYRIAKI’OULOS, A new proof of the invariance of the homology groups of a complex,

Bull. Soc. Math. Gr6ce, 22 (1943), pp. 1-154.
[7] T.D. PARSONS AND T. PISANSKI, Graphs which are locally paths, in Combinatorics and Graph Theory, Banach

Center Public., Vol. 25, PWN, Warsaw, 1989, pp. 127-135.
[8] C. THOMASSEtq, The graph genus problem is NP-complete, J. Algorithms, 10 (1989), pp. 568-576.
[9] E. E WHIaTLS, Classification offinite 2-complexes, Proc. Amer. Math Soc., 9 (1958), pp. 841-845.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 133-153, February 1994

() 1994 Society for Industrial and Applied Mathematics
010

ON COLLISION-FREE PLACEMENTS OF SIMPLICES AND THE CLOSEST
PAIR OF LINES IN 3-SPACE*

MARCO PELLEGRINI

Abstract. The problem of detecting efficiently whether a query simplex is collision-free among polyhedral
obstacles is considered. If n is the number of vertices, edges, and faces of the polyhedral obstacles, and rn is the
amount of storage allocated for the data structure (n 1+ < m < n4+), it is possible to solve collision-free placements
queries for simplices in time O(n 1+/m 1/4) for any > 0, where the constants depend on . In order to solve this
problem the authors develop data structures to detect on-line intersections of query half planes with sets of lines and
segments.

Some nearest-neighbor problems for objects in 3-space are also considered. Given a set of n lines in 3-space, the
shortest vertical segment between any pair of lines is found in randomized expected time O(n8/5+) for every > 0.
The longest connecting vertical segment is found in time O(n4/3+). The shortest connecting segment is found in
time 0(n5/3+).

Key words, collision-free placements, Plticker coordinates of lines, arrangements, point location, half-space
range searching, parametric search, proximity, three-dimensional space

AMS subject classification. 68U05

1. Introduction.

1.1. Collision-free placements ofsimplices. Detecting intersections ofobjects is a basic
problem in computational geometry [PS85], [Ede87], [Meh84]. While intersection problems
on the plane are more or less solved, for their three-dimensional counterpart fewer results are
known. Intersection of convex polyhedra in 3-space can be detected in time logarithmic in
the total number n of vertices, faces, and edges, using data structures of linear size [CD80],
[DK83], [DK90]. Non-convex polygonal objects in 3-space are much harder from a compu-
tational point of view. If we have two terrains with the same vertical direction, Chazelle et
al. [CEGS89a] solve the intersection-detection problem in time 0(n4/3+). In [MS85] the
case of one convex and one non-convex polyhedra is considered. If we have two non-convex
polyhedra or any set ofnon-convex polyhedra, we can solve the intersection-detection problem
in time O(n8/5+) [Pel91b].

In this paper we are interested in detecting the intersection of a query simplex among a
set of (possibly intersecting) non-convex polyhedral obstacles. We allow preprocessing of the
obstacles and we answer on-line intersection queries in sublinear time. For this problem, a
simple-minded extension of the approach of [CD80], [DK90] requires testing each obstacle
with the query simplex independently. In the worst case we would have a linear number of
simplex-obstacle pairs to consider. The intersection-detection results in [CEGS89a, Pel9 lb]
are inherently off-line and do not immediately imply a solution for our on-line query problem.

The solution of this intersection-detection problem allows us to determine efficiently
whether a placement of a polyhedral object of constant complexity within polyhedral obsta-
cles is collision-free. Finding collision-free placements for objects is a basic problem for
applications in robotics. There are many results for several variations of the free-placement
problem (e.g., finding a collision-free path, finding the placement of the largest copy, etc.) for

*Received by the editors April 13, 1992; accepted for publication (in revised form) September 15, 1992. A
preliminary version of this paper appeared with the title "Incidence and nearest neighbor problems for lines in 3-
space" in the Proceedings of the 8th ACM Symposium on Computational Geometry, Berlin, Germany, 1992. This
research was initiated while the author was visiting the International Computer Science Institute in Berkeley.

Department of Computer Science, King’s College, Strand, London WC2R 2LS, United Kingdom
(m.pellegrini@oak. cc. kcl. ac.uk).

133

134 MARCO PELLEGRINI

a polygonal object amidst polygonal obstacles in the plane (see [LS87b], [LS87a], [GSS88],
[KS88], [HO89], [CK89], [FHS89], [To191]; see [SS89] for a survey).

In [Hal91] some motion planning problems for systems with three degrees of freedom
are considered. In this case the robot is mapped as a point in a suitable three-dimensional
parametric space and the obstacles are mapped as surfaces within this space. Also, recent
work of Aronov and Sharir [AS90], [AS92] on the complexity of a cell in an arrangement of
triangles in 3-space has applications to this kind of problem.

The main result of the paper is the following (Theorem 7): given a set of polyhedral
obstacles with n vertices, edges, and faces, we can build a data structure using m units of
storage, with n 1+ < m < n4+, such that for any query simplex we can determine in time
O(n + /m 1/4) whether the simplex is collision-free.

To our knowledge no previous sublinear algorithm for collision-free placement queries
among several non-convex polyhedra has been known.

In three-dimensional space, free-placement problems have a high intrinsic combinatorial
complexity; therefore we tackle the simple problem of building a data structure for free-
placement queries. On the other hand, our data structure is powerful because both the place-
ment (six degrees of freedom) and the shape (as long as it is of constant complexity) of the
robot are part of the query.

We consider first a solution which, at the expense of large storage, answers the queries in
logarithmic time. Applying the methods in [CSW90], [Mat91], [AM92a] (see also [AS91a]),
we obtain a space/query-time trade-off.

In [Pel9 lb], [AS91 a] algorithms for the following problem are presented: given a set of
triangles, count (or report) the triangles intersected by any query ray or segment. One of the
main building blocks for our collision-free data structure is a solution for the dual problem:
given a set of segments in 3-space, count (or report) the segments intersected by any query
triangle. Dobkin and Edelsbrunner in [DE84] solve the problem of counting the number of
segments intersected by a query plane, but their approach does not seem to extend to query
halfplanes. Our approach is based on reducing the problem to half-space range searching
and it attains the goal of a data structure for half plane queries. Once we have the solution for
half-planes, it easily extended to triangle queries.

1.2. The closest pair of lines in 3-space. Arrangements of lines in 3-space have been
studied recently in computational geometry (e.g., [CEGS89a], [Pel90], [Pel91b], [PS92],
[AS91a], [dBHO+91], [CEG+90]). Some of the problems concerning lines can be classified
as "incidence" or "order" problems. For example, the relative orientation of lines in space
[CEGS89a] is exploited in [CEGS89a], [Pel91b], [dBHO+91 to solve ray-shooting problems,
and in this paper to answer collision-free queries. Problems that involve a metric on the set of
lines in R3 can be classified as "neighbor" problems.

If a robot does not intersect any obstacle, the next natural question is to find the obstacle
closest to the robot. Thus, we are led to consider "neighbor" problems in 3-space. Neighbor
problems for sets of points have been extensively studied in computational geometry [Vai89],
[AESW91], [PS85] also in connection with the well-studied Voronoi Diagrams (see [Aur91]
for a survey). Much less is known about neighbor problems in higher dimensional spaces for
objects which are not points.

Neighbor problems for polyhedral objects in 3-space such as lines, segments, and poly-
hedra are important for applications not only in robotics, but also for three-dimensional very
large scale integration and computer-assisted design. In these two areas we often need to
enforce a minimum separation distance among three-dimensional objects.

1All the bounds presented hold for every > 0 and the multiplicative constants depend on .

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 135

In 4.2 and 4.3 we describe algorithms for solving a few neighbor problems on lines in
3-space. We are interested in finding the shortest segment connecting two lines in a set of
lines, under a variety of constraints. We give algorithms to find the shortest vertical segment
connecting two elements in a set of lines or segments which runs in O(n8/5+) expected time.
Surprisingly, we prove an expected time bound for finding the longest vertical segment that
is only 0(n4/3+). We find the shortest segment connecting two lines in a set of n lines in
O(n5/3+) expected time.

All the neighbor problems considered in this paper can be easily solved in O(n2) time.
For some of the problems slightly sub-quadratic algorithms have been known. For the special
case of the shortest vertical distance between two sets of edges of non-intersecting polyhedral
terrains Chazelle et al. [CEGS89a] give an O(n4/3+) randomized expected time algorithm.
The problem of the minimum vertical separation for segments was solved in [CS88] in time
O(n 1.99987). The method in [CS88] maps a segment into a point in six-dimensional space. Us-
ing the representation in [CS88] and the more recent decomposition technique of [CEGS89b],
it is possible to obtain a time bound of roughly O (n2-1/9) O (n 1.8889).

Independently, Guibas, et al. [Gui91 have considered the problem of finding the closest
pair of lines, obtaining an O(n5/3+) algorithm. More recently, Chazelle et al. [CEGS92]
have improved the running time to 0(n8/5+).

The main strategy used in this paper to solve closest pair problems is to build first a
data structure to answer closest line queries. In a second stage we transform the method for
solving on-line queries into an off-line method by batching the queries. Because the on-line
data structures can have a multilayer structure [Meh84], we develop in 4.1 a general method
called nested batching technique, which is of independent interest (for more applications see
[Pe192]).

The paper is organized as follows. In 2 we give an overview of the geometric techniques
used to obtain the results. In 3 we discuss the problem of detecting efficiently whether a
placement of a simplex is collision-free. Section 4 deals with several neighbor problems"
finding the shortest and longest vertical segments and finding the shortest segment in a set of
lines.

2. Geometric and algorithmic preliminaries. In this section we survey some geometric
and algorithmic results which lay the groundwork for the main results of the subsequent
sections.

2.1. Arrangements. A finite set H of hyperplanes in Ra defines a decomposition of Rd

into cells of various dimensions, which is called the arrangement 4(H) of H [Ede87]. If

IHI n, the maximum number of cells in .A(H) is O(n) and the arrangement 4(H) can be
computed in optimal O(na) time [EOS86]. One d-dimensional cell of .A(H) is bounded by
O(n ta/21) cells of any dimension [Ede87].

Similarly, a set V ofreal semi-algebraic varieties in R decomposes Ra into cells ofvarious
dimensions, which is called the arrangement 4(V) of V [CEGS89b]. In [CEGS89b], Chazelle
et al. describe a method for building a point-location data structure for the arrangement of
n algebraic varieties of fixed maximum degree in Ra. For d > 3, the data structure has
size O(n2d-3+) and it can be built in O(n2d-3+) randomized expected time or O(n2d+l)
deterministic time. The query time is O (log n).

2.2. Random sampling and cuttings. Given a random sample R of a set of hyperlanes
H, with IRI r < n, let us consider the arrangement t(R). A triangulation A4(R) is a
subdivision of each cell of 4(R) into simplices such that the vertices of each simplex are
vertices of 4(R). The number of simplices in A4(R) is O(r). The random sampling
theory of Clarkson [Cla87] states that with probability at least 1/2 the interior of each simplex

136 MARCO PELLEGRINI

s 6 AA(R) does not meet more than O(n/rlogr) hyperplanes of H. A set as A4(R) is
called a cutting for H.

Given H, we can build a data structure that uses Cna+‘ storage, for each > 0, where the
constant C depends on , such that a query point is located in .A(H) in O (log n) time [Cla87].
This data structure is built in expected time O(n+) [Cla87].

For d 2 Matouek [Mat90] gives a deterministic method that, for a parameter r < n,
subdivides the plane into O(r2) triangles in time O(nr) such that the interior of each triangle
meets only n/r lines in H.

For a set V ofn algebraic varieties offixed degree in Ra, d > 2, Chazelle et al. [CEGS89b]
prove that a Ra can be decomposed into O (r2d-3 fl (r)) cells ofconstant descriptive complexity,
where/3(.) is a sub-logarithmic function, and each cell intersects no more than O(n/r log r)
surfaces in V.

These results on cuttings are the basis of many divide-and-conquer algorithms in compu-
tational geometry (see [Aga91 for a survey).

2.3. On-line and off-line point location. The algorithms of [Cla87] and [CEGS89b]
solve, in logarithmic time, on-line point location problems in arrangments of hyperplanes or
algebraic varieties of fixed degree. In several applications the queries are given off-line and
we can batch them in order to speed up the overall computation.

In [EGS90], Edelsbrunner et al. give a method for batched point-location that is gen-
eralized in 4.1 to deal with a vast class of off-line point location problems. Given n
surfaces and m points, we compute properties of the points that depend only on the loca-
tions of these points with respect to the arrangement of the given surfaces in expected time
O(ma/(a+l)na/(a+l) q- m 1+ q- nl+), where a is a characteristic parameter of the problem.

To apply this technique an important requirement is the ability to map data and queries
as point or surfaces, via dual transformations.

Geometric dual transformations [Ede87], [EMP+82] are pairs of functions: one function
maps points to surfaces (hyperplanes) and the second function maps surfaces (hyperplanes)
to points in R/. Duality mappings preserve incidence and order relations.

2.4. Halfspace range searching. A problem intimately connected to the point-location
problem is the half-space range searching problem. Given a set S ofn points in Ra, build a data
structure such that, for every query half-space h +, the number of points in S fq h+ is computed
efficiently. This problem is solved in [CSW90], [Mat91 using partition trees. In a partition
tree, each node is associated with a region in Ra such that only a fraction of the children
intersect the hyperplane h supporting the query half-space. During the query we retrieve the
number of points of S within the regions associated with children not intersected by h and we
recurse the query on the children intersected by h. Partition trees are quite versatile and they
can be used to set up multilevel data structures.

2.5. Multilevel data structures. Multilevel data structures are a basic paradigm in com-
putational geometry [Meh84]. They are used to search for elements satisfying a complex
property. Usually the complex property is split into elementary properties and each elemen-
tary property is tested at a specific level of the data structure. For example, in [CSW90],
[Mat91] sets of points are organized in multilevel partition trees to answer simplex range
queries, where each level of the data structure tests the position of the data points with respect
to the hyperplane spanning a facet of the simplex. We have this fundamental theorem in
[csw90].

THEOREM ([CSW90]). Simplex range searching in n points in Rct can be performed
in O(n+/m /a) query time, for every > O, using a data structure of size rn (for any m
between n and na), which can be computed in O(m 1+) randomized expected time.

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 137

Matougek in [Mat91], using a different partition scheme, is able to make the preprocessing
deterministic and to reduce the query time to O(n log1) n/ml/d).

2.6. Parametric search. In some of the algorithms for nearest neighbor problems on
lines we use Megiddo’s parametric search technique [Meg83], [Co187]. Roughly speaking,
this technique transforms an algorithm to test a property into an algorithm to find the minimum
value of a parameter for which the property is true, under quite general conditions.

More formally, suppose we have an algorithm P’ to compute a predicate P(i, t), which
depends on an input and a real parameter t. The algorithm P’ only uses the parameter
to perform branching tests based on the evaluation of fixed degree polynomials that depend
on and t. Moreover, suppose that the predicate P(i, t) is monotone in t, meaning that for
increasing values of t, it never switches from false to true.

Megiddo’s parametric search technique is a method that transforms P’ into an algorithm
P" for finding the minimum value of for which the predicate P(i, t) is true.

As an intermediate step of the transformation, we need a parallel version of the program
P’, which we call 79. The parallel time is TT and the number of processors is p. The new
algorithm P" simulates sequentially 79 without specifying the value of t. When each of the p
processors is stopped at a branching step that requires the evaluation of a polynomial in t, we
compute all the roots of the polynomials at the branching steps and we sort them. Then we use
the sequential algorithm P’ to perform a binary search on the sequence of roots in order to find
the interval where the minimum value t* lies. Once we have this interval, we can compute the
sign of the branching polynomials at t*. The algorithm branches accordingly to these values.
The algorithm completes the simulation and determines a final interval whose left endpoint is
exactly t*. The total time of the simulation is given by O(pTT + Tp, TT log p).

Applications of Megiddo’s parametric search to geometric problems are in [AASS90],
[AM92b], [CEGS92].

2.7. Piiicker coordinates of lines. To solve problems on lines and polyhedra we use
the Pliicker coordinates of lines. Algorithmic uses of Plticker coordinates can be found in
[CEGS89a] and in [Pel91a], [PS92]; a classical treatment of Plticker coordinates can be found
in [Som51].

A point in real three-dimensional space has Cartesian coordinates (x, y, z) and homo-
geneous coordinates (x0, x l, x2, x3). The relations between the two systems of coordinates
are given by the following equations: x xl/xo, y x2/xo, and z x3/xo. Two points
X (X0, X l, X2, X3) and y (Y0, Y, y2, Y3) in three-dimensional homogeneous coordinates
define a line in 3-space. The six quantities

ij xiYj xjYi for ij 01, 02, 03, 12, 23, 31

are called Pliicker coordinates of the line (oriented from x to y). They correspond to the
two-by-two minors of the two-by-four matrix formed by the coordinates of the point x (on the
first row) and y (on the second row).

The six parameters are not independent; they must satisfy the following equation (whose
solution set constitutes the PRicker hypersurface of Klein quadric or Grassman manifold U42
[Sto89], [Som51]):

() H 0123 -+- 0231 -- 0312 0.

The incidence relation between two lines and l’ can be expressed using the Plticker
coordinates of and l’. Let a, bl (respectively, a2, b2) be two points on (respectively, 1’)
oriented as (respectively, 1’). The incidence between and l’ is expressed as the vanishing of

138 MARCO PELLEGRINI

the determinant of a four-by-four matrix whose rows are the coordinates of al, bl, a2, b2 in
this order from top to bottom:

(2)

alo all a12 a13

bl0 bll b12 hi3

a20 a21 a22 a23

b20 b21 b22 b23

Ifwe expand the determinant according to the two-by-two minors ofthe sub-matrix formed
by the coordinates of the points a, b and the minors of the sub-matrix formed by the points
a2, b2, we obtain the following equation in which only PRicker coordinates are involved:

3) 03 + 026 + 03 + 623 + 023 + 03t2 o.

Let us introduce two mappings: 7r -- 7r(l) maps a line in 72 to a hyperplane
in 7 ’5 (five-dimensional oriented projective space) whose plane coordinates are the Pliicker
coordinates of appropriately reordered, p -- p(l) maps a line in 723 to a point in 795
whose coordinates are the Plticker coordinates of the line. The incidence relation between
the two lines 1, 1’ (expressed by (3)) can be reformulated as an incidence relation between
points and hyperplanes in 795. Equation 3 can be rewritten in the form zrt(pt,) 0, which
is equivalent to requiring point p(l’) to belong to hyperplane rr(l). Computations that are
standard in real spaces can be done in oriented projective spaces using a method in [Sto89].

For any given pair of lines and l’ the sign of the quantity 7rt(pl’) is called the relative
orientation of and l’, denoted by l’.

2.8. Lines in space. In a seminal paper [CEGS89a], Chazelle, et al. use Plticker coordi-
nates to obtain several results on problems involving polyhedral terrains in 3-space.

One of the problems discussed in [CEGS89a] is the following: given a set/2 of n lines in
723, build a data structure so to answer efficiently whether a query line is above every line
in . They give a data structure of size O(n2+’) to answer such queries in time O(logn).
Because this data structure is the point of departure of the present article from previous work,
we discuss it in full detail.

Given two non-vertical lines and 1’, is above l’ if there exists a vertical line meeting
both lines and the intersection with is above the intersection with p. The objective is to
express the above relation in terms of relative orientation. Let us consider the line) parallel
to and passing through the point zo (0, 0’, 1, 0). The line l’ is above if it is "between"
and ., therefore we require that

(4) l’ =-l’ ;k.

Thus, we need to check the consistency of two linear inequalities. Let E {l In be
a set of n oriented lines. And let)L be the line parallel to li and through the point zc. Given
query line l, we first test if it is consistently oriented with respect to Z;, that is if .i -1
for all i. For a line lthat is consistently oriented the aboveness test reduces to test membership
of its corresponding PRicker point in the intersection of n Plticker halfspaces.

Chazelle et al. also observe that to decide if a line is consistently oriented it is sufficient
to project and L3 on the xy-plane and to test if the projection of is clockwise with respect to
the projections of all lines in L;. Thus, there are 2n ways to orient the lines in/2 consistently
such that any is consistently oriented exactly for one orientation of

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 139

3. An incidence problem in 3-space.

3.1. Redefining the above relation. Our first objective is to redefine the above relation
between lines in a form more suitable for algorithmic applications. We do so by generalizing
in a more algebraic context the steps of the algorithm in 2.8.

Let us fix once and for all an orthogonal reference frame in 3-space with unit vectors
(’, , fc) forming a positively oriented triple according to the skew rule. And let (x, y, z) be
the coordinates of a generic point in this reference frame.

Given a line l, a vector , and a line l’ in R3 we say that is above l’ in direction (namely
above(l, l’,)) if moving in direction we eventually intersect l’.

When is a vector parallel to the -f-axis, we are in the situation described in [CEGS89a].
In [CEGS89a] the condition for a line to be above another line was given by the relative
orientation of the two lines in PRicker space and by the relative orientation of the projections
of the two lines on the xy-plane. Let us define oriented lines by ordered pairs of points in
3-space: (a, b) and l’ (a’, b’); then the relative orientation of the projections of and l’
on the xy-plane is equivalent to testing if the triple (a b, a’ b’, 7) is oriented as (]’, j,).
This, in turn, is equivalent to computing the sign of the following determinant:

tsp(l, l’, sign

ax bx ay by az bz

ax-bx ay-by az-b

0 0 1

which is the triple scalar product of the vectors a b, a’ b’, and (0, 0, 1). We can generalize
the notion of relative orientation by making the "vertical direction" part of the query. If the
vertical direction is specified by a variable vector , the relative orientation is still the sign of
the triple scalar product of (a b, a’ b’,)"

(5) tsp(l, l’,) sign

ax bx ay by az bz

ax-b ay-by az-b

l)x 1)y l)

Considering the signs (+ 1, -1) as boolean values, we prove the following technical
lemma:

LEMMA 1. above(l, l’,) tsp(l, l’,) xor(l l’).
Proof. (i) If -k, then clearly tsp(l, l’,) l’), by the discussion in [CEGS89a].

Because is above l’ if and only if the two sides of (4) have different values the lemma is
proved.

(ii) If 7 -k, then we can apply a rigid transformation to our reference frame which
takes -k into . It is easy to check that such transformation does not change the value of l’
and tsp(l, l’,); therefore we are back to case (i) and the lemma is proved.]

We say that a line is above a set/ in direction if it is above every line in Z, namely
above(l, ,). From Lemma we have

(6) above(l, ,) A tsp(l, li,) xor(l li).
i=l,n

140 MARCO PELLEGRINI

3.2. Half-plane intersection queries on lines. The determinant in (5) can be expanded
in a bilinear form in terms of the two-by-two minors of the last two rows and the one-by-one
minors of the first row. Let us define Jr’(l) (ax bx, ay by, az bz) and p’(l’, 7)
(Uyz, Uzx, Uxy), where IAij (a b)vj (aj b.)vi.

We can think of p’ (l’, 7) as a point in oriented projective 2-space 792 and of Jjr’ (l) as a
hyperplane in the same space. The value of tsp(l, 1’, is just the sign of the inner product of
Jr’ (l) and p’ (l’,). The value of tsp(l, l’,) is also the sign of the polynomial defining Jr’ (l)
evaluated at p’ (1’, 7).

THEOREM 2. Given a set 13 ofn lines, there is a data structure D() ofsize O(n2+) that
in time O(logn), for a query pair (1’,), determines if l’ is above ft. in direction .

Proof. We number the lines in L; from 1 to n obtaining a sequence of lines L [li].
We construct the arrangement ,4’(13) of the hyperplanes in {7r’(/)l/ 6 13}. Consider a cell
c of 1’(/2) and a point q 6 c. We define as the sign sequence of the cell c the sequence
[sign(Jr’(/) q)ll L]. We build for each region c a Plticker polytope using the negated sign
sequence c as a guide for choosing the correct side of the PRicker hyperplanes.

Let (l’, 7) be a query pair. First we locate the cell c in the arrangement 4’ (/2) containing
p’(l’,). Then, we test for inclusion of the Plticker point p(l’) in the PRicker polyhedron
associated with c.

In order to obtain a space-efficient data structure, we use a a plane partition approach to
construct the arrangement in 792. Using the method in [Mat91], we partition the plane into
O(r2) regions such that each region is cut by no more than n/r hyperplanes Jr’(l). For at
most O(n) hyperplanes Jr’ not cutting through a region c, we build a corresponding point-in-
polytope query data structure in Plticker space at the expense of at most O(n2+’) storage (see
[CEGS89a], [Pel90]). Then we recurse the construction in each region on the hyperplanes
cutting through. The storage S(n) needed to construct the data structure satisfies the following
inequality:

(7) S(n) < cr2S(n/r) + cr20(n2+).

The solution is S(n) O(n2+). By choosing r n for an appropriate value of v, and by
adding planar point location data structures, we can achieve O (log n) query time. Note that
the data structure itself does not depend on any specific direction

COROLLARY 1. Given a set ofn lines, there is a data structure D(E) ofsize O(n2+)
that in time 0 (log n), for a query halfplane h, determines ifh intersects 0 (or all) lines in

Proof. If a line is above all lines in/2 along a direction g, then the half plane defined
by and - does not intersect any line in/2. Conversely, the half plane defined by and
intersects all lines in/2. Here we consider lines parallel to the half plane h as intersecting h
(at infinity).

COROLLARY 2. Given a set H of n halfplanes, there is a data structure D(H) of size
O(n2+) that in time O(log n), for a query line l, determines if intersects 0 (or all) half
planes in H.

Proof. A pair (l’, ’ determines a half plane h in 3-space. We can think of p’ (l’, as a
hyperplane in J92 and Jr’ (l) as a point in 792. We build the data structure ofTheorem 2 reversing
the roles of hyperplanes and points in 792. For a query line we can detect efficiently if any
line l stored in the data structure hits when moved in the associated direction i. This is

equivalent to detecting an intersection of with all the half planes stored in the data-structure.
If a line hits all the opposite half planes defined by li and -7i, then it misses all the half
planes defined by li and i. 1-]

The data structure of Corollary 2 is a generalization of the data structure in [CEGS89a],
which can detect intersections of lines and vertical half planes only. A data structure solving
the same problem of Corollary 2 is in [AM92b].

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 141

3.3. Triangle intersection queries on segments. Let S be a set of segments in 3-space.
We build a multilevel data structure to solve the following problem: count the number of
segments in S intersected by a query triangle. The general strategy is the following. Let
be a query triangle and let aft(t) be the plane spanning t. The first level of the data structure
detects the segments of S which are intersected by aft(t). Those segments meeting aft(t) can
be extended into full lines without introducing new intersections. The next three levels of the
data structure are associated with the three edges of t. For each edge of we consider the
line spanning it and the half plane of aft(t) based on that line and containing t. We select the
lines that meet this query half plane. At the bottom of the multilevel data structures we count
exactly the number of segments meeting t. Now we formalize the above strategy and we give
bounds on the storage and query time.

THEOREM 3. Given a set ofn lines, there is a data structure D(.) ofsize O(n4+) that
in time 0 (log n), for a query halfplane h, counts the number of lines in intersected by h.

Proof. We follow the same general approach as in the data structure of Theorem 2. The
main difference is that for each planar region we associate a point-location data structure for
the whole zone of the PRicker surface in the arrangement of PRicker hyperplanes [Pel91b].
This data structure requires O(n4+) storage and we can locate a point within the Pliicker
arrangement in time O(log n). We prestore in each cell the number of data lines that satisfy
the above condition with respect to the line supporting the query half plane. We solve the
same problem recursively on each planar region relatively to the lines such that 7r’ (l) crosses
the planar region. The total storage is O(n4+) and the total query time is O(log n).

THEOREM 4. Given n segments there is a data structure of size O(n4+e) that counts

segments intersected by a query triangle in time O(log n).
Proof. We dualize every segment in S into a double spatial wedge using a standard point-

plane duality D [Ede87]. Detecting the segments intersected by the plane aft(T) is equivalent
to locate the dual point D(aff(t)) in the arrangement 4(D(S)) of the wedges.

When we have obtained the set of segments intersected by aft(t) as the disjoint union of
sets stored in the first level of the data structure, we can extend the segments into lines without
introducing any new intersection.

We consider now as the intersections of three half planes in 3-space. In the next three
levels of the data structure we store the lines supporting the segments and we build half plane-
line intersection data structures of Theorem 3. At the last level, we can count the number of
segments intersecting t. The total storage is O(n4+) as follows from solving a sequence of
inequalities similar to (7) and the query time is O (log n). [3

We can also report the intersections in time O(log n + k), using O(n4+e) storage, where
k is the output size.

3.4. Linear storage and sublinear query time. In the previous section we have reduced
the problem of counting the number of segments of S intersected by a query triangle to the
problem of locating several query points within several arrangements of hyperplanes (PRicker
hyperplanes in Plticker space or lines on a parametric plane). By doing so, we compute
efficiently, during the query, the relative position of the points with respect to the hyperplanes
stored in the data structure.

As a matter of fact we could have interpreted the data structure as storing points and
the query as half space range queries. The final result is the same (i.e., checking the sign of
polynomials), but the preprocessing is quite different because the data structure can now be
constructed using less storage at the expenses of an increased query time.

We can rebuild the whole multilevel data structure of 3.3 using a half space range
searching approach [CSW90], [AS91a], [Mat91], [AM92a] rather than the point-location
approach. The half space range query approaches in [CSW90], [Mat91 use a point location

142 MARCO PELLEGRINI

data structure as a subroutine, and in 3.3 we have developed such subroutine for the triangle
query problem.

When solving the half space range problem in Plticker space, we have to take into account
the presence of the Pliicker hypersurface. We have the property that all Plticker points are
on the Plticker hypersurface and all Plticker hyperplanes are tangent to the Pliicker surface.
Adapting the analysis of the data structure in [Mat91 to this special case and using a result in
lAPS91], Agarwal and Matouek prove the following lemma:

LEMMA 2 ([AM92a]). Given n Pliicker points it is possible to solve half space range
searching problems with Pliicker hyperplanes using m storage, with n l+ < m < n4+ O(m)
expected preprocessing time and (n +/m /4) query time.

As in [CSW90], [Mat91 it is possible to trade storage and query time. Using Lemma 2 and
the analysis in [AS91 a], Agarwal and Matouek obtain the following result for ray-shooting
on a set of triangles in 3-space:

THEOREM 5 ([AM92a]). Given n triangles in three-dimensional space and any > O,
one can preprocess them in randomized expected time O(m) into a data structure of size
O(m), for n 1+ < m < n4+, so that for a query ray p, the first triangle met by p can be
computed in time 0 (n +/m /4).

Lemma 2 applied to the analysis of 3.3 gives the following theorem"
THEOREM 6. Given a set of n segments we can build a data structure using m units of

storage, with n 1+ < m < n4+, such that for any query triangle we can count in time
0 (n +/m 1/4) the number ofesgments intersected by t.

Theorem 6 is an essential ingredient in the proof of the main theorem of the paper.
THEOREM 7. Given a set ofpolyhedral obstacles with n edges, faces, and vertices, we

can build a data structure using m units of storage with n+ < m < n4+e such thatfor any
query simplex s we can determine in time O(n 1+/m 1/4) whether s is collision-free.

Proof. Assume that we are given a set of polyhedral objects with a total of n edges and a
simplex s in 3-space. We have to consider only four collision cases. For each collision case
we describe a data structure that answers whether the query simplex s generates a collision of
that type.

(i) An object is completely contained in s. We select one arbitrary point of each obstacle
thus obtaining a set P of at most n points in R3. We build a data structure D for simplex range
searching on P using the methods in [CSW90], [Mat91], which satisfies the stated bound. We
use the simplex s to query D. If any point of P is in s, then we have a clash of type (i).

(ii) An edge of s meets a face of same object. We take the facets of the obstacles and
we triangulate them, obtaining a set T of O (n) triangles in 3-space. We build a data structure

D2 for ray-shooting on T using the method in [AS91 a] and its improvement in [AM92a]. We
take for each vertex v of s the rays from v containing the edges of s incident to v. Using the
data structure D2, we determine the first triangle intersected by each ray. If for some ray the
intersection point is closer to v than the second endpoint of the segment spanned by this ray,
then we have a collision of type (ii). We have a constant number of ray-shooting queries for
each simplex s. The preprocessing and the query time are those stated Theorem 5.

(iii) Aface ofs meets an edge ofsome object. We take the edges of the obstacles obtaining
a set S of O(n) segments in 3-space. We build a data structure D3 for answering triangle-
intersection queries, using the method of Theorem 6. In turns we take the facets of s and we
count the number of segments intersected by each facet. If we detect some intersection we
have a collision of type (iii).

(iv) The query simplex s is completely contained within a polyhedral obstacle. This case
is checked by using the data structure D for ray-shooting queries. We take a ray p from an
arbitrary point of s in an arbitrary direction. If no obstacle is hit the simplex is not contained

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 143

in any obstacle. Otherwise, we obtain the first facet hit by p. If locally the ray p hits from
the interior of the object containing t, then we have a collision of type (iv).

Collision cases (i), (ii), (iii), and (iv) cover all possible collisions between a simplex and
a set of polyhedral obstacles.

4. Neighbor problems for lines in space. To solve neighbor problems on a set of lines
in 3-space, we use the following general strategy. Given a set of lines/ we build a data
structure D() that efficiently answers nearest-line queries for any query line l. The second
step is to balance the preprocessing time and the query time by batching the queries, which
we know in advance, over the data structure D(Z).

On an abstract level we can think that a query is a pair (l,), where is any line and a
set of lines. Solving the query is equivalent to computing the truth value of a conjunction of
several predicates that depend on and on the elements of/. The data structure D() allows us
to find the truth value of many predicates efficiently in an implicit way and therefore allows us
to solve the query problem. Once we have the data structure D(), we can produce its batched
version in a quite general way, which we call nested batching technique. This technique is a
generalization of an approach to batching computations in [EGS88]. This technique has been
used in several recent papers (e.g., [Pel90], [AS91b]) where the underlying predicate has only
one conjunct. In [Pel9 lb] the technique has been used for a formula with two conjuncts. Here
we generalize it in an abstract setting for any constant number of conjuncts.

4.1. The nested batching technique. Let 4 and/3 be two classes of geometric objects
and A C t and B C / two finite subsets. Our goal is to compute efficiently ICk(4, B)I
I{(a, b) A BIF(a, b)}l, where F(a, b) =/j=l.kCj is a conjunction of a constant number
k of elementary conditions. Each elementary condition Cj is of the form Saj (p) > 0, where

Saj (.) is a polynomial whose structure depends on j and 4 and whose coefficients depend
only on a 4. Also, p[is a tuple of real numbers depending only on b B. Moreover,
we require that we can rewrite Cj in the dual form S(pJa) > 0, where S(. is a polynomial
whose structure depends on j and/, whose coefficients depend only on b B. Also, paj is a
tuple of real numbers depending only on a A. For technical reasons we assume that Co
TRUE. If Saj (p) > 0 we say that the point pJ is on the positive side of the surface sJ (.) O.
From now on we will use the terms point and surface in this context. Note that, for a given j,
an element a A (respectively, b B) is mapped to a point or to a surface. We call the point
and the surface dual to one another.

The following conditions must be also satisfied:
(I) Given a family of surfaces Saj (x) 01a s A there is a constant d’ (A, j) such that the

space underlying the family of surfaces can be partitioned into Mj(r) O(ra’<t’j log<1) r)
cells of constant descriptive complexity such that each cell meets at most A I/r log r surfaces
in the family. Moreover, we assume that this decomposition can be computed in expected
time O(IAIrl)).

(II) Given a family of surfaces S (x) 01b B} there is a constant d (/3, j) such that the
space underlying the family of surfaces can be partitioned into Mj(r) O(rat’j) log) r)
cells of constant descriptive complexity such that each cell meets at most IBI/r log r surfaces
in the family. Moreover, we assume that this decomposition can be computed in expected
time O(IBIr<).

Conditions (I) and (II) can be rephrased requiting that there is a ! r-cutting of a certain
size for the arrangement of surfaces (see [Aga91 for a survey on cuttings). To be more precise,
we require a cutting covering the portion of space where the query points are confined. If
we do not have any condition on the points then the whole space must be covered. If the

144 MARCO PELLEGRINI

points are constrained to lie on a surface or within a convex polyhedron, only the surface or
the polyhedron must be covered.

Let dj max{d’(,A, j), d(/3, j)} and let d maxj dj. We will refer to d as the charac-
teristic dimension oftheformula F, while dj is the characteristic dimension ofthe elementary
conjunct Cj.

Let Tj (m, n) be the time needed to determine the number ofpairs (a, b) 6 A B satisfying
the conditions associated with the elementary conjuncts form to j, that is the time to compute
ICj(A, B)I I{(a, b) A BI/ki=l,j Ci}[. We set M(r) maxj{Mj.(r), M)(r)}. Just to

give some examples, for lines and points on the plane we obtain M(r) Mj(r) r2 simple
regions. For surfaces and points used in 4.3, we obtain Mj(r) M(r) r4fl(r) simple
regions, using the technique in [CEGS89b], where/3(r) is a sub-logarithmic function. For
Plticker points in an arrangement ofPliicker hyperplanes we obtain Mj(r) Mj(r) r4 log r,
from a result in [APS91], because we need to cover only the Pliicker hypersurface.

LEMMA 3. Given a set A and B as above, let IAI n and IBI m. For every 0 < j < k,
we can build in time O(na+) a data structure such that, for every b B,]Cj({b}, A)] can be
computed in time 0 (logj n).

Proof. Let Tj(n) be the time needed to build the data structure up to level j. We prove
the claim by induction on j. For j 0, To(n) O(1) therefore the lemma is satisfied.
Assume j > 0. Applying property (I) for a value of r constant from n and m, we compute
a decomposition of the space into M(r) elementary cells each one intersected by no more

than n / r log r surfaces in Saj 01a A }. For each elementary cell we select a point in its
interior and we compute the set S+ of surfaces not intersecting the region r and in positive
position with respect to r. We associate the cardinality of S+ with the region and we recurse
this construction. Also, for each region r and for all the elements a 6 A whose corresponding
surface is in S+, we build the data structure to compute Cj-1, which can be built in time

Tj_ (n). The total time and space for this construction satisfies the recurrence

Tj(n) <_ M(r)Tj(n/rlogr) + M(r)Tj_(n) + O(nr() + nMj(r)),

Tj(O(1))-- 0(1).

Since M’(r) < ra log() r and assuming by induction hypothesis that Tj_ O(nd+’),
the solution to this recurrence is Tj(n) O(na+).

Given a query point p we locate by exhaustive search the region r containing it. Then we
recurse on the two data structures associated with r. At the last level we collect the counters
of the positive regions and we sum them up to form the final result. The query time Oj(n)
satisfies this recurrence:

Qj(n) < Qj(n/rlogr) + Qj_(n) + O(M’(r)).

Assuming by induction hypothesis that Qj-1 O(logj- n), we obtain the solution is

Qj (n) O (logj (n)). [3

From Lemma 3 easily follows Lemma 4.
LEMMA 4. Ifm > n then,for every j < k,]Cj (B, A)] can be computed in time 0 (m +).
Let us suppose now that rn < n. We dualize points and surfaces at level j, and we

compute the partition (II) for a constant value of r. For each cell r of the partition we have
a set of n points contained it and a set ofm surfaces cutting through. By the property (II),
m < cm /r log r for some constant c. For each cell r the relative sign of the points in r and
the surfaces outside r is similar for each point in r. This implies that in time O(m) we can
determine for all points in r and for most surfaces the truth value of the predicate associated

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 145

with the jth level. For the surfaces intersecting r we proceed recursively. Let Tj(m, n) be
the time needed to compute ICj(B, A)I. From the above discussion Tj(m, n) satisfies this
recurrence"

(8) Tj(m,n) < Z Tj(mr, nr) + M(r)(m + n) + M(r)Tj_l(m,n) + O(mr(1)).

The following is the main theorem of this section.
THEOREM 8. For any and 3 <

Tj(m, n) Djnd/(d+l)+md/(d+l) + Bjm 1+ + Ajn log(l+J) m

where Dj, Bj, Aj depend on and
Proof. The proof is an induction on j and n inspired by similar argument is in lEGS88].
For j O, Co TRUE is satisfied by nm pairs. The product is computed in constant

time. We consider j > 0 and we use the inductive hypothesis on Tj-1. Equation (8) becomes

Tj(m, n) _< y Tj(m, nr) + O(mr(1))

(9) + M(r)(Dj_lncl/(a+l)+ma/(cl+l) + Bj_lm l+a + Aj_ln logl+(j-1) m)

+ M(r)(m + n).

For any fixed pair 3, e, with 3 _< e/d we choose a value of r, constant from n and m,
depending on e and 3. The actual dependency of r on e and 3 will be defined along with the
proof. If m >_ na then, from Lemma 4, Tj (m, n) <_ cm 1+8 and the theorem is proved assuming
Bj >_ c. Suppose m <_ na. In this case

(10) m l+ md/(d+l)m 1/(d+l)+ < ma/(a+l)na/(a+l)+a.

First notice that at each level of the recursion the term M(r)n + M(r)Aj_ln logj rn in (9)
contributes O (n logj m) on one level of the recursion; and there are at most O (log rn) levels.
This is a consequence of the fact that the objects in A (whose counter is n) are represented as

points. The objects in B (which are counted in m) are represented as surfaces. The overall
contribution of this term is O(n logj+l m). It is sufficient to drop this term from the recursion
(9) and prove that the modified inequality for a new unknown function Tj’ (m, n).

(11)
T](m, n) _< T](mr, nr) + M(r)m

satisfies the bound

-+- M(r)(Dj_lmcl/(cl+l)nd/(cl+l)+ + Bj_lm l+a) -+- O(mr(1))

Tj’(m, n)= Djmd/(d+l)nd/(d+l)+e -k- Bjm l+.

Choosing By and Dj large enough so that the bound holds for small valus of rn and n, we
apply the inductive argument on T] (mr, n).

M(r)

T](m, n)< [Ojmdi/(d+l)ndi/(d+l)+ -k Bjm]+3]
i=1

-t- M(r)m -t- M(r)Dj-lmd/(d+l)ncl/(d+l)+ -t- M(r)Bj-1ml+ -t- O(mr(1)),

146 MARCO PELLEGRINI

but i=l,M(r) m]+a < [M(r)c logl+a r/rl+a]ml+a. We can sum up terms in rn and m l+a, set

E BjM(r)c logl+a r/r l+a + M(r) + M(r)Bj_I + O(r(1)), and use inequality (10). We
obtain

m
mdi/(d+l)ndi/(d+)+ a/(a+)na/(a+x)+u]Tj(m,n) < Dj + Ern

i=1

Now we eliminate the summation using first the bound on m and then the HSlder-
Minkowsky inequality [Mit70].

M(r) M(r)

Z rndi/(d+l’ndi/(d+I>+ < [(c’logr/r)m]d/(d+l) ndi/(d+l)+e
i=1 i=1

< [c’ log r/r]d/(d+)md/(d+)M(r)I/(d+)-End/(d+l)+.

(12)

Assuming e > d6, we obtain, for some constant c"

Tj:(m, n) < [Djc" logd/(d+l) r/rd/(d+l)M(r)l/(d+l)-e + E]md/(d+l)nd/(d+l)+e.

Recalling that M(r) rd log(1) r the coefficient becomes

Ojc" logd/(d+l) r/rd/(d+l) M(r) 1/(d+l)- + E

Ojc" logd/(d+l) r logO(1)/(d+l)- r(1/r)d + E.

If we choose r sufficiently large so that the constant in (12) is less than [Dj/2 + El, and
if we choose Dj 2E, we obtain

Tj(m, n) < Ojmd/(d+l)nd/(d+l)+"

which completes the proof. [3

It is also easy to show the following corollary.
COROLLARY 3. It is possible to report the set Ck(A, B) in time Tk(m, n) + ICk(A, B)I.
COROLLARY 4. Under the assumption that the cuttings at (I) and (II)for a constant value

ofr can be computed in parallel usingpolylogarithmic time and linearly manyprocessors, then
ICk (A, B)I can be computed in parallel using 0 (Tk (m, n)) processors and polylogarithmic
parallel time.

Proof. The algorithms of Lemma 3 and of Theorem 8 are based on taking a sample of the
surfaces and computing a cutting. For each cell in the cutting we find the points within the
region, the surfaces intersecting the region and the surfaces on the positive side of the region.
Corresponding to every phase of the sequential algorithm we allocate a processor for each pair
point-region and for each pair surface-region. In constant time we can determine the input to
the next phase. The number of processors we use is bounded by the number of pairs, which in
turn is bounded by the sequential time. The parallel time is bounded by the number of phases
of the sequential algorithm. This fact, with the hypothesis that we can compute cuttings in
polylogarithmic time, gives us a total polylogarithmic query time. [3

If we use Clarkson’s random sampling techniques [Cla87] to compute the cuttings at (I)
and (II), then it is easy to check that constant parallel time and a linear number of processors
is sufficient for the construction.

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 147

4.2. Finding the shortest vertical segment. We apply the general nested batching tech-
nique to the problem of finding the minimum length vertical segment whose endpoints are on
two distinct lines of/2.

LEMMA 5. Given a non-vertical line and a set ofnon-vertical lines ., the line in . with
the shortest vertical connecting segment to is thefirst line hit by when translated downward
or upward.

Proof. It follows from elementary geometry. [3

Our approach to the problem is to find for each line /2 the first lines in/2 intersected
when translating upward and downward. If meets more than one line simultaneously, we
record only one line. Clearly we produce no more than a O (n) pairs of lines, which we check
for the minimum vertical segment in time O(n). In order to find the set of pairs of lines, we
use the following theorem from [CEGS89a].

THEOREM 9 ([CEGS89a]). Given a set _. of n lines in R3 and any > O, we can
preprocess 12 into a data structure whose storage is O(n2+), so thatfor any query line we
can decide whether is above all lines in . in O(log n) time and, ifso, find the line l’ . hit

first by when translated downward.
The difference between Theorem 9 and the result discussed in 2.8 is a subtle but important

one. The data structure is based on locating Plticker points of the query line in a given Plticker
polytope formed by the hyperplanes associated with the data lines in/2. The point location
data structure is built by taking a random sample of the hyperplanes and by triangulating the
interior of the resulting polytope. In order to obtain the result of 2.8 any triangulation would
do. For the result of Theorem 9 Chazelle et al. carefully devise a triangulation so that, for
every "triangle" produced, any Plticker point in the "triangle" would hit the same line in the
random sample when translated downward. During the point location query we collect at most
a logarithmic number of candidate data lines. Then in extra logarithmic time we select the
data line immediately below the query line.

First we establish the following theorem.
THEOREM 10. Given a set . ofn lines in R and any > O, we can preprocess . into a

data structure whose storage is O(n4+), so thatfor any query line we canfind in O(log2 n)
time the line l’ . hitfirst by when translated downward (or upward).

Proof. Using a data structure similar to that of Theorem 3, we can determine for a query
line the lines in above and below it. For these lines, which are represented as a disjoint
union of canonical sets, we apply the result of Theorem 9. We obtain a data structure that for
every query line gives us the line in immediately above and the line immediately below.
The storage S(n) used by the data structure satisfies the following inequality:

S(n) < r4S(n/rlogr) + r4n2+

from which we have S(n) O(n4+). D

4.2.1. The batching technique and the shortest vertical segment.

THEOREM 11. Given n lines in 3-space it ispossible tofind the shortestvertical connecting
segment in O(n8/5+) randomized expected time for any > O, where the multiplicative
constant depends on .

Proof. We divide the set of lines into two sets L and L2 ofroughly equal size. We solve
the problem recursively for the two sets and then we consider the bichromatic problem (i.e.,
finding the minimum distance between a line in L and a line in L2). The total complexity is
dominated by the solution for the bichromatic case.

We now apply the nested batching technique of 4.1 to the data structure of Theorem 10
(Corollary 3). L is used as our data set of lines and L2 as the query set for the algorithm of
Theorem 10.

148 MARCO PELLEGRINI

At the first level ofthe data structure, we have to compute the predicate tsp(l, 1’,), where
7 is the vertical direction., The characteristic dimension of this test is d (the vector is
fixed). At the second level we locate Plticker points in an arrangement of Plticker hyperplanes.
From results in [APS91] we have characteristic dimension for this test d2 4. At the last
level we use the special cutting of Theorem 9 with characteristic dimension d3 2. At the
last level, by locating the Plticker points within the regions of the cutting, we are able to find
also the closest data line.

By applying the nested batching method to the data structure of Theorem 10, we would
like to obtain for each line in L the line in L2 with the shortest vertical segment. Unfortunately
the batched nested method does not quite produce such set of pairs.

At the second level of the algorithm we have sets of Plticker hyperplanes H(M) and sets
of Plticker points P(N) such that the relative orientation is known and uniform (i.e., all lines
in Mo are above all lines in No). By batching the algorithm of Theorem 9 on Mo as data and
N as points, we obtain a set Q of pairs of lines, where each line in No is associated to the
line in M immediately below. But, in order to use the nested batching technique, we must
sometimes flip the roles of data and queries. Reversing the role of M and No, we obtain a
set of pairs Q’. The two sets Q and Q’ can be very different one from the other. On the other
hand if (l, 1’) 6 Q is the pair of lines with minimum connecting vertical segment, then (l’, l)
is an element of Q’ and it is the pair of lines with minimum connecting vertical segment in Q’.
Reversing the role of the two sets of lines, we do not loose the information about the minimum
connecting segment and the algorithm produces the correct answer. The time bound follows
from Theorem 8.

We now extend the result ofTheorem 11 to segments. It is enough to solve the bichromatic
version of the problem where we are given two sets of segments R (red) and B (blue). The
main idea is to find a set E of pairs of sets (R, Bo) with the following properties"

(a) For every r, R, c_ R and B
_

B.
(b) Every pair of red, blue segments whose xy-projections intersect is represented in one

and only one pair r.

(c) The xy-projection of every segment in R intersects the xy-projection of every seg-
ment in B.

For each pair cr we can safely extend the segments into full lines without introducing new
vertical segments. We use the result of Theorem 11 on each pair and pick the minimum among
the partial results.

In order to find such set E, we need a few auxiliary definitions. Given a segment s on the
plane, let ls be the line supporting s, rph(s) the right endpoint and lhp(s) the left endpoint.
Slope(l) is the slope of line I.

LEMMA 6. Two segments Sl and s2 on the plane intersect ifand only ifl(s) meets s2 and
(s2) meets s.

LEMMA 7. A line meets a segment s in either of these two cases"

(A) (Slope(l) < Slope(Is))/x (lph(s) below 1)/x (rhp(s) above 1)
(B) (Slope(l) > Slope(Is))/x (lhp(s) above l)/x (rhp(s) below 1)
Proof. Follows from elementary geometry.
COROLLARY 5. Given n segments in 3-space it is possible to find the shortest vertical

connecting segment in O(n8/5+) randomized expected time for any > O, where the multi-
plicative constant depends on .

Proof. We build a multilevel data structure using the nested batching technique in order
to find pairs of red-blue segments whose xy-projection satisfies the properties of Lemma 6
and Lemma 7. At the first level we compare the slopes of the segments. This gives us a test
of characteristic dimension d 1. Once we have groups of segments whose relative slope

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 149

is uniform, we can test at the next levels the above/below relations using standard point/line
duality in dimension d 2. At the last level we obtain pairs of sets of segments (blue and red)
such that all red segments meet all blue segments. We can extend the corresponding red-blue
segments in 3-space into full lines without introducing any new and potentially dangerous
candidates for the minimum vertical connecting segment test. At the last level we therefore
add a data structure similar to those of Theorem 11. The characteristic dimension of the whole
data structure is therefore dominated by d 4. The time bound derives from the application
of the nested batching technique of Theorem 8.

4.2.2. Finding the longest vertical segment. Suppose we want to find the longest
among the vertical segments connecting two lines in . Although this problem has a for-
mulation similar to finding the shortest vertical segment, we obtain an asymptotically faster
algorithm.

THEOREM 12. Given a set/2 of n lines in R3, the maximum length vertical segment
connecting two lines in/2 can befound in O(n4/3+) randomized expected time.

Proof. We partition/2 into two subsets, L and L2, of equal size and we solve the problem
recursively in each set. It is thus enough to solve the bichromatic case. Suppose without loss
of generality the pair (l,/2), with l 6 L and 12 G L2, achieves the maximum and moreover

l is above 12. Let 6 be the value of the maximum. If we shift every line in L downward of a
distance 3, we obtain a new set L’. From the fact that 6 is the maximum distance follows that
every line in L’ is below every line in L2. The two sets L’ and L2 satisfy the towering property
(see [CEGS89a]), which can be tested in O(n4/3+) randomized expected time. This algorithm
can be seen as a special instance of the nested batching technique of 4.1. In this case we have
a first level to test the sp condition with characteristic dimension d and a second level
to test the relative orientation with characteristic dimension d2 2. The algorithm for testing
the towering property can be used as the oracle of Megiddo’s parametric search method. A
parallel version of the oracle can be devised using the inherent tree-structure of the nested
batching scheme of 4.1, as shown in Corollary 4. We obtain logarithmic parallel time using
no more than O(n4/3+) processors. The parametric search approach allows us to find the
value of that is the maximum bichromatic distance. [3

The result of Theorem 12 extends, with the same time bound, to sets of segments, since
the characteristic dimension of each level is no more than d 2, as follows from Lemma 6
and 7 and from the algorithm to test the towering property [CEGS89b].

4.3. Finding the shortest segment. Given a set/2 of n lines in R3 the problem is to find
the shortest segment connecting two lines. A more formal statement of the problem is the
following: compute Min(Z2), where

Min(/2) min min IP-QI.
l’,l12,1#1 pl,ql’

Computing Min() fits nicely into the general schema of Megiddo’s parametric search.
Given a set/2 of n lines in R we partition/2 into two disjoint sets R (red) and B (blue) of
roughly n/2 lines each. If T (n) is the time of the algorithm for finding the closest pair, we
have the following recursive inequality:

T(n) <_ 2T(n/2) + T’(n/2, n/2)

where T’ (n, m) is the time sufficient to solve the bichromatic version of the problem (i.e., find
the shortest segment connecting a "red" line with a "blue" line).

Let us denote as P’(R, B, t) the program that, given a set R of red lines and a set B of
blue lines, counts the number of red lines at distance less than from any blue line. Clearly

150 MARCO PELLEGRINI

P’(R, B, t) is monotone int. Using a method in [Pel91b], we caneasily checkif P’(R, B, O)
0. Finding the shortest bichromatic distance is equivalent to finding the minimum value of
such that P’ (R, B, t) > 0.

4.3.1. The oracle. In this subsection we give the algorithm underlying the program
P’(R, B, t). The problem of counting pairs of lines within distance can be seen as the
problem of counting the number of intersections among the set R of lines and the set B’ of
cylinders of radius whose axes are lines in B.

LEMMA 8. Given a set ofn lines and a set ofm cylinders of the same radius, there is an
algorithm that counts all line-cylinder intersections in time:

AmS/6n5/6+ + Bm l+ + Cn log2 m,

where the constants A, B, and C depend on .
Proof. A line in 3-space is representable in a canonical way as the intersection of a plane

parallel to the x-axis and of a plane parallel to the y-axis.

y=az+b.

x =cz+d.

The four numbers (a, b, c, d) uniquely represent a line in 3-space. Thus we can map a
line to a point p(l) in real parametric space R4. A cylinder c of fixed radius is representable
in a canonical way as a point p(c) in real parametric space R4 (as a matter of fact we need
only to map the axis of the cylinder).

Given a line we define as the dual surface of the set S(l) of all the points p(c) where
c is a cylinder of radius tangent to l. Clearly S(I) is an algebraic variety (of co-dimension
1) in R4. In particular there is a polynomial qt(’) such that S(I) {x R41qt(x) 0}.
Symmetrically we define as the dual surface of the cylinder c the set S(c) of the points p(l)
where is tangent to c. Again S(c) is an algebraic variety of co-dimension 1. And we know
there exists a polynomial rc(. such that S(c) {x R4lr(x) 0}. The relative position
of the point p(l) and surface S(c) determines whether meets c or not.

Using the data structure in [CEGS89b], we can locate the points p(l) in the arrangement
of algebraic surfaces S(c). The size is O(n2a-3+). The query time is O(log n). We apply the
batching argument developed in 4.1 for locating m points in an arrangement of n surfaces.
The time bound follows from the batching technique. [3

THEOREM 13. Given n lines in 3-space, it is possible to find the shortest connecting’
segment in O(n5/3+) randomized expected time for any > O, where the multiplicative
constant depends on .

Proof. The algorithm of Lemma 8 (based on the data structure in [CEGS89b]) and on
the nested batching technique has a tree structure of logarithmic depth. It is relatively easy to
transform the sequential algorithm into a parallel algorithm using Corollary 4, as required by
Megiddo’s technique. [

The oracle used in Theorem 13 is a counting oracle that counts the number ofintersections.
in order to solve the closest line problem it is sufficient for the oracle to test whether the
number of incidences is greater than 0. It is likely that such an algorithm can attain a better
asymptotic bound than the counting oracle. Such improved bound would imply a faster
algorithm for finding the closest line. The improved time bound of [CEGS92] is based on a
similar observation.

2We cannot represent horizontal lines but, with a suitable space transformation, we can make sure that we do not

have any.

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 151

5. Conclusions and open problems. Solving problems on lines in 3-space is often a
necessary ingredient for solving problems on sets of polyhedra in 3-space. In this paper we
solved an on-line intersection query problem for lines and half planes in 3-space, which is an
essential ingredient of a fast method for collision-free placement queries amidst polyhedral
obstacles in 3-space. In the same spirit, we gave algorithms for solving a few neighbor
problems on lines in 3-space. Here are a few open questions: Is it possible to extend the
solution of neighbor problems of lines to segments and polyhedra? How can we combine
neighbor information and collision-free placements to plan a collision-free movement of a
polyhedral object in a polyhedral environment? Is it possible to have a dynamic (under
insertions and deletions) version of the data structure of Theorem 7? An initial result in the
direction of solving this last question is in [AM91].

6.. Acknowledgments. thank Subhash Suri for proposing the problem of finding the
closest pair of lines and Raimund Seidel, Micha Sharir, and Leonidas Guibas for useful
discussions. I also thank Pankaj Agarwal for his comments on an early version of the paper
and Professor Julian Ullmann for his comments.

[AASS90]

[AESW91]

[Aga91]

[AM91]

[AM92a]

[AM92b]

[APS91]

[AS90]

[AS91a]

[AS91b]

[AS92]

[Aur91]

[CD80]

[CEG+90]

[CEGS89a]

REFERENCES

R K. AGARWAL, B. ARONOV, M. SHARIR, AND S. SURI, Selecting distances in the plane, in Proc. of the
6th ACM Symposium on Computational Geometry, Berkeley, CA, 1990, pp. 321-331.

P. K. AGARWAL, n. EDELSBRUNNER, O. SCHWARZKOPF, AND E. WELZL, Euclidean minimum spanning
tree and bichromatic closest pair, in Proc. of the 7th ACM Symposium on Computational
Geometry, North Conway, NH, 1991, pp. 203-210.

P. K. AGARWAL, Geometric partitioning and its applications, Tech. report CS-1991-27, Dept. of
Computer Sci., Duke University, Durham, NC, 1991.

P. K. AGARWAL AND J. MATOUEK, Dynamic half-space range reporting and its applications, Tech.
report CS-1991-43, Dept. of Computer Science, Duke University, Durham, NC, 1991.

Range searching with semialgebraic sets, in Proc. of the 17th Symp. on Mathematical
Foundations of Computer Science, in Lecture Notes in Computer Science 629, 1992, pp. 1-13.

,..Ray shooting and parametric search, in Proceedings of the 24th Annual ACM Symposium
on Theory of Computing, 1992, pp. 517-526.

B. ARONOV, M. PELLEGRINI, AND M. SHARIR, On the zone of an algebraic surface in a hyperplane
arrangement, Discrete Comput. Geom., 9 (1993), pp. 177-186. Preliminary version in Proc. of
the 1991 Workshop on Algorithms and Data Structures and Proc. of the 3rd Canadian Conf. on

Comp. Geom., Ottawa, Vancouver, Canada.
B. ARONOV AND M. SHARIR, Triangles in space or building (and analyzing) castles in the air, Com-

binatorica, 10(2) (1990), pp. 137-173.
P. K. AGARWAL AND M. SHARIR, Applications ofa new space partitioning technique, in Proc. of the

1991 Workshop on Algorithms and Data Structures, Ottawa, Vancouver, Canada, Lecture Notes
in Computer Science 519, Springer Verlag, Berlin, New York, 199 l, pp. 379-391.

Counting circular arc intersections, in Proc. of the 7th ACM Symposium on Computational
Geometry, Ottawa, Vancouver, Canada, 199 l, pp. 10-20.

B. ARONOV AND M. SHARIR, Castles in the air revisited, in Proc. of the 8th ACM Symposium on

Computational Geometry, Berlin, Germany, 1992, pp. 146-256.
F. AURENHAMMER, Voronoi diagrams-a survey of a fundamental geometric data structure, ACM

Computing Surveys, 23(3) (1991)pp. 345-405.
B. CHAZELLE AND D. P. DOBKIN, Detection is easier than computation, in Proceedings of the 21 st

IEEE Symposium on Foundations of Computer Science, 1980, pp. 146-153.
B. CHAZELLE, n. EDELSBRUNNER, L. GUIBAS, R. POLLACK, R. SEIDEL, M. SHARIR, AND J. SNOEYINK,

Counting and cutting circles oflines and rods in space, in Proc. of the 31st Annual Symposium
on Foundations of Computer Science, 1990.

B. CHAZELLE, n. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, Lines in space: combinatorics, algo-
rithms and applications, in Proc. of the 21st Symposium on Theory of Computing, 1989, pp.
382-393.

152 MARCO PELLEGRINI

[CEGS89b]

[CEGS92]

[CK89]

[Cla87]

[Co187]

[CS88]

[CSW90]

[dBHO+91]

[DE84]

[DK83]

[DK90]

[Ede87]
lEGS88]

[EGS90]

[EMP+82]

[EOS86]

[FHS89]

[GSS88]

[Gui91]
[Hal91]

[HO89]

[KS88]

[LS87a]

[LS87b]

[Mat90]

B. CHAZELLE, H. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, A singly exponential stratification
schemefor real semi-algebraic varieties and its applications, in Proc. of the 16th International
Colloquium on Automata, Languages and Programming, number 372 in Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, New York, 1989, pp. 179-193.

Diameter, width, closest linepair andparametric search, in Proc. ofthe 8th ACM Symposium
on Computational Geometry, Berlin, Germany, 1992, pp. 120-129.

L. P. CHEW AND K. KEDEM, Placing the largest similar copy of a convex polygon among polygonal
obstacles, in Proc. of the 5th ACM Symposium on Computational Geometry, Saarbrucken,
Germany, 1989, pp. 167-174.

K. L. CLARKSON, New applications ofrandom sampling in computational geometry, Discrete Comput.
Geom. 2 (1987), pp. 195-222.

R. COLE, Slowing down sorting networks to obtain faster sorting algorithms, J. of Assoc. Comput.
Mach., 34 (1987), pp. 200-208.

B. CHAZELLE AND M. SHARIR, An algorithmfor generalizedpoint location and its applications, Tech.

report 153, Robotics Lab., Courant Institute of Mathematical Sciences, New York, 1988.
B. CHAZELLE, M. SHARIR, AND E. WELZL, Quasi-optimal upper boundsfor simplex range searching

and new zone theorems, in Proc. of the 6th ACM Symposium on Computational Geometry,
Saarbrucken, Germany, 1990, pp. 23-33.

M. DE BERG, D. HALPERLIN, M. OVERMARS, J. SNOEYINK, AND M. VAN KREVELD, Efficient ray-shooting
and hidden surface removal, in Proc. of the 7th ACM Symposium on Computational Geometry,
Saarbrucken, Germany, 1991.

D. DOBKIN AND H. EDELSBRUNNER, Space searching for intersecting objects, in 25th FOCS, 1984,
pp. 387-392.

D. E DOBKIN AND D. G. KIRKPATRICK, Fast detection ofpolyhedral intersection, Theoret. Comp. Sci.

27 (1983), pp. 241-253.
D. DOBKIN AND D. KIRKPATRICK, Determining the separation ofpreprocessedpolyhedra: a unified ap-

proach, in Proc. of the 17th International Colloqium on Automata, Languages and Programming,
1990, pp. 400-413.

H. EDELStRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, New York, 1987.
H. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, The complexity of many faces in arrangements of

lines and segments, in Proc. of the 4th ACM Symposium on Computational Geometry, Urbana-

Champaign, IL, 1988, pp. 44-55.
, The complexity and construction of many faces in arrangements of lines and segments,

Discrete Comput. Geom., 5 (1990), pp. 161-196.
H. EEDELSBRUNNER, H. MAUER, F. PREPARATA, E. WELZL, AND D. WOOD, Stabbing line segments, BIT,

22 (1982), pp. 274-281.
H. EDELSBRUNNER, J. O’ROURKE, AND R. SEIDEL, Constructing arrangements oflines and hyperplanes

with applications, SIAM J. Comput., 15 (1986), pp. 341-363.
J. FRIEDMAN, J. HERSHBERGER, AND J. SNOEYINK, Compliant motion in a simple polygon, in Proc.

of the 5th ACM Symposium on Computational Geometry, Urbana-Champaign, IL, 1989, pp.
175-186.

L. J. GUIBAS, M. SHARIR, AND S. SIFRONY, On the general motionplanningproblem with two degrees of
freedom, in Proc. of the 4th ACM Symposium on Computational Geometry, Urbana-Champaign,
IL, 1988, pp. 289-298.

L. GtsmAs, Personal communication, November 1991.
D. HALPERLIN, On the complexity ofa single cell in certain arrangements of surfaces in 3-space, in

Proc. of the 7th ACM Symposium on Computational Geometry, Urbana-Champaign, IL, 1991,
pp. 314-323.

D. HALPERLIN AND M. OVERMARS, Efficient motionplanning ofan L-shaped object, in Proc. of the 5th
ACM Symposium on Computational Geometry, Urbana-Champaign, IL, 1989, pp. 156-166.

K. KEDEM AND M. SHARIR, An automatic motion planning system for a convex polygonal mobile
robot in 2-dpolygonal space, in Proc. of the 4th ACM Symposium on Computational Geometry,
Urbana-Champaign, IL, 1988, pp. 329-340.

D. LEVEN AND M. SHARIR, An efficient simple motion planning algorithm for a ladder moving in
two-dimensional space amidst polygonal barriers, J. Algorithms, 8 (1987), pp. 192-215.

Planning a purely translational motionfor a convex object in two-dimensional space using
generalized voronoi diagrams, Discrete Comput. Geom., 2 (1987), pp. 9-31.

J. MATOUEK, Cutting hyperplane arrangements, in Proc. of the 6th ACM Symposium on Computa-
tional Geometry, Urbana-Champaign, IL, 1990, pp. 1-9.

ON COLLISION-FREE SIMPLICES AND CLOSEST LINE PAIR 153

[Mat91

[Meg83]

[Meh84]

[Mit70]
[MS85]

[Pel90]

[Pel91a]

[Pel91b]

[Pe192]

[PS85]

[PS92]

[Som51

[SS89]

[Sto89]
[To1911

[Vai89]

J. MATOUEK, Efficient partition trees, in Proc. of the 7th ACM Symposium on Computational Ge-
ometry, Urbana-Champaign, IL, 1991, pp. 1-9.

N. MEGIDDO, Applying parallel computation algorithms in the design of sequential algorithms, J.
Assoc. Comput. Mech., 30 (1983), pp. 852-865.

K. MEHIrORrq, Multidimensional Searching and Computational Geometry, Springer-Verlag, Berlin,
New York, 1984.

D. S. MITRINOVIC, Analytic Inequalities, Berlin, New York, Springer-Verlag, 1970.
K. MrLHORN ,ND K. SIMOr, Intersecting two polyhedra one of which is convex, in Proc. of Fun-

damentals of Computation Theory, Lecture Notes in Computer Science 199, Springer-Verlag,
Berlin, New York, 1985, pp. 534-542.

M. PELLEGRINI, Stabbing and ray shooting in 3-dimensional space, in Proc. of the 6th ACM Sympo-
sium on Computational Geometry, Urbana-Champaign, IL, 1990, pp. 177-186.

Combinatorial and algorithmic analysis ofstabbing and visibilityproblems in 3-dimensional
space, Ph.D. thesis, New York University-Courant Institute of Mathematical Sciences, New
York, 1991. (Courant Institute, Robotics Lab. report 241.)

Ray-shooting on triangles in 3-dimensional space, Algorithmica, 9 (1993), pp. 471-494.
(Also in Lecture Notes in Computer Science 519, pp. 20-31.)

A new algorithm for counting circular arc intersections, Tech. report TR-92-010, Interna-
tional Computer Science Institute, Berkeley, CA, 1992.

E P. PREPARATA AND M. I. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag,
Berlin, New York, 1985.

M. PELLEGRINI AND P. SHOR, Finding stabbing lines in 3-space, Discrete Comput. Geom., 8 (1992),
pp. 191-208.

D. M. H. SOMMVlLtE, Analytical geometry ofthree dimensions, Cambridge University Press, Cam-
bridge, England, 1951.

J. T. SCHWARTZ AND M. SHARIR, A survey of motion planning and related geometric algorithms, in
Geometric Reasoning, D. Kapur and J. L. Mundy, eds., MIT Press, Cambridge, MA, 1989, pp.
157-159.

J. Sq’oIFI, Primitivesfor computational geometry, Tech. report 36, Digital SRC, Palo Alto, CA, 1989.
S. ToIO, Extremal polygon containment problems, in Proc. of the 7th ACM Symposium on Com-

putational Geometry, 1991, pp. 176-185.
19. M. VAIDYA, An O(n logn) algorithm for the all-nearest-neighbors problem, Discrete Comput.

Geom., 4 (1989), pp. 101-115.

SlAM J. COMPUT.
Vol. 23, No. 1, pp. 154--169, February 1994

() 1994 Society for Industrial and Applied Mathematics
011

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES*

JIl MATOUEKtt2, JANOS PACH3, MICHA SHARIR134, SHMUEL SIFRONY, AND EMO WELZLt24

Abstract. The authors show that for every fixed 8 > 0 the following holds: If F is a union of n triangles,
all of whose angles are at least 8, then the complement of F has O(n) connected components and the boundary
of F consists of O(n log log n) straight segments (where the constants of proportionality depend on 8). This latter
complexity becomes linear if all triangles are of roughly the same size or if they are all infinite wedges.

Key words, combinatorial geometry, computational geometry, Davenport Schinzel sequences, union of geomet-
ric figures, fat triangles

AMS subject classifications. 05A99, 52A10, 52A37, 68Q20, 68R99, 68R05

1. Introduction. The problem studied in this paper is to obtain sharp upper bounds on
the combinatorial complexity of the union of n geometric figures in the plane. This problem
arises in many applications. For example, in motion planning for systems with two degrees
of freedom, one constructs the two-dimensional configuration space of the system as the
complement of the union of n "forbidden regions," each representing the space of placements
of the system in which a collision occurs between two specific system and obstacle features
(see [9], 14] for details). It has also been observed recently that families of figures, with the
property that the union of any subfamily has small combinatorial complexity, have several
additional useful properties. For example, they admit efficient output-sensitive hidden surface
removal algorithms (when these figures lie at various heights and are viewed from a point
far below them) [20]. Also one can obtain sharp bounds on the number of "k-sets" in an
arrangement of such figures 19] and an efficient algorithm for "point-stabbing" queries in a
collection of such figures (where one has to report all figures containing a query point) 19].

The simplest example of a family with the above property is a collection of half planes,
each bounded by a line, or more generally by a pseudoline. A more interesting example is
a family of pseudodisks, i.e., figures with the property that the boundaries of each pair of
them intersect in at most two points. It was shown in 14] that the boundary of the union of
n pseudodisks consists of at most 6n 12 connected pieces of the boundaries of the given
figures (a special case of this result has also been obtained in [8]). Another case was studied in
[4] and involved a family of figures, each bounded between a portion of the x-axis and a curve
lying above the axis and delimited by two points on the axis, with the property that any pair
of these curves intersect in at most 3 points. It was shown that the combinatorial complexity
of the union of n such figures is O(not(n)), where or(n) is the inverse Ackermann’s function.

*Received by the editors June 18, 1990; accepted for publication (in revised form) September 18, 1992. This
research was partially supported by the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)
under National Science Foundation grant STC-88-09648.

Department of Computer Science, Charles University, Praha, Czechoslovakia.
Institut ftir Informatik, Freie Universitit Berlin, Berlin, Germany.
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary. The research of this author

was supported by Hungarian Science Foundation grant OTKA-1814.
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. The research of this author was

supported by Office of Naval Research grant N00014-90-J-1284, grants from the United States-Israeli Binational
Science Foundation, and the Fund for Basic Research administered by the Israeli Academy of Sciences.

2The research of this author was supported in part by the ESPRIT II Basic Research Actions Program of the EC
under contract 3075 (Project ALCOM).

3The research of this author was supported by National Science Foundation grant CCR-89-01484.
4The research of this author was supported by a grant from the German-Israeli Foundation for Scientific Research

and Development.

154

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 155

As all these examples indicate, the property of having a union of small combinatorial
complexity somehow seems to require that the boundaries of any pair of the given figures
intersect in a small number (1, 2, or 3) of points. When the allowed number of intersections
becomes 4 or more, there are sets of n triangles whose union has quadratic complexity. How-
ever, one observes that to attain quadratic complexity, it seems to be essential that the triangles
be very narrow and many must have an angle that tends to 0 as n increases.

The purpose of this paper is to show that if this is not allowedmnamely, if we are given a
collection of triangles that are "fat"mthen indeed the combinatorial complexity of their union
is small.

Statement of results. We call a triangle T -fat, if each angle of T is at least . By a
figure we mean a (closed) region in the plane, bounded by a closed Jordan curve or by an
unbounded Jordan arc.

Let " be a finite family of figures. A hole of " is a connected component of the com-
plement of the union of the figures of . The number of holes of " will be denoted by
H(.T).

A point of the boundary of the union of a family " is called a corner of .T" if it is a point
of intersection between the boundaries of two figures in .T. The boundary complexity of .T
(denoted by BC(.T’)) will be the number of comers of.T; note that we do not count vertices (if
any) of the figures of" as comers their number is usually small and presents no problems in
the analysis. An edge of.T is a connected portion of the boundary of the union of.T" contained
in the boundary of a single figure between two adjacent comers.

Our main results are the following theorems"
THEOREM 1.1. For anyfixed 3 > O, every family SF of n 3-fat triangles has O(n) holes,

with the constant ofproportionality depending on 3.
Using this theorem in combination with the Combination Lemma of Edelsbrunner et

al. [6] (reviewed in the next section), we will show in 4 the following
THEOREM 1.2. For anyfixed 3 > O, the boundary complexity ofeveryfamily ofn 3-fat

triangles is O(n log log n) (again, the constant ofproportionality depends on 3). On the other
hand, there exist suchfamilies (even with 3 60) whose boundary complexity is f2 (not(n)).

In the special case when the triangles in our family all have roughly the same size, the
boundary complexity becomes linear (in the statement of the theorem, diam(T) denotes the
diameter of triangle T):

THEOREM 1.3. Let 3 > 0 and 0 < c < C be fixed numbers. Let f" be a family of n
3-fat triangles, such that c < diam(T) < C for every triangle T 5F. Then the boundary
complexity of,T" is O(n) (with the constant ofproportionality depending on 3 and on C/c).
The boundary complexity is also linearfor afamily of3-fat wedges (regions bounded between
a pair ofrays with a common endpoint).

Related results have been recently obtained by Alt et al. [2], where the complexity of fat
objects was first considered. They showed, among other results, that the boundary complexity
of the union of n 3-fat double wedges is O (n). They have also shown that the number of holes
(and the boundary complexity) of the union of n triangles, each of which is homothetic either
to a fixed triangle T or to the reflection of T, is linear. These results are special cases of the
results that we obtain in this paper.

2. Preliminaries. In this section we review two basic results concerning arrangements
of certain types of figures, which will be needed in the subsequent analysis. The first result,
adapted from [6], is stated here in a more specialized form, which nevertheless follows easily
from the original version of [6].

LEMMA 2.1 (Combination Lemma [6]). Let ,1 and ,T’2 be families offigures, whose
boundaries are polygons with n and n2 sides in total. Then

156 MATOUEK, PACH, SHARIR, SIFRONY, AND WELZL

BC(.T’ t_) 9r2) < BC(.T’) + BC(.T’2) + O(n + n2 + H(.T’ U .T’2)).

The next lemma follows from a more general statement about pseudodisks, [14], [8].
However, for the sake of completeness we present the simple proof for the special case we
needhere (two figures are called homothetic, ifone can be obtained from the otherby translation
and scaling).

LEMMA 2.2. For afamily ofn pairwise homothetic triangles we have BC(U) _< 6n.

Proof. Let us first observe that the boundaries of two homothetic triangles cross in at
most two points. Consider now a comer w of , which is the intersection of two edges e
and e’ of two of the triangles. Each edge has one direction at the comer in which the edge
’disappears’ locally into the respective other triangle. Let v and v’ be the vertices incident to
the edges in those distinguished directions. Note that either v or v’ must be covered by the
respective other triangle. Indeed, in order for v to lie outside, the edge e must create another
boundary crossing, and similarly for v’; thus, if both v and v’ are not covered, we get at least
three boundary crossings, which is impossible. If v is covered, the comer w is the last comer
on e in the direction toward v (since, by convexity, the whole portion between w and v is
covered); an analogous statement holds for v’.

We charge the comer to the pair (e, v), if v lies in the other triangle, and to the pair (e’, v’),
otherwise. We have seen that each such pair can be charged at most once, so the number of
comers is at most twice the number of vertices, namely, 6n. (Note that this bound holds even
if we also count in the boundary complexity the triangle vertices on the boundary.

3. Bounding the number of holes. In this section we prove Theorem 1.1, that is, we
show that a set of 3-fat triangles has at most a linear number of holes.

Passing to canonical triangles. The first step in the proof is to transform the given
collection .T" to another collection consisting of canonical triangles so that the number of
holes in the new collection is not much different than the number of holes of U. Specifically,
we have

LEMMA 3.1 (Canonization Lemma). For each 3 > 0 there exists a positive constant
c c(3) O(1/3), such that if.U is a family of n 3-fat triangles, then there exists families
1 .T’c consisting of O(n) triangles in total, such that each Ui is a family of3
homothetic triangles and

H(’) < H(t2... t2 .T’e) + O(n).

The canonization is achieved by producing triangles which have edges from some fixed
finite set of directions D(3) {0, 3, 23 (ks 1)3}, where ks F4zr/3] and 2rc/k.
The set D(3) has the property that every angle of at least 3/2 contains a direction in D(3).

LEMMA 3.2. Let 3 > O. Any 3-fat triangle can be expressed as the union ofthree(3
triangles T1, T2, T3, such that two of the sides of each Ti have directions in D(3), while the
third is a side of T.

Proof. Let T be a 3-fat triangle with vertices A, B, C, and let O be the center of its
inscribed circle (which is also the intersection of the angle bisectors, see Fig. 1). Hence each
of the angles OAC, OBC is at least 3/2. We can thus find a point Q in the triangle, such
that the point O lies in the triangle AB Q and the segments A Q and B Q have directions in
D(3). Such a point Q determines the triangle T AB Q, and T2, T3 can be constructed in
an analogous manner for the two other sides of T. q

In the first stage of canonization, we replace each triangle in .T by three "semi-canonical"
triangles as in the preceding lemma. In a second stage we shrink each of the new triangles
until it becomes the union of two "fully canonical" triangles. This is shown in the following
lemma.

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 157

C

B

A

FIG. 1. First stage ofcanonization.

LEMMA 3.3 (Shrinking Lemma). Let be a family ofn triangles. Let f* arise from f"
by replacing each triangle T ABC in f" by the union of two triangles ABX, AYC, such
that X lies on AC and Y lies on AB (see Fig. 2). Then

H(9r) _< H(U*) + 3n.

C

B

FIG. 2. Second stage of canonization.

Proof. Since the union of f* is contained in the union of .T, the only way in which the
number of holes of might decrease as we pass from f" to f* is when a pair of holes are
merged together to form a single hole. Let us imagine that every triangle ABC of f" shrinks
into the corresponding figure of f* by a continuous deformation, during which the side BC
is deformed into an outward-concave curve ?,, e.g., in the manner depicted in Fig. 3.

During this shrinking process, two holes of may be merged to form a new hole only
when a vertex of some other triangle is passed by t’ and appears on the boundary of the union
of the shrinking family of figures. Each such event decreases the number of holes by 1, and we
can charge this event to the newly appearing vertex. Note that this event is irreversible-once
a vertex has appeared on the boundary of our family, it will never be covered again, so there
are at most 3n such events during the entire shrinking process, hence the number of holes
could not have decreased by more than 3n.

158 MATOUEK, PACH, SHARIR, SIFRONY, AND WELZL

FIG. 3. Shrinking a triangle.

Now the proof of Lemma 3.1 is easy. First we replace, using Lemma 3.2, each triangle
of the original family U by the union of a triple of semicanonical triangles, each having two
sides in the set of canonical directions. Then we replace each semicanonical triangle ABC by
a pair of triangles ABX, A YC as in Lemma 3.3 so that each side of the new triangles has a
direction in a fixed finite set of directions and one angle in each triangle is exactly 3 (the angle
at vertex B and C, respectively); thus the final triangles fall already into a constant number
of families of homothetic triangles). We can apply the shrinking of Lemma 3.3 once more
to ensure that we have a set of at most 12n triangles, where two angles are . That is, the
triangles fall now in 2k O(1/3) homothetic classes. Lemma 3.3 is easily seen to imply
that at most O(n) holes can be lost in both shrinking processes, since the number of triangles
(and so the number of vertices) is linear.

Boundary complexity for a pair of homothetic families. By the Canonization
Lemma 3.1, it suffices to bound the number of holes of a union of a constant number of
families, each consisting of homothetic g-fat triangles. For simplicity of exposition, we will
continue to denote 3 by 3. If - f’l U U f’c, then any comer of f" must be a comer of
some family of the form .)g" [,.,J o%-’j, for < i, j < c (this also includes comers that arise within
a single family o-"i), thus

BC(.T’) _< BC("i ID j).

Therefore, Theorem . will be proved if we prove the following:
LEMMA 3.4. Let 3 > 0 befixed. Let fie" and .2 befamilies oftriangles, each consisting of

n 3-fat homothetic triangles. Then BC(-I t_l U2) O(n) (with a constant ofproportionality
that depends on 3).

Proof. Let us put f" f’l t3 -2. We will bound the number of edges of the union F of
’. Let us call the edges of the union Fi of ."i the superedges of ’i, 1, 2. If e is an edge
of F lying on a superedge s of a triangle T of f’i, we call s the supporting superedge, T the
supporting triangle, and .)"i the supportingfamily of e.

By Lemma 2.2, we know that the boundary complexity of f’l and of -2 are linear; i.e.,
the number of superedges is linear in n.

Call an edge e of F trivial if e is the first or the last edge of F along its supporting
superedge. The number of trivial edges is therefore O (n).

Since edges of F have only six possible directions, it suffices to bound the number of
nontrivial edges with one fixed direction. Fix such a direction d, and let e be a nontrivial edge
of F having direction d. Suppose e is supported by the family 9r2. The edge e is adjacent
to two edges f and f’, whose respective supporting triangles T and T’ belong to the other
family U1 and are thus homothetic. Let s and s’ be the supporting superedges of f and f’,
respectively.

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 159

Call the pair (s, s’) an active pair of superedges, if they are connected by an edge e as
above; we will refer to e as an edge belonging to (s, s’).

We claim that the number of active pairs is O(n). Indeed, the superedges of f’l are
nonintersecting and each active pair is visible from each other in direction d. The number of
such visible pairs is linear; this can be seen by sweeping a line in direction d across the plane
or by applying a graph planarity argument.

The proof will therefore be finished if we prove the following:
LEMMA 3.5. Let (s, s’) be an active pair of superedges; then the number of nontrivial

edges belonging to (s, s’) is bounded by a constant (depending on 3).
Proof. Let T and T’ be the triangles supporting s and s’, respectively (see Fig. 4). Consider

all the edges belonging to the active pair (s, s’), which, by our convention, are all assumed to
have direction d; without loss of generality we assume that d is horizontal and that T lies to the
left of T (see Fig. 4). Without loss of generality, we may also assume that the corresponding
holes of f" lie below these edges.

emEm s

Ei+l ei+l

Ei

E1

E+I T’

ei E
e.1

FIG. 4. Active pair.

Let these edges be el em (in ascending order along s and s’). Let b denote the side
of T parallel to s’, and let a’ denote the side of T’ parallel to s. Without loss of generality we
may assume that the projection of s in direction d on the line containing b is contained in b
(and similarly for a’ and s’).

For each edge ei let us denote the intersections of its superedge with the edges b, s’ by Ei,
E, respectively (see Fig. 4; these intersections exist by the assumption just made and because
each ei is nontrivial and thus penetrates through both T and T’). Consider the parallelogram

160 MATOUEK, PACH, SHARIR, SIFRONY, AND WELZL

E E Etm Etl The angle E1Em Etl is at least 3; hence, IE E’I > ’. IE Em l, where , > 0 is a
constant depending on 3.

Consider an edge ei and its supporting triangle T/. This triangle must contain both points
Ei and E. The key observation is that Ti cannot intersect the segment Ei+l E+1, simply
because Ei+1Ei’+ is part of a superedge and T/belongs to the same family as Ei+l E+

Since T/is 3-fat, it must contain the triangle R with base EiE and angles 3 at the vertices
This means that the length of the segmentEi and E so R also does not intersect Ei+l Ei+ 1"

Ei Ei+1 is at least a constant fraction (depending on 3) of the length of EiE and, hence, also of

E1 Era. This implies that the number m of nontrivial edges belonging to the active pair (s, s’)
is bounded by a constant.

Remark. A more detailed analysis in the previous lemma shows that the constant claimed
is O(1/32). That is, if we denote the cardinality of ."i by ni, then BC(tO .T’2) O(ni -+-
nj + min{ni, nj}/32). This gives a bound of O(cn/32) O(n/33) for H(9t’) (for the original
family ’). Summing up, we have at most O(n/33) holes in the union of n 3-fat triangles.
This is probably not tight in terms of 3; the best lower bound we can derive is f2(n/3).

In closing this section, we note that Lemma 3.4 has the following corollary, which may be
of independent interest. Call a family of triangles c-oriented if the orientations of the edges of
the triangles are drawn from a fixed set of c orientations; see [10], [11], [18], [22] for several
studies of c-oriented polygons.

COROLLARY 3.6. The boundary complexity ofafamily ofn c-oriented triangles is 0 (n),
where the constant ofproportionality depends on c and the minimum angle between any two

of the c given orientations.

Remark. The weaker result of Alt et al. [2] is also a special case of this corollary.

4. The boundary complexity of the union of fat triangles. In this section we analyze
the boundary complexity of the union of n fat triangles. We rely on the results of the preceding
section concerning the number of holes, on the Combination Lemma 2.1, and on a special
way of decomposing the given collection of triangles into subcollections, each having a union
with small boundary complexity.

Proof of Theorem 1.2. Let BC(n) denote the maximum possible boundary complexity
of a family of n 3-fat triangles. Let - be such a family. Applying the first canonization
step in the proof of Theorem 1.1, we replace .T" by a constant number of subfamilies, each
consisting of triangles that have two sides with fixed orientations. By further refining this

partitioning, we can also assume that within each subfamily the orientations of the third edges
of the triangles all lie within some small angular interval, of length, say 1. Note that the
number of subfamilies is still a constant and that the overall union of all subfamilies is equal
to the union of . We will show that the boundary complexity of the union of the triangles
in the ith subfamily is O(ni log log hi), where ni is the number of triangles in the subfamily.
The Combination Lemma 2.1 then implies that the boundary complexity of the union of all
triangles is O (n log log n), as asserted.

Thus, from now on, we consider a single subfamily, which, for simplicity, we also denote
by . By applying an appropriate affine transformation, we can assume that each triangle is
a right triangle with one horizontal edge and one vertical edge, that these edges meet in the
lower-left vertex of the triangle, and that the hypotenus of the triangle has orientation between,
say, 134 and 136 degrees (so the triangle is nearly isosceles).

Our first step is to partition .T" into O (log n) subfamilies so that the boundary complexity
of each subfamily is almost linear in the number of triangles it contains.

LEMMA 4.1. If all triangles in have the form assumed above and meet a common
horizontal line, then BC(.T’) O(n 2(n)), where or(n) is the inverse Ackermannfunction.

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 161

Proof. Without loss of generality, assume the line is the x-axis. For each triangle T 6 -let T+ denote its portion above the x-axis and T- denote its portion below the x-axis. The
boundary complexity of f" is clearly bounded by the sum of the boundary complexities of the
union of the triangles T+ and of the union of the trapezoids T-. The boundary complexity
of the upper triangles T+ is O (n)mif we direct all edges toward the x-axis, then, as is easily
seen, every comer is the last comer (in this direction) for one of its two edges.

As to the lower trapezoids T-, we first decompose each T- into two interior-disjoint
portions, one being an axis-parallel rectangle and the other being a right, nearly isosceles
triangle with a horizontal edge and a vertical edge whose top vertex lies on the x-axis; see Fig. 5.

\T+

FIG. 5. A triangle cut by a horizontal line.

It suffices to show that the boundary complexity of the union of the family - consisting
of these new triangles is O(n 2(n)), because the boundary complexity of the union of
the rectangles is trivially linear and the Combination Lemma 2.1 implies that merging the
rectangles with the triangles of U- yields a joint boundary complexity that is proportional to
the complexity of --. We therefore restrict our attention only to the union of ’-.

CLAIM 1. A horizontal edge of a triangle T in f’- can be incident to at most four hole
corners.

Proof. Let e be the given edge, and let e’ XY be an interval along e that appears on
the boundary of the union and is not the leftmost such interval along e. The left endpoint X
of e is the intersection of e with the hypotenus of another triangle T’, and our assumption
concerning e’ implies that the vertical edge of T’ also cuts e. See Fig. 6. Let the top angles of
T, T’ be c, c’ respectively, and let the length of the vertical edge of T be h; let g denote the
intersection e N T’.

FIG. 6. Two "interleaving" triangles.

162 MATOUEK, PACH, SHARIR, SIFRONY, AND WELZL

We have lel h tanc and Igl h tanc(. Thus Igl/lel tan c(/ tan c is very close to 1;
in particular, it is greater than 1/2. This shows that the interval e’ is unique and so that e can
contain at most two intervals that bound holes, namely, e’ and another leftmost interval. This
completes the proof of the claim.

CLAIM 2. The total number of hole corners that are incident to either a horizontal edge
or to a vertical edge is O(n).

Proof. Claim implies that the number of hole comers along horizontal edges is
O(n). Let e be a vertical edge, and let e’ be an interval along e bounding a hole. It is easily
verified that the top endpoint of e’ must be incident to a horizontal edge. The claim is now
immediate.

It therefore remains to consider only hole comers formed by intersections of two hy-
potenuses of the triangles of -. We order these comers in lexicographical order so that
1 -< 2 if, for C1 (Xl, y) and C2 (X2, Y2), either Xl < X2 or x x2 and yl < Y2- This is
clearly a linear order.

Our strategy is to transform this sequence of comers to a Davenport Schinzel sequence of
order 4 1], 12], which will then yield the asserted bound on the boundary complexity of --.
(Recall that a Davenport Schinzel sequence of order 4 is a sequence that does not have any two
equal adjacent elements and does not contain as a (not necessarily contiguous) subsequence an
alternation a b.. a b.. a b of length 6 between any two distinct symbols a and b.)
To this end, we divide each hypotenus at its midpoint into two subsegments of equal length,
which we refer to as its top part and bottom part, respectively. For each comer c consider the
hypotenus incident to c and appearing along the hole just below c; c is associated with the
part (top or bottom) of that hypotenus, to which it is incident. See Fig. 7.

om

FIG. 7. The corner c is associated with the bottom part of the triangle T.

We proceed through the ordered sequence of corners and form a sequence U, consist-
ing of all associated appearances of the top or bottom hypotenus parts in the order that the
corresponding corners are encountered. Thus U is composed of at most 2n distinct symbols.

CLAIM 3. The number of appearances of bottom parts in U is at most n, and the number
of pairs of equal consecutive elements in U is O(n).

Proof. We first show that no bottom part of a hypotenus can appear twice in U. Indeed,
let T be a triangle with a hypotenus h and c be a hole comer of the kind we consider that is
associated with the bottom part of h. Thus there exists another triangle T’ whose hypotenus
meets T at c and has a smaller slope than h. A calculation similar to that in the proof of Claim
1 shows that the next higher appearance of h along a hole must already appear on its top part.
This establishes the first assertion of the claim.

Next consider adjacent equal elements of U. Suppose a hypotenus h of some triangle T
appears twice consecutively in U. Thus h contains two subintervals e, e’ that bound holes.

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 163

But then the bottom endpoint c of the higher of these two intervals must be incident to a
vertical edge (otherwise c is incident to some other hypotenus h’, which necessarily ap-
pears in U between the two appearances of h). The claim is thus an immediate consequence
of Claim 2.]

We can therefore delete from U all bottom appearances and then delete one of each pair
of equal consecutive elements. The new sequence U* consists of only top hypotenus parts
(so it is composed of at most n distinct symbols), has no pair of equal adjacent elements, and
satisfies IUI IU’I / O(n).

We claim that U* is indeed a Davenport Schinzel sequence of order 4. That is, we have to
show that U* cannot contain an alternating subsequence ofthe form a b. a b. a b,
where a and b are top parts of the hypotenuses of two distinct respective triangles, T, R.

Suppose to the contrary that such an alternation exists. We distinguish between two cases:
CASE I. T and R intersect in at most two points. This can happen in one of the four

schematic forms shown in Fig. 8.

(i) (ii) (iii) (iv)
FIG. 8. Two triangles of- intersecting in at most 2 points.

Cases (i) and (iv) are easy, because they allow no alternation of a and b in U, as is easily
checked. In case (ii) let us first assume that a is the top part of the hypotenus of the left
triangle. Note that all appearances of a between the first and last appearances of b correspond
to corners that lie in the vertical strip spanned by the right triangle R. Let p and q be two
subintervals of a that give rise to two such appearances of a. Then it is easily seen that there
must exist another triangle Q that cuts the hypotenus of T in some interval between p and q;
see Fig. 9. Denote the top angles of triangles T, R, Q by or, c’, c", respectively. Let d’ denote
the length of the vertical edge of R, let do denote the vertical distance between the bottom
endpoint of p and the top endpoint of q, and let d denote the vertical distance from the top
endpoint of q to the x-axis; see Fig. 9.

Simple trigonometric calculations show that

d tan c" do tan ot < d’ tan

and

do+d’ <d,

which is clearly impossible, since all three angles c, c’, c" are close to 45.
This argument implies that, between the first and last appearance in U* of the hypotenus

of the right triangle, there can be at most one appearance of the hypotenus of the left trian-
gle. Thus the maximum length of an alternation between a and b in U* is 5 (in the form
a... b... a... b... a). If a is the top part of the hypotenus of the right triangle, the above
analysis shows that the longest possible alternation is now only a b... a b. Exactly the
same analysis applies in case (iii).

CASE II. T and R intersect infour points. This is depicted in Fig. 10. Again without loss
of generality we can assume that T is the triangle whose top vertex lies to the left of that of R
(otherwise, as above, the maximum possible alternation will be shorter).

164 MATOUEK, PACH, SHARIR, SIFRONY, AND WELZL

P

FIG. 9. Case I(ii) of the proof.

a

FIG. 10. Case II of the proof.

Note that the second appearance of a in the alternation must be to the right of the inter-
section point of the two hypotenuses, which implies that the two last appearances of b in the
alternation must occur below the horizontal edge of T. But then, arguing as in the proof of
Claim 1, it is easy to show that the last occurrence of a in the alternation must be at the bottom
part of the hypotenus, contrary to assumption. Thus the alternation is impossible.

Hence U* is indeed a Davenport Schinzel sequence of order 4 composed of at most n
distinct symbols, so its length is at most O(n 2n)) [1]. This is also an upper bound on the
length of U, and this clearly completes the proof of the lemma. U

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 165

We now decompose 3t" as follows. We first find a horizontal line with the property that the
number oftriangles in .T" lying completely above and the number oftriangles lying completely
below are both at most n/2. Let U1 denote the subfamily of triangles of" intersecting . We
apply the same procedure to the two subfamilies of f" consisting respectively of the triangles
lying above and of those lying below . For each of these subfamilies we find a "halving"
horizontal line as above and define -2 to be the collection of triangles in these subfamilies
which intersect one of these halving lines. We are now left with four subfamilies, each of
which is next halved by a line, and U3 consists of the remaining triangles that intersect one
of these lines. Continuing in this fashion, we obtain a decomposition of into O(log n)
subfamilies, f’l, .T’2 and the preceding lemma is easily seen to imply that the boundary
complexity of each subfamily . is O(rti 2c(ni)), where ni 1. 1.

We now apply the Combination Lemma 2.1 in a tree-like fashion. That is, we merge the
subfamilies U/two at a time, then merge each of the resulting collections two at a time, and
so on, until all subfamilies are merged together. At each step, when merging two subfamilies
1, 2 to form a combined subfamily , we have

BC() _< BC(I) + BC(2) -t-- O(nl + n2)

where n is the size of i, for 1, 2. This is an immediate consequence of the Combination
Lemma and of the fact that the number of holes of is O(nl + n2). Since the depth of the
tree representing these merges is O (log log n) and the sum of the boundary complexities of
the individual subfamilies . is O(n 2(n)), it follows easily that BC(U) O(n log log n).

To obtain the lower bound in Theorem 1.2, take a collection of n line segments whose
lower envelope consists of f2(net(n)) subsegments [23]. Flatten the collection in the y-
direction until all segments have almost horizontal slope. Then replace each segment e by an
equilateral triangle lying above e and having e as one of its sides. It is easily checked that the
boundary complexity of the union of these triangles is S2 (net(n)).

Remark. By modifying the above lower bound construction and exploiting the special
structure of the construction in [23], one can also obtain a collection of n equilateral triangles,
whose union has (R)(n) holes, so that no triangle appears more than once along the boundary
of any single hole, and yet the overall boundary complexity is f2 (net (n)).

Proof of Theorem 1.3. Recall that the theorem asserts that if .T" is a family of n 3-fat
triangles with c < diam(T) < C for all T 6 f’, then BC(9v) O(n), with the constant of
proportionality depending on 6 and C/c. Let U be such a family of triangles. We choose a
real number D that satisfies the following two conditions:
(i) No square with side D is intersected by more than two sides of any triangle from .T’.
(ii) The diameter of any triangle of f" is at most a constant multiple of D.

The existence of such a D is guaranteed by the assumptions on U; the constant factor in
ccondition (ii) is easily seen to be of the form -b-q (6), for an appropriate function q.

Let us cover the plane by a grid of squares with side length D. By the choice of D,
every triangle of 9v intersects at most a constant number of squares of this grid. We claim
that the boundary complexity of .T" inside each grid square is linear in the number of triangles
intersecting that square, and this will imply that the total boundary complexity of - is O (n).

Let us consider a fixed square Q of the grid. For each triangle T 6 ’, at most two sides
of T intersect Q; hence, there exists a wedge (angle) WT such that Q A WT Q fq T. Let us
consider the family

"I/V Wv T 6 ., T Q s O}.

The boundary complexity of W is an upper bound for the complexity of the part of the
boundary of" inside Q. Adapting Theorem 1.1 to the special case of wedges, it is easily seen

166 MATOUEK, PACH, SHARIR, SIFRONY, AND WELZL

that the family V has a linear number of holes. We claim that V can be partitioned into a
constant number.of subfamilies W1 We, each ofwhich has a linear boundary complexity.
Applying the Combination Lemma 2.1 (as in the preceding proof) a constant number of times,
we obtain a linear bound on the boundary complexity of W. (This part of the proof also
establishes the second assertion in Theorem 1.3 concerning the complexity of the union of fat
wedges.)

We may assume that the apex angle of each wedge of V is at least 3 (this is obvious for
triangles having two sides intersecting Q; for triangles with only one intersecting side, the
choice of the apex and its angle are fairly arbitrary). It follows that there exists a fixed set of
a constant number c O(1/3) of canonical orientations (e.g., 3/2 apart from each other) so
that each wedge in W contains a ray emerging from its apex and having one of these canonical
orientations. We thus choose the decomposition V V u U Wc so that for all wedges
in the same subfamily, the corresponding rays are all in the same (canonical) direction. It is
well known that the boundary complexity of each subfamily "i of wedges is linear. Indeed,
if the common ray direction is assumed to be the negative y-direction, the boundary of the
union of "l/i is the upper envelope of the collection of rays that bound these wedges, and it
is known that the complexity of such an envelope is linear (see, e.g., [5]). This finishes the
proof of Theorem 1.3.

5. Extensions, applications, and open problems. Wehave so far shown that the union of
n 3-fat triangles has a linear number of holes and that its boundary complexity is O (n log log n)
and can be f2 (not (n)). In this section we consider several extensions of these results, mention
some applications, and conclude with some open problems.

Constructing the union of fat triangles. First we note that one can also calculate ef-
ficiently the union of such a family . The following algorithm, adapted from [14], can be
used. Partition f" into two subfamilies of roughly n/2 triangles each. Recursively calculate
the union F of 9t- and the union F2 of 2. Then merge the two unions by the line-sweeping
procedure of Chazelle and Edelsbrunner [3] or of Mairson and Stolfi [15]. This computes all
k intersections between the boundaries of F and of Fe in time O(N log N + k), where N
is the overall size of F1 and of Fe. But each such intersection is easily seen to be a comer
of the overall union of 9t’, so by Theorem 1.2 we have that both N and k are bounded by
O(n log log n). This easily implies that we can construct the union of from F and F2 in
time O (n log n log log n), so the overall running time of this algorithm is O (n loge n log log n).
We thus have

THEOREM 5.1. One can calculate the union of n 3-fat triangles in O(n loge n log logn)
time and O(n log log n) storage (where the constant ofproportionality depends on 3).

Remark. One should contrast the problem of explicit construction of the union of a
collection of figures to that of computing various measures of the union, such as its area or the
length of its boundary. Such measures can be calculated efficiently for the case of axis-parallel
rectangles, not necessarily 3-fat 17]. However, such efficient procedures are not known for
general non-3-fat collections. For 3-fat collections they are immediate by-products of the
algorithm given above.

Recently, after the original submission of the paper, Miller and Sharir 16] obtained an
improved randomized incremental algorithm for computing the union of n fat triangles, using
O(n 2a(n) log n) expected time and storage.

General "fat" objects. We can also extend our results to families of polygons, which can
be expressed as the union of a constant number of 3-fat triangles. Some "fatness" condition is

clearly essential for such a result to hold, since one can form a quadratic number of holes with
very narrow objects. Moreover, the following example shows that even when the polygons

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 167

appear to be fat in an intuitive sense, they can still form quadratically many holes, so a stronger
condition, such as imposed above, has to be enforced.

EXAMPLE 5.2. There exists a family of n similar convex figures (actually regular poly-
gons), for each of which the ratio between the radii of the circumscribed and inscribed circles
is less than 2 and which determine f2 (n 2) holes.

Proof. We will construct a family of 2n regular n-gons. Let us choose a regular n-gon
A A1A2... An. On each of its sides, AiAi+l, choose n + equidistant points Bi,o
Ai, Bi,1 Bi,n-1, Bi,n Ai+l. The first half of our family consists of n regular n-gons
CI, C2 Cn, where Cj B,jB2,j... Bn,j. The second half of the family consists of n
regular n-gons D Dn, where Di arises as a mirror image of A, reflected around the side

Ai Ai+ 1. This family determines quadratically many holes. [3

Remarks. (1) This example is somewhat misleading because we ignore here the overall
description complexity of the polygons Ci, Di (which is itself quadratic). We include this
example only to demonstrate that one needs to be careful in the definition of fatness if one
wishes to extend the results of this paper to more complex figures than triangles.

(2) The reason for the large complexity in this example is that the boundaries of the
convex figures intersect in many points per pair. It remains to investigate what happens if we
consider a family of fat objects, such that the number of intersections of boundaries of any
pair is bounded by a constant.

Applications. As briefly mentioned in the introduction, the fact that the boundary com-
plexity of a family of fat triangles is small has various combinatorial and algorithmic con-
sequences. So far these applications were limited to the case of pseudodisks and to a few
other favorable cases mentioned in the introduction. These applications can now be extended
to the case of fat triangles. We list some of them as corollaries of the bounds obtained in
the preceding sections and omit the proofs, which are easily obtained by adapting the earlier
proofs cited below.

COROLLARY 5.3. Let T Tn be n 3-fat triangles lying in three-dimensional space
in arbitrary horizontal planes and viewedfrom a point at z -x. Then one can perform
hidden surface removalfor this scene in time O(n3/ logn(loglogn) 1/2 + k), where k is the
size of the resulting "visibility map."

Proof. See [20]. F
Remark. Recently, after the original submission of this paper, this result has been signif-

icantly improved in [13]. The algorithm presented there is also based on the results of this
paper, and its running time is O ((n log log n + k) log2 n).

COROLLARY 5.4. Let T1 Tn be n 3-fat triangles in the plane, and let k <_ n 2 be
an integer. The number of intersection points of the boundaries of these triangles which are
covered by at most k other triangles is O(nk log log).

Proof. See [19].
COROLLARY 5.5. Let T1 Tn be n 3-fat triangles in the plane. One can preprocess

them by a randomized algorithm, whose expected running time is 0 (n log2 n log log n), into
a data structure of size 0 (n log n log log n), so that, given any query point z, all k triangles
containing z can be reported in (worst-case) time O((k + 1) log n).

Proof. See [19].
Remark. The bounds stated in the preceding theorems follow from the bound O(n log log n)

on the boundary complexity of a collection of fat triangles. Since we believe that this bound is
not tight (see below), we expect corresponding improvements in the bounds of the preceding
theorems. We also note that the running time of the algorithm of Corollary 5.5 can be slightly
improved by the recent technique of 16] mentioned above.

168 MATOUEK, PACH, SHARIR, SIFRONY, AND WELZL

Recently, the results of this paper have been applied in [21 to obtain efficient algotihms
for motion planning among fat obstacles.

Open problems. The main open problem that arises is to close the gap between the upper
and lower bounds on the maximum boundary complexity of a union of n 3-fat triangles. We
venture the conjecture that the correct bound is indeed O (nu (n)). It is annoying that we were
unable to prove this even in the special case of Lemma 4.1.

Another problem is to calibrate the dependence of the constants of proportionality in the
various bounds obtained above in terms of 3 so that sharp bounds can be obtained also in cases
where 3 does depend on n. Some progress toward this goal was recently achieved in [7].

Finally, it is challenging to extend the results of this paper to three dimensions. For
example, can one show that the boundary complexity of the union of n arbitrary cubes (or
of ’fat’ simplices) in 3-space is close to quadratic in n (as opposed to a trivial cubic upper
bound)?

REFERENCES

R AGARWAL, M. SHARIR, AND P. SHOR, Sharp upper and lower bounds on the length of general Davenport
Schinzel sequences, J. Combin. Theory Ser. A, 52 (1989), pp. 228-274.

[2] H. ALT, R. FLEISCHER, M. KAUFMANN, K. MEHLHORN, S. N.HER, S. SCHIRRA, AND C. UHRIG, Approximate
motion planning and the complexity ofthe boundary ofthe union ofsimple geometricfigures, in Proc. 6th
Symposium on Computational Geometry, Berkeley, CA, 1990, pp. 281-289.

[3] B. CHAZELLE AND H. EDELSBRUNNER, An optimal algorithmfor intersecting line segments in theplane, J. Assoc.
Comput. Mach., 39 (1992), pp. 1-54.

[4] H. EDELSBRUNNER, L. GUIBAS, J. HERSHBERGER, J. PACH, R. POLLACK, R. SEIDEL, M. SHARIR, AND J. SNOEYINK,
On arrangements ofJordan arcs with three intersections per pair, Discrete Comput. Geom., 4 (1989),
pp. 523-539.

[5] H. EDELSBRUNNER, L. GUIBAS, J. PACH, R. POLLACK, R. SEIDEL, AND M. SHARm, Arrangements ofcurves in the
plane---topology, combinatorics, and algorithms, Theoret. Comput. Sci., 92 (1992), pp. 319-336.

[6] H. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, The complexity and construction ofmanyfaces in arrangements

of lines and of segments, Discrete Comput. Geom., 5 (1990), pp. 161-196.
[7] A. EFRAT, G. ROTE, AND M. SHARIR, On the union offat wedges and separating a collection ofsegments by a

line, to appear in Computational Geometry--Theory and Applications.
[8] S. FORTUNE, A fast algorithm for polygon containment by translation, in Proc. 12th Internat. Colloq. on

Automata, Languages and Programming, 1985, pp. 189-198.
[9] L. GUIBAS, M. SHARIR, AND S. SIFRONY, On the general motion planning problem with two degrees offreedom,

Discrete Comput. Geom., 4 (1989), pp. 491-521.
[10] R. H. Gt3TTNG, Conquering contours: efficient algorithms for computational geometry, Ph.D. Dissertation,

Dortmund University, Dortmund, Germany, 1983.
11 R. H. Gt3TTING AND TH. OTTMANN, New algorithms for special cases of hidden line elimination problems,

Computer Vision, Graphics, and Image Processing, 40 (1987), pp. 188-204.
12] S. HART AND M. SHARER, Nonlinearity ofDavenport Schinzel sequences and ofgeneralized path compression

schemes, Combinatorica, 6 (1986), pp. 151-177.
13] M. KATZ, M. OVERMARS, AND M. SHAreR, Efficient output sensitive hidden surface removalfor objects with

small union size, Computational Geometry--Theory and Applications, 2 (1992), pp. 223-234.
[14] K. KEDEM, R. LVNE, J. PACH, AND M. SHARIR, On the union ofJordan regions and collision-free translational

motion amidst polygonal obstacles, Discrete Comput. Geom., (1986), pp. 59-71.
15] H. MAIRSON AND J. STOLFI, Reporting and counting intersections between two sets of line segments, in Theo-

retical Foundations of Computer Graphics and CAD, R. A. Earnshaw, ed., NATO ASI Series, Vol. F-40,
Springer-Verlag, Berlin, 1988, pp. 307-325.

16] N. MILLER AND M. SHARIR, Efficient randomized algorithmsfor constructing the union offat triangles and of
pseudodiscs, manuscript, 1991.

17] F. PREPARATA AND M. SHAMOS, Computational Geometry--An Introduction, Springer-Verlag, Berlin, 1985.
[18] G. RAWLINS AND D. WOOD, Optimal computation offinitely oriented convex hulls, Inform. and Comput., 72

(1987), pp. 150-166.
19] M. SHARIR, On k-sets in arrangements ofcurves and surfaces, Discrete Comput. Geom., 6 (1991), pp. 593-613.

FAT TRIANGLES DETERMINE LINEARLY MANY HOLES 169

[20] M. SHARIR AND M. OVERMARS, A simple output sensitive hidden surface removal algorithm, ACM Trans.
Graphics, 11 (1992), pp. 1-11.

[21] A. E VAN DER STAPPEtq, D. HALPERIN, AND M. OVERMARS, The complexity offree space for a robot moving
amidstfat obstacles, manuscript, 1992.

[22] X.H. TAN, T. HIRATA, AND Y. INAGAKI, The intersection searching problem for c-oriented polygons, Inform.
Process. Lett., 37 (1991), pp. 201-204.

[23] A. WIERNIK AND M. SHARIR, Planar realization of nonlinear Davenport Schinzel sequences by segments,
Discrete Comput. Geom., 3 (1988), pp. 15-47.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 170-184, February 1994

() 1994 Society for Industrial and Applied Mathematics
012

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS*
ROBERT W. IRVING ArO MARK R. JERRUM

Abstract. Suppose there is a three-dimensional table of cross-tabulated nonnegative integer statistics, and
suppose that all of the row, column, and "file" sums are revealed together with the values in some of the individual
cells in the table. The question arises as to whether, as a consequence, the values contained in some of the other
(suppressed) cells can be deduced from the information revealed.

The corresponding problem in two dimensions has been comprehensively studied by Gusfield [SLAM J. Corn-
put., 17 (1988), pp. 552-571], who derived elegant polynomial-time algorithms for the identification of any such
"compromised" cells, and for calculating the tightest bounds on the values contained in all cells that follow from
the information revealed. In this note it is shown, by contrast, that the three-dimensional version of the problem is

NP-complete.
It is also shown that if the suggested row, column, and file sums for an unknown three-dimensional table are

given, with or without the values in some of the cells, the problem of determining whether there exists any table with
the given sums is NP-complete. In the course of proving these results, the NP-completeness of some constrained
Latin square construction problems, which are of some interest in their own right, is established.

Key words, data security, NP-complete problems, Latin squares

AMS subject classifications. 68R05, 68Q15, 05B 15

1. Introduction. Problems of statistical data security in two dimensions have been stud-
ied extensively--see [1] for some indications of early work and [3], [4], and [6] for some
recent developments. In this note, we study the obvious extension of the problem to three
dimensions, raised as an open problem by Gusfield [3], and show that, as is the case in a variety
of other contexts, problems that are solvable in polynomial time in the two-dimensional case
become NP-complete when extended to three dimensions.

Consider a three-dimensional table D, of size n x n n, of nonnegative integer values
D(i,j,k), (1 < i,j,k < n). The table entries D(i,j,k) for fixedi, kand < j < n
constitute a row of the table, for fixed j, k and < < n a column of the table, and for fixed
i, j and 1 < k < n afile of the table.

Envisage that a particular table D represents a collection of cross-tabulated statistical
data, and that the row, column, and file sums of D are to be disclosed together with the values
contained in some of the cells. However, other cells may contain sensitive values that are
therefore to be suppressed; the question arises as to whether knowledge of the row, column,
and file sums together with the disclosed cells will (a) essentially fix the values of one or more
of the suppressed cells and (b) allow such values to be deduced in reasonable (say, polynomial)
time (say, by an adversary). A suppressed cell that has the same value in all legal tables, i.e.,
all tables satisfying the row, column, and file sums and containing the disclosed values, is said
to be compromised. A suppressed cell that is not compromised is said to be protected.

In the case of the corresponding two-dimensional problem, Gusfield [3] gives a O(n3)
algorithm to identify all the fixed cells and to calculate their values. In [3] and [4], Gusfield
also describes polynomial-time algorithms to calculate the tightest bounds on the protected
cells. As part of this work, a O(n3) algorithm is presented for the identification of a legal
solution in the two-dimensional case. In this context, it turns out that the obvious necessary
conditions for a legal solutionmnamely, that the sums of the row and column sums should be
equal and that each row and column sum should be at least equal to the sum of the disclosed
entries in that row or column--are also sufficient for the existence of a legal solution.

*Received by the editors November 19, 1990; accepted for publication (in revised form) October 7, 1992.
Computing Science Department, University of Glasgow, Glasgow, G12 8QQ United Kingdom.
Computer Science Department, University of Edinburgh, Edinburgh, EH9 3JZ United Kingdom.

170

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS 171

By contrast, in the three-dimensional case, we shall show that the obvious necessary
two-dimensional conditions on the row, column, and file sums are not sufficient to guarantee
the existence of a legal solution, and indeed that the problem of determining whether a legal
solution exists is NP-complete. This result holds even in the interesting special case in which
all the cells are suppressed; in other words, if we are given the row, column, and file sums,
and are asked whether a legal solution exists. We shall then proceed to show that the NP-
completeness of the existence problem also implies the NP-completeness of the problem of
identifying compromised cells, at least in the general case where some cells may be revealed.

The NP-completeness proofs involve consideration of special cases that are equivalent to
two-dimensional problems of Latin square construction, which are of some interest in their
own right. For instance, we show that a special case of the problem of the existence of a legal
solution is equivalent to the problem of constructing an n x n Latin square given independent
restricted choices for the various entries, and that this Latin square construction problem is
itself NP-complete.

2. Formal statement of the problem. Throughout, we assume that, unless otherwise
stated, the row, column, and file indices i, j, and k range over the values n wherever
appropriate. Suppose that for a given n n n table D of nonnegative integers, and for each i,
j, k, the row, column, and file sums are denoted by R(i, k), C(j, k), and F(i, j), respectively.
In other words,

(1) R(i,k) D(i, j, k),
j=l

(2) C(j, k) D(i, j, k),
i=1

(3) F(i, j) D(i, j,k).
k=l

If we represent the set of suppressed cells by S, i.e., S {(i, j, k) D(i, j, k) not
disclosed}, then we can calculate the reduced row, column, and file sums, namely,

R*(i, k) R (i, k) Z D(i, j, k),(4)
j:(i,j,k)S

(5) C*(j,k) C(j, k) Z D(i, j, k),
i:(i,j,k)CtS

(6) F*(i,j) F(i, j) Z D(i, j, k).
k:(i,j,k)S

We are now in a position to state formally the problem that we wish to pursue.
2.1. Three-dimensional statistical data--legal solutions (3DSDLS).
Instance: A positive integer n, nonnegative integer values R* (i, k), C* (j, k), and F* (i, j),

and a subset S of N3, where N 1, 2 n }.
Question: Does there exist an assignment ofnonnegative values to D(i, j, k) for (i, j, k) 6

S such that

(7) D(i, j, k) R*(i, k),
j=l

172 ROBERT W. IRVING AND MARK JERRUM

(8)
n

ED(i’ j’ k) C*(j, k),
i=1

(9) ED(i’ j’ k) F* (i, j),
k=l

where each sum is taken over values (i, j, k) S?
It is immediate that, in order for a solution to exist, the sums of the R*, C*, and F* values

must all be identical and satisfy constraints imposed by consideration of the two-dimensional
"slices" of the table, namely,

(10) .R*(i,k) F*(i, j) (1 <i < n),
k=l j=l

(11) -F*(i,j) C*(j,k) (1 <j<n),
i=1 k--1

j=l i---1

To see that these necessary conditions are by no means sufficient for the existence of a
legal solution, we consider an example in which n 2 and all cells are suppressed.

Example. It may be checked easily by exhaustive search that the 3DSDLS instance shown
in Fig. 1, in which the row, column, and file sums appear as labels on the appropriate arrows,
admits no legal solution, although the necessary two-dimensional conditions are satisfied.

0 2

,/

FIG. 1. An instance of3DSDLS ofsize 4 with no legal solution.

In order to show that the 3DSDLS problem is NP-complete, we shall restrict our attention
to a special case, which can be interpreted as the problem of constructing a Latin square

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS 173

given restricted choices for the various entries. This special case involves setting R* (i, k)
C* (j, k) F* (i, j) for all values of i, j, and k. If we define

S(i, j)- {k" (i, j, k) S},

then our task is to find a suppressed cell in each file, i.e., an element in S(i, j), which can be
given the value 1, subject to the constraint that no two cells can be chosen from the same row
and no two can be chosen from the same column. It should be clear that this can be interpreted
as the problem of constructing a Latin square of size n n where the choice of element in
position (i, j) is restricted to the set S(i, j).

2.2. Latin square construction (LSC).
Instance: A positive integer n, and for each i, j, a subset S(i, j) of n }.
Question: Does there exist a Latin square X of size n n such that, for all i, j, X(i, j)

S(i, j)?
Example. The first array below constitutes a "yes"-instance of LSC of size 4, with

underlined entries indicating one solution. On the other hand, exhaustive search will reveal
that the second array constitutes a "no"-instance.

{3,4} {1,2} {1,3,4} {1,2} {1,2} {1,3} {2,4} {3,4}
{2,4} {1,3} {1,2} {3,4} {3,4} {2,4} {1,2} {1,3}
{1,3} {2,4} {1,2} {1,3,4} {1,2} {3,4} {1,3} {2,4}
{1,2,3} {2,3} {3,4} {1,2,3} {3,4} {1,2} {3,4} {1,2}

Clearly a proof of NP-completeness for LSC implies that the more general 3DSDLS
problem is NP-complete also.

3. NP-completeness of LSC. In preparation for the proof of NP-completeness of LSC,
we need to investigate the conditions under which a Latin rectangle may be extended to a
larger Latin rectangle or to a full Latin square. The following result is well known--see [5]
or [7].

LEMMA 3.1. An arbitrary Latin rectangle of size m n (m < n) over a ground-set of
size n may be extended by the addition ofn m additional rows toform a Latin square ofsize
nzn.

In addition, we need a sufficient condition for a p q Latin rectangle to be extendable to
an n q Latin rectangle. The following result may not be the best possible, but it will suffice
for our purposes.

LEMMA 3.2. Suppose that L is a Latin rectangle ofsize p q with elements chosenfrom
a ground-set ofsize n, and suppose that n > p + 2q 2. Then L can be extended to a Latin
rectangle ofsize n q.

Proof. Suppose that the first j columns of L have already been extended to length n,
where 0 < j < q 1; we show that the (j + 1)th column can also be extended to length n.

Consider a bipartite graph G with vertex set V U t_J W. In U there are s n p
vertices, one for each of rows p + 1 n in the rectangle, and in W there are n vertices,
one for each element of the ground-set, which we may take to be n }. Vertices u 6 U
and w 6 W are joined if and only if element w already appears neither in column j + nor
in row u (and therefore w is a candidate for position (u, j) in the rectangle). It is clear that
the (j + 1)th column can be extended to length n if and only if the graph G has a matching
of size s.

By Hall’s theorem, G will have a matching of size s provided that, for each k (1 < k < s),
the vertices in every k-subset of U are collectively adjacent to at least k vertices in W. We
consider two cases"

174 ROBERT W. IRVING AND MARK JERRUM

Case (a) k > j. In this case, no element can appear in all the k rows corresponding to
the k vertices of U. Hence, these k vertices are collectively adjacent to all n vertices in W,
except for the p vertices corresponding to the elements in column j + 1, therefore, to n p
vertices. Since n p > k, the required condition for a matching of size s is met.

Case (b) k < j. In this case, it is possible that the k rows have up to k elements in
common, so that the best we can claim is that the k vertices in U are collectively adjacent to
at least n p k vertices in W. Nonetheless, since n p > 2(q 1), q >_ j, and j > k,
it follows that n p k > k, and the required condition is again satisfied.

Hence, by Hall’s theorem, G has a matching of size s, and therefore the (j + 1)th column
can be extended to length n as claimed.

We are now in a position to prove the NP-completeness of our Latin square construction
problem LSC.

THEOREM 3.3. Latin square construction is NP-complete.
Proof. Membership in NP is immediate, for we need simply guess an element X(i, j)

S(i, j) for each i, j, and it is straightforward to verify, in polynomial time, whether the resulting
square X is a Latin square.

To show that LSC is NP-complete, we describe a polynomial-time transformation from
the known NP-complete problem 3-Satisfiability (3-SAT)wsee [2].

Given an instance of3-SAT involving m variables v, l)2 1)m and n clauses C, C2
Cn, we construct an instance of LSC of size 2mn, which admits a Latin square if and only
if the original 3-SAT instance is satisfiable. Corresponding to each vk there are precisely 2n
elements in the ground-set S for the derived instance of LSC, denoted by ukt, kt (1 < < n).
It remains to describe the sets S(i, j) (1 < i, j < 2mn).

Forl <k<m, <l<n, wedefine

S((k -1)n + l, 1) {ukt, Kkt},

S((k- 1)n + l, 2) {u,t, uk,t+},

S((k- 1)n + l, 3) {uk,t+l,-ffk,t},

where here, and subsequently, + 1 is taken modulo n in the range 1, n].
For 1 < < n we define

S(mn + l, 1) {wit, 11021, W3l},

where

! Ukl
ZOhl

if the hth literal in Ct is vk,

if the hth literal in Ct is k.

Finally, for all subscript pairs i, j not covered by the above, we set S(i, j) S. It is clear
that the entire construction can be carried out in time bounded by a polynomial in the length
of the original 3-SAT expression.

We now have to establish that the derived instance of LSC admits the construction of
a 2mn x 2mn Latin square if and only if the original instance of 3-SAT has a satisfying
assignment.

Suppose first that the LSC instance admits a Latin square X. For a given value of k,
consider positions (k- 1)n + l, (1 < < n, 1 < < 3) in the square. It is straightforward
to verify that there are just two possibilities, either

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS 175

X((k 1)n + l, 1) -ffkt,

(a) X((k 1)n + l, 2) ukt,

X((k 1)n + l, 3) uk,t+

for all (1 < < n), or

X((k 1)n + l, 1) ukt,

(b) X((k 1)n + l, 2) uk,t+,

X((k 1)n + l, 3) Kkt

for all (1 < _< n).
We assign variable vk to be true or false accordingly as Case (a) or Case (b) applies.
Now, for each 1, < < n, we consider X(mn + l, 1). Because X is a Latin square, we

must have X(mn + l, 1) equal to tOhl, where tOhl represents a true literal; otherwise, by (a) and
(b) above, we would have X(mn + l, 1) X((k 1)n + l, 1) for some k. So, in the derived
assignment, every clause contains at least one true literal, showing that the original instance
of 3-SAT is satisfiable.

On the other hand, suppose that the instance of 3-SAT is satisfiable, and consider a
particular satisfying assignment. If vk is true in this assignment, we choose

X((k 1)n + l, 1)

X((k 1)n + l, 2) uk,t,

X((k 1)n + l, 3) uk,t+

for all (1 < < n), while if vk is false, we choose

X((k 1)n + l, 1) ukt,

X((k 1)n + l, 2) uk,t+,

X((k 1)n + l, 3) Kkt

for all (1 _< < n).
Further, for 1 < <_ n, we choose

X(mn + l, 1) wht,

where wht is a true literal in clause Ct, and

X(mn + l, 2) 1,l+1,

X(mn + l, 3) [u,t+

I K,t+2

if v is false,

if v is true.

It is straightforward to verify that this gives a Latin rectangle of size (m + 1)n 3. Provided
(m 1)n > 4, which can be assumed without loss of generality, the condition of Lemma 3.2

176 ROBERT W. IRVING AND MARK JERRUM

is satisfied; this Latin rectangle can then be extended, first, to form a Latin rectangle of size
2mn 3, and then, by Lemma 3.1, to form a Latin square of size 2mn 2mn, bearing in mind
that S(i, j) S for all outstanding positions (i, j). [3

In view of the earlier observation that LSC is a special case of 3DSDLS, we have the
following corollary.

COROLLARY 3.4. 3DSDLS is NP-complete, even in the special case where all the row,
column andfile sums are 1.

4. The special case of all cells suppressed. We now consider the interesting special case
of 3DSDLS in which all cells are suppressed. This special case is a natural problem in its own
right, which we refer to as the 3D contingency table problem (3DCT).

4.1 Three-dimensional contingency tables (3DCT).
Instance: A positive integer n, and for each i, j, k, nonnegative integer values R (i, k),

C(j, k), F(i, j).
Question: Does there exist an n n n contingency table X of nonnegative integers

such that

-].: X(i, j, k) R(i, k),

: X(i, j, k) C(j, k),

-n= X(i, j, k) F(i, j)

for all i, j, k?
We now establish the NP-completeness of 3DCT even in the special case where all the R,

C, and F values are 0 or 1. This we achieve by viewing this special case as a two-dimensional
partial Latin square construction problem, and by showing that there is a polynomial-time
transformation from the basic Latin square construction problem, already known to be NP-
complete, to this new problem.

The partial Latin square construction problem is specified in the following section.
4.2 Partial Latin square construction (PLSC).
Instance: A positive integer n, subsets R (i) and C(j) ofN n for each i, j, and

a subset N" of N2 such that (a) [R(i)[Ik (i, k) 6 N’I, and (b) IC(j)l Ik (k, j) 6 N’I.
Question: Does there exist a partial Latin square X with
(i) X(i, j) defined for all (i, j) 6 N’;
(ii) X(i, j) R(i) f C(j) for all such (i, j)?
Note that it follows at once that, in a "yes" instance of PLSC, (a) k R (i) =, X(i, j) k

for some j, and (b) k C(j) =, X(i, j) k for some i.

Example. In Fig. 2, the sets R(i) and C(j) appear to the left of the rows and above the
columns, respectively; the set R(i) C) C(j) appears in position (i, j); cells corresponding to
pairs (i, j) N" contain the symbol w; and the underlined elements indicate that this is a
"yes"-instance of the problem.

Our first objective is to show that the special case of 3DCT in which the row, column, and
file sums are all 0 or 1 can be interpreted as an instance of PLSC. Given such an instance of
3DCT of size n with row, column, and file sums R (i, k), C (j, k), and F(i, j), define

.N" {(i, j) F(i, j)-- 1},

R(i) {k: R(i, k)-- 1},

C(j) {k: C(j,k) 1}.

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS 177

{1,3} {1,2,4} {3,4} {1,2,3,4}

{1,2,3}

{1,4}

{2,3,4}

{1,3,4} 1,3 1,4

3,4 2,3,4

FIG. 2. An instance of PLSC ofsize 4.

The set A/" represents the set of files with sum equal to 1. The sole position in such a file,
say, file (i, j), occupied by a must correspond to both a row with sum equal to 1--i.e., an
element of R(i)--and a column with sum equal to 1--i.e., an element of C(j). It follows that
a solution to the given instance of the special case of 3DCT corresponds exactly to a solution
of the derived instance of PLSC.

We are now in a position to establish the NP-completeness of PLSC.
THEOREM 4.1. The partial Latin square construction problem (PLSC) is NP-complete.
Proof. Membership in NP is immediate, since we can guess an element in the ground-set

for each cell in the set A/" and verify in polynomial time that the various row and column
constraints are satisfied. To prove NP-completeness, we describe a polynomial-time trans-
formation from the basic Latin square construction problem (LSC), already known to be
NP-complete by Theorem 3.3.

Given a positive integer n and sets S(i, j) c__ N 1 n} forming an instance of
LSC, we construct an instance of PLSC over the same ground-set N but of increased size n’
rl 2t’- Yij IS(i, j)l. The set of free cells A/" is defined as a disjoint union ofn2 component sets.M/j,
which are constructed as follows. Let),/z be mappings from N2 to {n + 1, n + 2 n’}
satisfying

(i) /z(i, j))(i, j) + IS(i, j)l, for all i, j N;
(ii) the intervals {[)(i, j),/z(i, j)] i, j 6 N} form a partition of the set {n + 1,

n + 2 n’}. (The notation [a, b] denotes the set of all integers not less than a and not
greater than b.)
For each i, j in the range < i, j < n, define

./j [1, m [l, m U (i, 1), (1, j) (1, 1) },

where)(i, j) and m -/z(i, j); the set of free cells is then A/" Uij Jij. Figure 3 is a
pictorial representation of a typical component set .M/j.

We now specify the row and column sets. For k in the range < k < n, set R(k)
C(k) N. For k outside this range, i.e., for n + < k < n’, let i, j 6 N be theunique integers
satisfying)(i, j) < k < /x(i, j), and set R(k) C(k) S(i, j). It can be checked that R,
C, and ./V" together form a consistent instance of PLSC. This completes the construction.

178 ROBERT W. IRVING AND MARK JERRUM

)(i, j)

rn lz(i, j)

n

j n rn n

412
4123
12.,34j
2341

FIG. 3. The set ./V’ij, and a possible numbering when S(i, j) 1, 2, 3, 4}.

To verify the construction, we must show that the derived instance of PLSC admits a
solution if and only if the original instance of LSC does. Suppose first that the LSC instance
admits a Latin square X, so that X(i, j) S(i, j) for all i, j. We shall construct a partial Latin
square Y consistent with the derived instance of PLSC, i.e., satisfying Y(i, j) R(i) N C(j)
for all (i, j) 6 A/’.

It is enough to describe the restriction of Y to a typical component set A/j, since A/" is a
disjoint union of such sets. Let .(i, j), rn =/z(i, j), and s IS(i, j)l. We consider the
domain.M/j in two parts" the square with missing comer cell [l, rn [l, rn]-{ (l, l) }, and the two
isolated cells (i, l) and (l, j). On the isolated cells, we simply take Y (i, l) Y (l, j) X(i, j).
In order to deal with the square, imagine that the missing comer cell is temporarily reinstated.
Define Y on this completed square so that the resulting s s table of values forms a Latin
square over the ground-set S(i, j), with Y (l, l) X(i, j). Then simply remove the cell (l, l)
from the domain of definition of Y. Figure 3 is intended to illustrate how the restriction of Y
to the set A/ij might appear in the case S(i, j) 1, 2, 3, 4}.

It may readily be checked that Y(i, j) R(i) (q C(j) for all cells (i, j) 6 .N’. The only
other condition we must verify is that Y is indeed a partial Latin square, i.e., that no row or
column of Y contains a duplicate value. By symmetry, we need only check this condition for
the rows. For in the range n + < < n’, the fact that row of Y cannot contain duplicate
values is clear by construction. So suppose < < n, which is the only other possibility.
Row of the derived instance of PLSC contains precisely n cells that are elements of A/’, and
these correspond to the n cells forming row in the original instance of LSC. Y assigns to
each of the n cells in the PLSC instance the same value that X assigns to the corresponding
cell in the LSC instance, and these n values must all be distinct. Thus we have shown that the
PLSC instance admits a solution if the LSC instance does.

For the converse, suppose that the derived PLSC instance admits a partial Latin square Y
that is consistent with the various row and column constraints. We shall construct a Latin
square X consistent with the original instance of LSC. Consider the restriction of Y to the set

.M/j, for some < i, j < n. As before, let .(i, j) and rn =/z(i, j). The restriction of Y
to the array of cells [l, rn [l, m] forms a Latin square on ground-set S(i, j) with the top left
comer cell removed. The values Y(i, l) and Y(I, j) must both equal the missing element of
this Latin square, and hence Y(i, l) Y(l, j) S(i, j). Now set X(i, j) equal to Y(i, l).

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS 179

Since the individual cell constraints are clearly satisfied, it only remains to show that
X is indeed a Latin square, i.e., that no row or column of X contains duplicate values. By
symmetry, we need only check this condition for rows. But the n values occurring in the th
row of X are equal, by construction, to the n corresponding values occurring in the th row
of Y. Hence the ith row ofX cannot contain duplicate values. We have thus demonstrated that
the LSC instance admits a solution if the PLSC instance does. This completes the validation
of the reduction.

COROLLARY 4.2. 3DCT is NP-complete, even in the special case where all the row,
column andfile sums are 0 or 1.

5. NP-completeness of identifying compromised cells. We now consider the question
of identifying the compromised cells in the general three-dimensional problem. In other
words, if we are given a particular legal solution to an instance of 3DSDLS, and we focus
attention on a particular (suppressed) cell, we wish to establish whether there exists a second
solution in which that cell holds a different value. We shall show that determining whether a
particular cell is compromised is also an NP-complete problem.

First, we give a formal description of the problem.
5.1. Three-dimensional statistical data----compromised cells (3DSDCC).
Instance: A positive integer n, a subset S of N3, where N n }, nonnegative

integer values D(i, j, k) for each (i, j, k) S, and a particular triple (i0, j0, k0) S.
Question: Does there exist a set of nonnegative integer values D’(i, j, k) ((i, j, k) S)

such that
nO (i, j, k) ff-]i.--1 O(i, j, k),(i) Zi=I

(ii) -.j= D’(i, j, k)-- ;-.= D(i, j, k),

(iii) y= D’(i, j, k)= Yn= D(i, j, k),
and

(iv) D’(io, jo, ko) D(io, jo, ko),
where all sums are taken over (i, j, k) 6 S?

As was the case with our earlier problem, we prove 3DSDCC NP-complete by considering
a special case that we can interpret in terms of Latin squares. Again, this is the special case
in which all the row, column, and file sums are equal to 1. As earlier, we can interpret any
solution to such an instance as a Latin square X of size n n in which X(i, j) S(i, j),
where S(i, j) {k: (i, j, k) S}.

In fact, the NP-completeness of the Latin square nonuniqueness problem that we are
about to describe has a slightly stronger consequence than we need, namely, that the problem
of determining whether there is any legal solution, other than the one given, is NP-complete.
The NP-completeness of 3DSDCC follows at once from this, for if we had a polynomial-time
algorithm for the latter problem, we could apply it at most a polynomial number of times to

determine whether there is any other legal solution.

5.2. Latin square nonuniqueness (LSNU).
Instance: A positive integer n, subsets S(i, j) of N 1 n for each i,j, and a Latin

square X of size n n with X(i, j) S(i, j) for all i, j.
Question: Does there exist a Latin square X’ of size n n such that X’(i, j) S(i, j)

for all i, j, and X’ X?
As observed above, the NP-completeness of3DSDCC will follow from the NP-completeness

of LSNU. Before proving this result, we need some further notation and a lemma.
For arbitrary values of i, j (1 < i, j < 2n), we write p(i, j) for the value of + j

taken modn in [1, n], so that, clearly, p(i, j + n) p(i, j).

180 ROBERT W. IRVING AND MARK JERRUM

LEMMA 5.1. Forfixed i, let

I {p(i, j), p(i, j) + n} (1 < j < n),
S(j)

I {p(i,j),p(i,j+l)+n} (nW1 <j<2n).

Then the sets S(j) (1 < j < 2n) have exactly two sets of distinct representatives, namely,
s(j) and (j) defined by

I p(i, j) (1 < j < n),

/ p(i,j+l)+n (n+l <j<2n)

and

I p(i, j) + n
t(j) I p(i, j)

(1 <j_<n),

(n+l <j<2n).

S(j) fq S(j + n) {p(i, j)} (1 < j _< n),

S(j + 1) fq S(j + n) {p(i, j + 1) + n} (1 <j<n),

where j + is taken modn in [1, n]. So, if we choose p(i, 1) as the representative for S(1),
we are forced to choose p(i, 2) + n as the representative for S(n + 1), which in turn forces
us to choose p(i, 2) as the representative for S(2), and so on, leading to the system s defined
above. On the other hand, if we choose p(i, 1) + n as the representative for S(1), we are
forced to choose p(i, 2n) as the representative for S(2n), which in turn forces us to choose
p(i, n) + n as the representative for S(n), and so on, leading to the system defined above.
These are the only two possibilities.

The following further lemma is analogous to the previous one.
LEMMA 5.2. Forfixed j, let

S(i) [{p(i, j), p(i, j) + n}

I {p(i, j), p(i + 1, j) + n}

(1 <i <n),

(n+l_<i <2n).

Then the sets S(i) (1 _< < 2n) have exactly two sets ofdistinct representatives, namely, s(i)
and defined by

s(i)] p(i, j)

I p(i + 1, j) + n

(1 <i <n),

(n+l <i_<2n)

and

t(i) [p(i, j) + n

I p(i,j)

(1 <i <n),

(n+l <i <2n).

THEOREM 5.3. Latin square nonuniqueness is NP-complete.

Proof. First of all we observe the following intersections:

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS 181

Proof. Membership in NP is immediate. We need merely guess values X (i, j) S(i, j)
for each (i, j), and easily verify in polynomial time that X is a Latin square, and that X X.

To prove NP-completeness, we describe a polynomial-time transformation from LSC,
known to be NP-complete by Theorem 3.3, to LSNU.

Given an instance of LSC of size n with ground-set n and subsets S(i, j) (1 <

i, j < n), we construct from it an instance of LSNU of size 2n, with ground-set 2n
and subsets S (i, j) (1 < i, j < 2n) as follows.

We set

S’ (i, j)

S(i, j) tO {p(i, j) + n}

{p(i, j), p(i, j) + n}

{p(i, j), p(i 1, j) + n}

forl<_i,j<_n,

forn + <i <2n, <_j<n,

andl <i <n,n+ <_j<_2n,

forn + <i,j<2n.

The Latin square for this instance of LSNU is defined by

X(i, j)

p(i, j) + n forl<i,j_<n,

p(i, j)

p(i 1, j) + n

forn + <i <2n, <j<n,

andl <i <n,n+l <j<2n,

for n + 1 < i, j < 2n.

Verification that X is a Latin square and that X(i, j) S(i, j) for all i, j is straightforward.
We now show that there is a Latin square X’ with X’(i, j) S(i, j) for all i, j, and X’

nonidentical to X if and only if the original instance of LSC is solvable, and indeed if this is
the case then X (i, j) 5 X(i, j) for all i, j.

First of all, if the LSC instance is solvable, with n n Latin square Y, Y(i, j) S(i, j)
(1 < i, j < n), we may choose

X(i, j)

Y(i, j) for < i, j < n,

p(i, j) + n

p(i, j)

forn + 1 <i <2n, <j<n,

andl <i <_n,n+l <j<2n,

for n + < i, j < 2n.

to give a 2n 2n Latin square Xt, with X (i, j) X(i, j) for all i, j.
On the other hand, let us consider the circumstances under which a different 2n 2n

Latin square may exist. If for some (i0, j0), Xt(io, jo) X(io, jo), then it is immediate that
X’(i t, j’) X(i’, j’) for some (i t, jr) with < < n, n + < j’ < 2n. By Lemma 5.1,
it follows that X’ (i, j) X(i,j) for alli, j(n+ 1 < < 2n, 1 < j < 2n). Afurther
application of Lemma 5.2 reveals that this is true also for 1 < < n, n + 1 < j < 2n. Hence,
in order that X may be a Latin square, every value Xt(i, j) (1 < i, j < n) must belong
to S(i, j), and therefore these values constitute a Latin square for the original instance of
LSC. U

Finally, we consider the special case in which all cells are suppressed. This version of
the problem can be expressed as described in the following section.

182 ROBERT W. IRVING AND MARK JERRUM

5.3. Contingency table nonuniqueness (CTNU).
Instance: A positive integer n and an n n n table X of nonnegative integers.
Question: Does there exist an n n n table X’(X) such that X’ and X have identical

row, column, and file sums?
Superficially, this version of the problem might appear easier than the general 3DS-

DCC problem. For example, the existence of nonzero entries in positions (i, j, k’), (i, j’, k),
(i’, j, k), and (i’, j’, k’) for some i, i’, j, j’, k, k’ would constitute an obvious sufficient con-
dition for a "yes" answer--these entries could be reduced by and the entries in positions
(i, j, k), (i, j’, k’), (i’, j, k’), and (i’, f, k) increased by to give a second legal solution.

However, contingency table nonuniqueness is still NP-complete, as we now show. We
first of all observe, in the same spirit as previously, that the special case of CTNU in which
all row, column and file sums are 0 or can be phrased as a partial Latin square problem, as
follows.

5.4. Partial Latin square nonuniqueness (PLSNU).
Instance" A positive integer n, subsets R (i) and C(j) of N n} for each i, j,

a subset A/" of N2 such that (a) IR(i)I Ik (i, k) E A/’l, and (b) [C(j)[[k (k, j) E .All,
and values X(i, j) for all (i, j) 6 A/" satisfying

(i) X(i, j) R(i) A C(j);
(ii) i’ :: X(i, j) 5 X(i’, j);
(iii) j j’ =: X(i, j) X(i, j’).
Question: Do there exist values X’(i, j) for all (i, j) 6 A/" satisfying (i), (ii), and (iii)

above, such that X’ (io, jo) X(io, jo) for some i0, j0?
THEOREM 5.4. CTNU is NP-complete.
Proof. Membership in NP is obvious, since we can guess X’ and easily verify the required

conditions in polynomial time.
The key to the proof of NP-completeness is the observation that the polynomial-time

transformation from LSC to PLSC given in the proof of Theorem 4.1 can, with relatively
minor adjustments, be made parsimonious, i.e., so that there is a one-to-one correspondence
between solutions to the original LSC instance and solutions to the derived PLSC instance.
Hence, this parsimonious version gives us a polynomial-time transformation from LSNU to
PLSNU, and in view of Theorem 5.3, establishes the NP-completeness of the latter problem.
It remains to describe the details of this parsimonious transformation.

Define n’, ., and It as in the proof of Theorem 4.1; recall that n’ denotes the size of the
derived instance of PLSC. As before, the set A/" of free cells is constructed as a disjoint union
of component sets .M/j. For each i, j in the range < i, j < n define

Jt’j {(k, 1), (k, k), (l, k) + < k < m} U {(i, 1), (l, j)},

where (i, j) and rn It(i, j). (Note that at this point the construction diverges somewhat
from that employed in the proof of Theorem 4.1.) As before we define A/" Uij Jij.

We now specify the row and column sets. For k in the range < k < n, set R(k)
C(k) N. For k outside this range, i.e., for n + < k < n’, let i, j 6 N be the unique
integers satisfying ,k(i, j) < k < It(i, j). Let)(i, j), rn It(i, j), s IS(i, j)l, and let
{v vs be an enumeration of the elements of the set S(i, j). Then define

R(k) C(k) ! S(i, j), ifk=l;

I {vk-t, vk-t+ }, otherwise.

It can be checked that R, C, and.A/" together form a consistent instance ofPLSC. This completes
the construction. Figure 4 is intended to illustrate a fragment of the derived instance of

THREE-DIMENSIONAL STATISTICAL DATA SECURITY PROBLEMS 183

PLSC, and features the rows and columns that lie within the range [l, rn]. (The conventions
employed here are the same as those of Fig. 2.) For this example, we have again taken
S(i, j) 1, 2, 3, 4}. The intention is that this 4 4 square should replace the 4 4 square
at the bottom-right corner of Fig. 3.

{1,2,3,4} {1,2} {2,3} {3,4}

{1,2,3,4}

{1,2}

{2,3}

{3,4}

FIG. 4. Afragment ofthe derived instance ofPLSC.

The verification of the reduction relies on the following observation. Let Y be any partial
Latin square that is consistent with the derived instance of PLSC. Consider the restriction of Y
to the set .M/j. Recall that vl vs is an enumeration of the set S(i, j), and suppose that
Y (i, l) yr. Observe that column of Y is completely forced: from cell (l + 1, l) to cell (m, l)
the entries must read vl, v2 vt-1, vt+, vt+2 Vs; these entries constrain the diagonal,
which from cell (l + 1, + 1) to cell (m, m) must read v2, v3 vt, vt, Vt+l Vs-1;

these in turn constrain row l, which from cell (l, + 1) to (l, m) must read vl, v2 vt-1,

vt+l, vt+2 vs. Figure 4 illustrates the pattern that emerges when vl 1, v2 2, v3 3,
v4 4, and 3.

It follows from this chain ofreasoning that Y (l, j) vt Y (i, l). Moreover, once Y(i, j)
has been chosen, there is precisely one way to extend Y to the remaining cells in A/ij. Armed
with this observation, the validation of the reduction proceeds as in the proof of Theorem 4.1;
the reduction is clearly parsimonious. D

6. The case of "slice" sums. In an alternative extension to three dimensions of the orig-
inal two-dimensional problem, suppose that we are given the sums of all two-dimensional
"slices" of a three-dimensional table rather than the sums of the one-dimensional rows,
columns, and files. In practice, for example, we might be given the row and column sums
for three two-dimensional tables relating each pair of three distinct attributes of a population.
Such a population could be represented in a three-dimensional table relating all three attributes,
and the row and column sums for the two-dimensional tables would translate into the sums of
the two-dimensional slices in the three-dimensional table.

The question arises as to the status, in this context, of problems corresponding to those
investigated in earlier sections when row, column, and file sums are given. We conclude
by summarizing the main results that hold for this version of the problem. They are again
NP-completeness results, with the notable exception of the contingency table problem.

Consider an n x n x n table D of nonnegative integer values D(i, j, k), and define the
slice sums

184 ROBERT W. IRVING AND MARK JERRUM

X(i) Yj,k D(i, j, k),

Y(J) 2i,k D(i, j, k),

Z(k) Yi,j D(i, j, k).

The following theorem and corollary are analogous to the results established by Gusfield
in [3, 5] and can be proved by similar methods, with a simple induction argument replacing
the use of network flow.

THEOREM 6.1. Suppose that, for each i, j, k, we are given nonnegative integer values
X(i), Y(j), Z(k) such that Zi X(i) Zj Y(J) - Z(k) Y. Then there exists a table
D for which X(i), Y(j), and Z(k) are the slice sums. Furthermore, the tightest upper and
lower bounds on the value of D(i, j, k) are min(X(i), Y(j), Z(k)) andmax(O, X(i) + Y(j) +
Z(k) 2T), respectively.

COROLLARY 6.2. In the context of the previous theorem, only the cells in the slice with
the largest sum can have a nonzero lower bound, and this can happen only if that slice has
sum > 2T/3.

The results of the above theorem contrast with the NP-completeness of the corresponding
problem when row, column, and file sums are given (3DCT) and perhaps give us some hope
that, when the values of some cells are revealed as well as the slice sums, there may be
polynomial-time algorithms to determine a legal solution and to identify compromised cells.
However, this turns out not to be so.

As far as finding a legal solution is concerned, it is not hard to see that the special case in
which all slice sums over suppressed cells are equal to is just the three-dimensional matching
problem, which is well known to be NP-complete [2].

Finally, the problem of identifying compromised cells in this context can be proved NP-
complete by a reduction and argument similar to, but easier than, that used in the proof of
Theorem 5.3.

REFERENCES

D. DENNING, Cryptography and Data Security, Addison-Wesley, Reading, MA, 1982.
[2] M.R. GAREY AND D. S. JOHNSON, Computers and Intractability, Freeman, San Francisco, 1979.
[3] D. GUSFIELD,A graph theoretic approach to statistical data security, SIAM J. Comput., 17 (1988), pp. 552-571.
[4] , Faster dection of compromised data in 2-D tables, Tech. Report CSE-89-30, Computer Science

Division, University of California, Davis, CA, 1989.
[5] M. HALL, JR., Combinatorial Theory, Blaisdell, Waltham, MA, 1967.
[6] M.-Y. KAO AND D. GUSFIELD, Efficient detection andprotection ofinformation in cross tabulated tables: Linear

invariant test, SIAM J. Disc. Math., 6 (1993), pp. 460-476.
[7] C.L. LIu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 185-211, February 1994

1994 Society for Industrial and Applied Mathematics
013

AN NC ALGORITHM FOR SCHEDULING UNIT-TIME
JOBS WITH ARBITRARY RELEASE TIMES AND DEADLINES*

GREG N. FREDERICKSON AND SUSAN H. RODGER*

Abstract. The problem of scheduling n unit-time jobs with real-valued release times and deadlines is shown to
be in NC. The solution is based on characterizations of a canonical schedule and best subset ofjobs to be scheduled in
a given time interval. The algorithm runs on a CREW PRAM in O((log n)2) time and uses O(n4/log n) processors.

Key words, parallel algorithm, scheduling, release time, deadline

AMS subject classifications. 68Q22, 68R05, 90B35

1. Introduction. A major goal in the study of parallel algorithms is the elucidation of
the underlying combinatorial structure of problems. A wealth of insight has been generated
by designing parallel algorithms for problems in such areas as graph theory, algebra and
arithmetic, and computational geometry [KR]. To a lesser extent, parallel algorithms have
been reported in scheduling theory [DUW], [HM1], [HM2]. In this paper we focus on a
fundamental problem in scheduling theory and identify significant features of it that lead to
an NC algorithm. The problem is to find a schedule for a set of jobs on a single processor,
where the jobs each have unit-time processing requirements and real-valued release times and
deadlines.

Our problem is intermediate in conceptual difficulty between the following two variations.
The first variation has integral release times and deadlines in addition to unit processing times,
and can be solved sequentially by the earliest-deadline-first rule [H] and in parallel by a parallel
implementation of this rule [AGK], [DS], [R]. The second variation has unequal processing
times, and has been shown to be NP-complete [GJ]. Our problem was posed as open in [GJ]
as to whether it is polynomially solvable or NP-complete. It was shown in [C], [S1] that
the problem is polynomially solvable, and an O(n log n)-time algorithm was presented in
[GJST]. Polynomial-time algorithms for finding a multiprocessor schedule were given in [$2]
and [SW]. These approaches appear inherently sequential, and the problem is challenging
in a parallel regimen for the following reason. Since the release times and deadlines are
arbitrary real values, the appropriate scheduling choice at a given time might be to schedule
no job and allow some fraction of idle time until another job’s release time is reached. These
choices can be affected by jobs whose release times and deadlines are far from such a decision
point, making it difficult to resolve such choices "locally." We show how to work around this
difficulty, and present an algorithm that uses O((logn)2) time and O(n4/log n) processors
on a CREW PRAM.

We sketch our approach briefly and indicate the features that make this approach possible.
The set ofjobs is partitioned into subsets based on their release times, such that each subset has
associated with it a time interval, which contains the release times of the jobs in the subset. For
each such interval, a "best" set ofjobs is tentatively chosen, from among those jobs assigned to
the interval, to be scheduled within the interval. This best set is such that the jobs that are not
chosen have the largest deadlines among all such sets. (These notions are defined precisely

Received by the editors August 20, 1990; accepted for publication (in revised form) October 8, 1992.
Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907. The research of this

author was supported by National Science Foundation grants CCR-86202271 and CCR-9001241 and the Office of
Naval Research contract N00014-86-K-0689.

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180-3590. The research
of this author was supported by the Office of Naval Research on contract N 00014-86-K-0689. The major portion of
this research was done while this author was at Purdue University.

185

186 GREG N. FREDERICKSON AND SUSAN H. RODGER

later.) A balanced binary tree structure is imposed on the intervals, taking as leaves of the tree
the intervals from earliest to latest, and having the nonleaf nodes represent new intervals that
span the intervals of their children. The algorithm then sweeps up through the tree, computing
best sets. For two consecutive time intervals 11 and 12, where I1 precedes 12, the set of jobs
tentatively chosen to be scheduled in the spanning interval I is generated (roughly) as follows.
This set will include the set ofjobs tentatively chosen for 11 plus a best set selected from jobs
chosen from 12 unioned with jobs not chosen from I1.

This basic approach is fairly straightforward, but its correctness is not. Choosing best sets
allows maximum flexibility in scheduling, since the jobs not chosen to be scheduled in the
interval must be scheduled at a later time. But it is far from obvious that such best sets exist
for any given time interval. We show in a lengthy proof by contradiction that best sets do in
fact exist. The proof uses a nonobvious measure of the size of a problem. Furthermore, it is
not obvious that the set ofjobs not chosen in 12 would also not be chosen in I. The correctness
of this assertion depends on an involved proof by contradiction that is similar to the proof of
the existence of a best set.

There is a crucial feature of our solution that we have not yet discussed. In order to be
able to insert idle time into the schedule, each time interval mentioned above must actually
represent a family of O(n2) time intervals, whose starting times differ by less than 1, and
whose ending times differ by less than 1. In combining sets of chosen jobs for the families
of intervals for I1 and 12, each interval in the family for I results from considering O(n)
combinations of individual intervals, one from I1 and one from 12. Some of the combinations
do not necessarily result in a schedule. To test feasibility, we use what we call a "template."
A template is formed using the set of jobs whose deadlines are in the given interval. From
among all sets of these jobs that can be scheduled within the interval, the template is the set
of deadlines that is smallest among such sets of jobs. We prove that such a template exists.
The proof yields an elegant mirror-image approach to computing the set.

Our paper is organized as follows. In 2 we prove the existence of a canonical form
for schedules, which is based on certain types of time intervals that we identify. In 3 we
extend our characterizations to prove the existence of best sets and establish properties that
lead to their fast computation. In 4 we present our NC algorithm in its entirety and analyze
its performance.

2. Properties of intervals and schedules. In this section we identify a canonical form
for schedules that we use in our parallel divide-and-conquer algorithm. The canonical form
contains two types of time intervals induced by a set ofjobs. In a "prime interval," certain jobs
must be scheduled within the interval, and these jobs can always be tightly packed together.
We identify a maximal set of prime intervals that are "compatible," called "cover intervals."
The intervals that fall between consecutive cover intervals, called "gaps," are the more difficult
to schedule. When no additional jobs can be scheduled in a gap, then the jobs can be tightly
packed together in two groups, separated by a section offree space in which nojob is scheduled.
We show that for every schedule, there is a corresponding canonical schedule. This notion of
a canonical schedule forms the basis of further characterizations in 3.

We first define some basic terms and establish some simple properties. Each job has a
release time ri, a deadline di, and it should be processed for one unit of time in the interval
[ri, di). The interval is closed on the left end to indicate that the job can start at ri, and the
interval is open on the right end to indicate that the job should be completed by di. Let si be
the start time ofjob and ci be the completion time ofjob i, ci si + 1. The interval [si, ci)
represents the time job is processed. A schedule is an assignment of start times to jobs, such
that the difference between the start times of any two jobs is at least one and for each job i,

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 187

r <_ s and C <__ di. A set ofjobs can be scheduled in an interval [a, b) if and only if there is
a schedule of the jobs such that for each job i, si > a and ci < b.

Our approach is based on considering time intervals with certain interesting properties.
We say that a job is contained in an interval [a, b) if and only if a < ri and di < b. We
consider intervals [a, b) such that a ri for somejob contained in [a, b) and b dj for some
job j contained in [a, b). An interval [a, b) has looseness x if and only if there are precisely
b a x jobs contained in it. If any interval has negative looseness, then no schedule is
possible. We shall assume for the remainder of this section that all intervals have nonnegative
looseness.

We are now ready to define an interval such that the jobs contained within it are easy to

identify and easy to schedule. A constrained interval is an interval whose looseness is less than
1. A prime interval is a constrained interval [a, b) such that there is no constrained interval
[a’, b’) properly contained in [a, b). Figure (a) shows a set of jobs. Each job is represented
by an interval in which the left endpoint is its release time and the right endpoint is its deadline.
There are quite a few constrained intervals in Fig. 1 (a). One constrained interval is [7.2, 11.1),
which contains three jobs, 4, 5, and 6, and has looseness 0.9. It is not a prime interval because
the constrained interval [8.0, 10.4) is contained in it. The prime intervals in Fig. (a) are [8.0,
10.4), 13.0, 15.6), and 13.6, 16.3).

(&) 5.3 12.9

5.4 19.6

5.6 7.7 12.5 10 17.1

7.2 11.1

8.0 10.0

8.2 10.4

13.0 11 151’0
13.6 12 15.6

14.3 13 16.3

10.4 12.8

10.5 20.0

11.8 16.2

(b) 8.0 10.4 13.0 15.6

(c)

(d)

5.3 6.3 7.3 8.4 9.4 10.4 12.0 13.0 14.0 15.0 16.0 17.0 18.0

5.3 6.3 8.0 9.0 10.0 11.0 12.0 13.1 14.1 15.1 16.1 17.1 18.1

FIG. 1. (a) A set ofjobs with release times and deadlines; (b) A coverfor this set ofjobs; (c) A schedule for
anchored gaps [5.3, 8.4), [10.4, 13.0) and [15.0, 20.0)" (d) A schedule for anchored gaps [5.3, 8.0), [10.0, 13.1),
and [15.1, 20.0).

A prime interval is useful, because the jobs that must be scheduled within the interval
can be packed tightly together with no free space between them and with a variable amount
of free space on either end of the interval. We prove this in the following lemma.

LEMMA 2.1. Let [a, b) be a prime interval with looseness x. For any y, 0 < y < x, the
jobs contained in [a, b) can be scheduled in the interval [a +y, b-x+y).

188 GREG N. FREDERICKSON AND SUSAN H. RODGER

Proof. Suppose that the jobs contained in [a, b) cannot be scheduled in the interval
[a + y, b x + y) for some value y, 0 < y < x. Without loss of generality, assume that
a + y is an integer. (Otherwise, we can subtract a + y -/a + yl from all values to generate
an equivalent problem.) For each job contained in [a, b), set r [ri], and d [diJ. The

and are integers, and there is no schedule forresulting jobs are called modified. Since all r d
the modified jobs, then there must be an interval [a’, b’) properly contained in [a, b), with a’
and b’ integers, such that there are at least b’ a’ + modified jobs contained in [a’, b’). Let a"
be the earliest release time of an original job whose corresponding modified job is contained in
[a’, b’), and let b" be the latest deadline of an original job whose corresponding modified job
is contained in [a’, b’). Then there are at least b’ a’ + original jobs in the interval [a", b"),
which is of length b" a" < (b’ + 1) (a’ 1) b’ a’ + 2. Thus the interval [a", b") has
looseness less than 1, i.e., it is a constrained interval. Furthermore, interval [a", b") is properly
contained in [a, b), for the following reason. Since b’ a’ + < (b x + y) (a + y), and
a’,b’,a+yandb-x+yareallintegers, eithera’ > a+y+lorb’_< b-x+y- 1.
Thus either a" > a’ 1 > a + y or b" < b’ + < b x + y, and it follows that [a", b") is
properly contained in [a, b). This is a contradiction to the original assumption that [a, b) is a
prime interval. It follows that the original jobs can be scheduled in [a + y, b x + y).

Within isolated prime intervals, jobs are easy to schedule, but when these intervals overlap,
a schedule in one interval affects the schedule in the other. Two prime intervals [a, b) and
[a’, b’), with a < a’, are compatible if and only if b a’ < 2. If two prime intervals are
compatible, then they do not contain a common job. This can be shown as follows. Suppose
each interval contained job i. Then a’ < ri < di <_ b, which implies that di ri < 2, and
thus [ri, di) would be a constrained interval contained inside an interval [a, b) claimed to be
prime. This is not possible.

Because of the incompatibility of certain prime intervals, we focus on a subset of the set
of all prime intervals. A maximal set of prime intervals that are pairwise compatible is a cover
for the set of jobs. A cover is shown in Fig. (b). Jobs 5 and 6 must be scheduled in [8.0,
10.4) (indicated by {5, 6} in the figure), and jobs 11 and 12 must be scheduled in [13.0, 15.6).
Not all prime intervals are compatible. The prime interval 13.6, 16.3) is not part of the cover
since [13.0, 15.6) and [13.6, 16.3) are not compatible. Both of these prime intervals contain
job 12. For any two compatible prime intervals that overlap, the jobs in the prime interval
with the smaller left endpoint are scheduled before the jobs in the other prime interval. For
example, if job 4 in Fig. had deadline 8.6, then there would be an additional prime interval
in the cover, [7.2, 8.6), that contains job 4. The compatible prime intervals [7.2, 8.6) and [8.0,
10.4) overlap, so job 4 would have to be scheduled before jobs 5 and 6.

The precise scheduling of jobs contained in the prime intervals of a cover, called cover
intervals, is dependent on the scheduling of the jobs not contained in those intervals. Given
a cover, let [a, b) and [a’, b’) be two consecutive cover intervals. The gap between intervals
[a, b) and [a’, b’) is the interval [a", b"), where a" a +/b a] and b" b’ /b’ a’/.
The value a" is the theoretically earliest possible time after a at which a job not contained in
[a, b) can be started in a schedule, and b" is the latest possible time before b’ at which a job
not contained in [a’, b’) can be completed. Note that if the looseness of [a, b’) is 0, then gap
[a", b") constitutes the empty interval. Of course, whether a job can actually start at a" in a
schedule depends on whether the jobs contained in [a, b) are scheduled to complete by a". It
is important to maintain this flexibility in the definition of a gap. If two cover intervals overlap,
then in any schedule the gap between them will either be empty or will contain precisely one
job, which is not contained in either of the cover intervals. If b" a" < 1, then in any schedule
a job that is not contained in a cover interval will not be scheduled in the gap.

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 189

For uniformity, we require that each gap is always surrounded by two cover intervals.
This is easily taken care of by adding a cover interval with looseness 0 at the beginning and
end of the schedule. Let rmin be the minimum release time and dmax the maximum deadline in
the problem. Two new jobs are introduced, job n + with rn+l rmin and dn+a rmin,

and job n -+- 2 with rn+2 dmax and dn+2 dmax + 1. This forces two new cover intervals,
[rn+l, d+l) and [rn+2, dn+2), to be included in the cover. Clearly, the original n jobs can be
scheduled if and only if the new set of n + 2 jobs can be scheduled. In Fig. 1, two additional
jobs would be added on the ends of the overall interval, job 14 with r14 4.3 and d14 5.3
and job 15 with rl5 20.0 and d15 21.0. This would result in cover intervals on the ends
of the overall interval; these are not shown.

We restrict our attention to specific subintervals of gaps. For a given cover, let [a, b) and
[a’, b’) be two consecutive cover intervals with looseness x and x’, respectively. An anchored
gap is an interval [a", b"), where b x <_ a" < b, a’ < b" < a’ + x’, a" differs from
some release time by an integer, and b" differs from some release time by an integer. At least
one anchored gap [b x, a’ + x’) for gap [b, a’) exists, since the looseness of [a, b’) is by
assumption at least 0. If x + x’ 0 and b a’, then we say that there is one anchored gap
for gap [b, a’), namely [b, a’), which is empty. Since each of a" and b" can be one of at most

n values, there are at most n2 anchored gaps for any gap.
If there is a schedule of jobs in an anchored gap that almost fills the anchored gap, then

there is a schedule in which the jobs are packed together in two groups with free space between
the two groups. For a given schedule, a hole in an anchored gap [a", b") is a nonempty interval
[a’", b’") contained in [a", b"), such that no jobs are scheduled in [a"’, b’") and both a"’ 1
and b’" are start times for jobs in the schedule.

LEMMA 2.2. For any set ofjobs that has a schedule S, and for any cover for the set

ofjobs, there is a schedule S’ such that for each anchored gap [a, b) that has [b aJ jobs
scheduled within it, there is at most one hole in the anchored gap.

Proof. Let [a, b) be an anchored gap in S that has [b aJ jobs scheduled in it. We claim
that there is a schedule of the jobs in the anchored gap such that there is only one hole within
it. The proof of the claim is by induction on h, the number of jobs scheduled between first
and last holes in [a, b). For the basis, with h 0, the claim is trivially satisfied. For the
induction step, with h > 0, assume that the claim holds whenever there are fewer than h jobs
scheduled between the first and last holes of [a, b). Let [al, b) be the first hole in [a, b) and
let [at, bt) be the last hole in [a, b). We shall show that some of the jobs scheduled in [b, at)
can be scheduled starting at a or finishing at bt, thus reducing the number ofjobs scheduled
between the first and last holes.

For each job scheduled in [b, at), temporarily reset the release time ri to be r

max{r/, al} and the deadline di to be d min{di, bt}. Since each such job is scheduled
in [bl, at), the schedule would still be valid if we had reset ri to be max{r/, b and di to be

min{di, at}. Since al < bl and bt > at, the resetting we actually do is no more restrictive,
and thus the schedule is still valid. Let a’ min{r} and b’ max{d[}. Since [a, b) contains

[b-aJ jobs, and (b -al) + (bt -at) < 1, we have (bl -a’) + (b’-at) < 1. Thus [a’, b’) is a
constrained interval with respect to the modified release times and deadlines. Note that if both
a’ > a and b’ < bt, then [a’, b’) would be a constrained interval with respect to the original
release times and deadlines, and would be compatible with all cover intervals, a contradiction
to the cover being maximal.

Without loss of generality, assume a’ a l. (The argument for b’ bt is similar.) Now
b")identify the smallest value b" < b’ such that [a l, is a constrained interval with respect

to the modified release times and deadlines. Any interval that is a constrained interval with

190 GREG N. FREDERICKSON AND SUSAN H. RODGER

respect to the modified release times and deadlines and is contained within [a’, b’) must have
either a’ or b’ as an endpoint. Thus [a l, b") does not properly contain a constrained interval,
and is thus a prime interval with respect to the modified release times and deadlines. The set of
jobs whose scheduled positions in S overlap with [a l, b") is precisely the set ofjobs contained
in [a, b") with respect to the modified release times and deadlines. By Lemma 2.1, this set
of jobs can be scheduled in [a, a + /b" a/). The remaining jobs are scheduled as they
were in S. Thus the first hole will now begin at a +/b" a] rather than a, and there will
be h /b" aJ jobs between the first and last holes. By the induction hypothesis, the jobs
in [a, b) can be rescheduled to yield just one hole. This completes the proof of the claim.

The proof of the lemma follows by handling in turn each anchored gap [a, b) that has
/b a/jobs scheduled in it and has more than one hole. U

A schedule of the jobs for the anchored gaps [5.3, 8.4), [10.4, 13.0), and [15.0, 20.0)
is shown in Fig. l(c). A schedule of the jobs for anchored gaps [5.3, 8.0), [10.0, 13.1), and
[15.1, 20.0) is shown in Fig. (d). Lemma 2.2 is illustrated by these schedules. In each
anchored gap the jobs can be scheduled so that there is at most one hole within the gap. Note
that there is no schedule when the first anchored gap is [5.3, 8.2). This follows since jobs 3
and 4 would have to be scheduled in the first anchored gap, and jobs 1, 7, 9, 11, 12, and 13
would have to be scheduled by 16.3, with 16.2 being the earliest at which they could all be
finished. But then job 0 cannot start before 16.2, and thus cannot finish by its deadline.

We now show that if there is a schedule, then there is a schedule such that the jobs are
nicely packed and the starting times of the jobs are convenient values. Given a set J ofjobs, a
breakpoint is any number x such that for some job j, x rj is an integer. Given a cover, those
jobs that must be scheduled within the cover intervals are called coverjobs, and those jobs that
are scheduled within anchored gaps are called gap jobs. A canonical schedule is a schedule
in which each job starts at a breakpoint, the cover jobs are scheduled tightly together within
the cover intervals, and there is at most one hole in any anchored gap [a, b) in which/b a/
gap jobs are scheduled. We show in the next theorem that we can restrict our algorithm to

finding a canonical schedule.
THEOREM 2.1 (canonical schedule). For any set ofjobs that has a schedule andfor any

coverfor the set ofjobs, there is a corresponding canonical schedule.

Proof. Consider any schedule S and any cover for the set of jobs. Consider any cover
interval [a, b) with looseness x. The jobs contained in [a, b) will be the only jobs completely
scheduled in [a, b), since x < 1. Let a + y be the earliest start time of any of these jobs.
By Lemma 2.1, the jobs contained in [a, b) can be scheduled in [a + y, b x + y), which
means that they are scheduled without any free space between them. It follows that there is
a schedule S’ such that for each cover interval, the cover jobs are scheduled without any free
space between them within the cover interval. Given S’, Lemma 2.2 establishes that there is a
schedule S" such that there is only one hole in each anchored gap [a, b) that has/b a/jobs
scheduled in it.

We derive a canonical schedule S’" from S" that preserves the same order of the jobs,
though it may shift their start times. For this discussion, consider there to be one additional
hole, that starts when the last job completes. Consider the first hole [a, bl) in the schedule,
and let J be the set of jobs with start times before a l. Let y be the maximum value that can
be subtracted from the start of each job in J such that a schedule still remains. Subtract y
from each such start time. Clearly, some job in J1 is starting at its release time, and all the
rest start at a time that differs from this time by an integer. For each succeeding hole [ai, bi),
> 1, let J/be the set of jobs scheduled between this hole and the preceding one. Let Yi be

the maximum value that can be subtracted from the start of each job in Ji such that a schedule
still remains. Subtract Yi from each such start time. Clearly, either some job in J/is starting

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 191

at its release time, or the start time of the first job in J/equals the completion time of the last
job in di-1. In the latter case, each job starts at a time that differs from some release time by
an integer, by transitivity. Thus each job in S’" starts at a time that differs from some job’s
release time by an integer. It follows that S’" is a canonical schedule. [3

By Theorem 2.1, we can limit deadlines to being breakpoints. Thus we may assume
as preprocessing that each deadline dj is reset to the largest breakpoint no larger than dj.
Alternatively, breakpoints could be defined in terms of deadlines, and each release time rj
could be reset to the smallest breakpoint no smaller than rj.

Consider the schedules in Figs. (c) and (d). In both schedules, the coverjobs are tightly
scheduled together within the cover intervals, and there is at most one hole in any anchored
gap. Since r 5.3, r7 10.4, and r 13.0, every job in the schedule in Fig. l(c) starts
at a breakpoint. Thus the schedule in Fig. (c) is canonical. However, since there is no job
whose release time has fractional part. 1, the schedule in Fig. (d) is not canonical.

3. Best r-sets, best d-sets, and templates. The characterization of canonical schedules
in the last section is not sufficient for designing a fast parallel algorithm. In particular, no
method is implied to choose an appropriate set ofjobs to be scheduled in a gap, and no method
is identified for choosing suitable endpoints of a gap, in the case that its bracketing cover
intervals have nonzero looseness. In this section we discuss the existence and computation of
what we shall define as a "best r-set," a best choice of a subset of jobs to be scheduled in an
interval. To make best r-sets unique, we shall transform problem instances so that all release
times are distinct and all deadlines are distinct. A best r-set is easy to compute when the
interval is a gap, but is more complicated to compute when the interval contains a collection
of gaps and cover intervals. In the latter case, we first establish the existence of the best r-set,
and then show how to select a subset of the jobs that will form the best r-set if there is a
schedule. To identify suitable endpoints for a gap, all possible choices can be considered,
with a test performed to determine if the selected jobs can be scheduled. We examine what we
call a "modified mirror image problem," and identify a template of deadlines that represents
the minimum set of deadlines that will result in a schedule. The template can be compared to
a set of selected jobs to determine if the endpoints were suitable.

We first discuss a transformation that will give us uniqueness with respect to the best sets
that we shall introduce shortly. Let a set of jobs be simple if all release times are distinct
and all deadlines are distinct. Given a set of jobs for which a schedule exists, we can reset
release times and deadlines so as to make the set ofjobs simple. While either of the following
operations applies, perform it. If rj rk and dj < dk for jobs j and k, then reset rk to be

rj + 1. If rj < rk and dj dk, then reset dj to be dk 1. Clearly, performing these operations
does not affect whether or not a schedule exists. We assume for the remainder of this section
that the set of jobs in the problem instance has been transformed so as to be simple.

We first introduce the notion of feasibility with respect to an interval, and then we define
what we call an r-set. Let J be a set ofjobs, and [a, b) an interval. Recall that ajob is contained
in an interval [a, b) if rj > a and dj <_ b. Let J[a, b) be the subset of all jobs in J that are
contained in [a, b). A set J is [a, b)-feasible if there is a schedule for J[a, b). If there is no
schedule for J[a, b), then there cannot be a schedule for J. We next consider a partition of
J based on release times. Let Jr[a, b) be the subset of all jobs j in J such that rj [a, b).
Note that J[a, b) c__ Jr[a, b). A set A is an r-set for [a, b) with respect to J if and only if J
is [a, b)-feasible and A is a subset of Jr[a, b) such that J[a, b)

_
A and the jobs in A can

be scheduled in [a, b). We choose the name r-set, where r denotes release time, to emphasize
that jobs are partitioned by their release times.

Since some r-sets are better than others when constructing a schedule, we define the notion
of a "best" r-set. Consider an interval [a, b). Clearly, the jobs that are contained in [a, b) must

192 GREG N. FREDERICKSON AND SUSAN H. RODGER

be scheduled in [a, b). We would also like to schedule as many additional jobs as possible,
and choose those jobs to be as preferable as possible. For those jobs with release times in
[a, b) but with deadlines greater than b, it is preferable to choose to schedule in [a, b) those
jobs with the smallest deadlines that can be scheduled. This strategy allows the jobs that are
not chosen to have a better chance of being scheduled in a later time interval, since they have
larger deadlines. For any set A of jobs, let d(A) denote the (multi)set of deadlines of jobs in
A. We define the partial order relation

_
on (multi)sets of values. If X and Y are two sets of

values, then X +/- Y if and only if for 1, 2 min{ISl, IYI}, xi <_ Yi, where xi is the ith
smallest value in X and Yi is the th smallest value in Y. Thus we prefer a set A ofjobs over a
set B ofjobs with respect to their deadlines if and only if d(A) d(B). If we deal with a set
of jobs in which all deadlines are distinct, equality between equal-cardinality subsets A and
B will hold if and only if they are identical. An r-set A for [a, b) with respect to J is a best
r-set for [a, b) with respect to J if and only if for any other r-set B for [a, b) with respect to
J, d(A) d(B) and AI _> BI. If J is simple, then A is a unique best r-set.

We discuss examples of best r-sets, using the set of jobs in Fig. (a). There are 6 jobs
whose release times lie in [5.3, 8.2], jobs 1, 2, 3, 4, 5, and 6. We do not consider jobs 5 and 6
since they obviously cannot be scheduled within this interval. Job 3 is contained in [5.3, 8.2),
and thus must be in any r-set. Jobs 3 and 4 form the best r-set for [5.3, 8.2) as d({3, 4})
d(B), for B that is any of {3}, 1, 3}, and {2, 3}. Similarly, jobs 7 and 9 form the best r-set
for 10.2, 13.0). The best r-set for 15.0, 20.0) is empty since there are no jobs with a release
time in the interval.

We discuss the existence and computation of the best r-set for two types of intervals, the
simpler interval that does not contain a constrained interval and the more complex interval
that can contain constrained intervals. The first type corresponds to an anchored gap in our
algorithm, and the second type corresponds to what we will call an anchored multiple gap,
which we consider in the combining step of our algorithm.

We first discuss the existence and computation of the best r-set with respect to a set J of
jobs for an interval [a, b) that contains no constrained intervals. Clearly, J is [a, b)-feasible.
Computing the best r-set for [a, b) is straightforward. We define the discrete earliest deadline

be the smallest value norule applied to the jobs in J[a b) as follows. For each job let r
smaller than ri such that b r is an integer. Then apply the earliest deadline first rule using
modified release times on the interval [b lb aJ, b). Using the earliest deadline first rule
results in a set of jobs A such that d(A) d(B) and IAI > IBI for any subset B of Jr[a, b)
that can be scheduled in [a, b).

LEMMA 3.1. Let J be a set ofjobs, and [a, b) an interval, such that there is no constrained
interval contained in [a, b). The subset of Jr[a, b) scheduled in [a, b) by the discrete earliest
deadline rule is a best r-setfor [a, b) with respect to J.

Proof. Consider any subset A of Jr[a, b) that can be scheduled in [a, b). We generate
a set A’ of jobs with modified release times so that each differs from b by an integer. For
each job j 6 A, define job j’ 6 A’ such that dj, dj and rj, is the smallest value no smaller
than rj such that b rj, is an integer. We show that A’ can be scheduled in [a, b). Suppose
that no schedule of all jobs in A’ is possible. Then there is an interval [a, b) that contains
more than Lb’ a’] jobs with respect to A’. Let a" min{rjlj A, j’ is the corresponding
job in A’, rj, >_ a’ and dj _< b’}. Since rj rj < for each j 6 A and corresponding
j’ 6 A’, (a’ a") < 1. Thus there are at least [b’ a’] + [b’ a" (a’ a")] +
> /b’ a" II + [b’ a"] jobs contained in [a", b’) with respect to A. Since Jr[a, b)
can be scheduled in [a, b), there are at most [b’ a"J jobs contained in [a", b’) with respect
to A. Thus [a", b’) is a constrained interval with respect to A, which is a contradiction to the
assumption that [a, b) does not contain a constrained interval. Thus it follows that all jobs in

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 193

A’ can be scheduled. Thus modifying release times as in the discrete earliest-deadline-first rule
does not eliminate any r-set A. Once all release times are modified, the problem is equivalent
to a problem in which all release times and deadlines are integers. Then choosing the jobs
with earliest-deadlines-first clearly produces a best r-set.

We now discuss the existence of a best r-set for an interval that can contain constrained
intervals. A multiple gap is an interval [a, b) such that a is the left endpoint of a gap, b is
the right endpoint of a different gap, and thus there is at least one cover interval within [a, b).
An anchored multiple gap is an interval [a, b) such that a is the left endpoint of an anchored
gap, b is the right endpoint of a different anchored gap, and thus there is at least one cover
interval within [a, b). Our algorithm will compute best r-sets, if they exist, for certain anchored
multiple gaps. We now prove the existence of the best r-set for an unrestricted interval [a, b)
and an [a, b)-feasible set of jobs that is simple.

THEOREM 3.1 (best r-set). Let [a, b) be an interval, and J be an [a, b)-feasible set ofjobs
that is simple. Then there is a (unique) best r-setfor [a, b) with respect to J.

Proof. The proof is by contradiction.
We define an r-problem P to consist of an interval [a, b) and an [a, b)-feasible set ofjobs

J with distinct release times and distinct deadlines. Define a P-breakpoint to be either a or a
breakpoint with respect to J. For any interval [a, b), a < b, define b O a, the size of [a, b), to
be the number of distinct P-breakpoints that lie in this interval. (We view the operation G) as
discretized subtraction, and use the symbol as we would the minus sign. Thus we assume
that the first operand is no smaller than the second.) Let the size of job be the size of the
interval [ri, di). Then the size of P is the size of interval [a, b) plus the sum of the sizes of all
jobs in J plus the sum of the product of sizes for all pairs of jobs in J:

size(P) (b a) + Z(di ri) + E (di ri) * (dj rj).
iJ i,jJ, ji

We consider an r-problem P, consisting of interval [a, b) and set J of jobs, that is of
smallest size among those r-problems that do not satisfy the theorem. Since P is of smallest
size, J[a, b) J. We shall eliminate all but two r-sets from consideration, and deduce
various properties about schedules for these r-sets. We then use these properties to generate a
contradiction.

Note that some job j in J has release time a, otherwise there would be a corresponding
smaller r-problem P’, consisting of interval [a’, b) and set of jobs J, where a’ is the next P-
breakpoint after a. P’ is a smaller r-problem than P, so P’ would have a best r-set A’ in interval
[a’, b). The set A’ would be the best r-set for P in interval [a, b), which is a contradiction to
the assumption that there is no best r-set in P. Thus, there is some job j with rj a.

We restrict our attention to two r-sets in P as follows. Consider all r-sets in [a, b) that
have every schedule in [a, b) starting at a. Then any such r-set must contain job j, and j
is scheduled starting at a in such a schedule. We infer a smaller r-problem P’ with interval
[a + 1, b) and set of jobs J {j}. There is a best r-set A’ for P’. Let A A’ t_J {j}. A is
an r-set for P. We next consider all r-sets in [a, b) that have some schedule in [a, b) that does
not start at a. Let a’ be the next breakpoint after a. We infer a smaller r-problem P" with
interval [a’, b) and set of jobs J. (Note that job j will not be in any r-set for P".) There is a
best r-set A2 for P". This set A2 is an r-set for P.

Any r-set A for P must satisfy either d(A1) +/- d(A) and IAI >_ IAI, or d(A2) +/- d(A)
and [A2[>_ [A[, since any schedule for A in [a, b) either starts at a or it does not start at
a. Thus we can confine our attention to the r-sets A1 and A2. Note that each job in J must
appear in either A1, A2, or both. Otherwise we could remove such a job and get a smaller
r-problem. The smaller r-problem would have a best r-set, which would then be the best r-set

194 GREG N. FREDERICKSON AND SUSAN H. RODGER

for P, a contradiction. By Theorem 2.1, canonical schedules exist for A and A2. Let $1 be a
canonical schedule for A in [a, b), and $2 be a canonical schedule for A2 in [a’, b). We note
several properties of S and $2.

CLAIM 3.1. Every job that is scheduled in both S and $2 starts at its release time in one

of the schedules and completes at its deadline in the other schedule. If a job is scheduled in
just one ofS and $2, then the job starts at its release time in that schedule, and its deadline
is greater than b.

Proofofclaim. Let k be a job in J that is scheduled in either $1, $2, or both. Let sk be k’s
earliest starting time in the two schedules. Suppose rk < sk. We generate a new r-problem
P’ by resetting rk to sk. Note that resetting rk does not generate any new breakpoints, since
choosing S and S to be canonical schedules guarantees that sk is a breakpoint. Also note
that if this causes J to no longer be simple, we can just apply the appropriate operations to
reset release times. P’ is a smaller r-problem since the size of job k (and possibly some other
jobs) has been reduced. Since P’ is smaller than P, there is a best r-set A’ in P’. Schedules
S and $2 are both schedules in P’. Thus A1 and A2 are both r-sets in P’, so d(A’) -< d(A)
and]A’I > IA], and d(A’) -< d(Ae) and IA’I >]Az]. Thus A’ is the best r-set for P, which is
a contradiction to the assumption that there is no best r-set in P. Thus rk sk for all k in J.

Suppose that k is scheduled in both $1 and $2 and let ck be k’s latest completion time in
the two schedules. Suppose dk > ck. We generate a smaller r-problem P’ by resetting dk to

ck. Again we perform any additional operations needed to keep J simple. Since P’ is smaller
than P, there is a best r-set A’ in P’. Note that any job other than k whose deadline is reset
must have its deadline be at most b, and is thus in every r-set for P and for P’. Since both

A1 and A2 also contain any job whose deadline is reset, d(A’)
_
d(A) for P’ if and only if

d(A’) -< d(A1)for P, and similarly for A’ and A2. Also note that [A’[> [All and [A’[> [Az[.
Since for any r-set A for P, either d(A 1) -< d(A) or d(A2) +/- d(A), A’ is a best r-set for P,
which is a contradiction to the assumption that there is no best r-set in P. Thus dk ck for
all k in J.

Suppose job k is scheduled in just one of S and $2. Since J Jr[a, b) and J is [a, b)-
feasible, any job in J with deadline at most b must be scheduled in both $1 and Sz. Since job
k is not in both S and Sz, dk > b. This completes the proof of Claim 3.1.

In the remainder of the proof, if resetting a release time or deadline causes J to no longer
be simple, we apply the appropriate operations, as in the proof of the last claim, to make
J simple once again. We note that whenever a deadline is changed, the job will appear in
every corresponding r-set. Thus comparisons between the deadlines of r-sets using -_<_ are not
affected.

pFor schedule Sp, where p or p 2, and for anyjob h in J that is scheduled in Sp, let sh
P be the completion time of h in Sp. We say that the scheduledbe the start time of h in Sp and ch

position of a job g in S overlaps that ofjob h inS2 if and only if max S Sh} < min
CLAIM 3.2. For anyjob that is scheduled in both S and $2, its scheduled positions in the

two schedules overlap.
Proof of claim. Suppose the claim is false. Let k be the job with the smallest deadline

that is scheduled in both S and Sz such that its scheduled positions in the two schedules do
not overlap.

We introduce five transformations for generating smaller r-problems that result in con-
tradictions. The first is called an exchange-d transformation. Let g and h be jobs in J with

p 3-p
rh < rg, dh <dg, and sh < sff < sh where p or p 2. By Claim 3.1, it follows

p 3-p 3-pthat sh rh, s rg, ch dh, and cg dg. We transform r-problem P into a new
r-problem P’ by replacing jobs h and g with jobs h’ and g/, where rh, rh, dh, dg, rg rg,
and dg, dh. We call this transformation an exchange-d, because we exchange the deadlines
for h and g. Schedules S3-p and Sp for P are easily transformed into corresponding schedules

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 195

S_p and Sp’ for P’ in the following way. Schedule S_p will be the same as S3_p, except that
g’ will be in the position of h, and if g is in S3-p then h’ will be in the position of g. Schedule

S will be the same as Sp, except that h’ will be in the position of h, and g’ in the position of g.
Thus the sets A3_p and Ap corresponding to A3-p and Ap are r-sets in P’. Figure 2 illustrates
the exchange-d transformation of a problem P (which has schedules $1 and $2) into a problem
P’ (which has schedules S’ and S). The release time-deadline intervals for the relevant jobs
are also shown.

S1

FIG. 2. An exchange-d transformation.

A schedule S’ in P’ can be transformed to a schedule S in P in the following way. Anyjob
in S’ that is not h’ or g’ is scheduled in the same position in S. Note that g’ must be scheduled
in S’, and h’ may or may not be scheduled in S’. If h’ is scheduled overlapping in [rh,, rg,),
then h is scheduled in S in the position of h’ in S’ and g is scheduled in S in the position of g’
in S’. Otherwise, h is scheduled in S in the position of g’ in S’, andif h’ is scheduled in S’,
then g is scheduled in S in the position of h’ in S’. Any set A in P whose corresponding set A’
in P’ is an r-set in P’ is itself an r-set in P. The size of P’ is smaller than the size of P since

(dg) rh * (dh) rg) < (dg) rh * (dh) rg) + (dg 3 dh * (rg 0 rh

((dg rh) * (dh rg)) + (dg) dh) * ((dg rh) (dg) dh) (dh) rg))
((dg rh) (dg dh)) * ((dh rg) -l- (dg dh))
(dh rh) * (dg rg).

Thus P’ has a best r-set A’, which is at least as large as any r-set of P. For set B as any of
A3-p, Ap or A, h is in B if and only if g’ is in B’, and g is in B if and only if h’ is in B’. Thus
for set B as any of A3-p, Ap or A, d(B) -< d(B’) and d(B’) -< d(B). Since d(A’) -< d(A3_p)
and d(A’) -< d(Ap), we have d(A) -< d(A3_p) and d(A) -< d(Ap), and thus A is a best r-set
for P, which is a contradiction to the assumption that P does not have a best r-set. Thus
whenever an exchange-d transformation can be applied, a contradiction can be achieved. This
concludes the discussion of an exchange-d transformation.

The second transformation is called a compress transformation. Let g and h be jobs in J
P < s-p < c, where p 1 or p 2. By Claim 3.1 itwith Cg

p s;, C3g p s3h-p, and sh
p 3-p dg, and c-pfollows that sff rg, sh rh, cg dh. We generate a new r-problem P’

in which the jobs g and h are compressed into one job h’ such that rh, rh and dh, dh. For
any job with ri < rg, reset ri to ri + 1. For any job with di < dg, reset di to di + 1. Reset

inP’a to a + 1. Note that the sets A3_p and Ap that correspond to A3-p and Ap in P are
r-sets in P’. The new r-problem P’ is smaller than P since there is one fewer job, (b @ a) is

196 GREG N. FREDERICKSON AND SUSAN H. RODGER

smaller, and (di 0 ri) is no larger for any remaining job i. Thus P’ has a best r-set A’. Let
A A’ t_J {g, h {h’}. Then A is an r-set for P and is of maximum size among r-sets for
P. Note that any job other than g or h that has its deadline changed must be in every r-set
for P’ and in every r-set for P. By Claim 3.1, dg < b. It follows that d(A) d(A3_p) and
d(A) d(Ap). Thus A is a best r-set for P, which is a contradiction to our initial assumption.
Thus whenever a compress transformation can be applied, a contradiction can be achieved.
Figure 3 illustrates the compress transformation.

FIG. 3. A compress transformation.

The third transformation is a variation of the compress, called an inverted compress. Let
p 3-p 3-p 3-p cgp, where p organdhbejobsinJwithc sh, ch sg ,andsff < sh <

p 2. We generate a new r-problem P’ in which the jobs g and h are compressed into one
job h’ such that rh, sh

p and dh, dg. For any job with ri < rg, reset ri to r -1- 1. For any
job with di < c-p, reset di to di + 1. Reset a to a + 1. In a fashion analogous to that of
the compress transformation, a contradiction can be achieved whenever an inverted compress
transformation can be applied. Figure 4 illustrates the inverted compress transformation.

S1 - lalhll[Il

g

FIG. 4. The inverted compress transformation.

The fourth transformation is called an increase-r transformation. Let g and h be jobs in
pJ with g scheduled before h in Sp, c < sh no other job scheduled between g and h in Sp,

and cff < dg, where p or p 2. By Claim 3.1, rg S. We reset rg to be the next larger
breakpoint, giving a smaller r-problem P’, for which there would be a best r-set. This set

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 197

would also be a best r-set for P, contradicting our initial assumption about P. Thus whenever
an increase-r transformation can be applied, a contradiction can be achieved.

The fifth transformation is called a decrease-d transformation. Let g and h be jobs in o
pwith g scheduled before h in Sp, c < sh no other job scheduled between g and h in Sp, and

rh < shp, where p 1 or p 2. By Claim 3.1, dh ch
p We reset dh to be the next smaller

breakpoint, giving a smaller r-problem P’, for which there would be a best r-set. Since job h
must be in any r-set for P, changing its deadline does not affect whether or not an r-set is the
best r-set for P. Hence the best r-set for P’ would also be the best r-set for P, contradicting
our initial assumption about P. Thus whenever a decrease-d transformation can be applied, a
contradiction can be achieved.

2(The argument for c < skWe now proceed with a case analysis. Assume that c _< sk.
2 and dk c. Suppose as Assumption (al) thatis essentially the same.) By Claim 3.1, rk sk

there is no job scheduled in $2 during any part of the interval [s, c). This case is illustrated
and get a smallerin Fig. 5(a). Only the relevant jobs are shown. Then we can reset rk to be sk

r-problem P’, for which A2 can still be scheduled, with job k in interval [s2, c). This would
mean that there would be a best r-set for P’. This set would also be the best r-set for P,
contradicting the assumption about P. Thus (al) cannot hold, and there is a job h that is
scheduled in $2 during some part of the interval [s, c).

S2

empty

(b)

(c)

FIG. 5. Selected cases in the proofof Claim 3.2. (a) Assumption (al); (b) Assumptions (a2) and (a2.1); (c)
Assumptions (a2), (a2.2), and (a2.2.1).

2 2 and there is no job such that2 2 < C or both s, < sh < c < chEither sh sk < ch
2 < 2 < C. By Claim 3.1 either rh

2
si
2 < s < c/2. Suppose as(a2) thatsh s < ch sh

2 This case is illustrated in Fig. 5(b). Then anor dh ca2. Suppose as (a2.1) that rh sh.
exchange-d transformation can be applied to jobs h and k. Thus (a2.1) does not hold, and

2
rh 5/= Sh

Thus we have that dh c. Since deadlines are distinct, dh < dk. Since k is the job
with the smallest deadline whose positions in S and $2 do not overlap, job h is scheduled in
positions in S and $2 that overlap. Thus job h is the job that precedes k in S1. Furthermore,

Chl Skl, since otherwise we could apply an increase-r transformation. Let g be the job that
2 2precedes job h in $2. We have that Cg sh, since otherwise we could apply a decrease-d

2 ortransformation. Either g g: k or g k. Suppose as (a2.2) that g - k. Either dg Cg
rg sg.2 Suppose as (a2.2.1) that dg g.2 This case is illustrated in Fig. 5(c). By choice

198 GREG N. FREDERICKSON AND SUSAN H. RODGER

of job k, the positions of g in S and $2 overlap. Thus job g is the job that precedes h in
since otherwise we could apply an increase-r transformation. AS1. Furthermore, Cg sh,

compress transformation can now be applied to jobs g and h. Thus (a2.2.1) does not hold, and
2 Then > c and rk < rg. An exchange-d operation can now be applied to jobs kFg Sg. Sg

and g. Thus (a2.2) does not hold, so g k. Since g k, we can apply an inverted compress
transformation for k and h, which leads to a contradiction.

2 2Thus (a2) does not hold, which means that there is a job h such that sk < sh < c < ch
and there is no job such that s/2 < s < c/2. Let job rn be the job that precedes job h in Se.

C2i, Cm < Sh" ShSince there is no job such that s/2 < s < We have that rh
2 since otherwise

we could apply a decrease-d transformation on jobs rn and h. Let job be the job that precedes
since otherwise we could apply a decrease-d transformationjob k in S. Note that c] sk,

on jobs and k. Also, dl < dk, since otherwise we could apply an exchange-d transformation
for k and 1. By choice of k, the scheduled positions of in $1 and $2 overlap, and since there
is no job such that s/2 < sk < ci2, it follows that rn l. Since there is no job such that

which means that c < c from which it follows that dts/2 < sk < c, we have ct
2 < sk,

Then c c], since otherwise we could apply an increase-r transformation to and h. Since

c dt and c c, it follows that s s].
Let g be the job that precedes job in $2. Either g k or g 7 k. Suppose as (a3)

2 s, since otherwise wethat g k. This case is illustrated in Fig. 6(a). We must have cg
could apply an increase-r transformation for g and 1. We can then apply an inverted compress
transformation for k and I. This transformation leads to a contradiction. Thus (a3) does not
hold, and g - k. Let f be the job that immediately precedes job in S. Either f g
or f 7 g. Suppose as (a4) that f g. This case is illustrated in Fig. 6(b). It follows that
rg dg- 1, by an argument similar to the one that showed that rt d 1. We can then apply
a modified compress transformation to g and l, with the only difference being the following.
For any with ri < rg, reset ri to ri -+- rl rg. For any with di < dz, reset di to di 4- rt rg.
This leads to a contradiction.

()

$2

(b)

$2

k g h

f

k

FIG. 6. Selected cases in the proof of Claim 3.2. (a) Assumption (a3); (b) Assumption (a4); (c) Final
contradiction.

2 rg.2 2 =dg Suppose sgThus (a4) does not hold, and f - g. Either Sg rg or cg
Then we can perform an exchange-d operation on jobs g and k, which leads to a contradiction.

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 199

2 dg. By choice of k the positions of g in S1 and $2 overlap, which means that theThus Cg
positions of f in S1 and $2 cannot overlap. This case is illustrated in Fig. 6(c). Thus s) rf

This gives a smaller r-problemand df > dk. But then we can reset dk to be c and rf to be s.
P’, which will thus have a best r-set. It follows that this set will also be a best r-set for P, a
contradiction. At this point, all cases have been exhausted. Thus there can be no job k whose
scheduled positions in S1 and $2 do not overlap. This completes the proof of Claim 3.2.

We are now ready to generate the contradiction to the assumption that the theorem does
not hold. Let j be the job scheduled at a in S1 and let h be the first job scheduled in $2. If
j h, then we generate a new r-problem P’ by deleting h and resetting a to a 4- 1. Then
P’ is smaller than P and thus it has a best r-set A’. Let A A’ t3 {h }. Then d(A) d(A 1)
and [A[_> IAI, and d(A) +/- d(A2) and IAI _> IA2I, which yields a contradiction, so j - h.

2>Since no other job in $2 can overlap j in $1, job j is not in $2, by Claim 3.2. Either sh c)
2 2>or sh < c). If sh cj, then A2 t3 {j} can be scheduled in [a, b), since j can be scheduled in

[a, a 4- 1) and A2 can be scheduled in [a 4- 1, b). But this would contradict A2 being an r-set
2 2for P. Thus sh < cj. It follows that sh rh. Either h is scheduled in $1 or it isn’t. If h is

not scheduled in S, then dh > b. We generate a new r-problem P’ by removing j and h and
resetting a to a 4-1. In a similar manner to the argument above, this yields a contradiction. If h

2 Since dj > b, we generate a new r-problem P’ by removingis scheduled in S, then sh < ch.
h and resetting rj to rj 4- and a to a 4- 1. In a similar manner to the argument above, this
yields a contradiction. At this point we have exhausted all cases. The theorem that there is a
best r-set for [a, b) then follows.

COROLLARY 3.1.1. Let [a, b) be an interval, and J be an [a, b)-feasible set ofjobs with
distinct deadlines. Then there is a (unique) best r-setfor [a, b) with respect to J.

Proof. If deadlines are distinct, then there do not exist two different subsets A and B
of jobs such that d(A)

d(B) and d(B) d(A). If there are any jobs in J with the same

release time, do the following. For the subset of jobs in J with release times less than a,
arbitrarily reset all release times to be distinct values less than a. This cannot change any r-set
for [a, b). Next, perform the appropriate operations to reset release times until all remaining
release times are distinct. Note that a best r-set for [a, b) will remain a best r-set for [a, b).
By Theorem 3.1 there will be a unique best r-set for [a, b) in the transformed problem. Thus
there will be a unique best r-set for [a, b) in the original problem.

We consider the problem of determining a best r-set for an anchored multiple gap, given
the best r-sets for two adjacent anchored multiple gaps that span it. We first consider the
simpler problem of recomputing the best r-set for an interval [a, b) when one additional job
with release time a is inserted into the set of jobs. We show that if the best r-set for [a, b)
changes at all, then the only change is that the new job replaces one of the jobs in the best
r-set.

LEMMA 3.2. Let [a, b) be an interval, and J and f J t3 {f} be [a, b)-feasible sets of
jobs with distinct deadlines, where j’ is a job not in J with rj, a. Let A be the best r-set
with respect to J, and A2 the best r-set with respect to f Then A2 c_C_ A tA {f}.

Proof. The proof is by contradiction and is similar in structure to the proofofTheorem 3.1.
We first note that by Corollary 3.1.1, best r-sets A and A2 exist.

We define an r+-problem P to consist ofan interval [a, b), a set ofjobs J, and an additional
job j’ ’ J with rj, a such that J’ 3 t3 {j’} is [a, b)-feasible. We define P-breakpoint,
size of an interval, and size of a job as in the proof of Theorem 3.1. The size of r+-problem
P is the size of interval [a, b) plus the sum of the sizes of all jobs in J’ plus the sum of the
product of sizes of all pairs ofjobs in

We consider an r+-problem P, consisting of interval [a, b), set 3 ofjobs, and additional
job j’, that is of smallest size among those r+-problems that do not satisfy the lemma. Since

200 GREG N. FREDERICKSON AND SUSAN H. RODGER

P is of smallest size, Jr[a, b) J and fr[a, b) J. Suppose that A2 A1 (-J {j’}. Clearly,
j’ 6 A2, since otherwise A2 A 1.

Let $1 be any schedule for A1, and $2 be any schedule for A2. We note several properties
of $1 and $2.

CLAIM 3.3. Every job that is scheduled in both $1 and $2 starts at its release time in one

of the schedules and completes at its deadline in the other schedule. Job j’ completes in $2
at its deadline. If a job in J is scheduled in just one of $1 and $2, then the job starts at its
release time in that schedule, and its deadline is greater than b.

Proofofclaim. Let j be a job in J that is scheduled in either S1, $2, or both. Let sj be j’s
earliest starting time in the two schedules. Suppose rj < sj. We generate a new r+-problem
P’ by resetting rj to sj. Clearly A1 is the best r-set in P’ with respect to J and A2 is the best
r-set in P’ with respect to J’. P’ is a smaller r+-problem since the size of job j has been
reduced. Since P’ is smaller than P, A2 c__ A1 t.) {j’}, which contradicts the assumption that
P does not satisfy the lemma. Thus rj sj.

Suppose that job j is scheduled in both $1 and $2 and let cj be j’s latest completion time
in the two schedules. Suppose dj > cj. We generate a new r+-problem P’ by resetting dj
to cj. If this causes two jobs to have the same deadline, then apply the appropriate operation
to reset deadlines, as was discussed in the proof of Theorem 3.1. Any job whose deadline is
changed must have its deadline be at most b, and thus will be in every r-set for P’ with respect
to J and with respect to J’, and similarly for P. Thus A and A2 remain best r-sets for P’ with
respect to J and J’, respectively. Since P’ is smaller, it follows that A2 A1 tO {j’}, which
gives a contradiction. Thus dj cj.

If job f completes in $2 before its deadline, then dj, can be reset to cj,. Note that this
does not affect the comparisons for best r-set A2, since j’ is in A2. This once again gives a
smaller r+-problem, yielding a contradiction.

Suppose job j 6 J is scheduled in one of $1 and $2. Since J Jr[a, b) and J is [a, b)-
feasible, any j in J with deadline at most b must be scheduled in both $1 and $2. Since job j
is not in both $1 and $2, dj > b. This completes the proof of the claim.

CLAIM 3.4. For anyjob in J that is scheduled in both Sa and $2, their scheduledpositions
in the two schedules overlap.

Proofofclaim. The proof of this claim is similar to the proofof Claim 3.2 in Theorem 3.1,
but in this lemma we are addressing r+-problems and derive contradictions to the assumption
of this lemma. The proof of this claim is a straightforward transformation of the proof of
Claim 3.2, and is omitted.

We are now ready to generate the contradiction to the assumption that the lemma does
not hold. Suppose j’ is not the last job scheduled in $2. Let h be the last job scheduled in $2
and k be the last job scheduled in S. If k h, then we can generate a smaller r+-problem
by deleting this job and subtracting from b, and thus achieve a contradiction. Thus, k h.

>_ 2 ThenSuppose sk sh sk rk and dk > b. If dh > b, then replace h by k in $2, and generate
a smaller r+-problem, since there is one less job, and achieve a contradiction. Thus dh <_ b,
which means that the job scheduled before k in S is h. But then we can generate a smaller
r+-problem by removing h, resetting the release time of k to rk 1, and resetting the interval

2to [a, b 1). This again leads to a contradiction. The argument is similar if sk < sh.
Thus j’ is the last job scheduled in $2. Let h be the first job scheduled in $2 and k be the

first job scheduled in S1. If k h, then we can generate a smaller r+-problem, which gives
2

_
Then 2a contradiction, so k h. Suppose sh sk. sh rh and dh > b. Then h and j’ can

be swapped in $2 and the rh reset to s)2, before the swap. The size of a job has been reduced,
2 Then, d > b. Ifresulting in a smaller r+-problem, which gives a contradiction, so sh > sk.

dh > b, then again, h and j’ can be swapped in $2, generating a smaller r+-problem, which

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 201

leads to a contradiction. Thus, dh < b, which means that the second job scheduled in S1 is
h. But this leads to a smaller r+-problem. This achieves the final contradiction, as we have

2 < 2 > and 2 Thus, all jobs except j’ E 82 appear in S1 []shown that sh sk, sh sk, sh sk.
We now consider recomputing the best r-set when a set of additional jobs is introduced.

We show that a job that is not in the original best r-set cannot appear in the recomputed best
r-set.

THEOREM 3.2. Let [a, b) be an interval, and J’ and J C J’ be [a, b)-feasible sets ofjobs
with distinct deadlines, and where each job j’ J’ J has rj, a. Let A1 be the best r-set
with respect to J, and let A2 be the best r-set with respect to J’. Then A2 C A tO (J’ J).

Proof. We first note that by Corollary 3.1.1, best r-sets A and A2 exist. Our proof
is by induction on [J’ J[. For the basis, we have [J’ J[1. The basis case holds by
Lemma 3.2. For the induction step, we have [J’ J[> 1. Assume as the induction hypothesis
that the theorem holds for all values smaller than [J’ J[. Let j’ be a job in J’ J.
Let A1 be the best r-set for [a, b) with respect to J. By the induction hypothesis, the best
r-set A2 for [a, b) with respect to J’-{j’} satisfies A2 _c A1 (-J ((J’- J) --{j/}). By
Lemma 3.2, the best r-set A3 for [a, b) with respect to J’ satisfies A3 c__ A2 tO {f}, which
implies A3 c A tO (J’ J). [3

In the last part of this section we concentrate on computing the best r-sets for intervals
that contain cover intervals. As shown in Lemma 3.1, an interval [a, b) that has no constrained
interval contained within it (and hence no cover interval contained within it) is [a, b)-feasible
and the corresponding schedule can be computed easily using the discrete earliest deadline
rule. Determining [a, b)-feasibility is more involved when the interval contains cover intervals
because we do not know in advance when the first job of a cover interval should be started. For
certain choices of the starting time of the first job in a cover interval, there may be no schedule.
Our approach is to consider all possible starting times of an appropriate cover interval, and
compute a set ofjobs that is the best r-set if the set is [a, b)-feasible. Then the [a, b)-feasibility
of the set can be tested by comparing the set of deadlines for a certain subset of its jobs with
a "template" generated from a "mirror-image problem." The template is composed of the
smallest allowable deadlines for jobs that can be scheduled in an appropriate portion of [a, b).

First we define the notions of d-set, best d-set, and template. Let [a, b) be an interval, J
a set ofjobs, and Jd[a, b) be the subset of all jobs j in J such that dj (a, b]. The set A is a
d-set for [a, b) with respect to J if and only if J is [a, b)-feasible and A is a subset of Jd[a, b)
that includes all jobs in J[a, b), and the jobs in A can be scheduled in [a, b). We choose the
name d-set, where d denotes deadline, to stress the partitioning of jobs by their deadlines. A
d-set A for [a, b) with respect to J is a best d-set for [a, b) with respect to J if for any other
d-set B for [a, b) with respect to J, d(A) -< d(B) and IAI >_ IBI. The set of deadlines of the
best d-set for [a, b) with respect to J is called a template for [a, b) with respect to J.

We discuss examples of templates using the set of jobs in Fig. 1 (a). There are six jobs
whose deadlines lie within (15.0, 20.0], jobs 2, 8, 9, 10, 12, and 13. Job 12 is not consid-
ered further since it cannot be scheduled within the interval. The best d-set for 15.0, 20.0)
consists of the four jobs 2, 8, 9, and 10. Thus the template for [15.0, 20.0) is the set
{16.2, 17.1, 19.6, 20.0}, consisting of the deadlines of jobs 2, 8, 9, and 10. The deadline of
job 13 is not in the template since only one ofjobs 9 and 13 can be scheduled in [15.0, 16.4),
and job 13 has a later deadline. Similarly, the template for [5.3, 8.2) consists of the deadline
ofjob 3, and the template for 10.2, 13.0) consists of the deadlines of jobs 7 and 1.

A template can be used to test for feasibility as follows. Let [a, b) and [a’, b’) be two
consecutive anchored multiple gaps, where a’-b equals the number ofjobs in the cover interval
separating them. Suppose that J is [a, b)-feasible, [a’, b’)-feasible, and [b, a’)-feasible. We
want to determine if there is a schedule ofjobs contained in [a, b’) that.has a’ b cover jobs

202 GREG N. FREDERICKSON AND SUSAN H. RODGER

scheduled in [b, a’). (This is a constrained type of [a, b’)-feasibility.) Let B be all jobs that
are contained in [a, b’) except those in the best r-set for [a, b) and those to be scheduled in
[b, a’). Let A be the best d-set for [a’, b’) with respect to J. Then there is a desired schedule
if and only if d(A) -< d(B) and IBI _< 141. A proof of this claim can be sketched as follows.
Clearly, there is a schedule ofjobs contained in [a, b’) that has a’ b cover jobs scheduled in
[b, a’) if and only if B can be scheduled in [a’, b’). Suppose B can be scheduled in [a’, b’).
Then B is a d-set for [a’, b’). Since A is a best d-set, d(A) -< d(B) and IBI < 1,41. Suppose
d(A) -< d(B) and [BI < 1,41. Since A is a d-set, every job contained in [a’, b’) is a member of
A. By definition, every job contained in [a’, b’) is a member of B. All remaining jobs in either
A or B have a release time earlier than a’. Thus given a schedule for A, a schedule for B can
be constructed as follows. Any job contained in [a’, b’) is in the same position in the schedule
for B as in the schedule for ‘4. Let A’ and B’ be the remaining sets of jobs. Since IBI < 1‘41,
we have IB’I < IA’[. Schedule the job in B’ with the ith largest deadline in the position that
the job in A’ with the ith largest deadline was scheduled. Thus B can be scheduled in [a’, b’).

We illustrate how a template is used. Consider the set of jobs in Fig. l(a), but with

r9 12.1. The best r-set for anchored multiple gap [5.3, 13.0) will have jobs and 3
scheduled in the gap [5.3, 8.0), and jobs 4, 7, and 2 in gap [10.0, 13.0). It is not possible to
schedule the remaining jobs 8, 9, 10, and 13 in [15.0, 20.0). Job 13, with second smallest
deadline, has a deadline smaller than the second smallest value, 17.1, in the template. Since
{9, 10, 2, 8} Z {9, 13, 10, 8}, there is no schedule for this choice of anchored gaps.

We next discuss how the existence of best r-sets relates to the existence of best d-sets.
Given a set J of jobs that constitute a problem P, the mirror-image problem pM is defined
as follows. For each job in J with release time ri and deadline di, there is a job in jM

with release time r rmin -[- (dmax di) and deadline dfl dmax (ri rmin). It would
be convenient if were in the best d-set in pM if and only if were in the best r-set in P.
Unfortunately, this is not the case, since in both problems P and pM, the relation 5 is applied
to sets of deadlines. We show the existence of the best d-set below in Theorem 3.3, and also
show how to generate it using a modified mirror-image problem.

THEOREM 3.3 (best d-set). Let [a, b) be an interval. Let J be an [a, b)-feasible set of
jobs that is simple. Then there is a best d-setfor [a, b) with respect to J.

Proof. Let [a, b) be an interval, J an [a, b)-feasible set ofjobs, and let P be a d-problem
consisting of finding the best d-set for the interval [a, b) with respect to J, if such a set exists.
We generate a new d-problem P with job set J in the. following way.For each job j 6 J with
release time rj and deadline dj there is a job j in J with deadline dj dj and release time
’j rj if rj > a, andTj a (dA a) otherwise. It...follows that the release timesj in P are
all distinct, as are the deadlines dj. The d-problem P is to find the best d-set for the interval
[a, b) with respect to J. A set is the best d-set for P if and only if it is the best d-set for P,
since the only differences in jobs in J and J are modified release times that are outside of the
interval [a, b). The release times are modified in such a way that for any two jobs j and k in
J with rj, rk < a, if dj < dk, then 7j. > .

LetM be an r-problem formed by takg the irror image of d-probm , as follows.
For each job M di) and deadline d dmax (//--"min).j let release time rj. ’min L(dmax M

Let aM rmin -[- (’max b) and bM dmax (a -"min). Since J is [a, b)-feasible, " is
[a, b)-feasible, andt is [aM, bM)-feasible. Thus there is an r-set for [aM, bM) with respect
to M. Since the release times j in are distinct, and the deadlines . are also distinct, it

M M Mfollows that the release times rj in are distinct, and the deadlines dj are also distinct. By
Theorem 3.1, there is a best r-set for [aM, b) with respect toM. This best r-set is equivalent
to the best d-set for [a, b) with respect to J, which is equivalent to the best d-set for [a, b)
with respect to J.]

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 203

The proof of Theorem 3.3 identifies a method for computing d-sets. When an interval
[a, b) does not contain a prime interval, computing the best d-set for it is easy. As in the
previous proof, modify the release times of the jobs, transform the problem into a mirror-
image problem, and compute an r-set using the discrete earliest deadline rule. This best r-set
is equivalent to the best d-set in the original problem.

When an interval [a, b) does contain a prime interval, we can construct its best d-set by
combining the best d-sets of two subproblems. We need a lemma similar to Theorem 3.2,
which applied to r-sets. Let J be a set of jobs whose maximum deadline is dmax, where
dmax > b. We wish to consider the case when jobs in Jd[b, dmax) would be forced to complete
by time b. Let/ b + [dmax bJ + 1. Let the b-extension of J be the set jb of jobs
{ji [i 1 / b} with dj; b + and rj[dj[1. When J U jb is [a,)-feasible, any
schedule must have the interval [b,) scheduled with jobs only in jb, and all jobs in J must
be scheduled to complete by b. The set jb is an artifice that allows us to conveniently discuss
how a best choice of a set scheduled for [a, b) would differ from a best d-set for [a, b).

LEMMA 3.3. Let [a, b) be an interval, and J a set ofjobs such that Jto jb is [a, [)-feasible
and simple. Let A be the best d-setfor [a, b) with respect to J, and let A2 be the best d-set

for [a, [) with respect to J tO jb. Then A2 jb C_ A1 to Jd[b, dmax).
Proof. The proof is similar to that of Theorem 3.3 except that it appeals to Theorem 3.2

rather than Theorem 3.1. Let J’ be the subset of J whose deadlines are greater than a, with
release times and deadlines modified as follows. For eachjob j 6 J with dj > a, there is ajob
j in J with deadlinej min{dj, b} and release timeTj rj ifrj > a2 andj a (dj -a)
otherwise. Note that all 7j will be distinct. Let J be the subset of J’ corresponding to the
subset Jd[a, b) of J. Let aM r"min -I-- (max b) and bM ’max (a -"min). Let M be

Mthe mirror-image set of jobs corresponding to ’, and " be the mirror-image subset of jobs
b ")M M Mcorresponding J. Since Jto J is [a, b)-feasible, J is [a, b)-feasible, and J is [a b.)-

M M M M M Mfeasible. Thus J is [a b)-feasible, and there is an r-set for [a b with respect to J
Note that all jM will be distinct, since all 7j are distinct. By Corollary 3.1. l, there is a best

M M Mr-set At for [aM, bM) with respect to M, and a best r-set 2 for [a b with respect to
M MM By Theorem 3.2,] M to (M). Best r-set 1 is equivalent to best d-set

A for [a, b) with respect to J, which is equi..valent.to best d-set A1 for [a, b) with respect to
J. Best r-set]t is equivalent to a subset A2

_
J’. Since the best d-set A2 for [a,/) with

respect to J to jb must contain all of jb, and any schedule for A2 must schedule every job in
A2 jb to complete by b, 2 is equivalent to A2 jb. The theorem then follows.

The computation of best d-sets for intervals that contain prime intervals is similar to the
computation of r-sets, and will be discussed in more detail in the next section.

4. The NC algorithm. In this section we describe a parallel divide-and-conquer algo-
rithm on a CREW PRAM for determining if there is a schedule, and if so, generating it. The
algorithm consists of four steps, plus a preprocessing step. The preprocessing step replaces
the original set ofjobs with an equivalent set ofjobs, in which all release times are distinct, all
deadlines are distinct, and each deadline is a breakpoint. The first step uses the characterization
of 2 to form a cover and to label the jobs as either cover jobs or gap jobs. Then the jobs are
partitioned, with each job assigned to either a cover interval or a gap based on release times.
A second partition is also generated, based on deadlines. The second step imposes a balanced
binary tree structure on the problem, with the leaves representing gaps in order from earliest to
latest, and with each nonleaf node representing a multiple gap containing the gaps represented
by its leaf descendants. The characterizations of 3 are used to compute best r-sets and best
d-sets for anchored gaps and anchored multiple gaps corresponding to the tree nodes. If there
is a best r-set that includes all jobs, then there is a schedule; otherwise the algorithm halts. If

204 GREG N. FREDERICKSON AND SUSAN H. RODGER

a schedule exists, then the third step obtains a schedule of the gap jobs by starting with the
largest anchored multiple gap and its best r-set, and repeatedly splitting anchored multiple gaps
and their corresponding set of jobs into two constituent anchored multiple gaps and a cover
interval, until only anchored gaps and their corresponding sets remain. The jobs within each
of these sets can easily be scheduled within their assigned anchored gap. Given the endpoints
of the anchored gaps, the fourth step schedules the cover jobs in the cover intervals, using
Lemma 2.1. We discuss each step carefully and analyze its time and processor requirements.

The preprocessing step first makes every deadline a breakpoint. For each job j, the
fractional parts uj rj LrjJ and vj dj Ldj] of its release time and deadline are
determined. The multiset of values uj is then sorted. For each j, a binary search is performed
in the sorted list to find the largest u no larger than vj. (If there is no such ui, then u is taken
to be -1 plus the largest value in the list.) Then dj is reset to be dj vj + ui.

Next the preprocessing step increases certain release times so that all release times are
distinct, and decreases certain deadlines so that all deadlines are distinct. As stated in 3, we
want to perform the following operations repeatedly, while they apply. If rj rk and dj <_ dk
for jobs j and k, then reset rk to be rj + 1. If rj < rk and dj dk, then reset dj to be dk 1.
We first describe how to handle all instances of the release time modifications in parallel, and
then all instances of the deadline modifications.

First we describe how to make all release times distinct. For each release time rj, its
fractional part uj rj [rjl is extracted. The multiset of the values uj are then sorted. Then
the jobs j are partitioned into sets Ru such that uj u. For each set Ru, the following is done.
The parallel version of the discrete earliest deadline first rule [AGK, R] is applied to the set.
If no schedule is possible, then our algorithm halts with failure. Otherwise reset the release
time of job j to be its starting time in the schedule.

To make all deadlines distinct first convert the problem into a mirror-image problem.
The release time rj

a4 for job j in pa4 is set to ?’min - (dmax dj), and the deadline dff for

job j in jt is set to dmax (rj. rmin). Then the above algorithm for resetting release
times is run, but without resetting the release times. Instead, the deadline of job j is reset to

dj (sj (rmin q- dmax dj)) dmax -+- rmin Sj, where sj is the starting time ofjob j in the
corresponding schedule for the mirror-image problem.

LEMMA 4.1. Given a set Jo ofn unit-timejobs with arbitrary release times and deadlines,
an equivalent simple set J with all deadlines being breakpoints can befound in 0 (log n) time

using 0 (n) processors.
Proof. The correctness of the above procedure is established as follows. By Theorem 2.1,

deadlines need only be breakpoints. Next consider generating simple set J. When applying the
first of the above operations, the only jobs that can have equal release times at some point are
those that have an equal fractional part. The discrete earliest deadline rule schedules correctly
for any set of jobs, all of whose release times differ from some value by an integral amount.
The discrete earliest deadline rule always schedules a job at the earliest possible release time,
subject to no other job being available and having an earlier deadline. Thus the starting time
of the job corresponds to the release time generated by the repeated application of the above
operation. The application of the discrete earliest deadline rule to the mirror-image problem
gives a schedule in which every job starts as late as possible. Correctness then follows.

We analyze the resource bounds as follows. Sorting will use O(log n) time on O(n)
processors, and performing n binary searches in parallel, as well as the parallel version of the
discrete earliest deadline rule [AGK], [R], will use the same resources. [3

The first step identifies subproblems that can be solved independently. The subproblems
are formed by finding a cover and its associated gaps, and partitioning the jobs into sets that
are associated with either a cover interval or a gap. The cover is found by forming the set of all

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 205

possible constrained intervals and then deleting those that are neither prime nor compatible.
First the constrained intervals are identified. For each pair consisting of a release time ri and
a deadline dj, where ri < dj, let n i,j be the number of jobs contained in this interval. If
dj r < ni,j, then the algorithm halts, as no schedule exists. If dj ri rti,j < 1, then
[ri, dj) is a constrained interval. Second, for each release time ri, if there is more than one
constrained interval starting at ri, then all such intervals except for the one with the smallest
deadline are deleted. Similarly, for each deadline dj, if there is more than one constrained
interval ending at dj, then all such intervals except for the one with the largest release time are
deleted. At most n constrained intervals will remain.

Third, the prime intervals are identified. Each constrained interval is compared with every
other constrained interval and deleted if it contains such an interval. The fourth step is to form
a cover. The prime intervals [ai, bi) are sorted on the values ai. Since no interval is contained
in another, they are also sorted by bi. For each [ai, bi) binary search is used to determine the
prime interval [aj, bj) with < j such that [ai, bi) and [aj, bj) are compatible and for any
k, < k < j, [ai, bi) and [ak, bk) are not compatible. Using recursive doubling, a maximal
set of prime intervals that are compatible is identified, and those prime intervals that are not
compatible with one of the selected prime intervals are deleted. The remaining prime intervals
constitute a cover.

Having identified a cover, the gaps are then identified. The set ofjobs are then partitioned
in the two partitions as follows. Any job contained in a cover interval is a cover job, and is
assigned to the cover interval in both partitions. The remaining jobs are gap jobs, and are
assigned as follows. For the partition based on release times, if the release time of a gap
job falls within a gap, then the job is assigned to that gap. Otherwise, the gap job is called
anomalous, and it is assigned to the cover interval containing its release time. For the partition
based on deadlines, if the deadline of a gap job falls within a gap, then the job is assigned to
that gap; otherwise, the gap job is assigned to the cover interval containing its deadline.

LEMMA 4.2. Given a set ofn unit-time jobs with arbitrary release times and deadlines, a
cover can be computed in 0 (log n) time using 0 (n2/log n) processors.

Proof. The correctness of the above procedure follows from the definition of a cover. We
next analyze the time complexity. Assuming thatjobs are indexed by nondecreasing deadlines,
the ni,j are computed as follows. Let vi,j indicate whetherjob j lies within [ri, dj), SO Vi,j
if rj > ri and Vi, j 0 if rj < ri. The ni,j are computed by performing a prefix sum over
the vi,j’s, ni,j Vi,1 -I- Vi,2 -]- + 1)i,j. Using Brent’s Theorem [B], this uses O(n2/logn)
processors. Reducing the number of constrained intervals under consideration to at most n also
uses O (n2/log n) processors. Assigning one processor to log n pairs of constrained intervals,
identifying prime intervals and finding a compatible set uses O(n2/log n) processors. Each
of the above activities uses O(log n) time.

We next discuss the second step in our algorithm. It first imposes a balanced binary tree
structure on the problem, with the leaves representing gaps in order from earliest to latest,
and with each nonleaf node representing a multiple gap containing the gaps represented by
its leaf descendants. It then computes best r-sets and best d-sets, if they exist, for anchored
gaps and anchored multiple gaps corresponding to the tree nodes, using a bottom-up sweep
through the tree. The final result at the root of the tree will be the best r-set and the best d-set
for [’min, dmax). The best r-sets are in sorted order by deadlines, not in scheduled order, so
that they can be merged with other best r-sets quickly. Best d-sets are also in sorted order by
deadlines.

We first discuss computing best r-sets and best d-sets for anchored gaps. Let [a, b) be a
gap, preceded by a cover interval of looseness x and followed by a cover interval of looseness
x’. Associated with gap [a, b) are the anchored gaps [ai, bh), where ai E [a, a + x), and

206 GREG N. FREDERICKSON AND SUSAN H. RODGER

bh - (b x’, b], and ai and bh are breakpoints. Assume that the ai, and also the bh, are
indexed in increasing order. Thus there are at most n2 anchored gaps associated with each
gap. Consider one anchored gap [ai, bh) associated with gap [a, b). Recall that Jr[a, b) is
the set of gap jobs assigned to gap [a, b) in the release time partition. We shall understand
Jr[ai, bh) tO be Jr[a, b). (For any job assigned to [a, b) whose release time is less than ai,

we are implicitly assuming that its release time is modified to be ai for anchored gap [ai, bh),
for the purposes of computing best r-sets. We make a similar assumption for any anchored
multiple gap that starts at ai.) A similar understanding applies for Ja[ai, bh) and the deadline
partition. For each anchored gap [ai, bh) and set of jobs Jr[ai, bh), the best r-set for [ai, bh),
denoted J’ [ai, bh), is computed. Those jobs from Jr [ai, bh) that are not chosen for Jr* [ai, bh)
are placed into Jr- [ai, bh), the set of remaining jobs not chosen yet. Similarly, considering the
jobs Jd[ai, bh), the best d-set for [ai, bh), denoted J[ai, bh), is computed and the remaining
jobs from Jd[ai, bh) not chosen for J[ai, bh) are placed into J[ai, bh).

There is no need to compute the best r-set for each of the at most n2 anchored gaps,
since there are at most 2n distinct best r-sets for these anchored gaps. For a given bh and all
possible ai, there are at most two distinct best r-sets for all of the corresponding anchored gaps
[ai, bh). All these intervals consider the same set ofjobs, but the larger intervals might be able to
schedule one morejob than the smaller intervals. This follows since [bh --al < [bh --ak + 1,
where ak is the largest ai. If there are two best r-sets, then there is some at such that all [ai, bh),
< l, have the same best r-set, and all [ai, bh), > l, have the other best r-set. The two best

r-sets can be found by computing best r-sets for [a 1, bh) and [ak, bh) using the discrete earliest
deadline rule. Computing at most 2n best r-sets instead of n2 best r-sets reduces the number
of processors needed for this activity by a factor of n.

We show how to compute best r-sets for anchored gaps contained in gap [a, b). First
compute J*[al, bh) for all valid indices h. Apply the parallel version of the discrete earliest
deadline rule [AGK], [R] for the jobs in Jr[a1, bh) and the interval [al, bh). Set J;-[al, bh)
to Jr[a1, bh) J[al, bh). In the same manner, compute J;’[ak, bh) and J;-[ak, bh) for all
valid indices h, where k is the largest index for the ai. The set Jr*[ai, bh) is set to Jr*[al, bh)
if [bh aiJ [bh all; otherwise it is set to J[ak, bh). In the first case, J;-[ai, bh)
J;-[a, bh) and in the second case J;-[ai, bh) J;-[ak, bh). These additional best r-sets and
remaining sets do not need to be computed as they are just duplicates of other sets.

In a similar manner, the best d-sets for anchored gaps contained in gap [a, b) are computed.
For a given ai, there are at most two best d-sets. The release times of each job j Ja[ai, bh)
with rj < ai is reset to ai (dj ai), the mirror image of this problem is formed, and then
solved by the discrete earliest deadline first rule. The maximum number of jobs that can be
scheduled in [ai, bh) is stored as C[ai, bh). For anchored gap [ai, bh), this value is [bh ai J.

LEMMA 4.3. For all anchored gaps, determining best r-sets and best d-sets whenever they
exist uses O(logn) time and O(n) processors.

Proof. Correctness of the above procedure follows from Lemma 3.1, Theorem 3.3, and
the above discussion. To analyze the time and processor complexity, let the/th gap have nt
jobs associated with it. A best r-set or best d-set is computed for at most 2n anchored gaps. The
parallel version of the discrete earliest deadline rule [AGK], [R] uses O (log n) time and O(n)
processors to schedule n jobs. Thus computing one best r-set or one best d-set in parallel takes
O(log nt) time and O(nt) processors, so the total number of processors needed to compute
the 2n best r-sets for the/th gap is O(n nt). Since n nl + n +... + ng, the total number
of processors for all gaps is O(n).

We next discuss computing best r-sets and best d-sets for anchored multiple gaps. Let
[a, b’) be a multiple gap composed of the two consecutive gaps and/or multiple gaps [a, b)
and [a’, b’). In general multiple gaps overlap their two surrounding cover intervals, so that

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 207

the cover interval between [a, b) and [a’, b’) is not [b, a’). For convenience we shall abuse
our notation slightly and refer to this cover interval as [b, a’). Assume that best r-sets and best
d-sets have already been computed for all anchored multiple gaps associated with [a, b) and
[a’, b’). Let [ai, bh) be an anchored multiple gap for [a, b), and let [a, b) be an anchored
multiple gap for [a’, b’), where ag bh equals the number of cover jobs contained in the cover
interval [b, a’), and such that Jr*[ai bh) and J; [ag, b’f) exist. Among r-sets of [ai, bf) that
have a schedule in which a cover job starts at bh, if one exists, let Jr*h[ai, bf) be the best such
r-set for [ai, b). Define Jh[ai, btf) similarly. Let Jh[ai, bf) Jr[ai, bf) Jr*h[ai, bf),
and similarly for Jh[ai, bf). For every pair [ai, bh) and lag, bf) such that ag bh equals
the number of cover jobs contained in [b, a’), sets Jr*h[ai, bf) and Jh[ai, b’f) are computed if
they exist. Then, for each anchored multiple gap [ai, b’f) of multiple gap [a, b’), the various

values of bh are examined, and from among the corresponding Jr*h [ai, bf), if there are any,
the best r-set is identified as Jr*[ai, bf). Then J[ai, b’f) is chosen to be the corresponding
J;--h[a bf). Similarly, from among the corresponding Jffh[ai, bf), if there are any, the best
d-set is identified as J[ai, b’f). The value C[ai, bf is set to flag, bh) -]" (ag--bh) +C[a’g, b’f).

We next discuss how to compute Jr*h [ai bf if it exists. Note that Jr* [ai bh CC_ Jr*h [ai bf),
since the jobs in Jr*[ai, bh) can be scheduled in the [ai, bh) portion of [ai, bf), and none of
the jobs from J*[a’g, bf) or Jf-[a’g, by) can be considered in [ai, bh). Since the set of cover
jobs of a cover interval is unaffected by the exact positioning of the gaps on either side of it,
we let J*[b, a’) be the set of cover jobs contained in [b, a’) and let Jr-[b, a’) be the set of
anomalous gap jobs whose release times lie in [b, a’). Clearly, J*[b, a’) c_ Jr*h[ai, bf).
We now focus on computing the jobs for the [a, b) portion of Jr*h[ai, bf). Let J’
J[ag, bf) to Jf-[ai, bh) [..J J;-[b, a’). Let J" be the min{lJ’[, C[ag, bjc)} jobs with small-
est deadlines from set J’. If d(J[a’g, by)) d(J’) and there are no more than]Jl[ag, b)l
jobs in J’ with deadlines at most b, then the jobs in J" can be scheduled within ta , In
this case, Jr*h[ai, btf) Jr*[ai, bh)toJ*[b, at)lDJ’t, and J;-h[ai, btf) J[ag, btf)U(J’- j,t).
Otherwise there is no schedule using anchored multiple gap [ai, bf) and starting a cover job
at bh.

We next discuss how to compute Jh[ai, bf)ifit exists. Clearly, Jt[ag, b’f) c_ Jh[ai, bf),
and J*[b, a’) c_C_ Jffh[ai, bf). We now focus on computing the jobs for the [ai, bh) portion of

Jh[ai, btf). Let J’ J[ai, bh)l.. J[ag, btf) J[b, a’). m set J with the following modified
release times is generated as follows. For each job j 6 J’, let j be the modified release time
and let rj be the origin.al release time. If rj is less than ai then j is set to ai (dj -ai), otherwise
j is set to rj. Then J is sorted by modified release times. The min{lJ’[, C[ai, bh)} jobs in J
with largest modified release times are identified, with jr, being the set of corresponding jobs
in J’. If Jr*h[ai, btf) exists, then Jlh[ai, bf) J"to J[ag, by) tA J*[b, a’), and Jh[a bf)
J-[ai, bh tO J’ J"). Otherwise, there is no set Jh[a bf).

This step is complete when it has been determined if there is an r-set for the root of the
tree. If there is an r-set for [rmin, dmax), then a schedule of the jobs exists.

LEMMA 4.4. For all anchored multiple gaps, computing best r-sets and best d-sets when-
ever they exist uses O((log n)2) time and O(n4/ log n) processors.

Proof. As the crucial step in computing Jr*h[ai, bjc), consider the computation of J".
Since none of the jobs in J’ can be scheduled in [ai, bh), those jobs with release times less

By Theorem 3.2, if J’ is [a, bc)-feasible,than ag can have their release times reset to ag.
then there is a best r-set for that will contain no jobs from Jr-tag, It follows that
the computation of j.h [ai, bf) is correct. A similar argument using Lemma 3.3 establishes

the correctness of the computation of jh [ai, bf).

208 GREG N. FREDERICKSON AND SUSAN H. RODGER

We next consider time and processor complexity. Let [a, b) and [a’, b’) be the multiple
gaps associated with two sibling nodes, and let there be n gap jobs whose release time lies
within [a, b’). There are at most n2 anchored multiple gaps [ai, bh) for [a, b). Each anchored
multiple gap [ai, bh) must be matched against an anchored multiple gap [a, b)) for [a’, b’),
where ag bh equals the number of cover jobs that lie within the cover interval that lies
between these anchored multiple gaps. Thus for any anchored multiple gap [ai, bh), there are
at most n anchored multiple gaps [ag, b’f) with which it must be checked. Thus at most n
pairs of anchored multiple gaps [ai, bh) and [ag, b’f) must be checked. Each pair of anchored
multiple gaps [ai, bh) and [ag, b)) can be checked in O(log n) time using nil log n processors.
Since the sum of nt for all gaps at one level of the tree is O(n), the total number of processors
needed is n4/logn. Since there are at most log n levels in the tree, the total time for this
activity is O((log n)2).

We next discuss the third step in our algorithm. With respect to the balanced binary tree
structure imposed on the previous step, this step selects one anchored multiple gap or anchored
gap for each node in the tree, along with a corresponding set of jobs, using a top-down pass
through the tree. We call these anchored multiple gaps and anchored gaps selected multiple
gaps and selected gaps, respectively. We call the set J*[ai, bh) that corresponds to a selected
multiple gap or selected gap [ai, bh) the selected set for [ai, bh). The final result is a partition
of the gap jobs into selected sets for anchored gaps, from which a schedule of the gap jobs
within selected gaps is obtained.

This step begins by noting that [t’min, dmax) is a selected multiple gap, and the best r-set
for [rmin, dmax) is a selected set for [main, dmax). Let [a, b’) be a multiple gap, and [a, b) and
[a’, b’) its two constituent gaps or multiple gaps, based on the structure of the binary tree. Let
[ai, bf) be the selected multiple gap for [a, b’). Let [ai, bh) and [ag, bf) be anchored multiple
gaps for the multiple gaps [a, b) and [a’, b’), respectively. This step considers the at most n
pairs such that ag bh is equal to the number of cover jobs that are contained in the cover
interval that lies between [ai, bh) and [ag, bf). Each pair [ai, bh) and [ag, bf) is examined to
determine if there is a partition of J*[ai, bf) into two sets such that the first can be scheduled
in [ai, bh) and the second can be scheduled in [ag, b). A pair is then chosen for which there
is such a partition, with the first set being J*[ai, bh), and the second set being J*[ag, bf).

We next discuss how to test a given pair [ai, bh) and [ag, b’f) to see if there is the desired
partition of J*[ai, b’f). First, all gap jobs in J*[ai, bf) that could be scheduled in [ai, bh)
are identified. Let J’ be the set of all jobs in J*[ai, bf) whose release times are less than ai.
Let J" (J*[ai, bf) N Jr*[ai, bh)) t3 jr. Let J’" be the min{IJ’l, C[ai, bh)} jobs of J" with
smallest deadlines. If d(J[ai, bh)) d(j’t), then the jobs in j,,t can be scheduled within
[ai, bh). Let J’"’ J*[ai, b) J*[b, at) J" be the set of jobs that must be scheduled in

[a, b)). If d(JJ[a’g, by)) d(J"") and the number of jobs in J’" with deadline at most b)
is at most[’, J"’[d lag bc)[and < C[ag, b’f), then the jobs in j,,,t can be scheduled within

[ag, b’f). If both tests succeed then [ai, bh) and [a, b) can be selected, and 3r*[ai, bh) and

J*[a, b) would be J" and J", respectively.
LEMMA 4.5. Given best r-sets and best d-setsfor all anchored gaps and anchored multiple

gapsfor which these sets exist, identifying selected gaps and selected multiple gaps and the
corresponding selected sets uses O((log n)2) time and O(n2/ log n) processors.

Proof. We first discuss correctness. Since l*[ai, bf) exists, there must be some choice
of bh such that there is a partition of dl*[ai, bf) if*[b, at) into two sets that can be scheduled
in [ai, bh) and [ag, bf), respectively. Suppose we are examining such a choice bh. We verify
that we make this partition correctly. It does not alter the results to assume that any job in J’
has modified release time ai. By Theorem 3.2, there is a best r-set for [ai, bh) with respect to
J (with modified release times) that contains only jobs in jt t3 Jr*[ai, bh). By the approach

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 209

that we employ in the algorithm, a job in Jr*[ai, bh) will be found in J*[ai, bf) unless there is
a corresponding job with release time before a that has replaced it. Thus IJ"l >_ [Jr*[ai, bh)l.
Thus given J*[ai, bf), our algorithm makes a best choice of jobs to be scheduled in [ai, bh).

We next analyze the time and processors used to determine J*[ai, bh) and J*[ag,bf).
At most n pairs [ai, bh) and [ag, bf) are checked, and these can all be checked in O(logn)
time using O(n IJ*[ai, b)l/logn) processors. Thus O(n2/logn) processors are used for
one level in the tree. The time for each level is O (log n) and there are at most log n levels in
the tree, so the total time is O((log n)9).

We next discuss scheduling the gap jobs in gaps. For each gap, there is a selected gap and
a corresponding selected set. Unfortunately, the jobs in the selected set are in sorted order by
deadlines, not in scheduled order. The schedule of jobs in the selected set is computed using
a modified earliest deadline algorithm.

Let [ai, bh) be the selected gap of gap [a, b), with corresponding selected set J*[ai, bh).
The location of the first hole in [ai, bh) is determined, and J*[ai, bh) is partitioned into two
sets ofjobs, those jobs that will be scheduled before the first hole in the gap, and those jobs that
will be scheduled after the first hole. If IJ*[ai, bh)l [bh aiJ, then there is only one hole,
otherwise there can be several holes. To compute the position of the first hole, the smallest
c is found such that there is no job available to be scheduled at position ai + c. Thus the
starting position of the first hole is at ai -I- c. The c jobs with release times at most ai + c
are scheduled, using the discrete earliest deadline algorithm [AGK], JR]. Then the remaining
[bh ai c jobs in [bh [bh ai c) bh) are scheduled, again using the discrete earliest
deadline algorithm.

LEMMA 4.6. Computing the schedule ofthejobs in selected sets within their selected gaps
uses 0(log n) time and 0(n processors.

Proof. First we discuss correctness. By definition of selected set, a schedule exists.
There are c jobs with release time at most ai + c 1. The discrete earliest deadline algorithm
schedules these jobs in [ai, ai + c). The remaining jobs must be scheduled in [ai q- c, bh).
Since there is a schedule of these jobs within this interval, we may reset any deadline greater
than bh to be bh. If any constrained interval is created, it must end at bh. Consider such a
constrained interval [a", bh) that contains no other such constrained interval. Only the jobs
contained in this interval can be scheduled so as to overlap with interval [bh [bh a"J, bh).
By Lemma 2.1, these jobs can be scheduled in [bh [bh a"J, bh). The same argument
may be applied inductively to any remaining jobs and interval [ai q- c, bh [bh a"J). All
such jobs scheduled start at a time that differs from bh by an integer. When no constrained
intervals remain, the remaining jobs can be scheduled by the discrete earliest deadline rule to
also satisfy this requirement. But then there exists a schedule of remaining jobs in which all
jobs start at a time that differs from bh by an integer. The discrete earliest deadline rule will
find such a schedule.

Next we analyze the time and processors used. The first hole in the lth gap is computed
by sorting the jobs in nondecreasing release time order, and performing a prefix sum on the
number of release times less than or equal to unit spaced positions in the interval. This takes
O(log nt) time and O(nt) processors, where n is the number of jobs to be scheduled in the
selected gap. Applying the parallel earliest deadline algorithm to the two pieces of the gap
also takes O (log nt) time and O (nt) processors. Computing one schedule for each gap in
parallel takes O (log n) time and O (n) processors.

The fourth step in the algorithm schedules the cover jobs. The choice of selected gaps
dictates the position of the cover jobs within the cover intervals. By Lemma 2.1, there is a
schedule with the jobs packed tightly together. Let [a, b) and [a’, b’) be consecutive gaps,
and [ai, bh) and [ag, b’f) the corresponding selected gaps. Consider the cover interval [b, a’).

210 GREG N. FREDERICKSON AND SUSAN H. RODGER

Note that ag bh IJ*[b, a’)l. The discrete earliest deadline algorithm is applied to the set
J*[b, a’) in interval [bh, a’g).

LEMMA 4.7. Scheduling the coverjobs within the cover intervals takes 0 (log n) time and
uses 0(n) processors.

Proof. The parallel earliest deadline algorithm [AGK], [R] applied to the ith cover interval
that contains n jobs takes O(log nt) time and uses O(nt) processors. Thus computing the
schedule for all cover intervals in parallel takes O(log n) time and O(n) processors.

We summarize the performance of the algorithm below.
THEOREM 4.1. Given n unit-timejobs with arbitrary release times anddeadlines, there is a

CREWPRAMalgorithm that determines ifthere is a schedule ofthejobs on a singleprocessor,
and if so, it produces a schedule. The algorithm uses O((logn)2) time and o(na/(logn))
processors.

Proof. By Theorem 2.1, if there is a schedule, then there is a canonical schedule. The
discussion accompanying the description of the algorithm in this section, plus the correct-
ness within Lemmas 4.2 through 4.7, establish that the algorithm computes a canonical sched-
ule whenever one exists. The time and processor complexities follow from Lemmas 4.2
through 4.7.

Suppose k is the number of distinct fractional parts of the release times. The algorithm
uses fewer than (R)(na/(logn)) processors if k is o(n). The number of starting positions for
anchored gaps is thus reduced to k. If there are fewer distinct fractional parts of the deadlines,
then breakpoints can be based on deadlines, as discussed at the end of 2. Let k be the minimum
of the number of distinct fractional parts of release times and the number of distinct fractional
parts of deadlines.

COROLLARY 4.1.1. Given n unit-time jobs with arbitrary release times and deadlines,
there is a CREW PRAM algorithm that determines if there is a schedule of the jobs on a single
processor, and if so, it produces a schedule. If k is the minimum of the number of distinct
fractional parts of release times and the number of distinct fractional parts of deadlines, then
the algorithm uses O ((log n)2) time and O(k3n / (log n) d- n2/ (log n)2) processors.

Proof. Finding a cover can be done in O((log n)2) time using just O(n2/(log n)2) proces-
sors, by having each of the processors simulate log n processors in the algorithm stated earlier.
Similarly, computing best r-sets and best d-sets for anchored gaps can be done in O((log n)
time using O(kn/log n) processors. Computing best r-sets and d-sets for anchored multiple
gaps takes O((log n)2) time and uses O(k3n/(log n)) processors. Determining selected gaps
and selected multiple gaps uses O(kn/log n) processors and O((log n)2) time. Scheduling
the gap jobs and the cover jobs uses O(log n) time and O(n) processors.

[AGK]

[B]

[c]

[DS]

[DUW]

[GJ]

REFERENCES

M. J. ATALLAH, M. T. GOODRICH, AND S. R. KOSARAJU, On the parallel complexity of evaluating some

sequencesfor set manipulation operations, J. Assoc. Comput. Mach., to appear.
R. P. BRENT, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach., 21

(1974), pp. 201-206.
J. CARLIER, Probleme a une machine dans le cas ou les taches ont des durees egales, Tech. Rep., Institut

de Programmation, Universite Paris VI, 1979.
E. DEKEL AND S. SAHNI, Binary trees andparallel scheduling algorithms, IEEE Trans. Comput., 32 (1983),

pp. 307-315.
O. DOLEV, E. UPFAL, AND M. K. WARMUTH, The parallel complexity of scheduling with precedence con-

straints, J. Parallel Distrib. Comput., 3 (1986), pp. 553-576.
M. R. GAREY AND D. S. JOHNSON, Two-processor scheduling with start-times and deadlines, SIAM J.

Comput., 6 (1977), pp. 416-426.

NC ALGORITHM FOR SCHEDULING UNIT-TIME JOBS 211

[GJST]

[HM1]

[HM2]
[H]
[KR]

[R]

[S1]

[$2]

[SW]

M. R. GAREY, D. S. JOHNSON, B. B. SIMONS, AND R. E. TARJAN, Scheduling unit-time tasks with arbitrary
release times and deadlines, SIAM J. Comput., 10 (1981), pp. 256-269.

D. HELMBOLD AND E. MAYR, Fast scheduling algorithms onparallel computers, in Advances in Computing
Research, F. Preparata, ed., JAI Press, Inc., Greenwich, CT, 1987.

Two processor scheduling is in NC, SIAM J. Comput., 16 (1987), pp. 747-759.
W. A. HORN, Some simple scheduling algorithms, Naval Res. Logist. Quart., 21 (1974), pp. 177-185.
R. M. KARl’ AND V. RAMACHANDRAN, Parallel algorithmsfor shared-memory machines, in Handbook of

Theoretical Computer Science, J. van Leeuwen, ed., Elsevier Science Publishers, New York, 1990,
pp. 869-942.

S. H. RODGER, An optimal parallel algorithmfor preemptivejob scheduling that minimizes the maximum
lateness, Proc. 26th Allerton Conference on Communication, Control, and Computing, 1988, pp. 293-
302.

B. B. SIMONS, Afast algorithmfor single processor scheduling, in Proc. 19th IEEE Symp. on Foundations
of Computer Science, 1978, pp. 246-252.

Multiprocessor scheduling of unit length jobs with arbitrary release times and deadlines, SIAM
J. Comput., 12 (1983), pp. 294-299.

B. B. SIMONS AND M. K. WARMUTH, A fast algorithm for multiprocessor scheduling of unit-length jobs,
SIAM J. Comput., 18 (1989), pp. 690-710.

SIAM J. COMPUT.
Vol. 23, No. 1, pp. 212-225, February 1994

() 1994 Society for Industrial and Applied Mathematics
014

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS*
JEAN-CLAUDE BERMONDt AND PIERRE FRAIGNIAUD

Abstract. Communication schemes based on store andforward routing, in which a processor can communicate
simultaneously with all its neighbors (in parallel) are considered. Moreover, the authors assume that sending a
message of length L from a node to a neighbor takes time/ + Lr. The authors give efficient broadcasting and
gossiping protocols for the de Bruijn networks. To do this, arc-disjoint spanning trees of small depth rooted at a
given vertex in de Bruijn digraphs are constructed.

Key words, broadcasting, gossiping, interconnection networks, de Bruijn graphs, disjoint spanning trees

AMS subject classifications. 68E 10, 94, 05C05, 05C35

1. Introduction. In the design and use of parallel computers, different elements are im-
portant. Among them are the topology of the interconnection network and the communication
scheme. In this paper, we focus on communication problems. Important cases appearing in
parallel algorithms are

Broadcasting: send a message from a given vertex to all the vertices, also called OTA
(one-to-all).

Gossiping: send messages from all the vertices to all the other vertices, also called ATA
(all-to-all) or total exchange.

An important literature on graph theory concerning this problem assumes that the com-
munication cost is a constant and that only one port can be used by a processor at a given
time (see the survey [15]). Here we consider the store andforward model, in which a ver-
tex can simultaneously send and receive (eventually) different messages to and from all its
neighbors. Indeed, this communication possibility corresponds to existing parallel computers
(hypercubes and transputer-based machines). Moreover, the neighbor-to-neighbor communi-
cation time depends on a latency, or start-up time/, and on a data transfer time per element,
or propagation time r (is the bandwidth of a link). Sending a message of length L to a
neighbor takes time T + Lr [20], [28], [31].

The hypothesis stating that processors are able to communicate simultaneously through
all their ports is well known [20], [28], [31]. Many parallel computers satisfy this hypothesis.
However, note that if the number of communication ports of a vertex is large, the start-up time
(and in a less significant way, the propagation time) may grow with the number of ports used
simultaneously 11]. We do not consider this problem in this paper. The reader is referred to
12] for a survey of broadcasting algorithms under several hypotheses. Note also that there

exist other models of routing, such as circuit-switched or wormhole routing [8], [21]; however,
in the case of intensive communications such as broadcasting or gossiping, they do not seem
to offer any significative advantages over the store andforward model [30].

Clearly, the broadcasting and gossiping protocols depend on the topology of the intercon-
nection network. The choice of this topology is critical in the design of parallel computers.
Different goals can be pursued to increase the performance and minimize the cost. These goals
can be expressed in terms of the graph (or digraph) that represents the interconnection net-
work. The vertices of the graph correspond to processors, and the edges (or arcs) correspond
to communication links between processors.

*Received by the editors April 15, 1991; accepted for publication (in revised form) October 12, 1992.
’rI3S, Centre National de la Recherche Scientifique, Bt.4, Avenue Albert Einstein, Sophia Antipolis, 06560

Valbonne, France. This author’s research was supported by the research program C3.
LIP-IMAG, Centre National de la Recherche Scientifique, Ecole Normale Suprrieure de Lyon, 46, Allre d’Italie,

69364 Lyon Cedex 07, France. This author’s research was supported by the research programs C3 and ANM, and by
the Direction des Recherches et Etudes Techniques.

212

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS 213

An important constraint claimed by many authors [7], [8], [17] is that very large-scale
integration (VLSI) computing systems are wire limited, which corresponds to a fixed small
degree in the associated graph. Furthermore, in the model of store and forward routing, the
total transmission time depends on the diameter, which should be as small as possible. Thus,
it is important to have graphs with a small diameter and a fixed degree. This is not the case
for the hypercube, since the degree and diameter increase as the logarithm of the number of
processors, or for the multidimensional meshes or torus, since they have diameters that are
too large.

Two well-known topologies are the Kautz and de Bruijn networks, which have many
interesting properties [6], [29]. In particular, these networks interconnect considerably more
processors than the usual topologies, and they have small diameters and small and fixed
degrees. Therefore the aim ofthis paper is to find efficient broadcasting and gossiping protocols
in the de Bruijn digraph. Classical broadcasting in de Bruijn digraphs using the assumption
of a constant communication time and the possibility of sending a message to at most one
neighbor at any time has been considered in [5], [16].

This paper is organized as follows. In 2 we recall some definitions about directed
graphs. In 3 we compute lower bounds and explain possible communication protocols for
broadcasting in a given network. We show that an efficient way uses the construction of arc-
disjoint spanning trees. Section 4 describes the de Bruijn graphs and digraphs and introduces
some notation. Section 5 proposes arc-disjoint spanning trees of the de Bruijn digraphs, which
can be used to perform asymptotically optimal broadcasting. In 6 a fast, greedy, gossiping
algorithm is given. Section 7 explains how to translate the proposed algorithms from the de
Bruijn digraphs to the undirected de Bruijn graphs. Finally, 8 concludes the paper.

2. Notation. A network of n processors is usually modeled by a graph or a digraph
G (V, E) of order n. Three kinds of communication links are usually used.

1. Monodirectional links: messages can only be transferred in one direction. The network
is modeled by a digraph.

2. Bidirectional halfduplex links: such links can be used at a given time in at most one
direction. The network is modeled by a graph.

3. Bidirectionalfull duplex links: each link can be simultaneously used in both directions.
The network is modeled by a symmetric digraph.

In this paper we will consider digraphs only (symmetric or not), either corresponding to
networks with monodirectional links, or networks with bidirectional full duplex links. In a
digraph there is an arc from a node u to a node v only if u is able to send a message directly
to v.

Let d(u, v) be the distance between the vertices u and v, that is, the length of a shortest
path from u to v. We will use ecc(u) to denote the eccentricity of the vertex u, that is,
maxvv d(u, v), and use D for the diameter of the digraph, that is, maxuv ecc(u). We will
use "shortest-paths spanning tree rooted at r" to denote breadth first search tree rooted at r.
In such a tree, the path from r to any other vertex v is a shortest path. Note that the depth of
such a tree is ecc(r).

Let d+ (u) (resp. d-(u)) denote the out-degree (or in-degree) of the vertex u, that is, the
number of outgoing (or incoming) arcs from (or to) u. If the digraph is regular then all the
vertices have the same out- and in-degree d. Otherwise dm+ax denotes the maximum out-degree
over all the vertices (similar definitions are derived for dax, dm+in and dain). Let m+ (S, V S
be the number of arcs going from S to V S and let ca(r) minsvlrsm+(S, V S).
ca(r) can be regarded as the minimum number of arcs that must be deleted to make at least
one vertex not reachable from r. Another interpretation of ca(r) is that there exist ca(r)
arc-disjoint paths from r to any vertex of G. Moreover, ca(r) is the maximum number of

214 JEAN-CLAUDE BERMOND AND PIERRE FRAIGNIAUD

such paths that are arc disjoint (Menger’s theorem). Let) be the arc connectivity of G, that
is ;k minrv ca(r). Note that d+ (r) > ca(r) >).

Finally, we will use ba(r) to denote the minimum time of any broadcast initiated by a
vertex r of G, and use ga for the minimum time of any gossiping on G.

3. Broadcasting in networks.

3.1. Lower bounds. Recall that the communication time to send a message of length L
from a node to a neighbor is of the form fl + L r. Following [20], [31], we can obtain two
different lower bounds by considering the total start-up time or the total data transfer time.
First the broadcasting time ba(r) is at least ecc(r). Consider now a subset S of V containing
r such that m+(S, V S) ca(r), and let u be a vertex of V S. The total bandwidth of the
arcs between S and V S is ca(r)/r and therefore the minimum time to send the message
from r to u is at least (L/ca(r))r.

PROPOSITION 3.1. In a digraph G, the time to broadcast a message of length L from a
node r is at least max(ecc(r), (L/cG(r))r).

For example, in a D-cube used in full duplex mode, ca(r) d+(r) d-(r) D,
L r), which is the bound proposed byand ecc(r) D. We obtain bD-cube(r) >_ max(Dfl,

Johnsson and Ho in [20].

3.2. Communication protocols. There exist different ways to perform broadcasting
from an originator r. The efficiency of these protocols depends on the ratio . The first
protocol simply uses a shortest-paths spanning tree. The broadcasting time is ecc(r)(+ L r)
because there exists at least one vertex at distance ecc(r) from r. If L r << fl, this time is of
the order ecc(r) approaching the lower bound and so we cannot do better.

In contrast, if L r >> fl, this time is of the order L recc(r), which is far from the lower
bound Lr/ca(r). In case of long messages, we can improve the total time by cutting the
messages in smaller packets. A classical technique is pipelining. Suppose we cut the message
into packets of length B and send the packets one after each other on a shortest-paths
spanning tree. The broadcasting time is ecc(r) (fl + Br) for the first packet to reach a farthest

L packets following the first one to reach aL 1) (fl + fl r) for the othernode, plus (
Lfarthest node. Hence the total time is (fl + Br)(ecc(r) + - 1). This time is optimized by

choosing Brain /Lfl/(ecc(r) 1)r, its value being (/- + /(ecc(r) 1)fl)2. If Lr is
large compared with fl, we have now a time of the order L r. Thus we have earned a factor of
ecc(r), but are still far from the lower bound.

Another technique consists of finding p spanning trees rooted at r and pairwise arc
disjoint. We cut the message into blocks, each of size _L and send each block on a differentp’
spanning tree. Suppose the maximum depth of the spanning trees is h, then the broadcasting

L r). This technique has been used for networks such as hypercubes [20], foldedtime is h (fl +
hypercubes 18], star graphs, and k-ary hypercubes [25]. See 12] for a survey. Moreover, we
can use the following theorem of graph theory by Edmonds 10] (see Lovisz [24] for a short
proof).

THEOREM 3.2 (Edmonds). The maximum number ofpairwise arc-disjoint spanning trees

rooted at a vertex r is equal to ca (r).
We can use these ca(r) spanning trees to obtain a broadcasting time h(fl + (L/ca(r))r).

Here again, if Lr >> fl, we have a time of order (hL/ca(r))r saving a factor of ca(r) when
h is close to ecc(r).

Finally, we can combine the two techniques of pipelining and arc-disjoint spanning trees.
With packets ofsize B, we obtain a time h (fl+Br) so that the first packet reaches a farthest node
in the deepest spanning tree, plus (L/(ca(r)B) 1)(fl + Br) for the other L/(ca(r)/B) 1

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS 215

packets following the first one to reach this farthest node. Hence the total time is (fl + Br)(h +
L/(ca(r)B) 1). An optimal choice of the size B of the packets gives a broadcasting time
(/Lr/cG(r) + /(h 1)/3)2.

THEOREM 3.3. if the maximum depth of cG(r) arc disjoint spanning trees rooted at a
vertex r is h, then there exists a protocol ofbroadcastingfrorn r whose time is (/L r/cG(r) +
/(h 1)/)2.

If Lr >>/3, we have a time of order L/cG(r), matching the lower bound. If/3 and Lr are
of the same order of magnitude, we have to balance the effects of the number of spanning trees
and the depth of these trees, respectively. Ideally we want to find many spanning trees (CG (r)
if possible) of maximum depth as small as possible. In the case of regular classical networks,
ca (r)) d and ecc(r) D, and the best we can hope to find is d arc-disjoint spanning
trees with a depth of at most D + 1. Our aim will be to construct arc-disjoint spanning trees
of the de Bruijn networks. Note that for the two-dimensional toms, this problem has been
completely solved [26].

Let us finish this section with some remarks.
1. Instead of using arc-disjoint spanning trees, we could use time-disjoint diffusion trees

(meaning that at a given time, one arc is used in at most one diffusion tree). However,
these trees are more difficult to find and do not allow pipelining.

2. There exists algorithms for finding arc-disjoint spanning trees of any given digraph,
but the complexities of these algorithms are high, and there is no good bound on the
depth of the trees obtained. So it is interesting to give explicit constructions.

3. It is possible to do the same study for the half duplex communication mode. See
[14], [22], [27] for results on edge-disjoint spanning trees of an undirected graph.

4. de Brnijn digraphs. The de Bruijn digraph B(d, D) [9] is a digraph in which the
vertices are the words of length D on an alphabet of d letters (for instance {0 d 1}).
There is an arc from a vertex x (xl XD) tO a vertex y if the D first letters of y
are equal to the D last letters of x. That is, there is an arc from x (xl XD) tO all
the vertices (x2 XD, u), u {0 d 1)}. Therefore, each node of B(d, D) has an
out and in degree d and it is easy to check that the diameter is D, and for every vertex r of
B(d, D), cG(r) L d 1. The number of vertices is n dD. Figure 1 shows B(2, D)
with D 1, 2, 3.

01

001 011 10

100 110

FIG. 1. B(2, 1), B(2, 2), and B(2, 3).

216 JEAN-CLAUDE BERMOND AND PIERRE FRAIGNIAUD

One can note that, for a fixed degree d, the number of vertices of these digraphs is of the
same asymptotic order as the directed Moore bound (which is equal to d + d- + +
d2 + d + 1). Another important remark is that the degree and the diameter of these digraphs
are independent and adjustable parameters.

The corresponding undirected graphs UB(d, D) are built by omitting the direction of the
arcs.

Remark. If we do not consider the loops, all the vertices (c, ot or,) of B(d, D) have
in- and out-degree d 1. Many solutions are proposed in the literature [2] to modify the de
Bruijn graphs to make them regular, but we do not consider them in this paper. Indeed, links
can be added to nodes of degree strictly less than the maximum degree to communicate with
external devices such as front-end processors and peripherals.

In the following section, we use the notations x (x xz)) for a vertex of B(d, D)
and e [Xl, xz), c] for the arc (x xo) - (x xz), o). The capital letter W
will represent any sequence of letters, and WI the length of this sequence.

5. Arc-disjoint spanning trees of the de Bruijn digraph. The main purpose of this
section is to construct for a given vertex r of a de Bruijn digraph a set of ca(r) d
arc-disjoint spanning trees all rooted at this vertex.

We will extensively use the shortest-paths spanning tree (or breadth first search tree).
The shortest directed path from a vertex x to a vertex y is obtained by determining the longest
sequence, common to the end ofx and to the beginning of y. Suppose that this longest sequence
is of length D h and of the form Z ZD_h and let x (x Xh, z1 ZD_h) and
y (z zo_h, yl yh). Then the distance between x and y is h, and the unique
shortest path between x and y contains successively the vertices

X0 X

X (X2 Xh, Z1 ZD-h, Yl)

()
X (Xi+I Xh, Z1 ZD-h, y Yi), < < h

hx --y.

Figure 2 shows the two shortest-paths spanning trees rooted respectively at (000) and (111) in
B(2, 3). One can see that they are arc disjoint.

001 011

100 110

Shortest path tree rooted at (000)
Shortest path tree rooted at (111)

FIG. 2. Two shortest-paths spanning trees in B(2, 3).

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS 217

PROPOSITION 5.1. The d shortest-paths spanning trees of the de Bruijn digraph, rooted
respectively at the vertices (or or), ot 0 d 1, are pairwise arc disjoint.

Proof. Two arcs of different trees are of the form lot c, W1] and [/3 /3, W2], with

Wil < D, 1, 2. Hence, they are disjoint if ot -/3.
Thus, assuming that each of these nodes is connected to an external device, it is possible

to load data from the front end to the parallel multiprocessor using d arc-disjoint spanning
trees, with a bandwidth d/r. This is a main point: de Bruijn graphs ensure high bandwidth
between any external device and the multiprocessor. We show in the following how to ensure
high bandwidth communications within the network.

It is more difficult to find arc-disjoint spanning trees of small depth all rooted at the same
vertex in a de Bruijn digraph. It might be worth noting at this point that Imase et al. [19]
have built d arc-disjoint paths of length < D + 1 between any two nodes to study the
vulnerability of the de Bruijn digraph. Unfortunately, their construction cannot be used to find
arc-disjoint spanning trees rooted at the same vertex.

Finally, let us note that we cannot construct more than d arc-disjoint spanning trees
rooted at a given vertex due to the presence of loops at the vertices (or or), ot 0 d
(c (r)) d 1).

First we present a simple construction of d arc-disjoint spanning trees rooted at a
given vertex of the form (c, ot or, or) with ot 6 {0 d }. Next we generalize this
construction.

PROPOSITION 5.2. For all ot 6 {0 d }, there exist d arc-disjoint spanning
trees of optimal depth D + rooted at vertex (c, c ct, or) of B(d, D).

Proof. Let ot 6 {0 d }. With each v 6 {0 d }, v ot we associate a tree

T consisting of the arc from (ct or) to (ct or, v) and the shortest-paths spanning tree
rooted at (or c, v) from which the vertex (or or) which is a leaf, is deleted. Let v
and consider any arc e [ct c, v, W] from T and any arc e [or or, #, W2] from
T, where 0 _< [Wi[<_ D, 1, 2. The letters c, v,/z are all distinct, thus e e and T
and T are arc disjoint.

It is easy to verify that the depth of these trees is D + 1. This is optimal since there is
only one path of length _< D from (or or) to any vertex (Xl XD), Xl, 0/. [--]

THEOREM 5.3. For any vertex u of B(d, D), there exist d arc-disjoint spanning trees

rooted at u ofdepth at most D+2k+ 1, where k is the length ofthe second longest subsequence
of identical letters in u, that is, ofdepth at most D + 2 [- + 1.

Proof. Let u (u Up) be a given node of B(d, D). We construct d- arc-disjoint
spanning trees rooted at u in two steps. First we will use the shortest-paths trees rooted at
vertices at distance k + from u where k depends on the form of u. Then, if an arc is common
to two trees, we will remove this arc from one tree and replace it with another arc that does
not appear elsewhere. During all these replacements we will keep the tree structure. We give
an example of two arc-disjoint spanning trees of B(3, 2) rooted at (1, 0).

1. Definition of k and or" Let us consider a longest subsequence of u consisting of
identical letters, and let c be this letter. Let k be the length of the second longest subsequence
of identical letters. For example, if u (0, 0 0, 0), then a 0 and k 0; if u

(0, 0, 0, 1, 1, 1), then ot 0 or and k 3; if u (0, 0, 0, 1, 1, 2, 2), then ot 0 and k 2;
if u- (0,1, 0,1, 0,1), then ot --0orl andk-- 1. Foru-- (1,0),k-- and we choose

2. Definition ofT, v ot For all v 6 {0 d- }, v :/: c, we build a tree T. We start
with the shortest-path P between u (Ul UD) and the node (uk+2 u, v v)
where the letter v is repeated k + times, and we add the shortest-paths tree rooted at

218 JEAN-CLAUDE BERMOND AND PIERRE FRAIGNIAUD

(Uk+2 UD, v v). Then we delete from it all the vertices appearing in Po (except
(uk+2 uz, v v)) and the subtrees rooted at them, and we reattach these subtrees
directly to Po. Thus we have obtained a spanning tree Tv rooted at u. In B(3, 2), from
u (1, 0) and our choice of c 0, there are two paths P1 and P.:

P1 (1, O) (0, 1) -- (1, 1),
()

P2 (1, 0) (0, 2) (2, 2),

and the two trees T1 and T2 are shown in Fig. 3 (T is the black tree, and T2 is the grey tree).
They are not disjoint, since (1, 0) ---+ (0, 2) belongs to both trees.

12

(a)

(b)

(c)

21

FG. 3. Construction oftwo arc-disjoint spanning trees rooted at (10) in B(3, 2).

3. Definition of T[, v - c An arc of To is of the form

<k+l

eo u u o, v v if it belongs toP,
>1

k+l

otherwise eo u uo, v v, W where W is non-empty and < D,

<k+l

or eo v v, W where W is non-empty.

>_1

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS 219

Let/x v and ev eix where ev and eix are arcs of T and Tix, respectively. Since/x v, e
and eix cannot be both of type (a) or both of type (c). Suppose e is of type (a) or (b), and
of type (b). Then e [ui uo, v v, W] where W may be empty (and there may be
less than k + 1 consecutive letters v), and

k+l

Weix uj up, Iz

where W’ is non-empty and j < D. If W is empty (type (a)), then, since/x :/: v, there are
k + consecutive letters/z in the subword u u, contradicting the definition of k as

/z - ct. If W is non-empty, then we can suppose without loss of generality that j > (i :/: j
since/x - v). Thus, as before, there would be k + consecutive letters/z in the subword

ui u, a contradiction. Note that the same argument shows that eix cannot be of type (c)
with k + letters/z at the beginning.

Thus exactly one arc is of type (c) with not more than k identical letters at the beginning.
Suppose without loss of generality that it is eix [/z /z, W] (W is non-empty). Moreover,
this arc is also of type (a) or (b) in Tv, that is, of the form [Ui U, V V, W’] (W’ may. Such an arc satisfiesbe empty), v /z. We denote this kind of arc e

Ix

(3)
eixV [/z, ,/z, W], W non-empty

[Ui UO, V V, W’], W’ can be empty.

We will replace this arc in Tix by the arc f which is obtained from e by replacing the first
occurrence of

Let us call T the new graph obtained from Tix by doing all the possible replacements.
In the example in Fig. 3, the arc [1, 0, 2] belongs to both T1 and T2. This arc, denoted

el2, is of type (c) since it can be written [1, W] (an arc of T1) and of type (a) since it can be
written [u l, u2, 2] (an arc of T2). This arc is replaced in T1 by the arc fl2 [o, W] [0, 0, 2]
to build TI’. The other tree is not modified: T T2. One can check on Fig. 3 that T(and T
are arc disjoint.

4. The T, tx 5 ot are arc disjoint: The arc f comes from the replacement of eix e
and so can be written

(4)
f [or,/z /z, W], W non-empty

[0, Ui+ Ud, v, v, W’], W’ can be empty.

First, let us show that f :/: fix,’ for all/z :/:/’. Necessarily, v v’, otherwise there would
be two arcs entering to the same node in T, namely eix [xX] and e, [x’X] where
X-- (ui+l u, v v, W’). We have

(5)
flx [Ol, Ui+l UD, !) 13, W],

[Ol, Uj+I UO 1)’, W’],

with at least one v and one v’. Without loss of generality, we can suppose that j > (therefore
+ 1 < D), W’ is non-empty, otherwise W would also be empty and this would imply v v’.

Therefore f contains a subsequence of k + 1 letters v’. Thus or, ui+1 uz contains also
a subsequence of k + letters v’ contradicting the definition of k (since ot : v’).

220 JEAN-CLAUDE BERMOND AND PIERRE FRAIGNIAUD

(6)

and

Finally, f cannot be an arc of Tv, 9/-/z. Indeed, assume that f e,

f [or, Ui+ UD, 1) 13, W]

[Uj UD, F] (type (a))

or

(7) e [uj UD, F F, W’] (type (b))

or

[9/ 9/, W"] (type (c)).

The arc e cannot be of type (c) because 9/ or. If 9/ : v, a similar argument shows that
there is a subsequence of k + 1 letters 9/or v in u (u UD) contradicting the definition
of k. But 9/ v implies that the node (ui+ UD, v v, W) is reached in T by
the arc [c, Ui+l UD, v V, W]. This is impossible since it is reached in To by the arc

[# .].and ui o since euev [b/i, u/+ //D, v v, W] eu,
5. The T/, lz :/: c are connected: It suffices to show that the path in T from the root

to the tail of the new arc [c, ui+l UD, V v, W’] is identical to the corresponding
path in T. Suppose that some arc of this path has been modified. Then it must be of
the form [/x /z, c, ui+ u D, v V, W"] (because the path must reach the tail of
[0/, Ui+ b/D, v v, W’]), and it must also be ofthe form [uj UD, 9/ 9/, W"’]
for some 9/ #.

If 9/ v, then a similar argument as before shows that there is a subsequence of k +
letters 9/or v in u (Ul UD) contradicting the definition of k. So 9/ v, but it again
implies a contradiction with the definition of k by looking carefully at the positions of u in
the two forms of the arc and noting that v or, u or, and u v (recall that in fact u Iz).

D6. The depth of the Tu is at most D + 2 -J + 1" The path from the root to any vertex
in T is of length at most k + + D. In the replacement process, we might attach at most
one (by step 5) subtree of depth at most k 1. Indeed, the root of this subtree is the head
of an arc eu, which is (by step 3) of the type (c) but cannot contain more than k letters
Altogether the total depth is at most k + 1 + D + + k D + 2k + 1. We always have

The proof of Theorem 5.3 is constructive and gives a method to construct arc-disjoint
spanning trees of B(d, D). With the notation of the proof, first find ot and k. Next build the
d 1 shortest-paths trees rooted at the d vertices (uk+2 u D, V v), v ot (where
the letter v is repeated k 4- times). Finally, correct the trees following the described rule.
Concerning the depth, note that k [- is a worst case that occurs with a small probability.
In general, k is much smaller than /-J, hence the depth of the arc-disjoint spanning trees

Dis much smaller than D 4- 2 [-f 4- 1. For instance, if the root is u (c, c c, or), our
construction is the one given in Proposition 5.2 and we have a depth of D 4- 1.

COROLLARY 5.4. Let r be any node of B(d, D). There exists a protocol of broadcasting
from r whose time is at most (/Lr/(d 1) 4- /2DB)2.

For a large message, this time is of the same order as the lower bound given by Proposition
3.1, i.e., bd,o)(r) > max(Dfl, Lr/(d 1)r).

6. Gossiping in networks. First we consider a given digraph G (V, E) of diameter
D and minimum in-degree din minuv d-(u), and next we study the particular case of

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS 221

the de Bruijn digraph. Gossiping is broadcasting from all the nodes. We assume that all the
messages are of the same length L.

6.1. General lower bounds. Since during any gossiping all the nodes must perform a
broadcast, the total start-up time is at least maxrev ecc(r)fl Dfl. Let u be any node of V
and S be a set of vertices not containing u. All the SI messages initiated by the vertices in S
must reach u through m+ (S, V S) communication links, hence the total propagation time
is at least

ISIL(8) max max
uV sOluCS m+(S, V S)

For instance, choosing S V {u the total propagation time is at least

max((n 1)L/d-(u))r ((n 1)L/dnin)r.
uGV

PROPOSITION 6.1. In a digraph G of minimum in-degree dain and diameter D, the gos-
siping time is at least gG > max(D/3, ((n 1)L/din)r).

Note that we cannot obtain a lower bound by adding the two lower bounds (start-up and
propagation time) [13], [31].

According to the above reasoning and particularly to (8), a good gossiping algorithm
might proceed in D steps, ensuring that for any set of vertices S maximizing the ratio

Sl!m+ (S, V S), the messages crossing from S to V S use the m+ (S, V S) links
with a well-balanced load of the messages on the links. Johnsson and Ho [20] and MacKenzie
and Seidel [25] show that this is possible for hypercubes and star graphs, respectively. We
will show that this is also possible for the de Bruijn digraphs.

6.2. Gossiping in digraphs. We give below a simple greedy algorithm that appears to
reach an optimal propagation time in the de Bruijn digraph. More details concerning the
algorithm and its extensions can be found in [3], [4], [23]. We define the receiving phase as
follows: receive while data arrive through any link and while all the links have not transmitted
at least one message. With this convention, we describe following gossiping algorithm.

ALGORITHM (the algorithm is given for a processor u)
Step i(1 < < D):

i. Form a message called New consisting of all the messages u has not already sent (at
step 1, New will consist of the message of u itself). SendNew to all the out-neighbors
ofu.

ii. Wait until you receive all the messages from your in-neighbors.

Note that to ensure that the algorithm works, u has to send a message at each phase i. If
u has not received any new messages at phase 1, it can send an empty message or a special
one.

The algorithm applied to the de Bruijn digraph is shown in Fig. 4. (The messages are
numbered with the name of the processor in decimal arithmetic.)

The following lemma shows that the algorithm realizes the total exchange of the messages
in D steps and will enable us to compute an upper bound of the gossiping time.

LEMMA 6.2. At step i, each processor pforwards all the messagesfrom all processors p’
such that there exists a shortest path of length from p’ to p (d(p’, p) 1).

Proof. Let us call P/the property "at step i, each processor pforwards all the messages
from all processors p’ such that d(p’, p) 1." We proceed by induction. P1 is true.
Assume that Pj is true for all j < i. During step 1, each processor q sends to all its

222 JEAN-CLAUDE BERMOND AND PIERRE FRAIGNIAUD

Step 1

Step 2

Step 3

001

000 4

011

3 111

1107
001 0,.4 011

000 I’ S,51002,6_01 3,7 31101,5
111

2,6
001

,6 ",6 0,4,6

000 ,3,5,7"010@37101

1,3,5,’ 100
1,5

FG. 4. Gossiping in B(2, 3).

neighbors all the messages from processors p’ such that d(p’, q) 2 by the induction
hypothesis. Thus all the messages from processors p’ such that d(p’, p) < have been
received by p at the end of step 1. During step i, p forwards messages from processors
p’ such that d(p’, p) since it had already forwarded those from processors p’ such
that d(p’, p) < i- by hypothesis. Thus Pi is true.

Let da be the maximum in-degree of the considered network. From a processor p, there
are at most (daax) processors p’ such that d(p’, p) i; thus the maximum time of step
of the greedy algorithm is less than fl 4- (d,ax)i-1L r assuming that all messages are of same
length L. Hence:

D

TGreedy < (fl + (daax)i-1L r)
(9) i=1

(daax)D- 1
Dfl+ Lr.

drax-

THEOREM 6.3. In any digraph G ofdiameter D and maximum in-degree dax, there exists
a protocol ofgossiping whose running time is at most

(drax)D-
D/3 + Lr.

dGax-
For short messages, the greedy algorithm runs in (R) (D/3), which is optimal. But depending

on the considered network, the upper bound of the greedy algorithm cost can be far from the

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS 223

lower bound of the time to gossip. However, we will show in the next section that, for the de
Bruijn digraph, this upper bound is of the same order as the lower bound for large messages.

Ii.3. Gossiping in de Bruijn digraphs. For a de Bruijn digraph B(d, D), drain d 1,
thus g >_ (n 1/d 1)Lr. Moreover, drax d and n d9, thus the greedy algorithm
applied to the de Bruijn digraph has a complexity TGreedy <_ O q- (n 1/d 1)L r.

COROLLARY 6.4. In the de Bruijn digraph B(d, D), there exists a protocol of gossiping
whose running time is at most D13 + (n 1/d 1)L r.

For large messages, this protocol is of the same order as the lower bound. Moreover, for
any length of message, it is at most two times slower than an optimal algorithm since the lower
bound given by Proposition 6.1 is max (D, ((n 1)Lid 1)r). Note that Fig. 4 shows that
there may exist a dissymmetry on the load of the arcs during each step of the greedy algorithm.
Moreover, note that there are small redundancies in the transmission of the data. Hence, it
may be possible to decrease the global cost by a small amount.

7. Case of undirected graphs. Designers prefer to construct networks based on undi-
rected graphs. Indeed, layouts of mono- and bidirectional links are of the same complexity.
If there is a link between u and v, then a message can be sent directly from u to v and from
v to u. Recall that if only one of these messages can be sent at any given time, it is a half
duplex mode of communication. Otherwise it is a full duplex. Here we are interested in the
full duplex communication mode and so it is better to think in terms of symmetric digraphs.
We can therefore apply the results above. We will now examine only what is happening for
the undirected de Bruijn graph UB(d, D).

A node u (b/1 liD) UB(d, D) is linked with (u2 /’/D, or) and
(or, u uD-). A very important point is that we do not remove any of the double bidi-
rectional links between nodes. For instance, (010) is linked twice in UB(2, 3) with (101) by
two bidirectional links. The maximum degree of UB(d, D) is 2d, but its minimum degree is
2d 2. We will use UB*(d, D) to denote the symmetric digraph obtained from UB(d, D).

7.1. Broadcasting. Consider the set T of d arc-disjoint trees as constructed in 5.
They use the arcs of UB* (d, D) in only one direction. Moreover, we can consider another
family S of d arc-disjoint spanning trees by using right shifts instead of left shifts.
Therefore, we have constructed a family of 2d 2 arc-disjoint spanning trees of UB* (d, D)
of depth h at most 2D + 1. Thus using Theorem 3.3, we have:

COROLLARY 7.1. In any symmetric de Bruijn graph UB* (d, D) there exists a protocol
whose broadcasting time is at most (/Lr/2d 2 + /2Dr)2.

For large messages, this time is of the same order as the lower bound given by Proposition
3.1, i.e., bu.d,D)(r) > max(D, (L/2d 2)r).

7.2. Gossiping. We easily deduce from the greedy algorithm of 6 a greedy algorithm
for UB* (d, D). Each message is divided into two parts. One part is diffused using the original
gossiping (with left shifts), whereas the second part is diffused performing a similar gossiping
with right shifts. The complexity is then:

TGreedy < i + di-1 -r"_

dD-1 L(10) O +
d-1 2

n-1
DI3+Lr.

2d 2

224 JEAN-CLAUDE BERMOND AND PIERRE FRAIGNIAUD

COROLLARY 7.2. In the de Bruijn graph UB* (d, D), there exists protocol of gossiping
whose running time is at most D + Lr.

As for B(d, D), for large messages this protocol is of the same order as the lower bound,
and for any length of messages it is at most two times slower than an optimal algorithm since

(n-1)Lthe lower bound given by Proposition 6.1 is gt/*(a,D) > max(D/3, 2d-2 r).

8. Conclusion. The de Bruijn digraphs (or undirected graphs) are a good family for
performing broadcasting or gossiping. Our broadcasting and gossiping algorithms have prop-
agation times that reach the optimal order for large messages. To do this, we have constructed
a family of arc-disjoint spanning trees. These trees have a small depth and are easy to construct
when the root is a vertex of the form (c c). This confirms the interest of using these
vertices as gates with the outside world. It will be interesting to improve the depth of the
spanning trees constructed in general. It remains to study the same problem for other families
such as Kautz digraphs or generalized de Bruijn or Kautz graphs. Finally, the general problem
of bounding the maximum depth of arc-disjoint spanning trees in general graphs is interesting
in itself and, as far as we know, algorithms for constructing arc-disjoint spanning trees of
minimum depth have not been yet proposed (this problem has been proved to be NP-complete
by Noga Alon; see sketch of his proof in [1]).

Acknowledgments. We are grateful to Joseph Peters and Dominique Sotteau for many
helpful discussions and remarks.

REFERENCES

J.-C. BERMOND AND P. FRAIGNIAUD, Broadcasting and NP-completeness, Graph Theory Notes of New York,
XXII (1992), pp. 8-14.

[2] J.-C. BERMOND, N. HOMOBONO, AND C. PEYRAT, Large fault-tolerant interconnection networks, Graphs and
Combinatorics, 5 (1989), pp. 107-123.

[3] J.-C. BE,MOND AND J.-C. KONIG, General and efficient decentralised protocols 2, in International Workshop
on Parallel and Distributed Algorithms, Bonas (1988), Elsevier-North Holland, Amsterdam, 1989, pp.
199-210.

[4] J.- C. BERMOND, J.-C. KONIG, AND M. RAYNAL, General and efficient decentralised consensusprotocols, Second
International Workshop on Distributed Algorithms, Amsterdam, 1987, Lecture Notes in Comput. Sci. 312,
New York, Springer-Verlag, 1988, pp. 41-56.

[5] J.-C. BERMOND AND C. PEYRAT, Broadcasting in de Bruijn networks, in Proceedings of the 19th Southeastern
Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 66 (1988), pp. 267-282.

[6] de Bruijn and Kautz networks: a competitorfor the hypercube?, in Hypercube and Distributed Com-
puters, E ANDRE AND J. VERJUS, eds., Elsevier-North Holland, Amsterdam, 1989, pp. 279-294.

[7] R. CY,nER, Theoretical aspects of VLSI pin limitations, TR 89-02-01, Dept. of Comput. Sci., University of
Washington, Seattle, 1989.

[8] W. DALLY AND C. SEITZ, Deadlock-free message routing in multiprocessor interconnection networks, IEEE
Trans. Comput., c-36 (1987), pp. 547-553.

[9] N. DE BRUIJN, A combinatorial problem, Koninklijke Nederlandse Academie van Wetenschappen Proc., A49
(1946), pp. 758-764.

[10] J. EDMONOS, Edge-disjoint branchings, combinatorial algorithms, in Combinatorial Algorithms. R. Rustin,
ed., Algorithmics Press, New York, 1972, pp. 91-96.

11 P. FrAIGNIAUD, Performance analysis ofbroadcasting in hypercubes with restrictedcommunication capabilities,
J. Parallel Dist. Comput., 16 (1992), pp. 15-26.

12] E FRAIGNIAUD AND E. LAZARD, Methods and problems of communication in usual networks, Discrete Appl.
Math. (special issue on broadcasting), to appear.

[13] P. FRAIGNIAUD, S. MIGUET, AND Y. ROBERT, Scattering on a ring ofprocessors, Parallel Comput., 13 (1990),
pp. 377-383.

14] D. GUSFELI, Connectivity and edge-disjoint spanning trees, Inform. Proc. Lett., 16 (1983), pp. 87-89.
15] S.T. HEDETNIEMI, S. HEDETNIEMI, AND A. LIESTMAN, A survey ofgossiping and broadcasting in communication

networks, Networks, 18 (1986), pp. 319-349.

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS 225

[16] M. HEYDEMANN, J. OPATRNY, AND D. SOTTEAU, Broadcasting and spanning trees in de Bruijn and Kautz
networks, Discrete Appl. Math. (to appear).

17] W. HILIIS, The Connection Machine, MIT Press, Cambridge, MA, 1985.
[18] C. Ho, Full bandwidth communications on folded hypercubes, in Proceedings International Conference on

Parallel Processing, 1990.
19] M. IMASE, T. SONEOKA, AND K. OKADA, Fault-tolerant processor interconnection networks, Systems Comput.

Japan, 17 (1986), pp. 21-30.
[20] S. JOHNSSON AND C.-T. Ho, Optimum broadcasting and personalized communication in hypercubes, IEEE

Trans. Comput., 38 (1989), pp. 1249-1268.
[21] P. KERMANI AND L. KLEINROCK, Virtual cut-through: a new computer communication switching technique,

Computers Networks, 3 (1979), pp. 267-286.
[22] S. KUNDU, Bounds on the number ofdisjoint spanning trees, J. Combin. Theory, 17 (1974), pp. 199-203.
[23] T. LAKSHMAN ANDW. WEI, Efficient decentralized consensusprotocol using specially structured communication

graphs, Technical Report Bellcore (submitted to IEEE Trans. Comput.), 1990.
[24] L. Lovsz, On two minimax theorems in graph theory, J. Combin. Theory, Ser B, 21 (1976), pp. 96-103.
[25] D. MACKENZIE AND S. SEIDEL, Broadcasting on three multiprocessor interconnection topologies, CS-TR-89-01,

Michigan Technical University, Houghton, 1989.
[26] P. MICHALLON, D. TRYSTRAM, AND G. VILLARD, Optimal broadcasting algorithms on torus, Technical report

RR872-I-0192, LMC, INPG, Grenoble, 1992.
[27] C. ST. J. A. NASH-WILLIAMS, Edge-disjoint spanning trees offinite graphs, J. London Math. Sec., 36 (1961),

pp. 445-450.
[28] Y. SAAD AND M. SCHULTZ, Data communication in parallel architectures, Parallel Comput., 11 (1989), pp.

131-150.
[29] M. SAMATHAM AND D. PRADHAN, The de Bruijn multiprocessor network: a versatile parallel processing and

sorting networkfor VLSI, IEEE Trans. Comput., 38 (1989), pp. 567-581.
[30] S. SEIDEL, Circuit-switched vs. store andforward solutions to symmetric communicationproblems, Proceedings

of the 4th Conference on Hypercube Concurrent Computers and Application, 1989.
[31] Q. STOUT AND B. WAGAR, Intensive hypercube communication, prearranged communication in link-bound

machines, J. Parallel Dist. Comput., 10 (1990), pp. 167-181.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 227-246, April 1994

() 1994 Society for Industrial and Applied Mathematics
001

A LINEAR-TIME ALGORITHM FOR THE HOMOTOPIC ROUTING PROBLEM
IN GRID GRAPHS*

MICHAEL KAUFMANN AND KURT MEHLHORN

Abstract. The paper considers the problem of finding edge-disjoint paths between pairs of vertices in a finite
grid graph. The homotopy class for each path to be routed is prespecified. A very fast algorithm that guarantees to

find a solution for any solvable homotopic routing problem is given.

Key words, algorithms, homotopic routing, edge-disjoint paths, VLSI-theory

AMS subject classifications. 68Q25, 68U05

1. Introduction. We give a linear time algorithm for the homotopic routing problem in
grid graphs.

Problem: Homotopic Routing Problem in Grid Graphs (HRP)

Input: A grid graph R and nets q qk.

Output: Pairwise edge-disjoint grid paths pl p, such that Pi is homotopic to

qi, < <_ k, or an indication that no such paths exist. [3

The planar rectangular grid consists of vertices {(x,y);x, y6 Z} and edges
((x, y), (x’, y’)); Ix x’l + lY Y’I }. A grid graph R (V, E) is a finite subgraph of

the planar rectangular grid. We call a bounded face F of R trivial if it has exactly four vertices
on its boundary and nontrivial otherwise. We muse M to denote the set of nontrivial bounded
faces together with the unbounded face Fext and 69 to denote the union of the interiors of the
faces in M. A nontrivial face is also called a hole.

A path p is a continuous function p [0, 1] -+]2 O. A path p is called a net if
{p(0), p(1)}

_
V fq 00 where 0(.9 is the boundary of O. Two paths p and q are homotopic,

denoted p q, if there is a continuous function F [0, 1] [0, 1] --,]2 O such
that F(0, x) p(x) and F(1,x) q(x) for allx, 0 _< x < 1, and F(t,O) p(0) and
F(t, 1) p(1) for all t, 0 < < 1. A path p is called a grid path if p(x) belongs to R for
all x.

Figure gives an example of an HRP. For the algorithmic treatment, we assume that the
nets q q are grid paths and use n to denote the number of vertices of R plus the total
number of edges in the paths qi. The integer n is called the size of the HRP. We use .A/" to
denote the set {q q of nets.

THEOREM 1. Let P R, A/’) be an even bounded HRP ofsize n.
(a) P is solvable ifand only iffcap(X) > Ofor every cut X.
(b) In time O(n) one can decide whether P has a solution and also construct a solution if

it does.]

Part (a) of this theorem was shown in [KM2] and later extended by [Sh]. The paper
[KM2] also presents an O (n2) algorithm. In the present paper we give a new algorithm with
linear running time.

A cut C is a simple path in]t2 O V with its endpoints in 0(_9. The capacity cap(C)
of a cut C is the number of intersections with edges of R. If C is a cut and p is a path
then cross(p, C) is the number of intersections with edges p and C and mincross(p, C)

Received by the editors February 13, 1989; accepted for publication (in revised form) June 10, 1992. This work
was supported by the DFG, Sonderforschungsbereich 124, Teilprojekt B2, VLSI Entwurf und Parallelitit.

Institut ftir Informatik, Universitit Ttibingen, Sand 13, D-72076 Ttibingen, Germany.
MPI ftir Informatik, Universitit des Saarlandes, Im Stadtwald 15, D-66123-Saarbriicken 11, Germany.

227

228 MICHAEL KAUFMANN AND KURT MEHLHORN

min{cross (q, D); q p, D C}. Finally, the density dens(C) of cut C is defined by

dens (C) mincross(p, C)
peA/"

and thefree capacity fcap (C) is given by

fcap(C) cap(C) dens(C).

A cut C is saturated if fcap(C) 0 and oversaturated if fcap(C) < 0. An HRP is even if
fcap(C) is even for every cut C.

23 2t. 27. 25 25 .7 26 27 6

FIG. 1.

Let v be a vertex in R. We denote the degree of v by deg(v) and the number of nets
having v as endpoint by ter(v). An HRP is bounded, if deg(v) + ter(v) < 4 for all vertices v,
and weakly bounded if deg(v) 4 implies ter(v) 0.

There are many previous papers on finding edge-disjoint paths in grid graphs and general
planar graphs, e.g., [PL], [F], IMP], [NSS], [KM1], [KM2], IBM], [K], [Sh]. The present
paper extends the work in [KM2]. We refer the reader to [KM2] for a discussion of the
relationship between VLSI-design and homotopic routing problems.

This paper is organized as follows. In 2 we describe the algorithm and in 3 we prove its
correctness. The algorithm is similar in spirit to the algorithm in [KM2], but differs in many
details. In particular, its correctness does not follow from [KM2]. In 4 we then describe the
linear time implementation of the algorithm. Weinelt [W] has implemented the algorithm;
Fig. has been produced by his program.

2. The algorithm. In this section we describe an algorithm for the homotopic routing
problem in grid graphs. Recall that we are given a grid graph R and nets Pl pk and that
our goal is to shift the nets pl pk into pairwise edge-disjoint grid paths. Our algorithm
works iteratively. In each iteration we consider an edge e of R and decide whether to use it
for some net and if so for which one. If e is to be used for net p then we choose suitable nets
pl and p2 with p piep2 and replace net p by the three nets pl, e, and p2. The edge e is
then used to route the net e in the obvious way. Thus, each iteration discards one edge of R
and hence there are O(n) iterations. In 4 we show how to implement the algorithm such that
each iteration takes amortized time O (1).

For the algorithm we need some further concepts.
DEFINITION 1. For a path p the canonical representation can(p) is the shortest path

homotopic to p.
Note that can(p) is composed of straight-line segments.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 229

DEFINITION 2. (a) A path p is called a prefix ofpath q if there is a monotone function
[0, l] --+ [0, 1] with t(O) 0 such that p(x) q(t(x))forallx.
(b) The reversal p-l ofpath p is defined by p- (x) p(1 x) for 0 < x < 1.
(c) If p and q are paths, then p , q ifeither p q or p-1 q.
(d) For a path p, we define source(p) p(0) and target(p) p(1).
(e) For a point v, x(v) and y(v) denote the x- and y-coordinate ofpoint v, respectively.
DEFINITION 3. Let p and q be nontrivial paths with the same source s and let s lie on the

boundary ofa unique hole F. Then p is said to be right ofq, if either
can(p) can(q) or

can(p) is a proper prefix of can(q) and there is a hole to the right of can(q) at point
target(can(p)) or

can(q) is a proper prefix of can(p) and there is a hole to the left of can(p) at point
target(can(q)) or

can(p) and can(q) have no nontrivial common prefix andfor every sufficiently small
circle K around s there is a counterclockwise scan of K intersecting first 0 F, then can(p),
then can(q), andfinally again 0 F or

can(p) and can(q) have a maximal common nontrivial prefix r, i.e., can(p) rp
can(q) rq and p and q have no nontrivial common prefix, and for every sufficiently
small circle K around target(r) there is a counterclockwise scan ofK intersectingfirst r, then
pl, andfinally q I.

can(q) can(q) can(p)W can(p) - ca(p) cn(p) can(q)

FIG. 2. An illustration of thefour cases in Definition 3.

Figure 2 illustrates the various cases of Definition 3. The relation left is defined analo-
gously. Both relations are clearly transitive.

DEFINITION 4. (a) A path p is x-monotone ifx(target(p)) < x(source(p)) andfor every
vertical line L the intersection p N L is a segment, i.e., x-monotone paths travelfrom right to

left.
(b) The monotone prefix pref(p) ofa net p is the maximal x-monotone prefix of can(p).
(c) Let p and q be nets with a common source s and let s lie on the boundary ofa unique

hole. Then p is quasi-right ofq ifeitherpref(q) is trivial or pref(p) and pref(q) are nontrivial
and pref(p) is right ofpref(q).

Remark. The ordering right played an important role in the algorithm of [KM2]. In this
paper we use the ordering quasi-right instead. This is one of the sources for the improved
running time.

DEFINITION 5. A cut C is called vertical if it is a vertical straight-line segment.
The algorithm is given as Program 1. In this program, top always denotes the largest y-

coordinate of any vertex of R, Top is the subgraph spanned by the vertices with y-coordinate
equal to top, and a segment is a connected component of Top. An endpoint of a segment
is called exposed if it is not the terminal of any net. The endpoints of a segment are also
called corners of the segment. Finally, Rim is the closed region above the horizontal line
y top 1. In the formulation of Program we assumed that the lowest numbered case for
which the precondition is satisfied is executed, i.e., if e.g., case 4.3 is taken, then cases 1, 2,

230 MICHAEL KAUFMANN AND KURT MEHLHORN

3, 4.1, and 4.2 do not apply. In cases 4.2 and 5.1 the concept of rightmost decomposition is
used, which we now define.

DEFINITION 6. Let e (b, a) with b the left neighbor of a be an edge in row Top and
let X be the vertical cut through e. Let C be the set of nets p with mincross(p, X) > 0.
For p C an admissible decomposition is a triple (pl, e, p2) such that p pl ep2 and
mincross(p1, X)+ mincross(p2, X) mincross(p, X) 1. A triple (p, e, p2) is called a

rightmost decomposition with respect to X if it is an admissible decomposition ofa net p C
and p2 is quasi-right ofq2 for any admissible decomposition (q, e, q2).

while
(2) do
(3) case 1:
(4)

(5)
(6)
(7)
(8)

(9)

(10)

(11)
(12)

(13)
(14)
(5)

(16)

(17)

(18)

(19)
(20)

(21)

(22)

(23)
(24)

(25)

(26)

case 2:

case 3:

case 4:

case 5:

od

=1 cut X intersecting an edge e in Top with cap(X) (,operation ,)
let Xbe such a cut, let e be the intersected edge, and let p be the unique
net with mincross(p, X) 1;
let p pep2 with mincross(pl, X) 0 for 1, 2;
replace p by p and p2 and discard e;
:! segment S consisting of a single vertex b(,operation 2,)
let (b, c) be the vertical edge incident to b and let p be the unique net
incident to b; let p (b, c)p; replace p by pl and discard (b, c);
=! non-trivial segment S with its right corner b not exposed
(,operation 3,)
let p and q be the two nets incident to b with p quasi-right of q and
let e (b, 9) be the horizontal edge incident to b;
let p ep’; replace p by pl and discard e;
3 non-trivial segment S with its right corner b exposed and its left
corner not exposed;
case 4.1: :q net p with can(p)

_
S(,operation 4.1,)

delete net p and discard all edges in can(p)
case 4.2: the vertical cut X through the horizontal edge e

(b, a) is saturated (,operation 4.2,)
let (pl, e, p2) be the rightmost decomposition of any
net which crosses X; replace p by pl and discard all
edges in can(ep2)

case 4.3: let p (a, b)p be a net incident to the left neighbor
a ofb;
replace p by p and discard edge (a,b)
(,operation 4.3,)

3 nontrivial segment S with both corners exposed
case 5.1: :1 saturated vertical cut through an edge of S (,opera-

tion 5.1 ,)
let X be the shortest saturated vertical cut through an
edge e (b a) of S; here b is the right neighbor of a;
let (pl, e, p) be the admissible decomposition of a net
with respect to X such that either can (pl) Rim or
the decomposition is rihtmost;

2-replace p by p and p and discard e
case5.2: let a and b be the left and right corner of

S(*operation 5.2*);
add nets p and q with p(.) q
for0<. <

PROGRAM 1.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 231

3. Proof of correctness. This section is divided into two subsections. In the first sub-
section we collect some useful facts about cuts and in the second subsection we argue the
correctness of the routing algorithm.

3.1. Some facts about cuts.
DEFINITION 7. A cut C [0, -- (9 V is called straight ifthefunction C is linear

and it is called almost-straight if it is either straight or if the line segment connecting C (0)
and C(1) is contained in the boundary ofa nontrivialface, thefunctions C[[0,] and CI[, l]
are linear, there is no vertex of R contained in the interior ofthe triangle C(O)C (1/2)C (1), and
no edge of R is intersected more than once by C. A cut C is called Manhattan if it consists

ofhorizontal and vertical straight-line segments. For a cut C, Manhattan(C) is a Manhattan
cut intersecting the same edges as C.

DEFINITION 8. A tuple (Pl Pk) is called straight-line decomposition of p if
can(p) Pl’’’Pk and each Pi is a maximal straight-line segment contained in can(p).
Each Pi is called a straight-line piece of p.

LEMMA 1. (a) Let P be weakly bounded. Then the cut condition holds if it holds for all
almost-straight cuts.

(b) Let P be bounded. Then fcap(C) > 0 for every cut C that is almost-straight but not

straight. Also, the cut condition holds if it holdsfor straight cuts.

(c) Let p be a net and C a cut. Then cross(p, C) mincross(p, C) mod 2.
(d) Let (pl pk) be the straight-line decomposition of p and let C be a straight cut.

Then mincross(p, C) -= cross(pi, C).
(e) Let P be a bounded problem satisfying the cut condition and let C be a saturated

Manhattan path in P. Then consecutive turns ofC are in alternate directions.
(f) Let P be bounded. If there is an oversaturated straight cut in P, then there is either

an oversaturated horizontal or vertical cut in P or an oversaturated straight cut intersecting
only edges incident to vertices ofdegree 4.

Proo (a) This is the content of 3 of [Sh].
(b) Let C be almost-straight but not straight. Then the line segment connecting C(0)

and C(1) passes through exactly cap(C) 2 vertices, all of which have degree 3. Hence
dens(C) _< cap(C) 2. The second part now follows from part (a).

(c) This is Lemma 7 of [KM2].
(d) Since p- can(p)= PIP2"" Pk, we have mincross(p, C) _<]i cross(p/, C).

Let us assume mincross(p, C) < i cross(p/, C). Then there are (x, ,kl), (x2, k2) such that

xi x2, ,k :/: ,k2, and can(p)l[Xl, x2] Cl[,k, .2]. Since can(p) is a shortest path homotopic
to p and since C is a straight-line segment, we conclude that can(p)(x) and can(p)(x2) must
lie on the same segment pi. So Pi is a subpath of C and hence C passes through a vertex of
R, a contradiction.

(e) This is Lemma 12a, Claim of [KM2].
(f) This is Lemma 12b of [KM2]. Note that this lemma state in the terminology of that

paper that there is either an oversaturated 0-bend or an oversaturated 1-bend cut connecting
two concave corners. The latter gives rise to a straight cut intersecting only edges incident to
vertices of degree 4.

3.2. Correctness of the algorithm. All of the actions in our algorithm fall under the
following paradigm. For a certain edge e and a certain net p we choose pl and p2 such that
p . pep2, replace p by pl and p: and discard e; operations 4. l, 4.2, and 5.2 can be viewed
as repeated application of this basic action. It is convenient to view the basic step as to consist
of two substeps.

232 MICHAEL KAUFMANN AND KURT MEHLHORN

substep A: replace p by the three nets pl, e, and p2.
substep B: remove edge e and net e.
The further outline of the correctness proof is as follows. We first deal with substep B

in Lemma 2, then show in Lemma 3 that substep A generates even problems satisfying the
degree constraints postulated in the premise of Lemma 3, and finally show in Lemmas 4 to
10 that operations to 5.2 preserve the cut condition. In the proofs of these lemmas we will
frequently use part (a) of Theorem 1, i.e., the present paper does not give an alternative proof
of part (a).

LEMMA 2. Let P (R, iV" be an even routing problem satisfying the cut condition, and
let e be an edge in the boundary of (.9 as well as a net in N’. Assume further that ter(v)+
deg(v) < 4 for all vertices except the endpoints of e and ter(v) + deg(v) < 6 for the two

endpoints of e. Then removing edge e and net e yields an even, bounded problem satisfying
the cut condition.

Proof Let us use P’ to denote the modified problem. P’ is certainly bounded. If there
is a cut of capacity one through e, then P’ is also even and satisfies the cut condition. So let
us assume that there is a trivial face F incident to e in P. Let R’ R e, N" iV" e
and let Y’ be any straight cut in R’. If Y’ is also a cut in P, then dens’(Y’) dens(Y’) and
cap’(Y’) cap(Y’) where dens’ and cap’ are computed with respect to P’. If, on the other
hand, Y’ ends in F then we can extend Y’ to a cut in P with cap(Y) cap’(Y’) + and
dens(Y) dens’(Y’) + 1. Thus fcap’(Y’) fcap(Y) > 0.

LEMMA 3. Substep A generates even problems satisfying the degree constraintspostulated
in the premise ofLemma 2.

Proof The claim about the degree contraints is obvious. For the evenness let C be any
cut and let p pl ep2. Then

mincross(p, C) mincross(p ep2, C)
cross(p ep2, C) mod 2 by Lemma (c)

[cross(p C) + cross(e, C) + cross(p2, C)] mod 2

[mincross(p, C) + mincross(e, C) + mincross(p2, C)] mod 2

by Lemma (c). Thus evenness is preserved.
LEMMA 4. Operations and 2 preserve the cut condition.

Proof Obvious.
LEMMA 5. Operation 3 preserves the cut condition.

Proof In operation 3 there are nets p and q incident to the right corner b of a segment with
p quasi-right of q. We replace p by e and pl, where e (b, a), a is the left neighbor of b, and
p ep Assume, for the sake of a contradiction, that there is an oversaturated almost-straight
cut C in the modified problem. The cut C must go through edge e since otherwise its density is
not affected by the action. Also mincross(e, C) and mincross(p
1. Thus the density of C is increased by at most 2 and hence C must be saturated in the original
problem. Thus C must be straight by Lemma (b) and mincross(p C) mincross(p, C) + 1.
Since the original problem has a solution in which then necessarily net q uses edge e, we
conclude mincross(q , C) mincross(q, C)- where q , eq . Let (Pl p,) and
(q qk) be the straight-line decompositions of p and q, respectively. Then pl does
not intersect C since p...pk is a shortest path homotopic to p, mincross(p, C)
cross(p/, C) by Lemma l(d), and mincross(p, C) mincross(p, C) + 1, and q intersects
C for analogous reasons.

Case A. Ix(target(C))] _< Ix(source(C))] Then Pl is not right of ql and hence p is
not quasi-right of q.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 233

Case B. Ix(target(C))] > Lx(source(C))] Consider the cut D indicated in Fig. 3.
Then D is saturated, since mincross(p, D) mincross(p, C) + and mincross(q, D)
mincross(q, C) 1. Also, Manhattan (D) makes two consecutive turns into the same direction,

a contradiction to Lemma (e).

FIG. 3.

LEMMA 6. Operation 4.1 preserves the cut condition. This is even true if the right corner

of S is not exposed.
Proof In operation 4.1 there is a net p with can(p) c_ S. Then mincross(p, C)

cross(can(p), C) for every straight cut C. Hence, deleting the net p and discarding all edges
in can(p) preserves the cut condition.

LEMMA 7. Operation 4.2 preserves the cut condition.

Proof In operation 4.2 the right corner of S is exposed and the left corner of S is not

exposed. Furthermore, there is no net p with can(p) c_ S and hence the horizontal cut Y,
which cuts off the segment S, is saturated. Note that there are exactly cap(Y) terminals above
segment Y and that each terminal contributes one to the density of Y. Let b be the right corner
of S, let e (b, a) be the horizontal edge incident to b, and let X be the vertical cut through
e. In operation 4.2 the cut X is saturated. Let (pl, e, p2) be the rightmost decomposition of
any net with respect to X.

CLAIM 1. can(p2) S.
Proof Let e (c, b) be the vertical edge incident to b. Consider any solution to the

original problem. Then there must be a net, say q, which uses the edges e and e, i.e., the
solution path can be written q le’eq 2. Furthermore, since there are exactly cap(Y) terminals
in S, contributing one each to the density, we conclude that mincross(q 2, Y) 0. Thus
can(q 2) c__ S. Next observe that p2 is quasi-right of q2, since (pl, e, p2) is a rightmost
decomposition with respect to X, and hence can(p2)

_
S.

Let P’ be the problem obtained by replacing p by p and ep2. It suffices to show
that P’ satisfies the cut condition, since the deletion of net ep2 and all edges in can(ep2) is
covered by Lemma 6. So assume that there is an oversaturated straight cut C in P’. By
Lemma l(f) we may assume that C is either vertical or horizontal or a straight cut inter-
secting only edges incident to vertices of degree 4. Since cross(ep2, C) <_ 1, pl epZp-
and hence mincross(p, C) < cross(can(p), C) + cross(ep2, C) _< mincross(p, C) + 1, we
conclude fcap(C) 0, fcap’(c) -2, mincross(ep2, C) 1, and mincross(p, C)
mincross(p, C) + 1. From mincross(ep2, C) we conclude that C must intersect an edge
of segment S and hence must be vertical.

Since mincross(p, X) > 0, we can write can(p) rlr2 where x(source(r2)) x(b),
cross(r2, X) 1, and the vertical segment s connecting source(r2) to b is contained

234 MICHAEL KAUFMANN AND KURT MEHLHORN

in R. Then pl rls and hence mincross(p, C) < cross(rs, C) cross(r, C)
cross(can(p), C) mincross(p, C) 1. Thus fcap’(C) fcap(C) for any vertical cut,
a contradiction.

LEMMA 8. Operation 4.3 preserves the cut coitdition.

Proof The precondition is almost as in operation 4.2; however, the vertical cut Xthrough
e (b, a) is not saturated. Let p be a net which has a as a terminal. Let p , (a, b)p and
replace p by (a, b) and p.

Assume that there is an oversaturated straight cut C with respect to the modified problem
P’; note that P’ is bounded. Then C must intersect the edge (a, b), since otherwise its
density is not affected by the action, and fcap(C) 0. Next observe that P’ is bounded
and hence by Lemma (f) we may assume that C is vertical, i.e., C X. This contradicts
fcap(C) 0. [3

LEMMA 9. Operation 5.1 preserves the cut condition.

Proof Let Xbe the shortest saturated vertical cut intersecting an edge in S, let e (b, a)
be the edge in S intersected by X with b being the right neighbor of a, and let p p 6’p

2 be a
net crossing X such that either can(p1) c_. Rim or (p, e, p2) is the rightmost decomposition
with respect to X. We replace p by p, e, and p2.

The following claim will be useful.
CLAIM 2. lit P there is no saturated nonvertical cut through edge e.

Proof Assume that there is such a Manhattan cut C’o By Lemma l(e) we may assume
that C’ turns in alternate directions. Assume also that the first segment C’ of C’ is maximal in
length. We now distinguish cases. Assume first that C’ has only bend or C’ intersects less
that cap(X)- edges.

We move the vertical part of C’ intersecting e so as to make the cut C’ shorter. Then one
of the following situations must arise (see Fig. 4). Either we split the cut at some point into
several cuts or we move the vertical part beyond the end of segment S. In the first case one of
the parts is a saturated vertical cut intersecting S and being shorter than X; in the second case
an oversaturated cut is obtained since the corners of S are exposed. In both cases, we have a
contradiction. We conclude that C intersects cap(X) edges and C’ has more than bend;
i.e., the situation is as shown in Fig. 5.

Or

FI6. 4. Hlustrating the first case in the proofof Claim 2.

We now move the first horizontal part of C’ down by one unit, and in this way split C’
into several cuts, which are all saturated in P. Hence one of them is oversaturated in P’. But
the topmost cut (= X) is saturated in P’ and the free capacities of all other cuts do not change,
since they do not interfere with cut X. [2

We now return to the discussion of operation 5.1. Assume that there is an oversaturated
cut C with respect to the modified problem P’. Since mincross(p, X) > 0, we can write

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 235

can(p) r lfr2 where x(source(f)) x(b), x(target(f)) x(a), and the straight-line
segments s connecting source(f) to b and s2 connecting a to target(f) are contained in R.
Then p sir l, p2 r2s2, and f sles2. Also, mincross(p1, C)+ mincross(e, C)+
mincross(p2, C) < cross(r is, C) + cross(e, C) + cross(s2r2, C) cross(r fr2, C) +
cross(s es2, C) cross(f, C) < mincross(p, C) + 2. We conclude that cross(s es2, C)
2, fcap(C) 0 and fcap’ (C) -2. Hence C is straight by Lemma (b).

Case A. C intersects e: Claim 2 and the fact that fcap(C) 0 and C is straight imply
that C is vertical. Thus C X, a contradiction.

FI6. 5.

Case B. C does not intersect e. Then C must intersect s and S2 and hence C and X
intersect in a single point.

Case B1. can(p) c_ Rim. Then C must intersect can(p1) because otherwise
mincross(p e, C)+ mincross(p2, C) mincross(p2, C) _< cross (e-1 (can(pl)) -1 can(p), C)
< cross(can(p), C), and hence fcap’(C) fcap(C). Let C’ C be a Manhattan cut with
cap(C’) cap(C). Assume first that C’ is a straight horizontal cut. Then C’ Y, where Y
is defined as in Lemma 7, and hence fcap(C’) > 2, a contradiction. We conclude that C’
contains at least one vertical segment. Since can(p1)

_
Rim, C intersects can(p1), s 1, and

s2, C is straight, and since the corners of all segments in Top are exposed, we may assume
without loss of generality (w.l.o.g.) that C’ starts with a vertical segment and turns right. Thus
if we move that vertical segment by one unit to the left, the capacity of the cut cannot increase.
Also, since the corners of all segments are exposed when case 5 applies, the density of the
cut cannot decrease and hence the cut stays saturated in P (or even becomes oversaturated in
P’). As we move the vertical part further to the left either one of the following three situations
must arise (see Fig. 6). Either, we obtain an oversaturated cut in P or a nonvertical saturated
cut through e or the cut is split into several cuts at least one of which is saturated in P and
oversaturated in P’. In all three cases we have a contradiction; this is obvious in the first case,
follows from Claim 2 in the second case, and follows in the third case form the observation
that none of the resulting cuts can simultaneously intersect s 1, s2, and can(p).

Case B2. (pl, e, p2) is the rightmost decomposition with respect to X. Consider the cuts

Z1 and Z2 shown in Fig. 7. Let Z’l be a shortest path homotopic to Z1. Z’ is a polygonal path
that bends at the corners of some holes. We split Z’ at these corners and obtain straight cuts

Z’I 1, Zk,’ (see Fig. 8). In a similar way we obtain ZI Z2,’ from Z2.
CLAIM 3. fcap(X) + fcap(C) > = fcap(Z’i) + -/21 fcap(Zi).
Proof It is clear that cap(X) + cap(C) _> -/’.=1 cap(Zli’ "- Zik2 cap(Zi). It therefore

236 MICHAEL KAUFMANN AND KURT MEHLHORN

a b

Or

a a b

FIG. 6.

a b

FIG. 7. X and C produce Z and Z2.

suffices to show that cross(s, X) + cross(s, C) _< -k cross(s, Ztli + -f21 cross(s, Z)
where s is any straight-line piece of a net q A/’. Divide the plane by the lines supporting X
and C into four regions as shown in Fig. 9. Then all pieces s contribute the same amount to
both sides except those having one endpoint in region D and one endpoint in region F. Such
segments contribute 2 to the left hand side and 0 to the right hand side.

Zl

FIG. 8.

We now show that there is no such segment. Assume otherwise. Let q be a net such that
cap(q) q’sq" contains an elementary piece s, which has its source in F and its target in
D. Let s s’s"s’" where x(source(s")) x(b) and x(target(s")) x(a); let l and 12 be
the paths parallel to X and connecting source(s") with b and a with target(s"), respectively.
Then q ,, q’s’lelzs’"q", mincross(q’, X) mincross(q’s’l, X) and mincross(q", X)
mincross(/2s"q", X), i.e., (q’s’l, e, lzs’"q") is a decomposition of q with respect to X. Also,

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 237

D E

X

FIG. 9. Thefour regions D, E, F, and G.

12s’"q" is quasi-right of P2, since the first elementary piece of P2 ends in G, a
contradiction. [3

Claim3 implies that either one of the cuts Z’i,1 < < kl, or Z’2i,2 < < k2, is
oversaturated, a contradiction to the assumption that P satisfies the cut condition, or that all
of them are saturated. In the latter case, Z’, a nonvertical straight cut through e, is saturated,
a contradiction to Claim 2. The discussion of case B is now completed and Lemma 9 is
shown. [3

LEMMA 10. Operation 5.2 preserves the cut condition.

Proof When operation 5.2 is applied, both corners of S are exposed and there is no
saturated vertical cut through any edge of S. Let a and b be the two corners of S. We add
the nets p and q with p()) q(.) a + (1 1.)b for 0 _< _< 1. Let P’ be the modified
problem and assume that there is an oversaturated cut C in P’. Then C must intersect S and
C was saturated in P. Since P’ is bounded, we may assume that C is vertical by Lemma (f),
a contradiction. [3

4. A linear time implementation. In this section we describe a linear time implementa-
tion of our algorithm. In the first part of the section we introduce the required data structures
and in the second part we realize the algorithm using these data structures. The first part
consists of two interleaved sections" the description of the abstract and the description of the
concrete data structure. In the abstract data part we use objects like sequences and sets and
operations on these objects and in the concrete part we show how to realize these operations.
The concrete part is interleaved with the abstract part.

4.1. The data structure. We first discuss the representation of the routing region. We
assume that the vertices and the vertical cuts are numbered 1, 2, 3 The numbering of
the cuts is such that for each x-coordinate the cuts with the x-coordinate are numbered by
consecutive numbers from top to bottom. We identify vertices and cuts with their number.
We specify the routing region by storing the neighbors for each vertex.

Concrete. We have four arrays l, r, u, d. For < v < IV l, l[v] is the (number of the)
left neighbor of v; similarly for r, u, and d. We also have two arrays X and Y that give the
coordinates of every vertex. [3

Let v be any vertex. Then L(I, v)(L(2, v), respectively) is the closest vertex with the
same y-coordinate as v to the left of v, which can be reached from v by a straight-line grid path
and which is incident to a vertical boundary edge from below and from above, respectively.
R(i, v), U(i, v), and D(i, v), 1, 2 are defined analogously with left replaced by right,
above, and below, respectively.

Concrete. We have another four arrays L, R, U, and D. The array L can be initialized in
linear time by scanning each row of the routing region from left to right. Similarly, for R, U,
and D. [3

238 MICHAEL KAUFMANN AND KURT MEHLHORN

We turn to the representation of nets next.
DEFINITION 9. (a) Let p be a net. Then rightmost p is a shortest grid path homotopic

to p, which is right of any other shortest grid path homotopic to p. leftmost(p) is defined
analogously.

(b) Let p be a net. The monotone decomposition of p is (pl pk) where can(p)
pl pk, and Pi is either a maximal vertical segment or a maximal subpath not containing a
vertical segment.

(c) The representative of p is rep(p) pl ...pk where (p pk) is the monotone

decomposition ofp and

Pi

Pl rightmost (Pi)

leftmost(pi)

if Pi is vertical,

ifx(target(pi)) < x(source(pi)),

if x(target(pi)) > x(source(pi)).

(d) The bend sequence bs(p) of p is the sequence vo vk of vertices such that
(1) Vo and vk are the terminals of p;
(2) v vk-1 are consecutive bends of rep(p);
(3) if vo . Rim f3 0 Fext, then v is the first bend of rep(p) and if vo Rim C) 0 Fext,

then Vl is the first bend not contained in Rim. Similarly, if Vr Rim (3 O Fext, then
Vr-1 is the last bend ofrep(p) and if vr Rim f3 0 Fext, then Vr-1 is the last bend not
contained in Rim.

Remark. In the bend sequence of a path we suppress the bends contained in Rim, since
these bends appear and disappear as we process the top row. It would therefore be very costly
to treat them like the other bends. Figure 10 shows the representative of a net and its bend
sequence.

In the input, a net is given as a grid path. The representative of a path can be computed in
time proportional to its length by walking along the path and looking for shortcuts using the
arrays L, R, U, and D.

This can be seen as follows. In a first walk along the path, a shortest path homotopic to

the net is computed (the task is here to remove U-turns which are not forced by a hole).

FIG. 10.

In a second walk along the path, the path is decomposed into montone pieces and the
pieces are shifted appropriately. All of this takes linear time in the length of the path.

The bend sequence can be computed from the representative by inspecting the initial and
final segments of it. Altogether, all representatives and bend sequences can be computed in
linear time.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 239

A crossing is an intersection between a representative and a vertical cut. Every crossing
belongs to two sequences as we describe next.

Let p be a net, let v0 vk be the bend sequence of p and let c Cm be the crossings
of rep(p) with vertical cuts in the order in which they occur on rep(p). For 0 _< < k, define
the c-sequence of (vi, vi+l) as the subsequence of crossings that occur between vi and vi+.

Let C be any vertical cut. The r-sequence of C is any ordering c Cp of the crossings
with C satisfying the following three properties" Let e (b, a), with a the left neighbor of b
be the topmost edge intersected by C, and let (p], e, pi2) be an admissible decomposition of
net pi corresponding to crossing ci, <_ < m. Then

(1) (rim property) There is an integer k(C) >_ 0 such that < k(C) implies can (p)) c_
Rim"

(2) (ordering property) If k(C) < < j, then p2 is quasi-right of pj2..
(3) (consistencyproperty) If D is a vertical cut in the column to the left of C, k(C) < < j

and pi and pj also cross D, then k(D) < i’ < j’ where c is the next crossing of Pi and D
and c is the next crossing of pj and D.

Remark. Initially, we will have k(C) 0, for all C. Then (2) states that the r-sequence
of C reflects the ordering quasi-right and (3) states that the orderings for adjacent cuts are
consistent with one another. We are not able to maintain (2) and (3) with k(C) 0 for all C.
One of the difficulties is case 4.3. In the situation of Fig. 11 the new crossing of p with X
would have to be inserted somewhere into the r-sequence of X.

FIG. 11.

We will instead add it to the front of the sequence and increase k(X) by one. In this way
(1), (2), and (3) are maintained with small cost. However, the ordering quasi-right in cases 3,
4.2, and 5.1 is now harder to compute. In case 3 we solve this problem by basing the decision
on cuts that do not intersect the Rim and hence have k(C) 0; in case 4.2 we use the fact that
can(ep2) _c Top for the rightmost decomposition (pJ, e, p2), and in case 5. we can always
take the first element of the r-sequence. The details are given below.

We call cj ckc) the rim-part and ckc)+ Cm the non-rim-part of the r-sequence
of C.

Concrete. A bend sequence is realized as a doubly linked list (see Fig. 12). The elements
of the list are vertices and representatives of c-sequences. Each c-sequence is a doubly
linked list of crossings; a crossing is represented by a record to be described below. The
representative of a c-sequence points to the first and the last item of the c-sequence. An r-

sequence is represented as a singly linked list. There is an array rheads[of list headers for
the r-sequences, rhead[i] points to the first element of the r-sequence for cut i. We describe
below how this data structure is initialized.

240 MICHAEL KAUFMANN AND KURT MEHLHORN

There are several functions that can be applied to crossings and c-sequences. For a crossing
c, Findrep(c) returns the representative of the c-sequence to which c belongs, Findcut(c)
returns the number of the cut whose r-sequence contains c, Above(c, d) yields true for two
crossings c, d belonging to the same r-sequence if c is in front of d in the sequence, Split(c)
splits the c-sequence containing the crossing c after c and returns the representatives of the
two resulting sequences, Addleft(r, c) and Addright(r, c) add the crossing c to the c-sequence
with representative r, Delete(c) deletes the crossing c from the c-sequence containing it,
and Access&Split(r, x) splits the c-sequence with representative r after the crossing with
x-coordinate x and returns the representatives of the resulting c-sequences.

rheads

. c-sequen - vi+ < -
- a doubly linked

list of crossings

the r-sequence of some cut

FIG. 12.

Concrete. We realize a crossing as a record consisting of the following fields: Two
pointers csuc and cpred for the c-sequence; a pointer rsuc for the r-sequence; an integer
cutnumber, which is the number of the cut containing the crossing; an integer rank; and
various other fields, which are used to realize the other operations. We postulate that the rank
field increases along any r-sequence and hence Above takes time O(1). Findcut also takes
time O(1) by virtue of the cutnumber field. The operations Findrep, Split, Addleft, Addright,
Delete, and Access&Split comprise the data type splittable list. It is shown in [Schw] that
splittable lists can be implemented such that all operations have amortized cost O(1). The
implementation combines the level-linked trees of [HMRT] with the split-find data structures
of [GT], [IA].

We are now ready to describe the initialization of the data structure. We number the cuts
from left to right and for each x-coordinate from top to bottom. The c-sequences are easily
computed in linear time. The r-sequences are computed as follows. We scan the layout region
from left to right. When we reach a certain column, the r-sequences for all cuts to the left of
the column are already computed, and ranks are assigned to all crossings in these r-sequences.
We now show how to compute the r-sequences for all cuts immediately to the right of the
column in time proportional to the length of the column (see Fig. 13).

Consider any cut C to the right of the current column. We first divide the set of crossings
with C into three parts: the U-, D- and L-parts; the U-part and D-part consist of all crossings
with nets that either terminate in the current column on a module that touches the current
column from the right and lies above C or below C, respectively, or that have the next crossing
with a cut above C or below C, respectively; and the L-part consists of all other crossings.
The r-sequence of C can then be obtained by concatenating an appropriate ordering of the
U-part with an appropriate ordering of the L-part with an appropriate ordering of the D-part.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 241

current column

FIG. 13.

We show how to order the L-parts. We first construct a list L consisting of the topmost
vertex of the current column, followed by the r-sequence of the first cut to the left of the
column, followed by the terminals on the first module touching the current column from the
left, followed by the r-sequence of the second cut and then number the elements of this
list in increasing order. We then go through the L-parts of all cuts C and generate for each
crossing c with C, say with rep(p), a pair consisting of

the number of the cut C
the rank in L of the crossing or terminal adjacent to c in rep(p).

We sort these pairs by bucket sort in time proportional to the length of the column. This
gives us the desired ordering of the L-parts, the U- and D-parts can be ordered in a similar
way. The ranks are now assigned by numbering the crossings in each q-sequence in increasing
order. Altogether we have now shown how to compute the r-sequences of all cuts in linear
time.

We finally store for each cut its free capacity (array freecap[]). We also have an array
satcut[1... of pointers. The element satcut[i] points to a doubly linked list of all saturated
vertical cuts of length intersecting row top. Each saturated cut points to its position on the
satcut lists (array satpos[...]). We also keep the nonempty entries of the array satcut in a
linked list (see Fig. 14). This finishes the description of the data structure.

Fc;. 14.

4.2. The algorithm. We work through the routing region from top to bottom. Suppose
that we arejust beginning to process row top. Let us also assume that we have the data structure
described in available.

Step (Cuts of capacity one). A cut of capacity one is necessarily saturated and hence
the cuts of capacity one intersecting row top are all contained in the list satcut[]. Let C be
any cut in satcut[], let (a, b) be the edge in row top intersected by C, and let c be the crossing

242 MICHAEL KAUFMANN AND KURT MEHLHORN

on the r-list of C. Let c be on the c-sequence of bends u and v. Note that we can find u and
v in time O(1) using operation Findrep. We split (operation Split) the c-sequence of u and v
at the crossing c and introduce a and b as new terminals (see Fig. 15).

At this point we have created two nets, say p and P2, with terminals in row top. If either
u or v was a terminal of its net then the bend sequences of Pl and P2 are correctly computed
by the splitting process. If neither u or v was a terminal, then we have to update the bend
sequences of Pl and P2 as follows. Follow the bend sequence until a vertex, say w, which
is not in Rim is encountered, delete the vertices before w and concatenate the appropriate
c-sequences. If vertices were deleted then + c-sequences have to be concatenated. We
concatenate these sequences by adding (operation Add) the items on the second, third
sequence to the first sequence one by one. Note that a crossing can be added at most once to a

c-sequence because it belongs to a c-sequence incident to a terminal after the addition. Hence
the total cost of additions is linear.

rep v

t C

FIG. 15.

Step 2 (No cuts ofcapacity one). All cuts of capacity one are processed. We scan row top
from left to right and construct four sets of segments. The set RS, LS, and FS, contains all
segments where the right corner is not exposed, the right corner is exposed but the left corner
is not exposed, and both corners are exposed, respectively. The set TS contains all segments
consisting of a single vertex.

We now discuss cases 2 to 5 of the routing algorithm.
Case 2 applies whenever TS =/= 0. Let S 6 TS be a segment, let b be the single vertex in

S, let p be the net incident to b, and let a be the lower neighbor of b. We replace b by a on
the bend sequence of p and delete the edge e (b, a). This takes constant time.

Case 3 applies whenever TS 13 and RS # 91. Let S be any segment in R S, let b be the
right corner of S, let a be the left neighbor of b, and let p and q be the two nets with terminal
b. Let v and w be the vertices following b on the bend sequences of p and q, respectively.

Case A. At least one of the nets p and q leaves the column of b to the left. This can be
checked in time O (1) by inspecting the first crossing of p and q. We may assume w.l.o.g, that
p leaves the column of b to the left. If q does not then p is quasi-right of q. So let us suppose
that q also leaves the column of b to the left. If Vl and Wl are different or Vl and wl are equal
and at least one is a terminal or at least one of the nets makes a left turn at Vl, then it is easy
to decide whether p is quasi-right of q using the coordinates of v and w. So let us assume
that Vl and Wl are equal and both nets make a right turn at Vl. In this case both nets enter
the bend point v from above. Let c and d be the crossings following Vl on p and q, respec-
tively, and let C be the cut containing c and d. Then C does not intersect row top and hence p is

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 243

quasi-right of q if c is above d in the r-sequence of C. In either case we have shown that the
test whether p is quasi-right of q takes time O(1).

Let w.l.o.g, p be quasi-right of q. We replace b by a on the bend sequence of p and
delete (operation Delete) the first crossing from the first c-sequence of p. We also replace b
by its lower neighbor on the bend sequence of q. Finally, we mark (array mark) the cut, say
X, through the edge (a, b) as processed, add it to the set of marked cuts, delete X from its
satcut-list, if it is on one, and insert it into the satcut-list of one smaller index. All of this takes
time O (1).

Remark. The mark on cut X indicates that X does not start in row top anymore. The
mark bit will be used in case 5. The set of marked cuts is used to unmark the marked cuts
again when row top is completely processed.

If p terminates in b, then we remove S from RS and add it to L S or FS whatever is
appropriate (a segment is stored as a pair of vertices and hence this is an O(1) decision). If p
does not terminate in b, then S stays in R S.

Case B. p and q leave the column of b to the right. Let c and d be the first crossings of
p and q and let C and D be the cuts crossed. If C - D, then it is easy to decide whether p is
quasi-right of q. We may assume w.l.o.g, that p is quasi-right of q in this case. If C D, then
p is quasi-right of q and q is quasi-right of p. We may assume w.l.o.g, that either c belongs
to the rim-part of the r-sequence of C or that both c and d belong to the non-rim-part and d
is above c.

We replace b by a on the bend sequence of p, add the crossing of p and X, where X is
the vertical cut through edge (a, b), as first element of the rim-part of the r-sequence of X if c
belongs to the rim-part of C and as first element of the non-rim-part otherwise (this preserves
the ordering property and the consistency property) and add the crossing to the appropriate
c-sequence. We also decrease the free capacity of X by two. If X becomes saturated then we
add X to the appropriate satcut-list and mark X. The appropriate satcut-list is determined by
linear search in time proportional to the length of X. Since every cut becomes saturated at
most once, the total cost of adding saturated cuts to satcut-lists is linear.

Case 4 applies whenever TS RS 0 and L S 13. Let S be any segment in L S. The
right corner of S is exposed and the left is not.

Case 4.1: There is a net p with can(p)

S. Let p be the one with leftmost right terminal.

We can find p as follows. We search through the segment starting in the left corner of
S. For every vertex v encountered we inspect the bend sequence of the net incident to v
and determine in time O(1) whether v qualifies as vertex t. Thus can be found in time
proportional to its distance from the left corner of S.

We route as shown in Fig. 16. All cuts between s and are marked and moved to the
satcut-list of one smaller index, if saturated. Also, all crossings of net p are removed. Also
the terminal is changed for each net incident to vertices between s and t, segment S is removed
from L S, segment S’ is added to L S, and segment S" is added to FS.

s

FIG. 16. Both corners of S" are exposed and the right corner of S’ is exposed.

Note that the cost of this action is proportional to the length of S’ plus the number of edges
deleted from the routing region. Since case 4.1 does not again apply to segment S’, rather S’
is completed by cases 4.2 and 4.3, the total time spent in case 4.1 is linear.

244 MICHAEL KAUFMANN AND KURT MEHLHORN

Cases 4.2 and 4.3: There is no net contained in S. Let b be the right corner of S, let a be
the left neighbor of b and let X be the vertical cut through (a, b).

Case 4.2: X is saturated. Let p be the quasi-rightmost net across X. We have shown in

3 that p has a terminal s in segment S. We can find p as follows: We start in the right corner
of S and walk to the left. For each terminal encountered in the walk we check whether the
associated net crosses X by examining its bend sequence. This takes time O(1) per terminal.
The first net encountered which crosses X is the desired net p. We route p along the top row
(see Fig. 17), route all nets between S and the right corner of S down by one unit, update the
data structure as in case 4.1, and put S’ on L S.

FIG. 17.

Note that case 4.2 or 4.3 applies again to S’. The time required is proportional to the
number of edges deleted from the routing region.

Case 4.3: X is not saturated. Let p be the net with terminal a. We route p form a to b
and then down by one unit (see Fig. 18).

1o

FIG. 18.

If p did not go across X before the action (inspect the first crossing of the net p), then
we add a crossing as first element of the rim-part of the r-sequence of X (this preserves the
ordering and the consistency property), decrease the free capacity of X by two, and add X to
a satcut-list if X became saturated. All of this takes time O (1) if X did not become saturated
and time O(1+ length of X) otherwise. Thus the total time spent in case 4.3 is linear. Also
case 4.2 or 4.3 applies again to segment S’.

Case 5 applies whenever TS LS RS 0 and FS 0.
We keep a pointer P to the satcut-lists with the following semantics. If the pointer points

to list satcut[i] then all cuts in satcut[j], j < i, and all cuts preceding the item pointed to in
satcut[i] are marked.

We advance P until it points to an unmarked cut. This takes time O (1) per move of P.
Note that all cuts added to the satcut-lists during the execution of cases 2, 3, and 4 are marked
and hence P never has to be reset. Also the total length of the satcut-list is at most the number
of edges in rows top and top and hence the total time spent on advancing P is linear.

Case 5.1: Let Xbe the saturated cut found, and let (a, b) be the edge in row top intersected
by X. Clearly, X is a shortest vertical cut intersecting an edge of the segment containing edge
(a, b). Let c be the first crossing on the r-list of C. Let c be on the c-sequence of u and v. Note
that we can find u and v in time O (1) using Findrep. Figure 19 shows how the representatives
of the nets pl and p2 look like. The bend sequences of p and p2 can be found as follows.

Let y be the y-coordinate of vertices u and v. Then the bends of pl and p2 are readily
determined by inspecting the L- and R-values of all vertices w which lie below a in rows
top, top y. This takes time O(1 + top y); since the sum of the lengths of the

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 245

representatives of p and p2 exceeds the length of the representative of p by 2(top y),
we can account for the cost by the length increase; note that the total length of the canonical
representatives is always bounded by the size of the routing region.

At this point we have computed the bend sequences of pl and p2. We then split the
c-sequence of u and v at the appropriate places using the operation Access&Split. This takes
amortized time O(1) for each Access&Split and hence the cost is easily accounted for.

rep(p")

b

,,IV/IllS,

FIG. 19.

Finally, we observe that the ordering and consistency property is preserved.
Case 5.2 (no saturated cut found): Let S be any segment in FS. We route as shown in

Fig. 20.

FIG. 20.

All cuts between s and have their free capacity reduced by two and are added to a
satcut-list if necessary. This completes the description of the various cases of the routing
algorithm.

Suppose now that we processed row top completely. We unmark all cuts using the set of
marked nets in time proportional to their number, decrease top by one, go through Top and
adjust bend-sequences as described in case 1, and are ready for processing the new row top.

This completes the proof of the main theorem.

REFERENCES

IBM] M. BECKER AND K. MEHLHORN, Algorithms for routing in planar graphs, Acta Inform., 23 (1986), pp.
163-176.

[F] A. FRANK, Disjoint paths in a rectilinear grid, Combinatorica, 2 (1982), pp. 361-371.
[GT] H.N. GABOW AND R. E. TARJAN, A linear-titne algorithm for a special case of disjoint set union, in Proc.

of the 15th SIGACT Symp., 1983, pp. 246-251.
[HMRT] K. HOFFMANN, K. MEHLHORN, P. ROSENSTIEHL, AND R. E. TARJAN, Sorting Jordan sequences in linear time

using level-linked search trees, Inform. and Control, 68 (1986), pp. 170-184.

246 MICHAEL KAUFMANN AND KURT MEHLHORN

[IA]
[K]

[KM1]

[KM2]
[MP]

[NSS]

[Sh]

[Schw]
[W]

H. IMA! AND Y. ASANO, Dynamic orthogonal segment intersection search, J. Algorithms, 8 (1987), pp. 1-18.
M. KAUFMANN, A linear-time algorithmfor routing in a convex grid, IEEE Trans. Computer-Aided Design,

(1990), pp. 180-184.
M. KAUFMANN AND K. MEHLHORN, Routing through a generalized switchbox, Journal Algorithms, 7 (1986),

pp. 510-531.
On local routing of two-terminal nets, J. Combin. Theory Ser. B., (to appear).

K. MEHLHORN AND F. P. PREPARATA, Routing through a rectangle, J. Assoc. Comput. Mach., 33 (1986), pp.
60-85.

T. NISHIZEKI, N. SAITO, aND K. SUZUKh A linear-time routing algorithtn for convex grids, IEEE Trans.
Computer-Aided Design, CAD-4 (1985), pp. 68-76.

A. SCHRJVER, Edge-disjoint homotopic paths in straight-line planar graphs, Universitfit des Saarlandes,
preprint.

CH. SCHWARZ, Ein Suchproblem in dynamischen Folgen, Diplomarbeit, Universitt des Saarlandes, 1989.
B. WEELT, Homotopische Knock-Knee-Verdrahtung: Eine Linearzeit-hnplementierung, Diplomarbeit,

Universitit des Saarlandes, 1990.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 247-254, April 1994

1994 Society for Industrial and Applied Mathematics
002

SOME RESULTS ON ELUSIVE GRAPH PROPERTIES*

EBERHARD TRIESCH

Abstract. This article proves several graph properties to be elusive. Two of the main results are
1. If 79 is a decreasing graph property containing no graph of girth smaller than 5, then 79 is elusive.
2. The property of having matching number at most k, k < [IVI/2I, is elusive.

The proofs are all based on a topological method developed by Kahn, Saks, and Sturtevant.

Key words, monotone graph property, elusive, recognition complexity, girth, matching

AMS subject classifications. 68Q05, 68R05, 05C25

1. Introduction. Let T be a finite set and 79 a property of subsets of T, i.e., 79 C 2T,
the power set of T. Imagine two players 4 (Algy) and S (Strategist). Player 4 wants to learn
from S whether an unknown set X C T is in T’ or not by asking him questions of the form
Is x X? (x T). The goal of 4 is to minimize the number of questions, but $ wants to
force 4 to ask as many questions as possible. If both players play optimally from their point
of view, then the number of questions that are asked in the game is called the recognition
complexity of 79 (also, Boolean decision tree complexity) and is denoted by c(79). If $ can
force ,4 to probe all elements of T, then T’ is called elusive (also, evasive).

The recognition complexity has been studied by various authors during the last 15 years
(see all the references except [5], [10], [1 1], and [14]) and has turned out to be especially
interesting for the case that T equals V 2), the set of two-element subsets of some finite set V.
In this case the subsets of T can be interpreted as graphs with vertex set V. A graph property
is a subset 79 C 2T, T V (2), such that 7 contains with each graph G also each isomorphic
copy of G (with vertex set V). A graph property 7 is called nontrivial if 7:’ :/: , 7 - 2. It is
called decreasing if, for each G 6 7:’, all subgraphs of G (with vertex set V) are contained in
79, increasing if 2\7 is decreasing and monotonic if it is increasing or decreasing. In 1973,
Rosenberg [12] conjectured that there exists some , > 0 such that

C(9) >_ ?/n
2

for all nontrivial graph properties 7, n IV I.
Meanwhile, there exist many counterexamples to the conjecture (see [2]). Together with

Aanderaa, he modified his conjecture as follows.
There exists ?’ > 0 such that for all nontrivial monotonic graph properties 79 we have

C(79) >_ ?,,n 2.
This conjecture was proved by Rivest and Vuillemin 13] in 1975 with ?, 1/16. Kleit-

man and Kwiatkowski [8] improved the value of ?, from 1/16 to 1/9 for n large. Then, in 1984,
Kahn, Saks, and Sturtevant [91 proved that c(79) >_ () + o(n2), which is strong support for
the following conjecture of Karp that is still unresolved.

All nontrivial monotonic graph properties are elusive.
In fact, Kahn, Saks, and Sturtevant proved Karp’s conjecture in case n is a prime power.

Their method (which comes from algebraic topology) was applied by King [7] to digraph
properties and by Yao 17] to monotone bipartite graph properties. We now use their method
in a different way to obtain some new results, e.g., the theorem that all decreasing graph
properties containing no graphs with cycles of length 3 or 4 are elusive.

*Received by the editors January 21, 1991; accepted for publication (in revised form) July 28, 1992.
Lehrstuhl ftir Unternehmensforschung, RWTH Aachen, Templergraben 64, D-5100 Aachen, Germany.

247

248 EBERHARD TRIESCH

2. Tools from algebraic topology. From now on, we assume that 7:’ is a monotone
nontrivial graph property.

Because c(T’) c(2r\T’), it suffices to study decreasing graph properties. But a de-
creasing graph property is an (abstract) simplicial complex. Hence, its Euler characteristic

X (79) is defined as

ITI
X() := (--1)i-lai,

i=1

where ai ai(J9) :: I{X E 7" IXI-- i}l.
Now if G is an abelian group (here, G Z or G Z/pZ, p prime), the complex is called

G-acyclic if

H0(79,G)=G and //.(79,G)=0 fori >0,

where/4. (7:’, G) denotes the/-dimensional homology group of 79 with respect to G. Kahn,
Saks, and Sturtevant established the following connection between complexity theory and
algebraic topology.

THEOREM 1. If 79 is not elusive, then it is Zp-acyclicfor all primes p.
Denote by the set of all finite groups G containing a normal p-subgroup G1, G1 G,

such that the factor group G/G is cyclic. If G is a permutation group on T leaving 79 invariant,
we define the simplicial complex 79G with vertex set TG := B E 79 B orbit of G} by

{B Bk} 6 T’c ":= B U... U Bk 6 79

Now the following theorem of Smith [14] and Olivier [11] is the essential tool in [9] and in
what follows.

THEOREM 2, If G is a permutation group on T leaving the Zp-acyclic complex 79
invariant, then

x(’P)- .
3. Some applications. We start by deriving some information about a cyclic group acting

on V (2).
LEMMA 1. Let V Zn Z/nZ and r Zn --+ Zn X --- X + 1. The group G

generated by r acts canonically on V (2) and the following statements about the orbits of G
hold.

(i) lfn is odd, V2 decomposes into (n 1)/2 orbits ofcardinality n.

(ii) lfn is even, V2 decomposes into (n/2 1) orbits ofcardinality n and one orbit of
cardinality n/2.

(iii) The set ofedges {{0, j} < j < [n/21} is a system ofdistinct representativesfor
the orbits of G.

(iv) Denote by D Dj the orbit of {0, j} and by Fjn Fj the corresponding graph
(V, Dj). Then Fj is the vertex disjoint union of sj cycles of length rj, where sj gcd(j, n)
and rj n/sj, (1 < j < n/2). For n even we have Fn/2 - K2. The components of Fj are
the sets Mjl Mj, :--- {x Z X mod Sj }, 0 < sj, < j < [n/2J.

Proof. We haveG (r)--{rj’0< j <n}andrj(x) =x+j, 0_< j <n. An edge
{x, y} E V 2) is a fixed point of r j if and only if {x + j, y + j} {x, y}. This is certainly true

forj--0. For0< j <nwemusthavex+j-yandy+j-x;hence, x+y+2j--x+y
and therefore 2j 0 (in Zn), i.e., n is even and j n/2. It is easy to see that there are exactly
n/2 edges {x, y} in V 2) such that x + y and y + x.

SOME RESULTS ON ELUSIVE GRAPH PROPERTIES 249

From Burnside’s Lemma we infer that the number of orbits is

1
(# fixed points of rj in V(2)),

n
o<j<n

n =n ifniseven.which equals () if n is odd and (()+ 7)

FIG. 1. The orbits ofLemma for n 6.

If {x, y} and {x’, y’} are in the same orbit, then x y +(x’ y’). Hence, the edges
{0, j}, < j < [n/21, belong to different orbits and (because we know the number of orbits)
form a system of distinct representatives for the orbits and (iii) follows. To complete the proof
of (i) and (ii), we note that IDjl is the index of the stabilizer of {0, j} and hence (cf. the
argument at the beginning of the proof)

n/2

forj < n /2

for n even and j n/2.

Now G is a subgroup of the automorphism group Aut(Fj) of Fj and hence Aut(Fj) acts
transitively on the vertices of Fj. We conclude that Fj is a regular graph ofdegree 2 for j < n/2
and of degree for j n/2. Hence, Fn/2 K2 and Fj is a disjoint union of cycles for j <
n/2. The cycle in Fj containing {0, j} consists of the edges {0, j}, {j, 2j} {(rj 1)j, 0}
with

rj min{x 6 Z’x > 1, xj =-0 mod n}.

Again by the transitivity of Aut(Fj) on V, all cycles of Fj have the same length rj and their
number is sj gcd(j, n).

Finally, we note that x and y are joined by a path in Fj. if and only if there exists some
positive k 6 Z such that rkj (x) y, i.e., if and only if there exists some z 6 Z, such that
x y zj, which holds if and only if x y mod gcd(j, n). This proves (iv).

Recall that the girth of a graph is the length of its shortest cycle (the girth of a forest being
defined as). We can now prove Theorem 3.

THEOREM 3. Suppose 79 is a decreasing (nontrivial) graph property such that all graphs
oft9 have girth greater than 4. Then 79 is elusive.

250 EBERHARD TRIESCH

Proof. If n is a power of 2, then elusiveness follows from the (more general) results
in [9] (Karp’s conjecture for prime powers). Hence, we may assume that some odd prime
pdividesn, n pm say, and V Zp x Zm. Let G := (r), the group generated by
r Zp Zp :x -- x + and H := (or), where r Zm --+ Zm y -- y + 1. Recall that the
wreath product G H is a permutation group on V defined as follows:

G H := {(f; re)l f" Zm --)" G, re 6 H}.

For (i, j) 6 V and (f; re) 6 G H, we have

(f; re)(i, j) :-- (f(re(j))(i), re(j)),

G H contains the normal subgroup

G {(f; 1H)lf Zm G},

which is isomorphic to the m-fold direct product G G G. Hence, G is a p-group
and we have (G H)/G

_
H. It follows that G H is in .

Now suppose there was a nonelusive graph property T’ that contained graphs of girth
greater than 4 only. By Theorems and 2 we must have

X (’TOGH) 1.

To obtain a contradiction, we consider two cases.
(a) p 3. The orbit of an edge joining two vertices in some set Vi "-= Zp {i }, Zm,

is isomorphic to m K3, the graph consisting of m disjoint triangles, by Lemma and the action
of the wreath product. But K3 has girth 3. The orbit of an edge joining vertices in Vi and
Vj(i j) is easily seen to contain the complete bipartite graph K3,3 as a subgraph that has
girth 4. We infer that T’6 is empty, a contradiction.

(b) p > 3. Similarly to (a), the orbits of edges joining nodes in Vi and Vj, 7 j,
are easily seen to contain some complete bipartite graph Kp,p that has girth 4 and therefore
cannot be contained in 79. The orbits of edges joining two points in Vi are isomorphic to

mCp, the graph consisting of m disjoint copies of the p-cycle Cp, and there are (p 1)/2
such orbits (cf. Lemma and the action of the wreath product). We claim that the union of
two such orbits contains a 4-cycle. It obviously suffices to show that each union Fj tO Fk,
< j < k _< (p 1)/2, contains a 4-cycle (notation of Lemma 1). But for each x 6 Zp the

vertices x, x + j, x + j + k, x + k lie on a 4-cycle in Fj U F, (in this order). It follows that

X (79/4) (P 1)/2 > 1, again a contradiction.
COROLLARY 1. Suppose 79 consists of all graphs having girth at least k. Then 79 is

elusive for all k > 4.

Proof The case k 4 (triangle-free graphs) was proved by Bollobfis by exhibiting an
explicit strategy for player $ that forces 4 to probe all edges (cf. [3]). For k > 4 we apply
Theorem 3.

The next theorem is easy to prove.
THEOREM 4. Suppose 7-9 is a decreasing property such that each graph in 7-9 has minimum

degree at most one. Then 79 is elusive.

Proof Without loss of generality suppose that n VI is not a power of two. Obviously,
it suffices to exhibit a permutation group G on V such that each graph with nonempty edge set
that is invariant under G has minimum degree at least two. For n odd, a transitive cyclic group
will do by Lemma 1. For n even, n contains an odd prime divisor by assumption. Hence, we
can choose a wreath product as in Theorem 3.

SOME RESULTS ON ELUSIVE GRAPH PROPERTIES 25

We are now going to prove elusiveness for some graph properties that are often considered
in graph theory.

THEOREM 5. Let 79k denote the set of graphs with vertex set V and maximum degree at

most k. Then 79 is elusive for 0 <_ k < n 2.
Proof. Suppose first that n is odd. We choose a cyclic and transitive permutation group

on V (without loss of generality V Z,, and G (r) as in Lemma 1). Obviously, G 6 .
rnNow suppose that 79 is not elusive. By Theorem 2, X((79)a) 1. A union Ui=I Fji of

distinct orbits is in 79 if and only if m < [k/2J =" u. Hence, letting "= (n 1)/2, we have

/=0(-1)i +

(-1)u(t-1):/:0u
because (n 3)/2 >_ [k/2J for n odd, k < n 2, a contradiction.

Now assume that n is even. If k is even we can proceed completely analogous to the
preceding case choosing V := Zn, G (r) as in Lemma 1. Again, a union of distinct orbits
is in 79k if and only if m <_ k/2. Letting := n/2, u "= k/2 we get

1-X((79k)G)= (--1)u(t--1)-0"u
If k is odd, which implies k < n 3, we let V :-- {a}tbZn_l and G "= (r), where r(a) a

n_and r (x) :-- x + for x 6 Z_I. The orbits of G on V2 are the sets D7-, < j < 7
and Do "--- {{a, j} j 6 Zn- }. Because k _< n 3, no graph in 79k contains all the edges in

Do. Now elusiveness follows just as in the first part of the proof.
Denoting by ,5 (H) and 6 (H) the maximal and minimal degree of a graph H, respectively,

we obtain the following.
COROLLARY 2. The graph properties {H A(H) > k} and {H 3(H) > k} are elusive

for < k < n 1; {H" 3(H) _< k} is elusiveforO <__ k < n 2.

Proof. If 79 is a graph property, denote by 79* the set {H (V, E) / := (V, V(2\E) 6

79}. It is well known that c(P) c(P*) c(2T\79) (cf. [15]). Hence, the result follows
from Theorem 5.

Suppose H (V, E) is a graph. A matching of H is a set M of edges (M C E) such that
no two of them have an endpoint in common. A vertex x is covered by M if x is an endpoint
of one of the edges in M. A matching covering all the nodes in V is called a perfect matching.
(Equivalently, we say that H has a 1-factor.) H is called factor-critical if H x, the graph
obtained from H by deleting the vertex x, has a 1-factor for all x 6 V. The matching number
v(H) of H is the maximum cardinality of a matching in H. The following lemma is well
known (cf. 10, Ex. 3.2.5 and Thm. 5.5.24]).

LEMMA 2. Suppose H is a graph whose automorphism group is transitive on the vertices.
Then each component ofH is eitherfactor-critical or contains a 1-factor

As an application, we get the following.

252 EBERHARD TRIESCH

LEMMA 3. Let n, p, m, G, H, and V Zp x Zm be defined as in the proofofTheorem
except that the prime p 2 is allowed. Then thefollowing results holdfor an arbitrary orbit
B ofG H acting on V2

(i) In case p 2, the graph (V, B) contains a 1-factor.
(ii) In case p > 2, the inequality 2v((V, B)) > n m holds.
Proof. Note that the orbit B of an edge e in V 2) is obtained as follows: if e joins two

vertices in some set Vi :-- Zp x {i }, then (V, B) is isomorphic to m K2 in case p 2 and to
m Cp for p > 2. Hence, the result is clear in this case.

If e joins vertices in different Vi’s, in V0 and Vj say, consider the orbit D (and the
corresponding graph Fjm) of H acting on Zm. Then (V, B) arises from Fj by substituting the
set Vi for each 6 Zm and joining vertices in Vi and Vk if and only if - k and and k are
joined in Fjm (see Figs. and 2). It is clear that (V, B) satisfies the hypothesis of Lemma 2.
Hence, for p 2, each component has an even number of vertices and thus contains a perfect
matching. For p > 2, just note that the number of components of (V, B) is gcd(j, m) < m/2
and that each component either has a 1-factor or is factor-critical. [3

FIG. 2. The orbits ofG H on (Z2 Z6) (2).

THEOREM 6. Suppose k is a natural number satisfying k < /n/2/and denote by 79 the
property

79 {H H is a graph with vertex set V and v(H) < k}.

Then 79 is elusive.

Proof. If n is even, n 2m say, we choose a wreath product G H on V Z2 X Zm as
in Lemma 3. By Lemma 3(i), no orbit graph (V, B) is in 79, and thus X ((79k)6/-/) 0, which
implies that 79k is elusive.

Now assume that n is odd, n no prime power. Hence, n >_ 15 and n has a prime
divisor q >_ 5. By choosing again a wreath product G H of transitive cyclic groups on

n n(1-Zq Z,,/q, we see that X((79,)6/-/) 0 if 2k < n q). So suppose that
4 By Bertrand’s postulate (cf. [5, p. 71]), we can choose a prime number2k>n(1-) > n

p satisfying n/3 < p < 2n/3. (Note that p does not divide n.) We write V Ut)W with

IUI p and IWI n p. Because IWI is even, we identify W with Z2 x Zo,_p)/2 and
choose a wreath product of cyclic groups as above on W and call that group G’. On U, we
choose a cyclic transitive permutation group G" and let G :-- G’ x G". Recall that G’ has a

SOME RESULTS ON ELUSIVE GRAPH PROPERTIES 253

normal subgroup G’ of order 2r, r := (n p)/2, and G’/G’ Zr. Hence, G’ is normal in
G and G/G’ (G’/G’I) x G" Zr x Zp Zrp because p and r are relatively prime. We
conclude that G 6 {7.

Now, the action of G on V(2 yields the following orbits"
(a) The orbits of G’ on W(2), W Ws. By Lemma 3(i), each graph (W, Wi) has a

1-factor (s- [r/2] + 1).
(b) The orbits U1 Ut of G" on U(2), where each graph (U, Uj) is a p-cycle (t

(p- 1)/2).
(c) The orbit B {{u, w}" u 6 U, w 6 W}.

4 2Because k < In no graph (V, Wi t_J Uj) is in 79,. From 2k > 3n > 5n > max(p, n p),
we infer that each of the graphs (V, Wi), (V, Uj) is in 79,, (1 < < s, < j < t). For (V, B),
we have the following two cases.

(i) k < min(p, n p). Then (V, B) f 79,, implying

X((Sk)G)-- (--1)i-1 -- (--1)j-1 + 2,
i=1 j=l

and hence 79, is elusive.
(ii) k > min(p, n p). Suppose first that p min(p, n p). Because 2k < n and

p + (n p) n, we must have k < n p. Thus, all graphs (V, B t_J C), where C is a
union of some of the orbits U1 Ut, are in 79,. On the other hand, all graphs (V, B U Wi),
(1 _< _< s) have matching number (n 1)/2 and therefore are not in 79k. We conclude that

X((’Ok)G)--(--1)i-l()-l-(--1)J-l(tj)
i=1 j=l

-+-(--1)j + +0- 2.
j=0

Hence, 79, is not elusive. The case n p min(p, n p) is similar.
This completes the proof.

Again, the corresponding result for the properties {H v(H) > k} follows by taking
complements.

The proof of our final result uses the same construction as the proof of Theorem 5 and is
therefore left to the reader.

THEOREM 7. For k even, k < n, denote by 79 the set ofall graphs on V having a k-factor,
i.e., a k-regular spanning subgraph. Then 79 is elusive.

We conclude by mentioning that there are several important monotone graph properties
that have not been shown to be elusive to the knowledge of the author. Two examples are
Hamiltonicity and k-connectedness for k > 3.

Acknowledgments. I thank W. Obershelp for introducing me to the topic and for some
very helpful discussions. I also thank the referee who helped to improve the article by several
constructive suggestions.

REFERENCES

[1] M. AIGNER, Combinatorial Search, Wiley-Teubner, Stuttgart and Chichester, 1988.
[2] M. R. BEST, P. VAN EMDE BOAS, AND H. W. LENSTRA, JR., A sharpened version of the Aanderaa-Rosenberg

conjecture, Math. Centrum Tracts, Amsterdam, 1974.

254 EBERHARD TRIESCH

[3] B. Botto3As, Complete subgraphs are elusive, J. Combin. Theory Ser. B, 21 (1976), pp. 1-7.
[4] ,Extremal Graph Theory, Academic Press, London, 1978.
[5] K. CHANORASE:HARAN, Introduction to Analytic Number Theory, Springer, Berlin, 1968.
[6] D. GRIESZ, Some results on the complexity ofsets, Discrete Math., 88 (1991), pp. 179-192.
[7] V. KING, A lower boundfor the recognition ofdigraph properties, Combinatorica, 10 (1990), pp. 53-59.
[8] D.J. KLEITMAN AND D. J. KWlATKOWSKI, Further results on the Aanderaa-Rosenberg conjecture, J. Combin.

Theory Ser. B, 28 (1980), pp. 85-95.
[9] J. KAHrq, M. SAKS, AND D. STtJTVANT, A topological approach to evasiveness, Combinatorica, 4 (1984), pp.

297-306.
[10] L. Lov,sz ANO M. D. PLtJMMER, Matching Theory, North Holland, Amsterdam, 1986.
11] R. OLIWE, Fixed point sets ofgroup actions on finite acyclic complexes, Comment. Math. Helv., 50 (1975),

pp. 155-177.
12] A.L. ROS3ErtG, On the time required to recognize properties ofgraphs: a problem, SIGACT News, 5 (1973),

pp. 15-16.
13] R.L. RIVEST AND J. VUILLEMIN, On recognizing graph propertiesfrom adjacency matrices, Theoret. Comput.

Sci., 3 (1976/77), pp. 371-384.
14] P. A. SMITH, Fixed point theoremsfor periodic transformations, Amer. J. Math., 63 (1941), pp. 1-8.

[15] E. Tscr, Ehtsive properties, in Combinatorial Theory, Proceedings SchlofSRauischholzhausen, D. Jung-
nickel and K. Vedder, eds., Springer Lecture Notes in Math, 1982, pp. 321-326.

16] Ober die Komplexitiit yon Grapheneigenschaften, Dissertation, Aachen, 1984.
[17] A. C-C. YAO, Monotone bipartite graph properties are evasive, SIAM J. Comput., 17 (1988), pp. 517-520.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 255-260, April 1994

() 1994 Society for Industrial and Applied Mathematics
003

CLOSENESS OF NP-HARD SETS
TO OTHER COMPLEXITY CLASSES*

BIN FUt AND HONG-ZHOU LI

Abstract. Let A be a language and C be a class of languages. A is said to be s-C-close (s-C-outside-close) if
there exists B 6 C such that (A/x B)-<" I1_< s(n) (and A B). If A is q-C-close (q-C-outside-close) for some
polynomial q then it is simply said that A is C-close (C-outside-close). The following results are shown in this paper.

(1) No NP-hard set can be coNP-close unless NP coNP.
(2) No NP-hard set can be R-close unless NP R.
(3) No NP-hard set can be O(log n)-UP-close unless NP FewP.
(4) No NP-hard set can be O(logn)-C=P-close unless NP c_ C=P.
(5) No NP-hard set can be UP-outside-close unless NP FewP.
(6) No NP-hard set can be C--P-outside-close unless NP c_ C= P.

Key words, symmetric difference, sparse sets, NP-hard sets

AMS subject classification. 68C25

1. Introduction. Research about the connection and difference between complexity
classes are two main research lines in complexity theory. In recent years investigations about
many counting classes have revealed surprising connections between complexity classes. In
this paper we pay attention to the difference between NP and other complexity classes. We
study whether an NP-hard set can be approximated sufficiently by the sets in other complexity
classes.

Yesha [17] first considered measuring the similarity of two sets A and B by the density
of their symmetric difference A A B. Yesha [17] and Sch6ning [10] defined two sets A and
B to be s-close to each other if for each n, (A/x B) <-n I1_< s(n). Can a NP-hard set be
polynomially close to some set in P? Yesha and Sch6ning provided only partial answers to
this question. Yesha proved that no NP-hard sets can be O(log log n)-close to any set in P
unless P NP. Schi3ning showed that no paddable NP-hard sets can be polynomially close to
any set in P unless P NP. Watanabe 16] showed that if NP c Pl-tt (sparse) then NP R.
The question was not settled until Ogiwara and Watanabe [9] showed that ifNP Pbtt(sparse)
then P NP; the result follows since any set that is close to a set in P is tt reducible to a
sparse set. Recently Fu [5] investigated lower bounds of closeness between many complexity
classes. He showed that if an NP-hard set is the union of a set in Pbtt(sparse) and set A, then
NPC_ Part(A). Thus no NP-hard set can be the union of a sparse set and a set in coNP (FewP)
unless NP coNP (NP FewP).

In this paper, we investigate the closeness between NP-hard sets and the sets of some other
complexity classes such as UP, coNP, C= P, and R. In order to characterize the conditions
necessary for an NP-hard set to have a small density symmetric difference with a set A, we

<P <Pintroduce two reductions" --a-ma and both of which are positive truth-table reductions--d-conj’
[l]. We show that if an NP-hard set can be polynomially close (O(log n)-close) to set .4
then NP c_ Pd-maj(A) (respectively, NP c_ Pd-conj(A)), and if NP-hard set H is a subset of .4
and A-H is sparse then NP c_ Pd-conj (A).

*Received by the editors February 4, 1992; accepted for publication (in revised form) August 10, 1992.
Beijing Computer Institute and Beijing Laboratory of Cognitive Science, Beijing, 100044, People’s Republic

of China. This work was supported in part by HTP863. Reference [6] is the earlier version of this paper.
:Department of Mathematics, Yunnan Education College, Kunming, 650031, People’s Republic of China. This

research was performed while the author was visiting Beijing Computer Institute.

255

256 BIN FU AND HONG-ZHOU LI

2. Preliminaries. We fix E {0, as our alphabet. By "string" we mean an element
of E*. For a string x in N*, x denotes the length of x. We consider a standard canonical
order on E*. For any strings x and y, x is canonically smaller than y (write x _< y) if either
(1) x I<l y I, or (2) x I=[y and if there exists some k, < k _<] x l, such that (for all

< < k[xi Yi and xk 0/x y, 1), where xi is the ith symbol of the string x. For an
S

__
E*, the cardinality of S is denoted by S I1" set S (S-<n) consists of all words of length

n(_< n) in S. In particular, we let N {x x 6 N* and Ix]= n} and ;-< {x x
and x I_< n}. Let x, y 6 N*; we define the interval [x, y] [x, y] {z x _< z < y and
z *}.

Let [a, b] and [c, d] be two disjoint intervals; we say [a, b] < [c, d] if b < c. We use
to denote the null string. N represents the set {0, 1, 2 }.

We use the pairing function (., .) E* x N* N*. It is convenient to assume that for
anyx, y in E*, [< x, y >[< 2(] x [+[y]).

Our computation model is the Turing machine. Now we involve the following complexity
classes: P (respectively, NP) denotes the class of languages accepted by deterministic (re-
spectively, nondeterministic) Turing machines in polynomial-time. PF denotes the class of
polynomial-time computable functions, coNP {N* A A NP}. UP [14] denotes the
class of languages accepted by polynomial-time nondeterministic Turing machines that have
at most one accepting path on each input. FewP represents the class of languages accepted
by polynomial-time nondeterministic Turning machines that have at most polynomial number
of accepting paths on each input. C= P was defined by Wagner 15]. A language L belongs to
C= P if and only if there exists a polynomial-time nondeterministic Turing machine M such
that x 6 L if and only if the number of accepting paths is equal to the number of rejecting
paths. R (see [2]) represents one-sided bounded error probability complexity classes.

It is well known that P

_
UP

_
FewP

_
NP and P

_
R NP. In 13] relativizations

are presented under which the classes NP and C= P are incomparable.
We now define some notions of polynomial-time reducibilities.
A <me-reduction of A to B is a polynomial-time computable function f such that for each

x E*,x A f(x) B.
A <k_tt-reduction of A to B is a pair (J; g) of polynomial-time computable functions

such that the following hold for each x 6 E*" (1) f(x) (Xl xk) is an ordered k-
tuple of strings, (2) g(x) is a k-argument truth-table: {0, }’ ---+ {0, }, (3) x
g(x)(x(Xl) Xe(xk)) ,where X is the characteristic function of the set B.

A _)_<t-reduction of A to B is a _<’_,-reduction of A to B for some integer k.
A _<}’,-reduction of A to B is a polynomial-time computable function f such that for

each x *, f(x) is a list of strings in N* and x 6 A one of the strings of f(x) is in B.
A <U_maj-reduction of A to B is a polynomial-time computable function f such that for

each x *, f(x) (C Ck), where C is a list of strings in N* and x
B f"l Ci > Ci II/2 for some < k.
A <’_conj-reduction of A to B is a polynomial-time computable function f such that for

eachx e E*, f(x) (C C,) where Ci isalistofstringsin E* andx A == Ci B
for some < k.

A <S-reduction of A to B is a pair of polynomial-time computable functions (f, g) such
that for each x E*, f(x) (x xk), g(x) is a polynomial-time boolean circuit with k
inputs, and x A g(x)(X(X) X(Xk))- 1.

For a boolean circuit C {0, }k {0, }, if for any two k-tuples of {0, (al ak)
and (hi bk), with for all < k (ai < bi), C(al ak) implies C(b b,) 1,
then we say C is positive.

If A <tPt B via (f, g) and for each x E* g(x) is positive, then we say A <P B. Theptt

reduction < P is called a positive truth-table reduction.--ptt

CLOSENESS OF NP-HARD SETS TO OTHER CLASSES 257

Let C be a class of languages, and let <re be a type of reduction (e.g., r m, btt, k
tt, ptt, etc.). Then for any A c_ E*, we define A 6 Pr (C) if and only if A <re B for some B
in C. If every language in C is <-reducible to H, then we say H is C-r-hard.

For any set A E*, we say A is sparse if there exists a polynomial p such that A-<n [l_<
p(n) forevery n N. Let languages A, B

E*; we define A/B (A-B)U(B-A). The

function distA,B N
(A/ B) -<n II. Let C be a class of languages, and let function s N N; A is said to be s-

C-close (s-C-outside-close, s-C-inside-close) if there exists B 6 C such that diStA, (n) < s(n)
(and A _c B, B c_ A respectively). If A is q-C-close (q-C-outside-close, q-C-inside-close) for
some polynomial q then we simply say A is C-close (C-outside-close, C-inside-close), We
assume all polynomials involved in this paper are monotonic.

3. Closeness to NP-m-hard sets. In this section we study whether an NP-hard set can be
s(n)-close to some other complexity classes for some slowly increasing function s(n). First
we develop a useful technical lemma that generalizes many results.

LEMMA 3.1. Let H be NP-m-hard, K NP, A c_ E*, and diStA,/-/(n) < s(n), where
s(n) is a nondecreasing function in PF. There exists a polynomial po(n) such that for every
polynomial-time computable function h(n) > 2s(po(n)) there is an algorithm that has the
following propertiesfor input x of length n:

(1) The algorithm either accepts x or outputs a series of sets." G1 Ge.,., where
Ge 11< h(n) and Ge E<-P(n) for all e < ex.

(2) x K == (the algorithm accepts x) or (11 A f-) Ge I1> s(po(n)) for some e < ex).
(3)/fll A ’q Ge I1> s(po(n))forall e with Ge II-h(n),thenx K == the algorithm

accepts x.
(4) The algorithm will stop in pl(h(n)) + p(n) steps, where pl(n) is a polynomial.
Proof Since K

there exists w(w E -<r(Ixl)/ (x, to) G C). We define the left set L(C, r) as in [9]"
L(C, r) {(x, y) (y 6]_<r(lxl)) /k (there exists w 6 E-<r(Ixl)(y < w))/ ((x, to) C)}.
It is easy to see L (C, r) NP. Because H is NP-m-hard, there exists a function f 6 PF

such that L(C, r) <e H via f. Let f be computable in polynomial-time t(n). For a fixed
x 6 E*, if there exists a w 6 E -<r(Ixl) such that (x, w) 6 C, then we let//)max be the largest
such string.

Let po(n) t(2(n + r(n)))
ALGORITHM.
Input x of length n.
Let U0 {[,k, lr(n)]}, e :-- 0.
Repeat
Let [a, bl], [a2, b2] [ak, bk] be all the intervals in Ue.
It will follow that these intervals are all disjoint.
Ue is partitioned into the blocks Ue,, Ue,2 which satisfy the following three condi-

tions.
(1) Ue Ue,1 U Ue,2 U U Ue,m where me is the number of blocks.
(2) Any two intervals [a, b], [a’, b’] in Ue are in the same block if and only if f((x, a))

f((x,a’)).
(3) For any two blocks Ue,i, Ue,j, < j, [a, b] < [#0), bJ0], where [a), b)] and

a), bJ) are the least intervals (leftmost intervals) of Ue,i and Ue, respectively.

]Let [a1) b} be the largest interval (rightmost interval) in Ue,i (i <_ me).

Ve {[a), b] <_ h(n)}
G {f((x, a’))) a’) is the left point of one of the intervals in Ve}

258 BIN FU AND HONG-ZHOU LI

Ue+ --- UtVe {tl, t2 tl, t2 are the first and last half of respectively}
e’=e+
Until all the intervals in Ue are of width
ex :-- e 1 {For e was added an extra one before exiting the cycle}
If There is b [,-JtG. such that (x, b) C.
Then Accept x.
Else Output: G1 Ge..
End of the Algorithm.

Claim 1. (i) For all e < ex, there are at most 2h(n) intervals in Ue. (ii) The cycle of the
algorithm will not be repeated more than r(n)+ times. (iii) Ge E <-p(n) and Ge I1_< h(n).
(iv) G II=ll Ve II.

Proof of Claim 1. From the algorithm (i), (ii), and (iv) hold clearly. We must only
prove (iii). For each interval [ci, di] in Ve, [ci, di] [, 1’(")]. Hence ci 1< r(n) and
I(x, ci)1< 2(n+[ci 1) < 2(n + r(n)). Because f is computable in time t, f((x, ci))I <_
t(2(n + r(n))) po(n). So Ge <_po(n).

Claim 2. If for some e _< ex, Ge ["1 AII > s (p0 (n)), then x 6 K.
Proof of Claim 2. Clearly for any two different intervals [ci, di], [cj, dj] in Ve, they

belong to different blocks Ue,i, Ue,j respectively. Thus f((x, ci)) f((x, cj)). By Claim
(iii) Ge E <-p(n). Since (m/ H) <-p(n) I1_< s(po(n)) and Ge’A I1> s(po(n)),
H Ge 5/= , and there are some Ci U=_ E <r(n) with f((x, Ci)) U=. H. So x 6 K. [3

Claim 3. Let e < ex. If Ge < h (n), then Wmax is in an interval of Ue == Wmax is in
an interval of Ve.

Proof of Claim 3. We assume that tOmax is in one of the intervals of the block
Ue,io io < m). For any two intervals [c, d], [c’, d’] in the same block, f((x, c)) f((x, c’)).
So Wmx must be in [a}, b}], which is the largest interval in Ue,io.

By Claim (iv) Ve I1--11 Ge < h(n); thus Ve II-- me. For every block Ue,i < m),
its largest interval [a1}, b 1}] belongs to Ve. Hence//)max belongs to an interval in Ve.

Claim 4. Let e < e. If Ge [’-] A > s(po(n)), then//)max is in an interval of Ue
Wmax is in an interval of Ve.

Proof of Claim 4. If Ge < h (n), this claim holds by Claim 3. We only discuss the
case Ge II- h(n). By Claim (iv), Ge I1=11 Ve II- We assume that Wmax is in one of
the intervals of the block Ue,io io < me). By the same reasons as Claim 3 Omax must be

in [a b(}io]" By Claim (iii), Ge _po(.) Since (A / H)-po() II_< s(po(n)) and

Ge [A II s(po(n)), we can conclude that H f"] Ge =/= 0, and there are some intervals

[ci,, di,] in Ve such that f((x, ci,)) H. Thus we have i < h(n) with f((x, a))) H and

Wma < a). So i0 < il < h(n) and//)max belongs to an interval in V [-]

Claim 5. If Ge ["] A I1> s(po(n)) for all e < e with Ge II-- h(n), then x 6 K ==
the algorithm accepts x.

Proofof Claim 5. By the algorithm and Claim 4.
Claim 6. x K (The algorithm accepts x) or (11 A f-’l Ge I1> s(po(n)) for some

e <_ex).
Proofof Claim 6. == By algorithm and Claim 2 it is easy to see.

Let x K. We assume that the algorithm does not accept x.
It is impossible that G < h(n) for all e _< ex, otherwise the algorithm will accept x

by Claim 3.
It is also impossible that ,4 f Ge I1> s(po(n)) for all e _< ex with Ge II-- h(n),

otherwise the algorithm will accept x by Claim 5.
Therefore, there exists an e _< ex such that ,4 Ge < s(po(n)) and Ge h(n).

Hence d ["] Ge [[--II Ge 11- A f-)Ge 11> h(n)- s(po(n)) > s(po(n)).

CLOSENESS OF NP-HARD SETS TO OTHER CLASSES 259

The following claim is easy to verify from the algorithm, so we do not prove it here.
Claim 7. For some polynomial Pl (n), the algorithm will stop in p (h(n)) + Pl (n) steps.
This finishes the proof of Lemma 3.1.
Now we state several consequences of our main lemma, which examine the difference

NP and other complexity classes.
THEOREM 3.2. Let H be NP-m-hard. IfH/ A is sparse, then NP Pd-maj (A).
Proof Let K be NP-m-complete and s(n) be a polynomial such that diStA,/-/(n) < s(n).

By Lemma 3.1 we get a polynomial po(n). Let h(n) 2s(po(n)) + 1. From Lemma 3.1(2)
it is easy to see that K --d-maj A. So NP

It is well known that the class coNP is closed under positive truth-table reductions [11].
< t, is a special kind of positive reduction, we have the following result.Since --a-maj

COROLLARY 3.3. Let H be NP-m-hard. If H is coNP-close, then NP coNP.
It is easy to see that R (see [2]) is closed under positive truth-table reductions. So we also

have the following corollary.
COROLLARY 3.4. Let H be NP-m-hard. IfH is R-close, then NP --R.
Unfortunately we do not know whether UP, FewP, or C--P is closed under --a-maj-

reductions. Thus, we cannot obtain the similar results for UP, FewP, or C= P.
THEOREM 3.5. Let H be NP-m-hard and A c__ E*. lf distA,I4(n) O(log n), then NP

c_ Pd-conj (A).
Proof Let K be NP-m-complete. Since (H/ A)-< I1_< c. log n + c for some c > 0,

let s(n) c. log n + c. Now use Lemma 3.1 and let h(n) 2s(po(n)) + 1. Clearly
h(n) O(logn). By Lemma 3.1(2) we have x 6 K == (The algorithm accepts x) or

(11 Ge f A I1> s(po(n)) for some e < ex). Since Ge f A I1> s(po(n)) == there exists
G((G c__ Ge)/X (11 G II-s(po(n))+ 1)/ (G c_ A)).

So (11 Ge - A I1> s(po(n)) for some e < ex) = there exists e < ex there exists
G((G c__ Ge)/ (11 a II--- s(po(n)) + 1)/ (G c_ A)).

Since Ge is O(logn), the number of subsets of Ge is bounded by a polynomial.
Therefore, K Pd-conj(A).

Hence NP c__ Pd-conj (A). [-]

COROLLARY 3.6. Let H be NP-m-hard. If H is O(log n)-UP-close, then NP FewP.
< I -reductions.LEMMA 3.7 C-P is closed under --d-conj

<PProof Clearly, A --d-conj B implies that there exists a C such that A <fftt C and C <ctt B.
Since C-_ P is closed under both <fftt- and -ctt< P -reductions (see [4]), it is easy to see that the
lemma holds.

COROLLARY 3.8. Let H be NP-m-hard. IfH is O(log n)-C- P-close, then NP c_ C= P.
THEOREM 3.9. Let H be NP-m-hard and A be a language. If H c A and A H is

sparse, then NP Pu-conj (A).
Sketch ofProof. The proof of this theorem is very similar to that of Lemma 3.1, except let

h(n) s(po(n)) + and replace Claim 4 and Claim 6 by the following Claim 4’ and Claim
6’ respectively.

Claim 4’. Let e < ex. If Ge ["] A - 13, then Wma is in an interval of Ue Wmx is in
an interval of V.

Proof of Claim 4’. Since Ge ["] A 0 and H c_ A, we have some interval [ci, di] in V
such that f((x, ci,)) q H. As in Claim 4 Wmax is in an interval of Ue == Wmax belongs to

an interval in V [-]

Claim 6’. x K == (The algorithm accepts x)or (Ge C_ A and Ge h(n) for
some e < e).

From Theorem 3.9, Lemma 3.6, and Lemma 3.9 we have:
COROLLARY 3.10. Let H be NP-m-hard. IfH is UP-outside-close, then NP FewP.

260 BIN FU AND HONG-ZHOU LI

COROLLARY 3.11. Let H be NP-m-hard. IfH is C= P-outside-close, then NP

_
C= P.

We left some open problems:
1. Does NP coNP(NP R) imply that for any NP-rn-hard set H and A coNP

(respectively, R), A/ H is not in Part(sparse)?
2. Does FewP NP imply that for any NP-m-hard set H and A FewP, A/ H is not

sparse?
3. Does UP NP imply that for any NP-rn-hard set H, H is not UP-inside-close?

Acknowledgments. We would like to thank Professor Shouwen Tang for his encourage-
ment in this research. The first author also thanks Professor Qiongzhang Li for his encour-
agement during this research and Mr. Tian Liu for his valuable suggestions for the earlier
version of this paper [6]. We thank Mr. Anjiang Ma for his patience in typing this paper and
the unknown referees for their suggestions for improving our presentation.

REFERENCES

[1] E. ALLENDER AND R. RUBINSTEIN, P-printable sets, SIAM J. Comput., 17 (1988), pp. 1192-1202.
[2] J. BALC.ZAR, J. DIAZ, AND J. GABARRO, Structural Complexity I, II, Springer-Verlag, New York, 1988 and 1990.
[3] R. BEIGEL, N. REINGOLD, AND D. SPIELMAN, PP is closed under intersection, in Proc. 23rd ACM Symposium

on Theory of Computing, New Orleans, 1991, pp. 1-9.
[4] R. BEIGFL, R. CHANG, AND M. OGWARA, A Relationship betweeft Difference Hierachies and Relativized Poly-

nomial Hierarchies, CORNEL/DCS/TR 1184, Cornell University, Dept. of Computer Science, 1991.
[5] B. Fu, On lower bounds of the closeness between complexity classes, Math. Systems Theory, 26 (1993), pp.

187-202.
[6] On Closeness ofNP-hard sets to coNP, manuscript, May 1991.
[7] S. HOMER AND L. LONGPRE, On reductions ofNP sets to sparse sets, in Proc. 6th IEEE Conference on Structural

Complexity Theory, Chicago, 1991, pp. 79-88.
[8] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes, in Proc. 12th

Symposium on the Theory of Computing, 1980, pp. 302-309.
[9] M. OGIWARA AND 0. WATANABE, Oft polynomial time bounded truth-table reducibility ofNP sets to sparse sets,

SIAM J. Comput., 20 (1991), pp. 471-483.
10] U. SCHONNG, Complete sets and closeness to complexity classes, Math. Systems Theory, 19 (1986), pp. 29-41.

[11] L. SLMAN, Reductiofts on NP and P-selective sets, Theoret. Comput. Sci., 19 (1982), pp. 287-304.
12] S. TANG, B. Fu, AND T. LIu, Exponential time and subexponential titne sets, in Proc. 6th IEEE Conference on

Structural Complexity Theory, Chicago, 1991, pp. 230-237.
13] J. TORAN, Complexity classes defifted by counting quantifies, J. Assoc. Comput. Mach., 38 (1991), pp. 753-754.
[14] L. VALIANT, The relative complexity of checking aftd evalutiftg, Inform. Process Lett., 5 (1976), pp. 20-23.
[15] K. WAGNER, The complexity of combinatorial problems with succinct input representation, Acta Inform., 23

(1986), pp. 325-356.
[16] O. WATANABE, Oft polynomial time one-truth-table reducibility to a sparse set, J. Comput. System Sci., 44

(1992), pp. 500-516.
17] Y. YSHA, On certain polynomial-time truth-table reducibilities ofcomplete sets to sparse sets, SIAM J. Comput.,

12 (1983), pp. 411-425.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 261-275, April 1994

() 1994 Society for Industrial and Applied Mathematics
004

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS*
JOHANNES KOBLER AND THOMAS THIERAUF

Abstract. The authors consider uniform subclasses of the nonuniform complexity classes defined by Karp and
Lipton [L’Enseign. Math., 28 (1982)] via the notion of advice functions. These subclasses are obtained by restricting
the complexity of computing correct advice. Also, the effect of allowing advice functions of limited complexity to

depend on the input rather than on the input’s length is investigated. Among other results, using the notions described
above, new characterizations of (a) NPNPnsPARs, (b) NP with a restricted access to an NP oracle, and (c) the odd
levels of the boolean hierarchy are given.

As a consequence, it is shown that every set that is nondeterministically truth-table reducible to SAT in the sense
of Rich [J. Comput. System Sci., 38 (1989), pp. 511-523] is already deterministically truth-table reducible to SAT.
Furthermore, it turns out that the NP reduction classes of bounded versions of this reducibility coincide with the odd
levels of the boolean hierarchy.

Key words, nonuniform complexity classes, advice classes, optimization functions, restricted oracle access,
sparse NP sets, relativization, boolean hierarchy, truth-table reducibility

AMS subject classification. 68Q15

1. Introduction. In their fundamental paper, Karp and Lipton [23] introduced the notion
of advice functions and investigated nonuniform complexity classes which they denoted by
C/:F, where C is a class of sets and .T" is a class of (advice) functions. A typical class is P/poly,
where poly is the set of polynomially length bounded functions. The interest in P/poly stems
from the fact that it consists exactly of the languages that can be computed by polynomially
size-bounded circuits [34].

Intuitively, a set A is in C/,T’, if A can be solved by a machine of type C that gets, in
addition to the input x, the advice f(x), where f is a function in - depending only on the
length of x. Many researchers have considered nonuniform classes where the function class
U is defined by a quantitative length restriction such as poly and log (see, e.g., [3], [5], [23],
[36]). Note that for such " there are nonrecursive functions in ,T’, and therefore C/U contains
nonrecursive languages.

Here, we consider uniform language classes obtained by imposing complexity bounds
on the advice functions. Note that Kimper [22] investigates refinements of the original C/J
definition by delimiting the complexity of proof sets, i.e., special sets of correct advice. In
contrast to this, we directly bound the complexity of computing correct advice. With this
concept, we are able to show characterizations as well as finer distinctions of several com-
plexity classes. For example, we show that the class NPNPnsPARsE coincides with the class
NP/OptP[O(logn)], asubclass of NP/log, where correct advice is computable by an OptP
function [29], i.e.,

(1.1) NPNPnSPARSE NP/OptP[0(log n)].

One can interpret equality (1.1) as stating that (exactly) the languages in NPNPSPARSE can be
computed in the following way: on input x of length n, at first an OptP[O(log n)] precom-
putation takes place that gets as input only n. The (logarithmically length-bounded) output

*Received by the editors June 12, 1991; accepted for publication (in revised form) October 16, 1992.
Abteilung ftir Theoretische Informatik, Universitit Ulm, Oberer Eselsberg, D-89069 Ulm, Germany. The work

of this author was supported in part by the Deutscher Akadeuinscher Austauschlienst through Acciones Integradas
1991, 313-AI-e-es/zk.

tAbteilung ftir Theoretische Informatik, Universitit Ulm, Oberer Eselsberg, D-89069 Ulm, Germany. This
author’s work was done in part while visiting the University of Rochester and was supported in part by Deutsche
Forschunsgemeinschaft Postdoctoral Stipend Th 472/1-1, National Science Foundation grant CCR-8957604, and the
Deutscher Akademischer Austauschlienst through Acciones Integradas 1991, 313-AI-e-es/zk.

261

262 JOHANNES KOBLER AND THOMAS THIERAUF

of this precomputation is then passed along with x to the subsequent NP computation, which
decides the membership of x.

Motivated by the relativized separation of P and NP of Baker, Gill, and Solovay [2]
(exploiting the fact that an NP oracle machine can ask superpolynomially many queries), Book,
Long, and Selman 11 introduced restricted relativizations of NP by bounding the number of
oracle queries in various ways. Subsequently, Long [32] investigated the relationship between
restricted access of nondeterministic machines to an oracle and full access to a sparse oracle
set. Let NP be the class of all languages whose membership in NPA is witnessed by an
oracle machine such that the number of potential oracle queries in ,4 (asked on some oracle)
is polynomially bounded. From this definition, it is clear that NPNPfqSPARSE is contained in

NPP. Since also coNP is contained in NPP, NPNPnsPARsE and NPP are different unless the
polynomial hierarchy collapses [21]. By considering the proof of equality (1.1), we will see
that if we let the OptP[O(log n)] advice function depend not only on the length of the input
but on the input itself, we get a characterization of NPP. This leads us to define the class
C//., which is defined in the same way as C/.T" but with the advice functions depending on
the input. Thus, we obtain the following characterization of NPP:
(1.2) NPP NP//OptP[O(log n)].

The characterizations (1.1) and (1.2) give insight into the difference between restricted access
to NP oracles and full access to sparse NP sets.

It seems that the notion of C//.T" is an appropriate concept for studying different kinds
of truth-table reducibilities. Let X

sAT be the k-ary characteristic function of SAT. Then

P//XkSAT oFP is the class of sets that are k-truth-table reducible to some NP set. It is known that
these classes are interleaved with the levels of the boolean hierarchy" NP(k)

P//XAT oFP

NP(k + 1) for all k > [28]. Since P//XkSAT o FP is closed under complementation, these
classes are all different unless the boolean hierarchy collapses.

NP//xAT c FP is the class of sets that are k-truth-table reducible to some NP set, where
the evaluator i.s an NP machine. These classes turn out to coincide with the odd levels of the
boolean hierarchy, giving an interesting characterization of the levels of the boolean hierarchy
in terms of reduction classes,

NP(2k + 1) NP//xAT o FP.

Furthermore, we show that NP(2k -t- 1) NP NTpNPNPk_tt, where k-tt is the class of sets that
are nondeterministically k-truth-table reducible to a set in NP in the sense of [35] , whereas
in the unbounded case all sets nondeterministically truth-table reducible to SAT are already
deterministically truth-table reducible to SAT, i.e., NPtNtP PtNtP. The latter result also holds
for the strong nondeterministic truth-table reducibility <tstN introduced by Long [31], i.e., we
show that {A A tStN SAT} {AIA <Ptt SAT}.

The paper is organized as follows. Section 2 introduces notation and gives basic defi-
nitions. In 3 we prove the aforementioned characterizations of NPNPnsPARsE and NpNRP and
show that changing from OptP[O (log n)] to the larger function class FewOptP (containing all
functions whose membership in OptP is witnessed by an NP transducer that generates only
polynomially many different outputs) does not increase the power of NP/OptP[O(log n)] and
NP//OptP[O(log n)].

In 4 we separate some of these complexity classes in relativized world, the main result
is a separation of P/OptP[O(log n)] and pNPnSPARSE[O(logn)].

1By requiring the NP generator to be single valued, Rich [35] has modified the nondeterministic truth-table
reducibility originally defined by Ladner, Lynch, and Selman [30].

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS 263

In 5 we give several characterizations of certain levels of the boolean hierarchy in terms
of various complexity restricted advice function classes.

2. Preliminaries and notation. All languages considered here are over the alphabet
E {0, }. For a string x 6 E*, Ixl denotes its length. We assume the existence of a pairing
function (., .) E* x E* -- E* that is computable in polynomial time and has inverses also
computable in polynomial time. (., .) can be extended to encode finite sequences (x xk)
of strings into a string (x xk) E*. For a set A, IAI denotes its cardinality. The
complement E* A of A is denoted by A. A<n is the set of all strings in A of length less than
or equal to n.

A language S is sparse if there is a polynomial p such that for all n the number of words
in S up to length n is at most p(n). Let SPARSE be the class of all sparse languages. A set T
is tally if T is a subset of 1". Let TALLY be the class of all tally sets.

We assume that the reader is familiar with (nondeterministic, polynomial-time bounded,
oracle) Turing machines and complexity classes (see [4], [36]). FP is the class of functions
computable by a deterministic polynomial-time bounded Turing transducer. AnNP transducer
is a nondeterministic polynomial-time bounded Turing machine T that on every branch either
accepts and writes a binary number on its output tape or rejects. The set of outputs generated
by T on input x is denoted by outr(x).

Krentel [29] defines an NP metric Turing machine to be an NP transducer that accepts on
every branch. For an NP metric Turing machine T and an input x 6 E* let maxr (x) [minr (x)
be the maximum [minimum] output generated by T on input x on any accepting computation
of T. The class OptP [29] of optimization functions is defined as

OptP {maxr, mint T is an NP metric Turing machine}.

For a class 7 of functions on the natural numbers (called restricting functions), we define the
subclass

OptP[7-] {f e OptPl::ir e 7-x e E*’lf(x)l < r(Ixl)}

containing all optimization functions f OptP such that the length of f(x) in binary repre-
sentation is bounded by a function from .

pNP[I denotes the class of sets whose membership in pNP can be witnessed by an oracle
machine M making for some r 6 7 at most r(n) many queries on inputs of length n. In the
case that 7E is a singleton set {r} we simply write OptP[r] and pNP[rl, respectively. Throughout
the paper we assume that for every restricting function r the function x + r(lx l) is computable
in polynomial time.

Karp and Lipton [23] introduced the notion of advice functions in order to define nonuni-
form complexity classes. For a class C of sets and a class .T" of functions from E* to E* let
C/ be the class of sets A such that there is a set B 6 C and a function h 6 .T such that for
all x E*,

x A (x,h(llXl)) B.

Note that the advice function h depends only on the length of x. By canceling this restriction
we obtain the class C//. of all sets A such that there is a set B 6 C and a function h 6 such
that for all x 6 E*,

x 6 A , (x, h(x)) e B.

By definition, C/is a subset ofC//.T" for each class of sets C and each class offunctions .T’,
which fulfills the condition that if h 6 then also x - h (11xl) 6 U. Special advice function
classes considered in the literature are poly {h E* --+ E* there exists a polynomial p
such that for all x, Ih(x)[_< p(Ixl)} and log- {h E* --+ E* Ih(x)l O(log(Ixl))}.

264 JOHANNES K(BLER AND THOMAS THIERAUF

3. NPNPrqSPARSE versus NPl’. In this section we show that the class
NPNPrqSPARSE can be characterized as the class NP/OptP[O(logn)], i.e., the class of sets
that are accepted by an NP machine with advice of a logarithmically length-bounded OptP
function. Further, it turns out that the related class NPl" (see definition below) coincides
with NP//OptP[O(log n)]. For the latter two classes we can show that they are also equal to
P//OptP[O(log n)], which, by a result of Krentel [29], is identical to pNP[O(logn)].

DEFINITION 3.1 [11]. For any oracle Turing machine M and any string x E* let
Q(M, A, x) be the set of all oracle queries that M may ask on input x using oracle A, i.e.,
the set of all strings y E* such that in some computation ofM on input x under oracle A
the oracle is queried about y. Q(M, x) is the set of all oracle queries ofM on input x using
any oracle, i.e., Q(M, x) [..JAC_Z. Q(M, A, x).

For any set A, NP/(A) is the class ofsets L NP(A) whose membership is witnessed by
a machine M such that the number ofpotential oracle queries in A is polynomially bounded,
i.e., there exists a polynomial p such that IQ(M, x) f-) AI < p(lxl) for all x.

Our first theorem states that if a language L is accepted by an NP oracle machine M
using an NP oracle A in such a way that the number of potential oracle queries that are in A is
polynomially bounded, then L is in NP//OptP[O(log n)], i.e., membership in L can be tested
by an NP machine which gets along with the input the value of an OptP[O(log n) function. In
the special case that A is sparse this containment can be strengthened to NP/OptP[O(log n)],
i.e., for all inputs of the same length the advice function yields the same result. The proof is
by a census argument similar to that used by Hemachandra 18] and Kadin [21].

THEOREM 3.2. (i) NPt’ c__ NP//OptP[O(logn)],
(ii) NPNPcSPARSE ___. NP/OptP[O(log n)].
Proof Let L L (M, A) for an NP machine M and an oracle A in NP, and let p be a

polynomial that bounds the running time of M.
To show (i) let r be a polynomial such that IQ(M,x) fq AI < r(lxl) for all x. An NP

machine knowing the size of the set Q(M, x) (q A can guess this set (note that it is an NP
problem to decide for two given strings x and y whether y is in Q(M, x) fq A). Define the
function

and the set

h(x) IQ(M, x) q AI

B {(x,k) Xc_ Q(M,x) OA IXI =kandx 6 L(M,X)}.

Then B 6 NP and h 60ptP[O(log Ixl)], since h(x) is the maximum output of the following
algorithm:

On input x guess k < r(lxl) andxl < < xk
if xl xk Q(M, x) fq A, then output k, else output 0.

Now, it holds for all x 6 E* that x 6 L if and only if (x, h(x)) B. Therefore, L is in
NP//OptP[O(log n)].

For (ii) let A be a sparse set, and let r be a polynomial such that IA<-p(nI <_ r(n) for all n.

Define the function

h(x)- IA-<pIxII

and the set

B {(x, k) 3X A <-p(Ixl) "lXI k andx 6 L(M, X)}.

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS 265

By an argument similar to that in the proof of (i), x 6 L if and only if (x, h (11xl)) B. This
shows that L is in NP/OptP[O(log n)].

Combining Theorem 3.2 (ii) with the result of Balcfizar and Sch6ning [5] that NP/log
coNP c_ NPNPnsPARsE (see also [3]), it follows that for every coNP set in NP/log correct
advice can already be computed by an OptP function.

COROLLARY 3.3. NP/log fq coNP NP/OptP[O(log n)] f) coNP.
To show the reverse containments of Theorem 3.2, we make use of the following lemma.

It states that every OptP function h can be computed by a deterministic polynomial-time oracle
machine by asking Ih(x)l many queries to an NP oracle.

LEMMA 3.4 [29]. OptP[r] c__ FpNP[r] for any restricting function r.
COROLLARY 3.5. (i) NPP NP//OptP[O(log n)],
(ii) NPNPnsPARsE NPNPTALLv NP/OptP[O(log n)].
Proof. By Theorem 3.2, it only remains to show the inclusions from right to left.
To show (i), let L be in NP//OptP[O(logn)] via an NP machine N and an optimization

function h. Then L can be accepted by an NP machine M that computes deterministically
by binary search the value of h according to Lemma 3.4 asking O(log n) many queries to
an NP oracle and then simulates N without asking further oracle queries. Since Q(M, x) is
polynomially bounded, it follows that L is in NPP.

If h is a function that depends only on the length of its argument, then h(x) can be
computed by binary search using the tally NP set T {l(n’k) k < h(In)}. This proves
(ii).

Note that the above proof shows that every language in NP//OptP[O (log n)] (and thus in

NPP) can in fact be accepted by an NP oracle machine M such that Q(M, x) is polynomially
bounded.

In the next lemma, we show that an NP computation getting along with the input the value
function h (x) of an OptP can be transformed into a P computation on the cost of adding one
bit to h (x). Note that this bit actually depends on x even if h (x) only depends on the length
ofx.

LEMMA 3.6. NP//OptP[r] c_ P//OptP[r + 1]for anyfunction r.

Proof Let L be in NP//OptP[r], witnessed by an NP set B and an OptP[r] function
h maxT for some NP metric machine T. Define the OptP[r + function

h’(x) [h(x)l if (x, h(x)) B,

/ h(x)O otherwise.

Then it holds for all x that (x, h(x)) B (x, h’(x)) B’, where the set B’ {(x, k)
k is odd} is in P. The case that h minv can be proved analogously.

Combining Corollary 3.5(i) and Lemma 3.6 we obtain a further characterization of the
class NPP and that it is closed under complementation. Note that P//OptP[O(logn)]
pNP[O(log n)l [29].

COROLLARY 3.7. NpNP P//OptP[O(log n)].
COROLLARY 3.8. NP’ is closed under complementation.
Remark 3.9. The results stated in Corollary 3.5 can be extended to the classes of the

polynomial-time hierarchy [37]. In order to do so, we define restricted relativizations of the
E-levels of the polynomial hierarchy. Ekc, e is the class of all sets L accepted by a k-alternating
polynomial-time Turing machine [16] using an oracle A from C such that [Q(M, x) (3 AI is
polynomially bounded. Then, the results stated in Corollary 3.5 can be extended to

k Ek/Opt E_l[O(logn)],

Ek, R Ek//Opt Ek_l[O(logn)] pZktO(logn)]

266 JOHANNES K(3BLER AND THOMAS THIERAUF

where Opt C is the class of optimization functions computable by an NP transducer using some
oracle in the class C. Since E,/Opt E,_l[O(logn)] is included in pEk[O(logn)], this sharpens
the recent result in [13] that EzknsPARsE pE[O(logn)].

Remark 3.10. The advice (even depending on the input) provided by an
OptP[O(logn)] function does not increase the power of the probabilistic class PP:
PP//OptP[O(log n)] PP. This follows from the result by Toda [40] that PPNRP PP, since
PP//OptP[O(log n)] coincides with the class PPffFPNP[O(lgn)l (see Lemma 3.4) that is clearly
contained in ppNP.

Next, we consider uniform subclasses of P/log and P/poly. Whereas the proof of Corol-
lary 3.5(ii) also yields the inclusion of P/OptP[O(logn)] in pNPnSPARSE[O(Iogn)], the census
technique of Theorem 3.2 cannot be applied to obtain the reverse containment. The next
theorem is proved by constructing (long enough initial segments of) a sparse NP set by
an OptP computation. The underlying technique was used by Mahaney [33] to show that
NPNPSPARSE C pNP.

THEOREM 3.11. pNPSPARSE P/OptP.
Proof. Let L L (M, S) for a P machine M and a sparse NP set S. Let p and r be

polynomials such that p bounds the running time of M and IS<n < r(n). Define h(x)
IS<-p(Ixl)). Then h OptP, since h(x) is the maximum output of the following algorithm:

On input n guess k < r(p(n))and xl <... < x, 6 E-<p(Ixl);
if Xl x, 6 S, then output (x x,), else output 0.

Now the computation of M using oracle S on input x can be simulated by a P machine
answering oracle questions according to the set h (11xl). 1--]

Let FewOptP be the class of functions f OptP computed by an NP transducer that
produces at most a polynomial number of different outputs. Clearly, OptP[O(log n)] c_
FewOptP, and obviously, this is a proper inclusion.

However, as shown by the next theorem, the classes NP/OptP[O(logn)] and
NP//OptP[O(log n)] remain unchanged when the function class OptP[O(log n)] is replaced
by the larger class FewOptP.

THEOREM 3.12. (i) NP//FewOptP P//FewOptP P//OptP[O(logn)],
(ii) NP/FewOptP NP/OptP[O(log n)].
Proof. Let L be a set in NP//FewOptP via A 6 NP and f 6 FewOptP. Let T be an NP

metric machine for f, i.e., f maxT (the proof for f mint is similar), and the number of
different outputs of T is polynomially bounded. Define the function

h(x) IOUtT(x)l

and the set

B {(x,m) z <... < Zm out(x)" (X, Zm) 6 A}.

It is easy to see that h 60ptP[O(log n)] and B 6 NP. Now x is in L if and only if (x, h(x))
is in B, and therefore L is in NP//OptP[O(logn)] P//OptP[O(logn)]. The latter equality
follows from Corollaries 3.5(i) and 3.7. The proof of (ii) is analogous, we only have to replace
outr(x) by outT(llXl).

The technique used in the previous proof cannot be applied to show that the classes
P/OptP[O(log n)] and P/FewOptP are equal. However, the proof of
P/OptP[O(logn)] c_ pNPSPARSEtO(ogn)I (using binary search, see the proof of Corollary
3.5(ii) can be refined to show the following theorem. It states that a set in P/FewOptP can be
decided in polynomial time by querying a sparse NP oracle (polynomially often).

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS 267

THEOREM 3.13. P/FewOptP c__ pNPf3SPARSE.

Proof. Let f be in FewOptP, and let T be an NP transducer computing f. Using the
sparse NP set

S--{(1n,m,i,z) I:qZl

as oracle, f(x) can be computed in polynomial time by determining first Ioutr (1")1 and then
applying a prefix search to find the optimum value in outr (1"). [3

The known relationships ofthe language classes considered in this section are summarized
in Fig. 3.1.

P/poly
pSPARSE

P/OptP

NP/poly
NpSPARSE

PP//OptP

pNP P//OptP
NP//OptP

PP//OptP[0(log n)

NP/OptP J
pNP[O(logn)] NpNP

P//OptP[O(log n)]J NP//FewOptP

NpNPnSPARSE
NP/OptP[O(log n)
NP/FewOptP

pNPnSPARSE

PtNtPfqTALLY

cSPARSE 0(log n)

P/FewOptP\/
P/OptP[O(log n)l NP

BH

FIG. 3.1. Inclusion structure ofsome considered complexity classes; thick lines indicate that there are relativized
separations (see 4).

4. Relativized separations. Since Baker, Gill, and Solovay [2] separated P from NP
relative to some oracle, relativizations have been an important subject in complexity theory.
In this section, we discuss which of the inclusions in Fig. 3.1 are strict, at least in some
relativized world.

Since there are nonrecursive sets in P/poly and in NP/poly, these two classes are clearly
different from all other (recursive) classes considered here. Whether there are any other strict
inclusions in the diagram of Fig. 3.1 is not known. For some of the inclusions, however, the
question whether they are proper can be linked to central open problems in complexity theory.

For example, by the result of Karp, Lipton, and Sipser (see [23]) that NP

_
P/poly implies

the collapse of the polynomial hierarchy to its second level, it follows that if PH : E2, then

268 JOHANNES KOBLER AND THOMAS THIERAUF

NP is not contained in any of the classes on the left column of Fig. 3.1. Since this holds in all
relativized worlds, and since there exists an oracle separating PH from Ee [24], it follows that
relative to this oracle all the inclusions between the first and the second column are proper.

Similarly, using the result of Kadin [21] that coNP

_
NPNPnsPARsE implies PH

pNP[O(logn)], it follows that if PH pVO0og), then NPPnsPAsE - pVO0ogl. Since,
as it is easily seen, the inclusion coNP _c NP/OptP implies PH pyV, we can state the
following theorem.

THEOREM 4.1. PH PYP = NP/OptP 4: P//OptP.
Furthermore, by the recent result ofToda [39] that PH c_ pI,V, it follows that pyP[OOogn)l

PP and pNV 4: PP//OptP unless PH pNr,.
Beigel [7] constructed an oracle A such that PNPA ppA 0. Since pNP[O(logn)]

pp

[9], oracle A also separates pNPtO(logn)l and prqr, (for a direct proof see [14]).
Cai et al. [15] showed the existence of an oracle A such that relative to A the boolean

hierarchy is infinite, i.e., ’v’ k NPA (k) -7/: coNP (k). In fact, Cai et al. construct the oracle
A in such a way that, for all k, some tally test language Lk(A) is in coNPA(k) NP(k).
Because it holds for every oracle set B that

NP (2’ 1) tA coNP (2’ 1)

_
P//OptP [k]

_
NP (2’)

[8], [28], [43], it follows that Lek_l (A) P//OptP[k] f3 TALLY _c P/OptPA [k], i.e.,

::1 A ’v’ k > P/OptPA[k] NPA (2 1) -7/: 13.

Since P/OptP[k] is contained in the 2’th level of the boolean hierarchy, this result is optimal.
Clearly, if the boolean hierarchy is proper, it does not have complete sets. Since the class

P/OptP[O(log n)] has complete sets, it is not contained in BH in any relativized world where
the boolean hierarchy is infinite, i.e.,

:t A P/OptpA[O(logn)] BHA :/:: 0.

The main result in this section is a separation of the classes P/OptP[O(logn)] and
pNPCSPARSE[O(Iogn)]. In fact, we show that for any fixed polynomial q there is a relativiza-
tion such that NP contains sparse sets that are not in the nonuniform class P/q (defined as
P/{h lh(x)l <_ q(lxl)}).

THEOREM 4.2. For every polynomial q there exists a set A such that

(NPA f3 SPARSE) pA/q 0.

Proof For an arbitrary set A we define a sparse set L(A) NPA as follows. For a given
n and a suitable chosen function l(n), we partition the 2ln) words of length l(n) into q(n) +
intervals (with respect to the lexicographic ordering) tn ll(n)

"l *q(n)+l such that

[,, 1> fork= .,q(n)+l
q(n) +

For each interval containing a word in A, we put a word into L (A)" let w, w. be an
enumeration of E" in lexicographic order, and let l(n) n + q(n). Define the NPA set

L(A) {wk In > 1, < k < q(n) + and I/() V) A - t3}.

Clearly, there are at most q(n) 4- words of length n in A, i.e., L(A) is sparse. Now we
construct a set A ,in stages such that L(A) P/q. Let M1, M2 be an enumeration of all
polynomial-time bounded Turing machines with running times p, p2 respectively.

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS 269

Stage O. A "= 13; no "--min{n Ym > n" q(m) < 2m}.
Stage s > 1. Choose ns minimal such that ns > max{pi(ns_) < s} and 2n’ >

2 ps(ns) (q(ns) + 1)2.
The algorithm in Fig. 4.1 determines the words of length l(ns) that are included in A.

This is done by diagonalizing against machine Ms and all potential advice for Ms on an input
of length ns.

ADVICE := E<q(ns)"

(* ADVICE contains all potential advice against that we have to diagonalize ,)
QUERY := 13;
(, In QUERY we freeze the oracle queries of Ms during the construction ,)
for k to q(ns)+ do

ACC := {a E ADVICE M(w2’, a) accepts }"
REJ := ADVICE ACC;
if ACCI >_ REJI then

(, krt(ns) A A remains empty, i.e., no word in ACC is advice for w ,)
ADVICE := REJ;
QUERY := QUERY tO [.-JasAC Q(Ms, A, (ws, a));

else
(, put a word in I(ns) f3 A, i.e., no word in REJ is advice for w ,)
ADVICE := ACC;

nsQUERY "= QUERY tO Ua6REJ Q(Ms, A, (LOk, a));

rt(’)-QUERY;choose a y Elk
A A tO {y}

end (, if ,)
end (, for ,).

FIG. 4.1. Algorithm used in the proofof Theorem 4.2.

Let M be any P machine. We show that M, taking advice of any q-length bounded
function, does not accept L(A). Let s be an index such that M Ms. There are 2q(n’)+l

potential words as advice for Ms on inputs of length n (that are stored in ADVICE). Each
execution of the for-loop diagonalizes against at least half of the possible advice for Ms. Since
log(2q(n’)+ 1) < q(ns) + 1, ADVICE becomes empty at the end of the algorithm. The
construction further guarantees that for every advice a, lal < q(ns), there exists ak < q(ns)+
such that

(w2s, a) L(Ms, A) w2" L(A).

ll(ns) QUERY. InTherefore, it suffices to show that the algorithm can always find a y 6

every execution of the for-loop and for every advice no more than Ps (ns) words are added to
the set QUERY, i.e.,

[QUERY[< (q(ns) + 1)2q(ns)+ ps(ns).

Thus, we have for < k < q + 1,

I(’s)- QUERY >_ I](s)l QUERYI

2ns+q(ns’ J> (q(ns) + 1)2qns+ ps(ns)
q(ns)+

270 JOHANNES KOBLER AND THOMAS THIERAUF

2q(ns)+l (2"s- (q(ns) + 1)2 ps(ns))

2q(n)+l

q(ns)+

> [by choice ofns]
q(ns) +

> 0. B

-1

5. Bounded advice versus the boolean hierarchy. The boolean hierarchy is the smallest
class of sets that contains NP and is closed under union, intersection, and complementation.
The levels of the boolean hierarchy are obtained by applying a fixed number of boolean
operations to NP sets. In this section, we give several characterizations of the odd levels of the
boolean hierarchy. First, we show that NP machines that get as advice the value of the k-ary
characteristic function XAT of SAT, where X

sAa" is evaluated on a k-tuple that is computed
from the input by an FP function, accept exactly the languages in the (2k + 1)th level of the
boolean hierarchy. The same is true if the advice consists only of the information of how many
out of k words that are produced from the given input by an FP function are in SAT.

Cai et al. 15] give several characterizations ofthe boolean hierarchy; we take the following
one.

DEFINITION 5.1. A set L is in the kth level NP(k) of the boolean hierarchy if there exist
sets L Lk NP such that

L= / (L-L2) U...U(L,_2-L,_)tOL, ifkisodd,

/ (L L2) U... U (L,_ L,) if k is even.

The union ,>_ NP(k) ofall the levels ofthe boolean hierarchy is denoted by BH.
For a set A, X A denotes the characteristic function of A. X A is the k-ary characteristick

function ofA, # gives the number out ofk words, which are in A, and is the parity ofthis
number, i.e.,

A
X (x x,) X

A (x) x A (x),
k

#/(X1 Xk) xA(xi),
i=1

) (x x,) # (x x,) mod 2.

The unbounded version of Xff is X Uc>_, xff
Clearly, every set L NP(k) is k-truth-table reducible to SAT, i.e., L P//XAT o FP

(here and in the following, the composition operator o takes precedence over//). Every set
that is k-truth-table reducible to SAT is in NP(k + 1) ([28], see also [8]); thus

p X
SAT(5.1) NP(k) c_ // o FP NP(k + 1).

Since P//XAT oFP is closed under complementation, the classes in (5.1) are all different unless
BH (and therefore PH [20]) collapses 15]. It is interesting to note that a P machine needs only
to know the parity of the number of k queries in SAT in order to decide a set in P//XAT o FP
([43], see also [8]),

(5.2) P//XA o FP p//#xr o FP P//eAT oFP.

COROLIAR 4.3. El A (NPA rq SPARSE) pa/log -- 0.
Using a "Kolmogorov-argument", Corollary 4.3 was already shown by Hemachandra 19].

An immediate consequence of Corollary 4.3 is the existence of an oracle separating
P/OptP[O(log n)] and pNPnSPARSE[O(logn)].

COROLLARY 4.4. El A Pa/OptPa[O(log n)] PNPArSPARSE[O(Ign)].

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS 271

We show in the next theorem that the first equality in (5.2) also holds for the nondeterministic
counterparts of these classes, which furthermore coincide with the (2k + 1)th level of the
boolean hierarchy. Since, as it is easily seen, NP//])AT oFP is contained in SATP//X+ o FP, we
cannot replace P by NP, for k >_ 2, in the second equality of (5.2), unless BH, and thus PH,
collapse. It is an open question whether also the classes NP//t)AT oFP characterize some
levels of the boolean hierarchy.

We denote the bitwise ordering on strings of the same length by +/-, i.e., a... a
_

bl b, if ai <_ bi for/= k.
THEOREM 5.2. NP(2k + l) NP//#AT o FP NP//xsAT FPfor all k >_ O.k o

Proof. Let L be in NP(2k + 1). Then there exist sets L1 L2k+l NP such that
L (L1 L2) LJ... t_J (L2k-1 L2k) L.J L2k+l. Define the function

k

f(x)

_
XL2i (x),

i=1

and let A be the set defined as

(x,m) 6 A x G L2k+l or there exist I c__ {2i Ix 6 L2i} and j < k

such that 111 m, x Lzj-1, and 2j ’ I.

Clearly, f 6 #Aa" o FP, A 6 NP, and it holds that x 6 L if and only if (x, f(x)) A. To
see this, observe that there is exactly one set I _c {2i x Lzi of cardinality f(x), namely,
I {2i Ix 6 L2i}. Therefore, L NP//’#m: o FP.

It is clear that NP//#sAa" o FP _c NP//xAT o FP. It remains to show that NP//x
NP(2k + 1). For this we adapt a proof technique used by Buss and Hay [14]. Let L be in

NP//’XksAT o FP, i.e., there exist a set A 6 NP and a function f FP such that x 6 L if and
only if (x, xAT(f(x))) A. For rn >_ 0, consider the NP sets

Bm {X #AT(f(x)) > rn },

Am x lZla ,-al...ak e ak"
ai m, a xSkAT(f(x)), and (x, a) e A

i=1

It is easy to see that Am Bm and Bm+l Bm. Furthermore, Bm- Bm+l {xI#SkAT(f(x))
rn} and A Bm+l {x Bm Bm+l (x XSAT

rn k (f(x))) A}. Thelatterequalityfollows
from the fact that for any x Bm Bin+l, there is only one string a 6 Ek containing rn l’s
and fulfilling a +/- xAV(f(x)), namely, a xA(f(x)). Therefore, x 6 L if and only if
x Am Bm+l, for some m < k. Since Bk+l 13, it follows that L (A0 B1) t_J

(Ak-1 Bk) tO Ak.
Hemachandra [18] (see also Buss and Hay [14]) has shown that the classes

pNP[O(logn)] and P//" SAT
Xo, o FP coincide. By a slight modification in the above proof we get the

following corollary, yielding a further characterization of pNPIO(logn)l.

COROLLARY 5.3. P//xSo,A FP NP//xAv; FP.
Beigel [8] shows that P//OptP[k] sxrP//’X2k_ FP. From Theorem 5.2 and the following

Theorem 5.4, it follows that this equation remains valid when P is replaced by NP. Theorem
5.4 restates an observation in [26] that//SA’r is complete for OptP[k],,2,_1

//SAT //SAT FPfor all k > O.THEOREM 5.4 [26]. OptP[k] ,,2,_ o FP U "2-COROLLARY 5.5. NP(2k+l 1) NP//OptP[k]for all k > O.
Ladner, Lynch, and Selman [30] transformed the recursion-theoretic truth-table reducibil-

ity into complexity theory. They also give a definition of a nondeterministic truth-table re-
duction in the following way" A is nondeterministically truth-table reducible to B if there

272 JOHANNES KOBLER AND THOMAS THIERAUF

exists an NP transducer G (the generator) and an NP machine E (the evaluator) such that for
every x,

x 6 A there exists a branch of G(x) yielding an output

Y (Yl Yk) such that E(x, X(Yl yk)) accepts.

It is known that this definition is equivalent with the nondeterministic Turing reducibility
[30] and therefore does not lead to a new reducibility notion. We modify the above definition
by restricting the generator G to be a single-valued NP transducer, i.e., the output must be the
same on every accepting branch. Let NPSV be the set of functions computed by single-valued
NP transducers 11].

This reducibility first appeared in 11 (there denoted by NEUNIEALL) and was explicitly
called nondeterministic truth-table reducibility by Book and Ko 10]. Subsequently, Book and
Tang 12] and Rich [35] introduced the following terminology.

DEFINITION 5.6. A set A is nondeterministically truth-table reducible to B (A <NttP B), if
A NP//x o NPSV. A is nondeterministically k-truth-table reducible to B (A Np

--<k-tt B), if
A NP//x NPSV. For a class C ofsets let NPtCt be the class {A 3 B C" A <NttP B} of
all sets <NttP-reducible to some set in C, and let NPkC_tt {A 3 B G C" A _<kN_Ptt B}.

In 11], it is shown that there exist recursive sets A and B such that A <Np B and A ftNtp B.
This means that <tNtp is properly stronger than <P. The question whether <tPt is properly
stronger than <tNtp is equivalent to the P =?NP problem [11], [35]. However, as we will
see in Corollary 5.8, every set A that is nondeterministically truth-table reducible to some
NP complete set B is also deterministically truth-table reducible to B, i.e., B is NP complete
and

A <tNtPB=:A <PttB.
Thus, we have the surprising result that while the definition in [30] of a nondeterministic

truth-table reduction was too weak, the definition of Rich seems to be too strong to yield a new
reduction class between {L L <tPt SAT} and {L L _<P SAT}. As a further consequence of
Theorem 5.7, we get a characterization of the odd levels of the boolean hierarchy in terms of
the nondeterministic k-truth-table reducibility notion.

THEOREM 5.7. (i) Xk
sAT NPSV X

sAT FPfor all k > 1,
(ii)" SAT FPtStATx,o o NPSV c_
Proof. To see (i) let f be in NPSV and define the NP set

A {Ix, m) ::1 z zk f(x) (z zk) and Zm SAT}.

ThenxAT(f(x)) XA AoFP c xAToFP.k ((x, 1) (x k))forallx andthus XSATkfexk
For the proof of (ii) define the NP set

B {(x,k,m,b) Izl zk f(x) (Zl zk) andb < xSAT(Zm)}

and observe that xSAT(f(x)) can be read off B’s answers to the parallel queries (x, k, m, b),
for k p(lxl), m k, and b 0, 1, where p is a polynomial bounding the
running time of the NP transducer that computes f.

COROLLARY 5.8. (i) NP(2k + 1) NPk_tt,NP for all k _> 1,
(ii) PtNtP NPNPtt
Remark 5.9. Book and Tang 12] especially consider the O(log n) bounded version log n-tt

of the nondeterministic truth-table reduction obtained by logarithmically bounding the number

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS 273

of queries produced by the NPSV generator. It follows from (appropriately modified versions
of) Theorem 5.7, Corollary 5.3, and Lemma 3.6 that

NPYo p pNP[O(1)+loglognl.
n-tt Plogn-tt

This class is also considered by Wagner [2] (there denoted by PlP[O(log n)]), who shows
that it coincides with the class of languages that are full-truth-table reducible: to SAT. As a
consequence, it follows that A <P SAT if and only if A is full-truth-table reducible tolog n-tt

SAT.
Remark 5.10. Book and Tang [12] generalized the nondeterministic truth-table reducibil-

ity to a Ek truth-table reducibility by giving the generator and the evaluator access to a Ek-1
oracle: A is Et truth-table reducible to B (A <tf B) if A EklIx o NPSVzk- For a class
C of sets let EkC.tt be the class {A 3 B 6 C A <tf B}. Then Corollary 5.8(ii) generalizes to

E E pE-[O(logn)]k,tt Ptt
i.e., every set that is E truth-table reducible to a set in E is already (deterministically)
truth-table reducible to a set in Ek.

Thierauf [38] showed that allowing the generator in the nondeterministic truth-table re-
duction to produce polynomially many different outputs (i.e., to compute an NPPV function
11]) does not increase the class of sets reducible to SAT.

THEOREM 5.11 [38]. Let L be a set, G an NPPV transducer, and E an NP set such that

x 6 L :q (Yl yk) 6 outo (x) (x, SAT-
X‘ .Yl yk)) 6 E.

Then L is in PP.
We end this section by proving that also the strong nondeterministic truth-table reducibil-

ity, introduced by Long [31], when applied to SAT, is only as powerful as _<tPt As in the defini-
tion of Ladner, Lynch, and Selman [30], the generator in a strong nondeterministic truth-table
reduction can produce exponentially many different outputs, but the evaluator either has to
accept all the outputs or it has to reject all of them.

DEFINITION 5.12 [31]. A is strongly nondeterministically truth-table reducible to B
(A <stt B) if there is an NP transducer G and a P machine E such that for all x the set

outG(x) is nonempty, and for all (y yk) in out6(x), E(x, X(Yl Yk)) XA(x)
For a class ofsets C we denote by SNtCt the class A B C A <SttN B }.

Clearly, _<tstN lies in strength between _<tPt and <P. Long [31] showed that _<tstN is properly
stronger than _<NvP by constructing two sets A and B such that A ztstN B and A <P B. The
question whether <tPt is properly stronger than <tstN is closely related to two major open
questions in complexity theory [31]:

P -- NP coNP = <tPt _<tstN =, P = NP.

THEOREM 5.13. SNtNtP =PtNtP.
Proof. Let L be in SNtNtP via a generator G, an evaluator E, and a set A e NP. In

order to decide membership of a given input x, it suffices to find out whether there is some
output (y yk) of G (x) such that E accepts (x, X (Y y)). But this becomes an NP
problem, provided that the maximum number #A (y y) of yes-answers from A over all
outputs (y Yk) of G (x) is given along with the input x.

9A set A is full-truth-table reducible [28], [14] to a set B if there is a function g FP such that for all x, g(x) is
ofthe form (ao...a2m_l, yl Ym), where ai {0, 1} (0 < < 2 1) and yi E* (1 < < m), and it holds
that x A aj 1, where j is the number whose binary representation is given by X (Yl Ym).

274 JOHANNES KOBLER AND THOMAS THIERAUF

More precisely, define the function

h(x) max{#A(y Yk) (Y yk) 6 outc(x)},

and let B be the set defined as

(x, rn) 6 B ::la=al...ak6 Ek ::t(yl yk) 6 outc(x)"
k

ai m, a -< X2(Yl yk) and E(x, a) 1.
i=1

Then h 60ptP[O(logn)] and B 6 NP, and it holds for all x that x 6 L if and only if
(x, h(x)) B, i.e., L is in NP//OptP[O(logn)] P//OptP[O(logn)]. [3

Note that by the above proof, Theorem 5.13 remains true if the evaluator E is allowed to
be an NP machine.

Acknowledgments. For helpful conversations and suggestions on this work we are
grateful to V. Arvind, L. Hemachandra, and U. SchiSning. We also thank the two referees for
their valuable suggestions.

REFERENCES

A. AMIRAND W. GASARCH, Polynomial terse sets, Proceedings 2nd Structure in Complexity Theory Conference,
IEEE Computer Society, 1987, pp. 259-269.

[2] T. BAKER, J. GILL, AND R. SOLOVARY, Relativizations of the P =?NP question, SIAM J. Comput., 4 (1975), pp.
431-442.

[3] J. BALCAZAR, Nondeterministic witnesses and nonuniform advice, Proc. 4th Structure in Complexity Theory
Conference, IEEE Computer Society, 1989, pp. 259-269.

[4] J. BALC,ZAR, J. DAZ, AND J. GABARR6, Structural Complexity I, Springer, New York, 1987.
[5] J. BALCAZAR AND U. SCHONING, Logarithmic advice classes, Theoret. Comput. Sci., 99 (1992), pp. 279-290.
[6] R. BEIGEL, Query-limited reducibilities, Dissertation, Stanford University, 1987.
[7] ,Perceptrons, PP, and the polynomial hierarchy, Proc. 7th Structure in Complexity Theory Conference,

IEEE Computer Society, 1989, pp. 14-19.
[8] Bounded queries to SAT and the Boolean hierarchy, Theoret. Comput. Sci., 84 (1991), pp. 199-223.
[9] R. BEIGEL, L. HEMACHANDRA, AND G. WECHSUNG, Probabilistic polynomial time is closed under parity reduc-

tions, Inform. Process. Lett., 37 (1991), pp. 91-94.
[10] R. BOOK, AND K. Ko, On sets truth-table reducible to sparse sets, SIAM J. Comput., 17 (1988), pp. 903-919.
[11 R. BOOK, T. LONG, AND A. SELMAN, Quantitative relativizations of complexity classes, SIAM J. Comput., 13

(1984), pp. 461-487.
12] R. Boo: AND S. TANG, Characterizing polynomial complexity classes by reducibilities, Math. Systems Theory,

23 (1990), pp. 165-174.
[13] , A note on sparse sets and the polynomial-time hierarchy, Inform. Process. Lett., 33 (1989), pp.

141-143.
[14] S. Brass ANO L. HAY, On truth-table reducibility to SAT, Inform. and Comput., 91 (1991), pp. 86-102.
15] J. CAI, T. GUNDERMANN, J. HARTMANIS, L. HEMACHANDRA, V. SEWELSON, K. WAGNER, AND G. WECHSUNG, The

boolean hierarchy I: Structuralproperties, SIAM J. Comput., 17 (1988), pp. 1232-1252.
16] A. CHANDRA, D. KOZEN, AND L. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28 (1981), pp. 114-133.
[17] J. HARTMANIS AND Y. YESHA, Computation times ofNP sets of different densities, Automata, Languages and

Programming, Lecture Notes in Comput. Sci. 154, Springer-Verlag, New York, 1983, pp. 319-330.
[18] L. HEMACHANDRA, The strong exponential hierarchy collapses, Proc. 19th ACM Symposium on Theory of

Computing, 1987, pp. 110-122.
[19] L. HEMACHANDRA, Personal communication, Barcelona 1990.
[20] J. KADIN, The polynomial time hierarchy collapses if the boolean hierarchy collapses, SIAM J. Comput., 17

(1988), pp. 1263-1282.
[21] pNP and sparse Turing-complete setsfor NP, J. Comput. System Sci., 39 (1989), pp. 282-298.
[22] J. KAMPER, Non-uniformproofsystems: A newframework to describe non-uniform andprobabilistic complexity

classes, Theoret. Comput. Sci., 85 (1991), pp. 305-331.

COMPLEXITY-RESTRICTED ADVICE FUNCTIONS 275

[23] R. KARP AND R. LIPTON, Turing machines that take advice, Enseign. Math., 28 (1982), pp. 191-209.
[24] K. Ko, Relativized polynomial time hierarchies having exactly k levels, SIAM J. Comput., 18 (1989), pp.

392-408.
[25] J. KOBLER, Strukturelle Komplexitiit von Anzahlproblemen, Ph.D. Thesis, University of Stuttgart, 1989.
[26] J. KOBLEP‘, U. SCHONING, AND J. TOP‘AN, On counting and approximation, Acta Inform., 26 (1989). pp. 363-379.
[27] J. KOBLER, U. SCH(SNING, S. TODA, AND J. ToP,AN, Turing machines withfew accepting computations and low

setsfor PP, J. Comput. System Sci., 44 (1992), pp. 272-286.
[28] J. KOLER, U. SCHONXNG, AND K. WAGNEP‘, The difference and truth-table hierarchies ofNP., Theoret. Inform.

Appl., 21 (1987), pp. 419-435.
[29] M. KRENTEL, The complexity ofoptimization problems, J. Comput. System Sci., 36 (1988), pp. 490-509.
[30] R. LADNER, N. LYNCH, AND A. SELMAN, A comparison ofpolynomial-time reducibilities, Theoret. Comput.

Sci., (1975), pp. 103-123.
[31 T. LONG, Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci., 21 (1982), pp. 1-25.
[32] On restricting the size of oracles compared with restricting access to the oracle, SIAM J. Comput.,

14 (1985), pp. 585-597.
[33] S. MAHANEY, Sparse complete sets for NP solution of a conjecture of Berman and Hartmanis, J. Comput.

System Sci., 25 (1982), pp. 130-143.
[34] N. PIPPENGER, On simultaneous resource bounds, Proc. 20th Symposium on Foundations ofComputer Science,

IEEE Computer Society, 1979, pp. 307-311.
[35] C. RXCH, Positive relatvizations ofthe P =?NP problem, J. Comput. System Sci., 38 (1989), pp. 511-523.
[36] U. SCHONING, Complexity and structure, Lecture Notes in Comput. Sci. 211, Springer-Verlag, New York, 1986.
[37] L. STOCKMEYER, The polynomial time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.
[38] T. THIEP‘AUF, NP-uniforme Komplexittitsklassen, Ph.D. Thesis, University of Ulm, 1990.
[39] S. TODA, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865-877.
[40] , Restricted relativizations of probabilistic polynomial time, Theoret. Comput. Sci., 93 (1992), pp.

265-277.
[41] K. WAGNER, On restricting the access to an NP-oracle, Automata, Languages and Programming, Lecture

Notes in Comput. Sci. 317, Springer-Verlag, New York, 1988.
[42] Bounded query computations, SIAM J. Comput., 19 (1990), pp. 833-846.
[43] G. WECHSUNG, On the boolean closure ofNP, Proc. 5th Conference on Fundamentals of Computation Theory,

Lecture Notes in Comput. Sci. 199, Springer-Verlag, New York, 1985, pp. 485-493. (An unpublished
precursor of this paper was coauthored by K. Wagner.)

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 276-292, April 1994

() 1994 Society for Industrial and Applied Mathematics
005

DETERMINISTIC SIMULATIONS OF PRAMS ON BOUNDED DEGREE
NETWORKS*

KIERAN T. HERLEY’ft AND GIANFRANCO BILARDI

Abstract. The problem of simulating a PRAM with n processors and memory size m > n on an n-node
bounded degree network is considered. A deterministic algorithm is presented that simulates an arbitrary PRAM
step in O((log n log m)/log log n) time in the worst case on an expander-based network. By extending a previously
established lower bound, it is shown that the proposed simulation is optimal whenever 2 (n 1+) < rn < 0(2(lgn)t)
for some positive real constants and c.

Key words, parallel computation, shared memory machines, simulations, networks of processors, expander
graphs

AMS subject classification. 68Q05

1. Introduction. Parallel random access machines (PRAMs) play a central role in the
study of parallel computation and in the development of parallel algorithms [KR90]. A PRAM
is essentially a set of synchronous processors connected to a shared memory. The basic fea-
ture of the PRAM is that references to distinct memory cells can be made simultaneously by
different processors. A number of different variants of the PRAM model have been proposed
[FW78], [Go178], [SchS0], [LPVS1], [SV81], [Kuc82], [Sni85], [BH85] that allow simul-
taneous references to the same memory cell in varying degrees. By ignoring several of the
constraints that arise in the physical realization of a multiprocessor, the PRAM model provides
an attractive framework for algorithm design. However, the running time of an algorithm on
a PRAM may be a poor estimate of its performance on a realistic multiprocessor [Sny86].

Two important constraints not captured by PRAMs but shared by most realistic parallel
machines are as follows: (i) the granularity of the memory (the memory is partitioned into
banks or modules, each of which can respond to only one request per machine cycle), and
(ii) the fact that the individual components of the machine (processors and memory modules)
can be connected directly only to a small number of other components. The Bounded degree
network (BDN) of processors and memory modules captures both constraints and hence is a
more realistic model of parallel computers than the PRAM. A BDN consists of a synchronous
collection of nodes, each equipped with a processor and a private local memory. Each node
is connected to a constant number (independent of machine size) of other nodes by means of
bidirectional communication channels. It is natural to wonder how well a PRAM computation
can be simulated by a suitably chosen BDN. This question has received considerable attention
in the literature, and we briefly review some of the results here.

Several researchers have observed that simulating a PRAM whose memory size m is
linear in the number of processors n is essentially a routing problem (see [LPV81], [BH85],
for example). The idea is that each node in the simulating network holds O (1) PRAM memory
cells; accessing a cell involves communicating with the node that holds it. In this paper we
focus on the simulation of PRAMs where m, the memory size, is significantly larger than n,
the number of PRAM processors. We will refer to such a PRAM as an (n, rn)-PRAM. In this

*Received by the editors February 22, 1989; accepted for publication (in revised form) October 20, 1992.
Computer Science Department, Cornell University, Ithaca, New York 14853.
Current address, Department of Computer Science, University College, Cork, Ireland. The work of this author

was supported in part by the National Science Foundation grant DCR-86-02307 and by the Joint Services Electronics
Program contract F49620-87-C-0044.

Current address, Dipartimento di Elettronica ed Informatica, Universitfi di Padova, Via Gradenigo 6/A, 35131
Padova, Italy. The work of this author was supported in part by the National Science Foundation grant MIP-86-02256
and by the Joint Services Electronics Program contract F49620-87-C-0044.

276

DETERMINISTIC PRAM SIMULATION 277

case the chief obstacle to efficient simulation is congestion. Since only a single value can
be accessed from any particular memory module in one BDN machine cycle, the simulation
algorithm must limit the amount of information accessed from each node.

One approach, proposed in [MV84] and further developed subsequently in a series of
papers [Upf84], [LPP88], [KU88], [LMR88], [Va188], [Ran91], distributes the address space
of the PRAM among the modules ofthe BDN according to some suitably chosen hash function.
The objective is to ensure that, with high probability, the congestion at any node of the network
is low, and hence performance is good. In particular [Ran91 proposes a protocol for an n-node
butterfly network that simulates T steps of an (n, m)-PRAM in O(T log n) time, with high
probability, assuming that m is polynomial in n. The protocol is deterministic, except for the
random choice of the hash function that defines the address map.

Another approach, also proposed in [MV84], relies on representing the contents of a
PRAM memory cell by using several BDN cells. This approach forms the basis for a number
ofdeterministic simulation schemes [UW87], [AHMP87], [LPP90] including the one proposed
in this paper. The goal of these schemes is to provide good worst-case performance.

In [UW87], a scheme is advanced to simulate an arbitrary step of an (n, m)-PRAM
(m > n) by an n-node BDN in time O(logn log m loglogm). Nodes of the BDN con-
sist of a RAM processor and a memory module. They are interconnected as in the graph
(V, EAKSI), Leighton’s modification of the AKS sorting network [AKS83], [Lei85]. This
time bound was subsequently improved to O(log n log m) in [AHMP87] and is further im-
proved to O (log n log m / log log n) in the present paper. Our network is also an n-node BDN,
(V, Eexp (-J EAKSL LI Etree) where (V, Eexp) is a graph based on square-root expanders [PU89],
[LPS86], (see also [LPS88]) and (V, Etree) is a complete binary tree. A simulation with a

running time of O(log2 n/log logn + log(m/n) logn) has been obtained in [HMP89], which
matches the performance of our scheme only for m n l+O(1/lglgn).

An f2 ((log n log m) / log log m) lower bound for the time to simulate a step of an (n, m)-
PRAM by an n-node BDN was established independently in [AHMP87] and [KU88] assuming

that, for some positive constant, f2 (n 2+’) < m < 2ox/,, og n). By refining the prooftechnique
of [AHMP87] and [KU88], we obtain a lower bound of f2((log(m/n))Z/loglog(m/n)) for
m _< O(n2+). A similar result has been obtained in [HMP89]. The performance of the
simulation described in this paper matches the cited lower bound as long as f2 (n +’) _< m <
O(2(lgn)), for some positive real constants and c.

The lower bounds just mentioned are based on the so-called point-to-point assumption,
technically defined in 5. Essentially, it is assumed that when storing a new value of a
PRAM variable in different memory locations, a BDN processor needs to issue a distinct
message for each location. There is really no reason why a simulation should be restricted
in this way. Nevertheless, the lower bound is interesting for the following reasons. All the
simulations cited above are essentially point to point. At least for the range of m where the
simulations of this paper are optimal, the lower bound indicates that the only hope for an
improvement lies in "combining" techniques for messages from the same source carrying
the same information. Moreover, even with the point-to-point limitation, the lower bound
arguments are not straightforward, and they provide valuable insights on the problem. A recent

study reports an f2 (log m) lower bound that does not rely on the point-to-point assumption
[HMP89].

In [LPP90] a PRAM simulation is presented on a BDN consisting of an n n mesh-
of-trees [Lei84], [NMB83], where the n roots of the trees are RAM processors, while the
other (n2) nodes are packet-switching elements. The scheme is attractive for the regularity
and simplicity of the interconnection. For m polynomial in n, a PRAM step is simulated in
time O(log2 n / log log n), the same as that achieved by our simulation for this range of m.

278 KIERAN T. HERLEY AND GIANFRANCO BILARDI

However, it should be noted that the use of (R) (n 2) nodes, albeit mere switches, makes the cited
lower bound inapplicable to the mesh-of-trees.

Even under the point-to-point assumption, optimal simulations are not known for small
memory (m < O(n+)), or for very large memory (m > f2(20g))). For small memory,
simulations faster than those given in this paper have been proposed in [Her89].

Deterministic PRAM simulations on BDNs typically lead to a BDN memory size consid-
erably larger than m, the PRAM memory size. There are two reasons for this phenomenon:
(a) several copies of each PRAM variable are kept in the BDN, and (b) the memory map
indicating the location of such copies needs to be stored. Simulations using only O(1) copies
per variable have been proposed in [HP89] for a mesh-of-trees interconnection. Memory
maps with substantially more compact representations than those previously considered are
discussed in [Her90].

In most of the studies referred to above, the number n of nodes in the BDN is assumed to
be proportional to the number of processors in the PRAM being simulated and is independent
of the size m of the PRAM memory. It is certainly of interest to investigate simulations where
the size of the BDN is allowed to depend on both n and m. In this direction it is worth
mentioning the scheme of [Vis84], which has running time O(log n + log m) on a BDN of
O(n log n + m log m) nodes.

The remainder ofthis paper is organized as follows. Section 2 is devoted to the formulation
of the problem. Section 3 discusses the memory organization, i.e., the method by which the
memory of the PRAM is represented by the memory of the BDN. Introducing the graph-
theoretic notion of generalized expander, we investigate the trade-off between the number of
copies and memory congestion in organizations of the type proposed in [UW87]. The choice
of an appropriate point in this trade-off is critical in order to balance the work needed to
extract the relevant information from the memory modules with the work needed to route this
information to the intended processors. Section 4 describes and analyzes the memory access
algorithm. Section 5 is devoted to lower bounds. Section 6 concludes the paper by indicating
a number of interesting open problems.

2. Problem formulation. We consider an (n, m)-PRAM with processors, P1PRAM,
p’A perAr sharing a set U of m memory cells, which will also be referred to as
variables. Our goal is to simulate such a PRAM by a BDN of n nodes (P, M), (P2, M2),

(P, M,) where Pi is a RAM processor and Mi is a memory module. We are interested
in simulation algorithms that are deterministic and on line, i.e., the simulation of a step is
independent of future steps.

We assume that the instruction to be executed by PRAM processor pA at a given step
is available to the corresponding BDN processor P/. at the beginning of the simulation of this
step. Since simulation of arithmetic and logical operations is straightforward, we can regard a

generic PRAM step simply as an n-tuple of memory accesses. A memory access can either be
of the form read(u), (u 6 U), which results in the contents of the memory cell u being copied
into a distinguished register of the executing processor, or of the form write(u, x), (u 6 U, x
an integer value), which results in the integer value x being written to memory cell u. For
simplicity we assume that all the accesses in a given step are of the same type (read or write).

In any simulation scheme, upon termination of the simulation of a given PRAM step,
the state of the PRAM memory must be uniquely reconstructible from the state of the BDN
memory. The method chosen for representing the state of the PRAM memory by the state of
the BDN memory is referred to as the memory organization. The algorithm that probes the
state of the BDN memory when simulating a read step and that modifies it when simulating a
write step is called the memory access algorithm.

A simulation scheme is consistent if, after the simulation of an arbitrary sequence of
PRAM steps, the simulation of a step where processor p/RAM executes read(u) results in

DETERMINISTIC PRAM SIMULATION 279

loading the distinguished register of Pi with the correct value of u. The latter is of course the
value assigned to u by the latest instruction of the form write(u, x).

In the next two sections we describe and analyze a new simulation scheme. Section 3 is
devoted to the memory organization, and 4 to the memory access algorithm.

3. Memory organization. The idea of replicating data to enhance its accessibility is
widely used in the field of distributed computing [Gif79], [Tho79]. Upfal and Wigderson
[UW87] proposed a memory organization where, for each PRAM variable u 6 U, the BDN
maintains 2c- copies in the memory modules of a set F(u) {?q (u), ’2(u) Y2c- (u)}
of distinct nodes. Their scheme adheres to the following read/write discipline. Each copy
contains a value and a timestamp indicating the time at which that copy was last written. When
simulating a step where u is written, at least c copies of u are updated. When simulating a step
where u is read, at least c copies of u are retrieved" the one with the most recent timestamp is
guaranteed to contain the correct value of u. We will adopt the same read/write discipline.

In the memory organizations employed in our simulation the location of the copies of a
particular variable does not vary with time. This type of memory organization can be modelled
conveniently by a bipartite graph G (U, V, E) where U is the set of PRAM variables, V is
the set of the nodes of the BDN, and an edge (u, v) represents the fact that the node v contains
a copy of the variable u.

Let S

_
U and let F

E have exactly k edges incident upon each u 6 S. We call F

a k-bundle for S. We say that the subset of V on which the edges of F are incident is a k-
neighborhood of S and denote it by FF(S). When the read/write discipline scheme described
above is adopted, the simulation of a PRAM step accessing the variables of S requires that the
BDN access all the copies of some c-bundle, say F. Clearly, this takes at least clSI/IFF(S)I
time, since at least clSI copies have to be accessed from II-’F(S)I modules. It is desirable to
have a memory organization with large c-neighborhoods. The preceding remarks motivate
the following definition.

DEFINITION 1. A bipartite graph G (U, V, E) with IUI m and VI n, and with
each node in U having degree d is a (,k, d, c, r)-generalized expander if, for every S c__ U
such that ISI <_ rn andfor every c-bundle F of S, II-’F(S)I > ;clSI.

Clearly, c < d < n, . < 1, and cr < 1/.c are necessary conditions for the existence of a
(L, d, c, cr)-generalized expander. The next theorem establishes the existence of certain types
of generalized expanders. (The proof is based on standard types of counting arguments and
can be skipped without loss of continuity.)

THEOREM 1. Let go(.) a_ (4e+;)2/_;). For every n, m, , g, and c with rn > n, . <
1, 2c < n, go() < g < 3)go())m/n, and c > (2/(1 ,k)) log(3)m/n)/log(g/go())),
there exists a (, 2c 1, c, 1/)cg)-generalized expander G (U, V, E) with IUI rn and

Proof. Let Bm,n,2c-1 be the class of all bipartite graphs G (U, V, E) with labeled
nodes and unlabeled edges such that IUI m, IVI n, and each node of U has degree
2c 1. Note that IBm,,,,2c_ll (2cn_l) m. Let r be the fraction of graphs in Om,n,2c-1 that are
not (., 2c 1, c, 1/;kcg)-generalized expanders. We will show that < 1/2.

We begin by observing that, if G Bm,n,2c-I is not a (,k, 2c 1, c, 1/Zcg)-generalized
expander, then there exists a triple (S, W, F) with the following properties" (i) S c_ U,
ISI _< n/cg; (ii) W _c V, IWI F,clSI 1-1; (iii) F E is a c-bundle of S such that
FF(S) c_ W. We shall call such a triple a witness. If we let fs be the fraction of all graphs in
Bm,n,2c-1 having a witness (S, W, F) with IS] s, then we can bound as follows:

0-< L.(1)
<s<n/Zcg

280 KIERAN T. HERLEY AND GIANFRANCO BILARDI

We now claim that

(2) fs <
[.cs-

Standard combinatorial arguments show that there are (7) ways of choosing S, ways
of choosing IV,

ways of choosing F, and a fraction

of the graphs in Bm,n,2c-1 for which triple (S, W, F) is a witness. Then, simple arithmetic
yields (2). Use of the inequalities (’) < (em/s)’, (rxc-l?) < (en/’cs)XC" (2-1) < 22c, and
pc,-l?)/(;) < (1.cs/n)C in (2) yields (after some manipulations)

C

Iecm
[4eX,k(_X)(cs/n)l_x_l/c]

Making use of the bounds ec < eC, and cs/n < 1/)vg (from s <_ n/,kcg), we have

,km
[4el+X l_x_l/c]cL < (lg)

n

From c > (2/(1 X))log(3)vm/n)/log(g/go(.)), and g <_ 3.go(Jk)m/n, we have c >

2/(1)), and hence ,k 1/c > (1 ,k)/2. Since g > g0(,k) > 1, we can reformulate
the expression for fs as

,km
[4e+X }sfs < (1/g)(1-x)/2]

n

which can be rewritten as

where g0(.) (4e+X)2/(-x). If c > (2/(1 -,k))log(3,km/n)/log(g/go), then f < 1/3s,
and, from (1), r/ < .

Upfal and Wigderson [UW87] established the existence ofa family of (k, 2c- 1, c, / (2c-
1))-generalized expanders for every ,k < 1/(8e4), and c >/3 log m, for some suitable constant
/3 > 0. These expanders and similar ones define the memory organizations used in [UW87],
[AHMP87], [LPP90].

Theorem demonstrates that c [(2/(1 ,k)) log(3,km/n)/log(g/go)] is sufficient to

guarantee the existence of (,k, 2c 1, c, 1/,kcg)-generalized expanders. A natural question
is whether such a large value of c is really necessary. As shown in Proposition below, the
answer is positive, at least if the expansion property applies to reasonably large subsets of
U. We first prove a simple lemma, essentially a rephrasing of the definition of generalized
expander, also needed for Lemma 2.

DETERMINISTIC PRAM SIMULATION 281

Henceforth, when referring to a (., 2c 1, c, 1/)cg)-generalized expander, we shall
assume the quantity n/)cg is an integer. This condition can always be met by increasing g
slightly, without altering the results in any essential way.

LEMMA 1. Let G (U, V, E) be a (., 2c- 1, c, 1/)cg)-generalized expander. IfS c__ U
and F c_ E defines a c-neighborhood FF(S) ofsize smaller than n /g, then ISI _< r’F(S) l/c.

Proof. Suppose, byway ofcontradiction, that ISI > Ir’F(S)l/, thatis, II-’F(S)I < clSI.
By Definition 1, it follows that ISI > n/)cg. Let S’ be a subset of S of size n/cg and let
[’F,(S’) be the c-neighborhood of S’ contained in 1-’F(S). Again by Definition we have that
II-’F(S)I _> II-’F’(S’)I >_)cn/.cg--n/g, which is a contradiction.

PROPOSITION 1. If G (U, V, E) is a (;k, 2c- 1, c, 1/)cg)-generalized expander,
with UI m, IVI n, a fixed constant such that 0 < . < 1, and n/cg >_ 4, then
c f2 (log(.m /n) / log g).

Proof. Consider some W c_ V. We say that W confines u U if F (u) W. A simple
combinatorial argument given in both [MV84] and [UW87] shows that the subsets of V of

i,,-2c+size w confine an average ofm o_2c+1,/() m[w]2c-i/[n]2c- variables apiece. (Here [a]b
denotes a (a 1) (a 2)... (a b + 1).) In particular some set W c_ V of size w will confine a
set S with at least [m[w]2-/[n]2c- variables. Choose w In/g- 1] < n/g and let W and
Sbe chosen as above. Then we have F (S) _c W, and (by Lemma 1) ISI <_ n/.cg; it follows that
[m[w]2-/[n]2-l] < n/.cg. The latter inequality implies that [n]2c-/[w]2- >
Considering that [n]2c- < n2c-, and that [W]2c-1 > (w/2)2- (from n/cg > 4), we
have (2n/w)2- > m/n. From the definition of w, with some manipulations, we obtain
c-- 2(log(.m/n)/ log g).

One important facet of Theorem lies in the introduction of the parameter g, which
controls a trade-off between the number of copies and the largest set of variables for which
expansion can be guaranteed. In fact the size of the smallest set of modules containing a given
number of variables depends strongly on the value of c: the smaller this value the smaller the
set of modules. Roughly speaking, increasing g reduces the number of copies to be processed
during the simulation of a PRAM step, but creates higher congestion at memory modules,
thereby making the job of accessing those copies more difficult.

Consider now a memory organization represented by a bipartite graph G (U, V, E)
and let S

_
U be a set of PRAM variables to be accessed. The copies of the variables in S

will be distributed among the BDN nodes with node v 6 V containing so l{ (u, v) u 6 S,
(u, v) 6 E}I copies. We are interested in analyzing the effect of accessing min(s, q) copies
from each node v 6 V, as a function of the integer q. This operation, which we denote by
Decimate(S, q), will form the basis of the memory access protocol to be described in the next
section.

At any given instant, the variables of S can be partitioned into two sets: those for which
at least c copies have been accessed, which we will call the dead variables, and the remaining
ones, which we call the live variables. Dead variables play no further role in the simulation
since enough copies have been accessed to effect either a read or write. For the live variables,
more copies need to be accessed. Therefore, we are interested in bounding the size of the set
of variables left alive after Decimate(S, q).

Formally, the set of copies accessed by Decimate(S, q) is represented by a set of edges
E’ c_ E such that if (u, v) 6 E’ then u 6 S, and for each v 6 V, there are exactly min(s,, q)
edges in E’ incident upon v. Then, L is the subset of the nodes of S with degree at least c in
the graph (U, V, E E’).

LEMMA 2. Suppose a memory organization has the structure of (), 2c 1, c, 1/.cg)-
generalized expander G (U, V, E). Let k [ISI/(n/.cg)], and let S c_ U be a set of
variables. Then, if q >_ 2k/), the set L of variables remaining alive after Decimate(S, q)
satisfies the relation

282 KIERAN T. HERLEY AND GIANFRANCO BILARDI

2(1 ,k)/,k 1(3) ILl < ISI.
q 2k

Proof The set S can be partitioned into k subsets S1, $2 Sk, each of size no larger
than n/cg. For 1, 2 k, let F/ c E be the set of edges incident upon nodes of Si.
Then Fi can be partitioned into f/, and fi, 2 so that 1-’i, 1-" F/, (Si) is a c-neighborhood of S

and Fi,2 FF,.. (Si) is a (c 1)-neighborhood of S. From the expansion property, we have
that II-’, >_ .clSil and 11-’i,21 >_ 0c 1)ISil. The latter relation is obtained considering that,
by adding to F/,2 one incident edge for each node in Si, one obtains a c-neighborhood for Si
with at most Sil nodes more than 1-’i,2 and at least i.cl Sil nodes in all. We now form, for each

2 k and j 2, the set F’ by (arbitrarily) selecting for each node of Fi,j onei,j
2edge of Fi,j incident upon it. Let F t.)/= Uj= F,.,j. By construction, no more than 2k edges

of F are incident upon any v E V. Hence, the number of copies accessed by Decimate(S, 2k)
is at least

k 2

i=1 j=l
k 2

i=1 j=l
k

>_ -](,clS/I / (.c- 1)lSl)
i=1

>_ (2Zc- 1)lSI.

Now let H {v so > q}. Each node in H contains at least q 2k + copies of variables
in S in addition to those accessed by Decimate(S, 2k). Considering that there is a total of
(2c- 1)IS] copies of the variables in S, we obtain

(q- 2k + 1)IHI + (2,kc- 1)lSl (2c- 1)1SI,

or equivalently

(4) IHI [2(1))c/(q 2k + 1)]lSI.

Given that, by assumption, q > 2k/) we have that IH[< n/g.
Since the copies of the live variables L not accessed by Decimate(S, q) are all in H, H

must contain a c-bundle D of L. Then since IFz)(L)I _< IHI < n/g, we have from Lemma
that ILl _< HI/)c. This latter relation combined with Equation (4) yields the desired bound
on ILl.

We shall call the quantity ILI/ISI the survival factor of the operation Decimate(S, q),
which is the building block of the memory access protocol described in the next section. In
contrast, the protocol of [UW87] is built around a procedure which, although implemented
differently, has the same effect as a decimation with a constant survival factor.

Intuitively, the advantage of a smaller survival factor can be understood as follows. From
standard considerations on the diameter ofan n-node BDN it is clear that any implementation of
decimation will require f2 (log n) time in the worst case. However, it will be shown in the next
section that O(log n) time is essentially sufficient for the execution of a Decimate(S, O(log n)),
as long as ISI _< n/(2c 1). From Lemma 2 we can see that, for ISI _< n/(2c 1), choosing
g log n and q a suitable multiple ofg yields a survival factor of O (1 / log n). The smaller the

DETERMINISTIC PRAM SIMULATION 283

survival factor, the fewer decimations required to access all the variables. By accessing more
information per unit time than the algorithm of [UW87], our algorithm succeeds in accessing
the referenced variables more quickly. A similar observation is also employed in the scheme
of [LPP90]. In a sense, the memory organization of [UW87] was chosen to minimize the
amount of information to be extracted from any individual node in the machine. However,
when related to the BDN model, this is not the dominant cost in their algorithm. Our choice
of memory organization balances the work of extracting information from individual nodes
with that of moving information around the machine.

4. The memory access algorithm. In this section we describe a memory access al-
gorithm for the simulation of one step of an (n, m)-PRAM. Let ,k be a constant satisfying
0 < ,k < 1. We assume that the memory organization is a (,k, 2c 1, c, 1/cg)-generalized
expander with c CO(log(m/n) log g). The parameter g will be specified later. It is further
assumed that each node of the BDN stores in its local memory a table giving for each PRAM
variable u the nodes ?’1 (u),)/2(U) Y2c-1 (u) containing copies of u. The BDN has the
structure (V, Eexp LI EAKSL LI Etree), where (V, Eexp) is a certain expander graph to be spec-
ified later, (V, EAKSL) is the graph underlying Leighton’s modification of the AKS sorting
network [AKS83] [Lei85], and (V, Etree) is a complete binary tree with n nodes.

Let X be the set of PRAM variables to be accessed in a given PRAM step. The goal of
the simulation is to access a majority of the copies of each variable in X. We shall describe
the algorithm for simulating a read step, the algorithm for a write step being very similar. It
is assumed that the read step is of the exclusive read variety, i.e., no two processors attempt
to read the same variable. This is not an essential restriction. As already noted in several
earlier studies [UW87], [AHMP87], [KU88], any concurrent read step may be reduced to an
exclusive read step by means of established techniques as sketched in the Appendix.

A high level description of the memory access algorithm follows.

I. For each processor Pi generate ui, the name of the variable it wishes to read. Let
X {u un} denote the set of referenced variables.

II. For each P/access at least c copies of ui.

III. At P/, select the value from the returned packet(s) with the most recent timestamp as
the result of read(u/).

Steps I and III are straightforward and are accomplished in O(1) and O(c) time, respec-
tively. We focus our attention on Step II. It will be implemented as a sequence of decimations,
the first one applied to the set X, and the remaining decimations each applied to the set of
variables left alive by the previous decimation.

Let S be a subset of U of size at most n. The procedure Decimate(S, q) may be specified
as follows: (i) S is a variable parameter denoting the set of live variables; (ii) the second
argument q is a value parameter of type integer; (iii) the execution of Decimate(S, q) will
cause min(so, q) packets destined for node v to reach that node and to be returned to their

respective origins, with the appropriate values and timestamps (so denotes the number of
copies of variables in S contained in node v); (iv) the value of S is modified by the execution
of Decimate(S, q) so that, upon termination, S represents the set of live variables.

In terms of procedure Decimate, Step II of the memory access algorithm can be written
as follows. Let S initially represent the set of referenced variables X.

forh := ltoHdo

Decimate(S, qh)

The values of ql, q2 qr/and H will be specified later so that after the Hth iteration
S is empty, i.e., all the variables in X have been accessed.

284 KIERAN T. HERLEY AND GIANFRANCO BILARDI

The implementation of Decimate involves manipulating and routing sets of request pack-
ets. In the next subsection we review two routing results. The first is a balancing algorithm
that takes a set of packets distributed among the nodes of a bounded degree network and redis-
tributes them so that each node holds the same number. The second algorithm is a generalized
routing algorithm. The implementation of Decimate in terms of these primitives is presented
in the subsequent subsection. The final subsection provides an analysis of the running time of
the entire memory access algorithm.

4.1. Generalized routing and balancing. The (N, K1, K2)-routing problem involves
routing N packets in a network of n processors subject to the constraint that no node is the
source of more than K packets or the destination of more than K2 packets. Peleg and Upfal
[PU87], [PU89] formulated this problem and developed a network and a routing algorithm with
an optimal number ofcommunication steps. In the BDN model, the algorithm of [PU89] solves
any instance of the (n, K, K2)-routing problem in O(log n + K + K2 + log(k + K2) log n)
time on a network with a particular expander-based structure. These results are generalized in
[PU87] to handle sets of size N larger than n. In [Her91] the following result is established,
which attains a lower bound of [PU87].

LEMMA 3. There is an n-node BDN (V, Eexp U EAKSL) and a deterministic algorithm that
routes any instance ofthe (N, KI, K2)-routing problem in O(N/n] logn + K + K2) time.

From Lemma 3 one obtains a simple PRAM simulation scheme by distributing the PRAM
variables evenly among the nodes of the BDN, with at most [m/n] per node. Then, a write
step is essentially an instance of (n, 1, [-m/n])-routing, and a read step can be implemented
by means of a (n, 1, [m/n])-routing step followed by an (n, [m/n], 1)-routing step. These
observations lead to the following result.

PROPOSITION 2. An arbitrary step ofa PRAM with n processors and m > n memory cells
can be simulated by the BDN (V, Eexp U EAKSL) in O(logn + min(n, m/n)) time.

In essence, the algorithm of [PU89] (as well as its refinement in [Her89]) reduces an
instance of the generalized routing problem to a partial permutation routing problem by means
of balancing (referred to as token distribution in [PU89]). Balancing involves redistributing
a set of packets initially scattered unevenly among the nodes of a BDN so that each node has

the same number. Formally, a distributed set (Z, f) is a set Z of packe,,ts distributed
among the nodes of the BDN with packet z 6 Z at node f(z). The degree A(Z) of is the
maximum number of packets assigned by f to any one node. The set Z is balanced if it has
degree [[ZI/n]. A distributed set Z (Z, f) of packets, labeled with integer values, is said
to be balancesorted if it is balanced and the packets with the [IZ[/n] smallest keys lie in node
1, the next [IZI/n] next smallest lie in node 2, and so on. The following result is established
in [Her91].

LEMMA 4. There exists an n-node BDN (V, Eexp U EAKSL) and a deterministic algorithm
that balancesorts any distributed set (Z, f) in O([lZl/n] logn + A()) time.

4.2. Implementation of Decimate. The algorithm outlined in this subsection is based
on the following primitives: sorting, parallel prefix, balancing, and the generalized routing
mentioned in the previous subsection. The underlying network has the structure (V, Eexp U
EAKSL I..J Etree) and was chosen to support these primitives as efficiently as possible. The
algorithm can be adapted to any other architecture that supports these primitives.

Recall that at any given point in the computation S represents the set of live variables.

The overall idea is as follows. For each v V, we select exactly do & min(so, q) of the so
requests directed at module v. The selected packets are routed to their respective destinations,
where they are loaded with the appropriate values and then routed back to their origins. The
details follow.

DETERMINISTIC PRAM SIMULATION 285

Decimate(S, q)
1. For each II E S and each j E {1 2c generate a request packet containing

an origin Pi, a destination ’j(ui), the label ui itself, and fields to store a value and a
timestamp of the copy of ui contained in node ’j(ui).

2. Sort the request packets by destination.
3. Select do request packets from those with destination v; discard the others.
4. Route the selected request packets to the corresponding nodes.
5. Load values and timestamps into request packets.
6. Route the selected requests (now satisfied) back to their origins.
7. Let each origin P count the number of packets received during Step 6 and, if they are

at least c in number, mark u dead and remove the corresponding packets from the set
of request packets.

LEMMA 5. Decimate(S, q) can be implemented on the BDN (V, Eexp I,_l EAKSL I,.J Etree)
with running time O([clSI/n] log n + c + q).

Proof First, Steps 1, 5, and 7 are sequential computations and can be performed locally
at each node in O(c), O(q), and O(c) time, respectively.

Step 2 consists of balancing and sorting a distributed set of size no larger than (2c
1)ISI and with at most 2c elements per node. By Lemma 4, this operation takes
O([clSI/nq log n + c) time.

Step 3 can be reduced to a parallel prefix computation [KRS85] on a sequence of length
(2c 1)ISI as follows. Following Step 2, the packets are arranged in increasing order of
destination, and so those with a common destination v form a contiguous subsequence
Using parallel prefix it is possible to number the packets in sequence o’o with the numbers

so. Those with numbers at most q are selected; the other are discarded. All of this can
be executed on (V, Etree) in O([clSI/nq / logn) time.

Step 4 involves routing (2c 1)ISI packets with at most 2c per source and at most
q per destination. This is an instance of the ((2c 1)ISI, 2c 1, q)-routing problem, which
by Lemma 3 takes O([clSI/nq log n + c + q) time. Similarly, Step 6 is an instance of the
((2c 1)ISI, q, c)-routing problem and has the same running time.

The contributions of the various steps add up to the stated running time.

4.3. Simulation time. In this subsection we establish the following result.
THEOREM 2. An arbitrary step ofan (n, m)-PRAM with m > n can be simulated by the

BDN (V, Eexp ID EAKSL I,.J Etree) in O((log n log m)/log log n) time.

Proof From Proposition 2, if m < (n log n)/(3)go(,k)), then the simulation can be
done in O(log n) time, and Theorem 2 is established. Therefore, we can assume that m >
(n log n)/(3.go())), and thus we can choose g log n without violating the constraint of
Theorem that g < 3.go(L)m/n.

Also, if m > (n/3,k)2n1-)/4, then logm (n) and Theorem 2 again follows from
Proposition 2. Therefore, we can assume that m < (n/3))2nl-x)/4. For g logn and n
large enough (such that log n > 2g0(Z)), the upper bound on m guarantees that the condition
2c < n of Theorem is satisfied, so that we are entitled to assume the existence of the
generalized expander underlying our simulation.

We have already seen that Steps I and III of the memory access algorithm can be completed
in O(c) time, so we now turn our attention to the running time of Step II, which consists of a
sequence of H decimations with parameters q l, q2 q/-/. Let Lh be the set of live variables
after the hth decimation.

For the first decimation, applied to the set S of PRAM variables (ISI _< n), we choose
ql [(4/.)[,kcg]] + 1. Then, q > 2k/) with k (ISI/n),kcg] < cg, and by Lemma
2, ILI _< n/)cg. By Lemma 5, this decimation runs in O(cg / clogn) time.

286 KIERAN T. HERLEY AND GIANFRANCO BILARDI

For the remaining decimations, we choose q2 q3 q/-/ Fg2(1 ,k)/,k + 2].
By Lemma 2, considering that k [(ILhl/n);kcg] < [(ILl/n);kcgq < 1, for h > 2 we
have ILhl < IL-l/g. Thus, for h > 2, [LI < ILl/g- < n/)cg. Choosing H-
[log n / log g] + ensures that L/-/= 0.

By Lemma 5, the hth decimation applied to a set of at most [Lh-l variables runs in time
O(log n + c + g) for each h >_ 2.

The total time for Step II, and indeed for the entire simulation, is O(cg+ c log n + (log n +
c + g)(logn log g)). Using the choice g log n and recalling that c (R) (log(m/n)/log g),
we arrive at the result claimed above. [3

5. Lower bound. We begin by stating the assumptions that underlie the known lower
bounds as well as the refinement presented here. For a more extended discussion of some
points the reader is referred to [AHMP87].

The (n, m)-PRAM to be simulated is of the exclusive-read exclusive-write (EREW) vari-
ety, that is, concurrent access to the same memory cell by two different processors is disallowed.
Lower bounds for the EREW PRAM clearly apply if concurrent access is allowed.

The PRAM computation to be simulated is an arbitrary sequence of PRAM instructions.
Each PRAM instruction consists of either an arbitrary n-tuple of reads or an arbitrary n-tuple of
writes. In the lower bound arguments, it is essential that a sequence of f2 (m /n) instructions be
considered and that the addresses to be accessed at each instruction be chosen independently of
those in other instructions. In this sense, the sequence is straight-line. The lower bounds do not
necessarily apply .to sequences generated by running a fixed-sized program on a large enough
input. Throughout this section the term instruction will be used to refer to the individual steps
of a PRAM computation. The term BDN step will refer to a single machine cycle of the
underlying n-node BDN.

The simulation is on line, in the sense that each PRAM instruction is made known to the
BDN only after the simulation of the previous read instructions has been completed.

As for the memory organization, it is assumed that, at any given time, for each PRAM
variable u there is a set C(u) of BDN memory cells where the current (last written) value of
u is available. The set C(u) is allowed to change with time, even during the simulation of
instructions that do not write u. If u - u’, it is assumed that C(u) and C(u’) do not overlap.
Thus, at a given time a memory cell can hold the value of at most one variable. The cells in
C(u) are sometimes referred to as the valid copies of u.

The memory access protocol is point to point in the following sense. If a PRAM processor
writes a variable u, then the corresponding BDN node must send a distinct message (with the
value to be assigned to u) to each of the BDN nodes containing a cell in C(u). The crucial
restriction is that messages directed to different nodes can not be combined, even if they share
a portion of their paths. No such assumption is made for read instructions (the lower bound is
based only on the fact that at least one valid copy must be accessed for each variable read).

The following result was established independently in [AHMP87] and [KU88]"
THEOREM 3. For all real constants > O, and ’ > O, if rn (n2+) and T >

(1 + ’) [m/n], then the worst-case simulation time for a straight-line program running for
T steps on an EREW (n, rn)-PRAM is

7’min nlogn,
log logm

for any on-line point-to-point simulation of the PRAM by an n-processor bounded degree
network.

Under the same assumption, by refining the proof technique of [AHMP87], [KU88], we
can extend the lower bound to the range n _< m _< n+.

DETERMINISTIC PRAM SIMULATION 287

THEOREM 4. For all real constants > 0, and i > O, if 2n < m < n2+e and T >_
(1 + ’)[m q, then the worst-case simulation time for a straight-line program running for
T steps on an EREW (n, m)-PRAM is

(lg2(m/n))f2 Tloglog(m/n)
for any on-line point-to-point simulation of the PRAM by an n-processor bounded degree
network.

We first review the ideas behind the proof ofTheorem 3 and then indicate the modifications
necessary to obtain Theorem 4. For ease of reference, we will use the same notation as in
[AHMP87].

The key idea of the approach is the notion of redundancy defined below. Let G (V, E)
be the graph representing the structure of the network. Let d denote the maximum degree of
the nodes in the underlying BDN, and let p denote the quantity Ilog(m/2n)/(2 log d)] 1.
For each node v 6 V, let B(v) represent the set {x 6(v, x) < p} of nodes where 3 is the
usual graph-theoretic distance.

Let F, denote the set of nodes which contain a valid copy of the variable u at the start of
the simulation of the tth instruction of the PRAM program. The redundancy of a variable u
is defined as follows"

,6

r, min IFt/B(v)l,
vEV

The average redundancy over the entire set of variables is r
/

Yz,E rz/m.
Intuitively, the average redundancy measures the "accessibility" of the variables" the

lower the average redundancy, the harder it will be to simulate read instructions. The following
lemma gives a quantitative formulation of this phenomenon.

LEMMA 6. If n < m < n2, and the average redundancy before the simulation ofa read
instruction is r, then there exists a set ofn variables that will require g(r) f2 ((m /2n) /(8,-+2))
BDN steps to read.

Proof. First observe that if m < 4d4n, then we are claiming that g(r) f2 (1), which is
clearly true. Thus we may assume thatm > 4dan, which implies p /log(m/2n)/(2 log d)J
> 1. Also, [B(v)l <_ dp+I < (m/2n) /2, for all v 6 V. Let F. be the set of BDN nodes that

contain a valid copy of variable x U at the beginning of the instruction being considered,
and let r minov [F./B(v)I be the redundancy of x. Let U’ {x U rx < 2r}.
Clearly IU’l > m/2. Partition U’ into disjoint sets Xv, v 6 V, so that Xo c_ {x U’ rx
]F/B(v)]}. (Note that some of the X may be empty.) We will deal separately with the case

r<l and the case r --’>2
If r < , then all the elements of U’ have redundancy 0, since each individual variable has

redundancy strictly less than one and individual variables can only have integral redundancies.
Consider a ball B(v) such that IXI is as large as possible, which implies that IXl > [m/2n].
Reading the [m/2n] variables in X will clearly require at least

IXol [m/2n]
> f2 ((m/2n) /2)

IB(v)l (m/2n) /2

steps.
Now suppose that r > . Without loss of generality we assume that r _< (log(m/2n)

2)/8, since otherwise the bound claimed for g(r) is g(r) f2 (1) which is obvious. Let L c_ V
be the set of indices of the [n/(m/2n) 1/2+/8r] largest X, and let X tOX,. Clearly

288 KIERAN T. HERLEY AND GIANFRANCO BILARDI

ISl (m/2n)lLI > n(m/2n) 1/2-1/8r. We also let BI t_J,tB(v). By the definition of
L above, ILl can be expressed in the form ILl n/(m/2n) 1/2+1/8r + or, for some real ot

satisfying 0 < c < 1. Thus

IBLI <_ ILl(m/2n) 1/2-- n 2n
+ ot(m/2n) I/:z <

(m /2n /8r (m /2n /8r

and m < n2where we have made use of the relations ot < 1, r > ,
Now for any W c_ V, let Ave- {x XL Fx C_ BL tO W}. Recall that each variable

in U’ has redundancy at most 2r and hence at most 12rJ. A simple combinatorial argument
given in [AHMP87] establishes the following" for any k with L2rJ < k < n, there is a subset
W of V with IW[k and

IAwl >_ IXLI
12rJ

>_ IXLI
n

We now choose

k-- [_2r_] + n(m/2n)-/2-/8r)/12rl)].
Straightforward manipulations making use of the assumptions rn < n 2 and r < (log(rn/2n)
2)/8 show that k < n. Use of the chosen value of k in the lower bound for IAwl yields
Awl >_ n. Then we can choose the set of variables to be read in the current instruction as
any n-element subset of Aw. Since all of the valid copies of these variables are contained in
BL U W < BLI + W[nodes, it follows that the simulation of that read instruction (in the
case where r >) will require at least

n =2(min(n (m)(1/2-)t- (m)l/8r))((m)l/8r)BI / A ’ n n S2 n
and r >time. Combining the results for the two subcases r < , we obtain the stated

result. [

A similar lemma, with a different form of g, was obtained in [AHMP87], [KU88] for
rn f2 (n2+’). The two key refinements of the proof technique that enable its application to
the range of rn in Lemma 6 are the following: (i) the value of p is chosen as a function of both
rn and n, instead ofjust n, and (ii) in constructing the set of variables that are hard to read, the
union of several balls is considered, rather than just one ball.

The next lemma relates the average redundancy to the time spent to simulate the write
instructions.

LEMMA 7. Consider an interval during which an n-node BDN simulates a sequence of
(n, m)-PRAM instructions such that each of the rn variables is written at least once. The
average redundancy r at the end of the interval and the length of the interval satisfy the
relation

(5) > prm/n.

Proof. As a simple consequence of its definition, the redundancy r, of variable u at the end
of the interval is at most the number of copies that are at a distance greater than p from the last
processor that has written u. Due to the point-to-point assumption, at least pr, processor steps
can be charged to variable u. Then, (5) follows from the observations that rm Y,: r,,
and that at most tn processor steps are executed in the given interval.

DETERMINISTIC PRAM SIMULATION 289

Proof of Theorem 4. We assume throughout the proof that 2n < m < n2, so that we can
invoke Lemma 6. The result for the range n2 _< m < n2+’, with e a fixed positive constant,
trivially follows from the case m n2.

We define an adversary program consisting of [mini + r PRAM instructions. The first
[m/n] are write instructions that initialize all the PRAM variables. The remaining are read
instructions chosen according to Lemma 6 so that each require at least g(r) BDN steps to
simulate.

Let ti be the time when the BDN begins to simulate the ith read instruction, assuming
that the simulation of the adversary program starts at time and ends at time Tsim. Let r; be
the average redundancy at time ti. Finally, let

r* (log(m/2n)

\ 2 log log(m/2n) log log log(m/2n)

f2(log(m/2n)/log log(m/2n)),

2)/8

and observe that

g(r*) f2 ((m/2n) /8r*+2)) f2 (logZ(m/2n)/ loglog(m/2n))

We consider two complementary cases"

1. For some 6 1, 2 r }, r >_ r*. Then, from Lemma 7,

(6) Tsim > ti > pr*m/n f2((m/n) log2(m/2n)/loglog(m/2n)).

2. For all 6 1,2 r}, r < r*. Then, from Lemma 6, each read instruction requires
at least g(r*) steps to simulate; hence,

(7) Tsim "2 (z" log2(m/2n)/log log(m/2n)).

If r [’m/n] with 0 < ’ < 1, then Theorem 4 follows from the combination of (6) and
(7).

The extension to any ’ > is easily obtained by applying the above considerations to
the concatenation of [(1 + ’)/21 blocks, each with the structure of the 2[m/n] instruction
adversary program defined above. V1

A comparison ofthe lower bound ofTheorem 4 with the upper bound provided by Theorem
2 shows that the simulations of4 are optimal whenever f2(n +’) < m _< O(2(lgn)) for some
positive constants e and or, as claimed in the introduction.

It should be noted that, for m < n2v/O(lgnlglgn), the lower bound of Theorem 4 is
weaker than the straightforward f2 (T log n) lower bound based on diameter considerations.

6. Conclusions. In this paper optimal point-to-point simulations have been given for a
wide range of the memory size m. It is natural to try to close the gap between upper and lower
bounds for the remaining values of m. Other important problems related to deterministic
PRAM simulations on BDNs are the explicit construction of generalized expanders for the
memory organization, the characterization of the complexity of non-point-to-point memory
access protocols, and the development of simulations on BDNs with a simpler structure than
those proposed in this paper, possibly avoiding the AKS network.

7. Appendix. The techniques of 4 applied to the problem of simulating a step of an
exclusive read exclusive write PRAM in which the referenced variables are assumed to be
distinct. In this appendix we extend these techniques to handle the concurrent access PRAMs.

290 KIERAN T. HERLEY AND GIANFRANCO BILARDI

In a concurrent read concurrent write PRAM a number of processors may read, or attempt
to write to, the same variable in a single PRAM step. For the purposes of this appendix we
will assume that in the event of concurrent writes the lowest numbered processor succeeds.
The techniques outlined below may be modified to handle other variants of concurrent write
PRAMs without too much difficulty. Techniques similar to those outlined here have been
employed (implicitly or explicitly) in most of the earlier studies cited in the Introduction
(see also [Vis83]). (The terminology of leaders and followers used below is borrowed from
[LPP90], which contains a detailed description of the reduction of concurrent access steps to
exclusive access steps for the mesh of trees architecture.)

We focus initially on the problem of concurrent read PRAMs and discuss concurrent
write PRAMs at the end of the section. Let u denote the PRAM variable referenced by the
ith PRAM processor pRAM. The variables U b/n need not be distinct. To complete this
PRAM step a copy of the value of variable ui must be routed to the ith BDN processor Pi
which simulates PiPrar. This may be accomplished as follows.

1. Let Pi generate a token labeled with u and P/.
2. For each referenced variable choose one token from among those that refer to it as a

leader, all other tokens referring to that variable are followers.
3. Load each leader token with the value of the corresponding variable.
4. Distribute the value ofeach leader to its followers and return all tokens to the processors

that generated them.
Step requires O(1) time to complete.
Step 2 may be implemented as follows.
(i) Sort the tokens by variable name. (Tokens referring to the same variable are ordered

by processor number.)
(ii) For each processor Pi compare the token it holds with that held by P/-1. If the two

tokens refer to the same variable let P/ mark its token as a follower; otherwise mark it as a
leader. (The token held by Pl should be marked as a leader.)

Once the tokens have been sorted by variable name, all those referring to the same variable
are grouped together in consecutively numbered processors. The token in the lowest numbered
processor in each group is chosen as the leader and the others are marked as its followers.
The sorting step involves sorting n packets and can be completed in O(log n) time. The
comparison of adjacent tokens will involve a permutation routing step which can also be
completed in O (log n) time.

For each referenced variable there is exactly one leader token. Thus Step 3 is essentially
an exclusive read step and so can be completed in O(log n log m / log log n) time by the results
of 4.

Note that following the completion of Step 3 the tokens occupy the same processors
they occupied before that step. At this point each leader token is labeled with the value of
the appropriate variable which must now be distributed to the followers of that token. Each
group of tokens (a leader and its followers) corresponding to a particular variable occupy
a contiguous group of processors Pa Pb where Pa holds the leader. Assign a value vi
to each processor as follows. If the token at that processor is a leader then 1) is the value
loaded into that token during Step 3; otherwise the vi is taken to the zero. For each group of
processors Pa Pb compute the quantities wi Yk=a vk and deposit each wi in processor
P/. This can be accomplished using a prefix computation as shown in [Sch80] (p. 491) (where
the problem is known as the summing-by-groups problem). This step also requires O(log n)
time. It can easily be seen that each wi within a group is equal to Va the value of the leader
of that group. The various tokens can be routed back to the processors that originated them in
O(log n) time using a permutation routing step.

DETERMINISTIC PRAM SIMULATION 291

Summing the contribution of the various steps, it can be seen that any concurrent read
PRAM step can be completed in O (log n log rn / log log n) time.

To simulate a concurrent write step execute Steps to 3 of the above with the following
modifications. First, each token is marked with the value to be written to the variable in
question. Step 3 is an exclusive write step. By the reasoning given above it can be seen that
all three steps can be concluded in O (log n log m / log log n) time.

Acknowledgments. We are greatly indebted to the two referees for their patience and
thoroughness in reading an earlier error-filled version of this manuscript. Their numerous
valuable suggestions have greatly enhanced the readability of this paper. We also would like
to thank Paul Bay for his comments on an earlier version of the manuscript.

[AHMP87]

[AKS83]

[BH85]

[FW781

[Gif79]

[Go178]

[Her89]

[Her90]

[Her91
[HMP89]
[HP89]

[KR90]

[KRS85]

[KU881

[Kuc82]

[Lei84]
[Lei85]

[LMR881

[LPP88]

[LPP90]

REFERENCES

H. ALT, T. HAGERUP, K. MEHLHORN, AND F. P. PREPARATA, Deterministic simulation of idealized
parallel computers on more realistic ones, SIAM J. Comput., 16 (1987), pp. 808-835.

M. AJTAI, J. KOML6S, AND E. SZEMERDI, An O(n log n) sorting nem,ork, in Proc. of the 15th Annual
Symposium on Theory of Computing, Boston, MA, 1983, pp. 1-9.

A. BORODIN AND J. E. HOPCROFT, Routing, merging, and sorting on parallel models of computation,
J. Comput. System Sci., 33 (1985), pp. 130-145.

S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, in Proc. of the 10th Annual
Symposium on Theory of Computing, San Diego, CA, 1978, pp. 114-118.

D. K. GIFFORD, Weighted votingfor replicated data, in Proc. of the 7th ACM Symposium on Operating
Systems Principles, Pacific Grove, CA, 1979, pp. 150-159.

L. GOLDSCHLAGER, A unified approach to models of synchronous parallel machines, in Proc. of the
10th Annual Symposium on Theory ofComputing, San Diego, CA 1978, pp. 89-94. Also appears
in J. Assoc. Comput. Mach. 29 (1982), pp. 1073-1086.

K. T. HERLEY, Efficient simulations of small shared memories on bounded degree networks, in Proc.
of the 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park,
NC, 1989, pp. 390-395.

Space-efficient representations of shared data for parallel computers, in Proc. of the 2nd
Annual ACM Symposium on Parallel Algorithms and Architectures, Crete, Greece, 1990, pp.
407-416.

A note on the token distribution problem, Inform. Process. Lett. 38 (1991), pp. 329-334.
T. HAGERUP, K. MEHLORN, AND B. PARKER, Unpublished notes communicated by K. Mehlhorn.
S. W. HORNICK AND F. P. PREPARATA, Deterministic PRAM simulation with constant redundancy, in

Proc. of the 1989 ACM Symposium on Parallel Algorithms and Architectures, Santa Fe, NM
1989, pp. 103-109.

R. M. KARP AND g. RAMACHANDRAN, Parallel algorithmsfor shared-memory machines, in Handbook
of Theoretical Computer Science, J. Van Leeuwen ed., North-Holland, Amsterdam, 1990.

C. P. KRUSKAL, L. RUDOLPH, AND M. SNR, The power ofparallel prefix, IEEE Trans. Comput. c-34
(1985), pp. 965-968.

A. R. KARLN AND E. UPFAL, Parallel hashing: an efficient implementation of shared memory, J.
Assoc. Comput. Mach., 35 (1988), pp. 876-892.

L. KUCERA, Parallel computation and conflicts in memory access, Inform. Process. Lett. 14 (1982),
pp. 93-96.

E T. LEIGHTON, New lower bound techniquesfor VLSL Math. Systems Theory, 17 (1984), pp. 47-70.

Tight bounds on the complexity ofparallel sorting, IEEE Trans. Comput., c-34 (1985), pp.
344-354.

F. T. LEIGHTON, B. MAGGS, AND S. RAO, Universal packet routing algorithms, in Proc. of the 29th
Annual Symposium on Foundations of Computer Science, White Plains, NY 1988, pp. 256-269.

E Lucoo, A. PIETRACAPRINA, AND G. PuccI, A probabilistic simulation of PRAMs on a bounded
degree network, Inform. Process. Lett., 28 (1988), pp. 141-147.

A new scheme for the deterministic simulation ofPRAMs in VLSI, Algorithmica, 5 (1990),
pp. 529-544.

292 KIERAN T. HERLEY AND GIANFRANCO BILARDI

[LPS86]

[LPS88]

[LPV81]

[MV84]

[NMB83]

[PU87]

[PU89]
[Ran91
[Sch80]
[Sni85]
[Sny86]

[SV81]

[Tho79]

[Upf841

[UW87]

[Va188]

[Vis83]

[Vis84]

A. LUBOTZKY, R. PHILLIPS, AND P. SARNAK, Explicit expanders and the Ramanujan conjectures, in
Proc. ofthe 18th Annual Symposium on Theory ofComputing, Berkeley, CA, 1986, pp. 240-246.

A. LUBOTZKY, R. PHILLIPS, AND P. SARNAK, Explicit expanders and the Ramanujan conjectures, Com-
binatorica, 8 (1988), pp. 261-277.

G. E LEV, N. PIPPENGER, AND L. G. VALIANT, A fast parallel algorithm for routing in permutation
networks, IEEE Trans. Comput., c-30 (1981), pp. 93-100.

K. MFHLHORN AND U. VISHKIN, Randomized and deterministic simulations of PRAMs by parallel
machines with restricted granularity ofparallel memories, Acta Inform. 21 (1984), pp. 339-
374.

D. D. NATH, S. N. MAHESHWARI, AND P. C. P. BHATT, Efficient VLSI networksfor parallel processing
based on orthogonal trees, IEEE Trans. Comput., c-32 (1983), pp. 569-581.

D. PELEG AND E. UPFAL, The generalized packet routing problem, Theoret. Comput. Sci., 53 (1987),
pp. 281-293.

The token distribution problem, SIAM J. Comput., 18 (1989), pp. 229-243.
A. G. RANADE, How to emulate shared memory, J. Comput. System Sci., 42 (1991), pp. 307-326.
J. SCHWARTZ, Ultracomputers, ACM Trans. Program. Languages Systems, 2 (1980), pp. 484-521.
M. SNIR, On parallel searching, SIAM J. Comput., 14 (1985), pp. 688-708.
L. SNYDER, Type architectures, shared memory and the corollary of modest potential, in Annual

Review of Computer Science, Vol. 1, J. F. Traub et al., eds., 1986, pp. 289-317.
Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging, and sorting in a parallel computation

model, J. Algorithms, 2 (1981), pp. 88-102.
R. H. THOMAS, A majorilT consensus approach to concurrenO, controlfor multiple copy databases,

ACM Trans. Database Systems, 4 (1979), pp. 180-209.
E. UPFAL, A probabilistic relation between desirable andfeasible models ofparallel computation, in

Proc. of the 16th Annual ACM Symposium on Theory of Computing, Washington, D.C., 1984,
pp. 258-265.

E. UPFAL AND A. WIGDERSON, How to share memoo, in a distributed system, J. Assoc. Comput. Mach.,
34 (1987), pp. 116-127.

L. G. VALIANT, Optimally universal parallel computers, Philos. Trans. Roy. Soc. London Ser. A, 326
(1988), pp. 373-376.

U. VISHKIN, Implementation of simultaneous memory address access in models which forbid it, J.
Algorithms, 4 (1983), pp. 45-50.

A parallel-design distributed-implementation (PDDI) general-purpose computer, Theor.
Computer Sci., 32 (1984), pp. 157-172.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 293-312, April 1994

1994 Society for Industrial and Applied Mathematics
006

LOWER BOUNDS FOR RANDOMIZED k-SERVER AND MOTION-PLANNING
ALGORITHMS*

HOWARD KARLOFFt, YUVAL RABANIt, AriD YIFTACH RAVID

Abstract. In this paper, the authors prove lower bounds on the competitive ratio of randomized algorithms for
two on-line problems: the k-server problem, suggested by Manasse, McGeoch, and Sleator [Competitive algorithms

for on-line problems, J. Algorithms, 11 (1990), pp. 208-230], and an on-line motion-planning problem due to

Papadimitriou and Yannakakis [Shortest paths without a map, Lecture Notes in Comput. Sci. 372, Springer-Verlag,
New York, 1989, pp. 610-620]. The authors prove, against an oblivious adversary,

1. an f2(logk) lower bound on the competitive ratio of any randomized on-line k-server algorithm in any
sufficiently large metric space,

2. an f2 (log log k) lower bound on the competitive ratio of any randomized on-line k-server algorithm in any
metric space with at least k + points, and

3. an (log log n) lower bound on the competitive ratio of any on-line motion-planning algorithm for a scene
with n obstacles.

Previously, no superconstant lower bound on the competitive ratio of randomized on-line algorithms was known
for any of these problems.

Key words, competitive analysis, k-server problem, on-line algorithm, motion planning

AMS subject classifications. 68Q25, 93C85

1. Introduction. On-line algorithms handle sequences of events, each event being han-
dled before future events are known. Among the on-line problems recently studied are paging
(Sleator and Tarjan [ST]), on-line vertex coloring (Lovfisz, Saks, and Trotter [LST]), metrical
task systems (Borodin, Linial, and Saks [BLS]), the k-server problem (Manasse, McGeoch,
and Sleator [MMS]), layered graph traversal (Baeza-Yates, Culberson, and Rawlins [BCR]
and Papadimitriou and Yannakakis [PY]), and on-line motion-planning [PY].

Sleator and Tarjan [ST] suggested comparing on-line algorithms not to each other but
to an optimal off-line algorithm that knows the entire sequence in advance. This approach
is called competitive analysis. We say a (randomized) on-line algorithm A is c-competitive
if there is a constant a dependent on the initial configuration but independent of the event
sequence so that, for all event sequences a, the (expected) cost incurred by A on cr is at most
a plus c times the optimal cost to handle o. The infimum of all c such that A is c-competitive
is A’s competitive ratio.

In the case of a randomized algorithm it is important to define accurately the power of
the adversary (see Raghavan and Snir [RS] and Ben-David et al. [BBKTW]). The adaptive
off-line adversary may adapt the sequence of requests it produces to the random choices made
to date by the on-line algorithm and then pay for the entire sequence optimally. Ben-David
et al. show that randomization against this adversary does not improve on-line performance
compared with deterministic algorithms [BBKTW]. The adaptive on-line adversary adapts
the request sequence to the on-line algorithm’s random choices. However, it must serve each
request before the on-line algorithm serves it, and therefore the cost of this adversary might
be far from optimal. Ben-David et al. show that randomization against this adversary cannot
help much. If there exists a c-competitive randomized algorithm against an adaptive on-line
adversary, then there exists a c2-competitive deterministic algorithm [BBKTW]. This paper

*Received by the editors January 15, 1992; accepted for publication (in revised form) November 6, 1992.
Department of Computer Science, University of Chicago, Chicago, Illinois 60637. This author was supported

in part by National Science Foundation grant CCR 8807534.
tComputer Science Department, School of Mathematics, Tel-Aviv University, Tel-Aviv 69978, Israel.

293

294 H. KARLOFF, Y. RABANI, AND Y. RAVID

deals with the oblivious adversary, the weakest of the three and the "traditional" adversary. In
contrast to adaptive adversaries, the oblivious adversary must fix the sequence of requests in
advance and then pay for it optimally. Randomization can be used by the on-line algorithm
to "hide" its choices from the oblivious adversary.

We study the k-server and motion-planning problems. In the k-server problem, k servers
move among the points of a metric space A/l, serving requests. A request is a point of .M. To
serve the request means to move a server to the request site. The algorithm pays a price equal
to the distance moved. Requests are served on-line. This means that each request is served
before future requests are known. Manasse et al. proved that in every metric space on at least
k + points there is a lower bound of k on the competitive ratio of any deterministic on-line
k-server algorithm [MMS]. This lower bound is also applicable for randomization against
adaptive adversaries but not for randomization against an oblivious adversary. Manasse et al.
also conjectured that for every metric space and every k, there is a deterministic k-competitive
on-line algorithm [MMS]. They proved their conjecture for k 2 and for k n 1, where n
is the cardinality of the (finite) metric space. This conjecture was proven for uniform metric
spaces [ST] and for the infinite metric space that is isomorphic to the real line by Chrobak et
al. [CKPV]. Chrobak and Larmore [CL] generalized the result to infinite metric spaces that
are isomorphic to trees. Deterministic competitive algorithms for all metric spaces and all k
were given by Fiat, Rabani, and Ravid [FRR]. Grove [Ge] proved that the so-called Harmonic
randomized server algorithm, suggested by Raghavan and Snir [RS], is competitive for all k.

A searcher in the on-line motion-planning model of Papadimitriou and Yannakakis [PY]
is a point particle that starts at a point s in the Euclidean plane and moves to a known target. In
our version of the problem, the target is a vertical line, and the searcher need only reach a point
of his own choosing on it. However, the plane is peppered with stationary open rectangular
obstacles that are disjoint from each other and from the source s and target t. Each rectangle
has integral side lengths. The searcher can "see" only those obstacles that are connected by
an obstacle-free line segment to the searcher’s position. We compare the cost incurred by the
searcher to the length of a shortest obstacle-free source-target path, which is the cost incurred
by an optimal algorithm that sees the entire scene. Papadimitriou and Yannakakis gave an

(4’-d) lower bound on the ratio between the cost of a deterministic on-line algorithm and the
optimal cost in a scene containing n rectangles [PY].

The use of randomization against an oblivious adversary has indeed led to superior algo-
rithms. Fiat et al. exhibited a randomized paging algorithm with a competitive ratio bounded

Ink [FKLMSY] (a different algorithm was sub-by 27-/k, where 7-/k + +... +
sequently proven k-competitive by McGeoch and Sleator [MS]). This is to be contrasted
with the lower bound of k for a deterministic paging algorithm. Fiat et al. also proved a lower
bound of k for the competitive ratio of randomized paging algorithms [FKLMSY]. They
conjectured that 7-/k is an upper bound for all metric spaces and all k. This conjecture was
disproved by Karlin et al. [KMMO], who exhibited a family of 3-point metric spaces and

ea lower bound approaching > 1.5 ’2 for the competitive ratio of any randomized
2-server algorithm for those metric spaces.

Vishwanathan showed how to color 3-colorable graphs on-line with only
O(v/n log n) colors [Vn], a great improvement over the O((n log log log n)/log log n) bound
of [LST]. An exponential improvement in the performance of algorithms that traverse certain
layered graphs was exhibited by Fiat et al. [FFKRRV].

No superconstant lower bound was known for the competitive ratio of general metric
spaces (with at least k + points). Indeed, several researchers conjectured that constant-

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 295

competitive randomized k-server algorithms exist for certain infinite metric spaces. No su-
perconstant lower bound for the on-line motion-planning problem was known either.

We prove two k-server lower bounds"
1. The competitive ratio of any randomized k-server algorithm for any sufficiently large

metric space is f2 (log k).
2. The competitive ratio of any randomized k-server algorithm for any metric space with

at least k + points is f2 (log log k).
In light of the [FKLMSY] algorithm, the first result is tight to within a constant factor.
Blum, Raghavan, and Schieber [BRS] used randomized k-server algorithms to construct

randomized on-line motion-planning algorithms. Instead, we adapt randomized k-server lower
bounds to prove a lower bound for the on-line motion-planning problem:

3. The competitive ratio of any randomized motion-planning algorithm is f2 (log log n),
where n is the number of obstacles in the scene.

The proof of the first result goes as follows. First, we prove that for a superincreasing
metric space .M(k), a metric space on {z0, z zk} with the distance from zi to zi+ much
greater than that from zi_ to zi, no sublogarithmic competitive ratio is possible. This part of
the proof generalizes techniques of Karlin et al. [KMMO]. Next, we prove a "Ramsey-like"
theorem for metric spaces: every sufficiently large metric space A/[contains a (k + 1)-point
subspace resembling either the superincreasing metric space or the uniform metric space. From
the (log k) lower bounds for the superincreasing and uniform metric spaces we construct an
f2 (log k) lower bound for

For (k / 1)-point metric spaces, we will use the Ramsey-like theorem to generate a set
of s + points (where s [v/ig(k + 1)]) that resembles either the superincreasing or uniform
metric space. The k s servers initially on the k s points outside of S can be fixed at their
initial locations by replacing a request to a point z $ by a long sequence of requests to z
and all the points outside of S. Thus the on-line algorithm can be forced to use only s servers
on the specified s + points. We can use the first result to get an f2 (log s) bound, and this is
f2 (log log k).

The idea for the motion-planning result is to construct an obstacle scene in which the
distance moved by an on- or off-line server to reach the target is approximately the cost
incurred by a k-server algorithm when serving a sequence of requests in a metric space that
resembles A//(k). The lower bound for .M (k) will yield a lower bound on the competitive
ratio of motion-planning algorithms.

2. The superincreasing metric space. Define c 1, and let

Ci -Ci-1 [1 + 1/(2e2ci-l 1)]
fori > 2.

DEFINITION. Let k > O, and let .M (k) be a metric space on k + points zo, z, z2 zk.
Suppose that there are integers d < d2 < d3 < < dk so that d and thatfor < j,
dist(zi, zj) dj. Then the sequence d, d2, d3 dk and the metric space j(k) are called
superincreasing if di > (4Ci_le2ci-)di_l for every >_ 2.

We will often use .A//(k) to mean any superincreasing metric space on k + points.
For the metric space A//(k), we prove that ck is a lower bound on the competitive ratio

of any on-line (randomized) k-server algorithm.
The following lemmas show that ck is (R)(log k).

In k for all k.LEMMA 2.1. ck >

296 H. KARLOFE Y. RABANI, AND Y. RAVID

Proof The definition of ci gives the following:

Ck-
Ck- Ck-1 2e2Ck_ 1’

or

(ck ck_l)(2e2c-’ 1) ck_l > 1,

or

(ck Ck-l)e2c’- > -.
Now, if f is a nondecreasing continuous function and x < X2 < < Xr, then

f(x) dx >_ (xi xi-)f(xi-).
i=2

Thus

fc. k-
e2x dx >_ (cj Cj_ 1)e2cj-’ >

j=2
2

Therefore,

e2C e2C k
>

2 2

Ink.e2c >_ e2 + (k- 1) > k, 2c, > ln k, ck >

LEMMA 2.2. For all k, c, < + 1.5 ln k.

Proof For all y, + y < ey. Therefore, + y <_ 2e2y for all y > 0.

+ ck_ <_ 2e2c-

ck_l < 2e2c- 1.

Therefore,

Ck-
<1,

2e2c-

Ck-1
<1.Ck Ck-1 2e2C,_

Therefore, ck _< k for all k.

(ck --ck-1)2e2c- ck-1 -t- (ck --Ok-l)

(ck ck-1)2e2c < (ck ck-1)2e2+2c-

eZ(ck Ck_l)2eZc-
e2ck <_ ke2.

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 297

Therefore,

(ck ck-1)2e2ok <_ ke2,

ke2
(ck ck-1)e2ck _<

2

If f is continuous and nondecreasing and X < X2 < < Xr, then

f(x) dx < (x Xi_l)f(xi).
i=2

Hence

fc
c ()e2ci ke2

e2x dx < C Ci_ <. <
i=2 i=2

2

k2e2

Thus

e2C, e2Cl k2e2

2 2

so that

e2c < e2-at-k2e2 =e2(k2+ 1).

Hence

2+31nk
c, < + 1.5 In k. [

2

Let us generalize the k-server problem. The multipoint k-server problem is the problem
of serving requests each of which consists of a set of at most k points. (A request to {z} will
be abbreviated as z.) To serve the request means to move one or more servers so that all
the points in the requested set are covered. We will only study multipoint k-server problems
on (k + 1)-point metric spaces. This allows us to assume without loss of generality that the
algorithm is lazy--it never moves more than one server to serve a request, and if the requested
set is already covered, it does nothing.

In A/[(k), let ri be the set {Zl, z2, z3 zi }. Let ?’i be the set {z0, Zl, z2 zi- }. Let
N1, N2, N3 denote the integer sequence N1 2 and Ni (2di)Ni-1 + 2 for >_ 2.

Fix k and a lazy, randomized multipoint k-server algorithm A for .Ad (k). If _< < k,
say a request sequence cr is i-convergent for A, or simply i-convergent, if A covers Z" with
probability just after cr is served.

LEMMA 2.3. For each <_ < k, for each i-convergent request sequence r for ./M (k),
there is a request sequence A with thefollowing properties"

1. A consists ofa request sequencefor .M (i 1) preceded immediately by a request to

zo andfollowed immediately by a request to ri. (Thus cr A is i-convergent.)
2. The length of A is at most Ni.
3. Suppose A serves request sequence r A. Let Sl, s2 si be the servers that occupy

{Zl,Z2 zi just after cr is served, sj occupying zj. Let
P[zo is vacant just after A has served cr A]. Define the/-cost of A to be the cost incurred

298 H. KARLOFE Y. RABANI, AND Y. RAVID

by s, $2 Si during the time A is serving the A of r z. Let w 6 l, 2 2di be the
optimal cost ofserving A by an i-server algorithm whose servers start on {z zi }. Then
the expected i-cost of is at least ci wt.

Intuitively, the reason why such a costly sequence z exists is that the on-line algorithm
does not know in advance how many requests in A/[(i 1) will be given before the request
to ’i. Suppose that z0 is vacant prior to the arrival of A. If only a few requests in .A//(i 1)
appear, it makes little sense to move a server on one of the distant points {zi z, and pay
a high price. If there are many requests, however, a distant server must be moved in order to
avoid indefinitely having to shuffle servers among the points of .M (i 1).

To prove Lemma 2.3, we need a technical lemma, the proof of which appears in the
appendix.

LEMMA 2.4. Let 2 < <_ k. Let g. be an integer, g > ci-. Let d >_ 4ci_e2ci-1 g. be an
integer Let Wl, w2 WQ {1, 2 2e} where O satisfies ziQ wi < 2d <_ iO= wi.
Let Pl, P2 pQ_! [0, 1].

Then either

Q-1

d + Ci-I E p,w >__ ci(2d)
s--1

or there is an h 1,2 Q such that

h h

s=l s=l

ProofofLemma 2.3. By induction on i.
Basis: 1. Let A zoz. The optimal cost w of serving A by a l-server algorithm

whose server starts on z is 2. Algorithm A leaves z0 vacant after serving r A with probability
t, so with probability at least server s! must have served both requests, incurring an expected
/-cost of at least 2t ci wt.

Inductive Step: > 1. Let cr be an/-convergent request sequence for A//(k). It is also
(i 1)-convergent. By induction, there is a request sequence A1 (of length at most Ni-)
consisting of a request sequence for .A4 (i 2) preceded by a request to z0 and followed by
a request to r;_ such that the following holds. If A serves erA1, the expected (i 1)-cost
incurred while serving A is at least Ci-lWltl (where w 6 {1, 2 2di_} is the optimal
cost of serving A! with servers and t is the probability that z0 is vacant after crA is
served).

Since oA is (i 1)-convergent, we can apply induction again. Thus there is a A2 (of
length at most Ni_) consisting of a request sequence for /[(i 2) preceded by a request to

zo and followed by a request to r_ such that the following holds. If A serves o A A2, the ex-
pected (i 1)-cost incurred while serving A2 is at least ci- w2t2 (where w2 6 1, 2 2di_
is the optimal cost of serving A2 with servers and t2 is the probability that z0 is vacant
after cr A! A2 is served).

Since cr A2 is (i 1)-convergent, we can apply induction again. Thus there is a A3 (of
length at most Ni-1) consisting of a request sequence for A//(i 2) preceded by a request to z0
and followed by a request to ri- such that the following holds. If A serves cr A 1A2 A3, the ex-
pected (i 1)-cost incurred while serving A3 is at least ci- w3t3 (where w3 6 1, 2 2di_
is the optimal cost of serving A3 with servers and t3 is the probability that zo is vacant
after cr A A2/3 is served).

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 299

Repeat this process, getting A, A2 A Q and w,//)2 L0Q such that w +//)2 +
+ WQ > 2di but w + + WQ_ < 2di. Now change AQ--replace it by AQyi.
Let "time j" mean "just after r A... Aj has been served." Let tj P[zo is vacant at

time j]. Let uj P[zi is vacant at time j], and let rj tj + uj, the probability that either z0
or zi is vacant at time j. Because rj P[zi+, zi+2 zk are occupied at time j] (even for
j Q), we have rl > r2 >... > rQ. Let

uj/rj if rj :/: O,
qJ otherwise.

Note that rjqj uj always. The expected (i 1)-cost of phase j < Q is at least

Ci_l Ul)jtj Ci_I LUj(Fj blj) Ci-l tOjrj(1 qj).

Clearly tQ O. Therefore, rQ tlQ, SO qQ 1. (Of course, the expected (i 1)-cost of
phase Q is at least 0 ci- tOQrQ(1 qQ).) A 1A2... AQ is a request sequence for j/(i 1)
preceded by a request to z0.

Choose < h _< Q. The expected cost incurred by si to serve A A2... Ah-/-i (after A
has already served (7) is at least diuh, since zi is occupied just after o" is served. Thus the
expected/-cost, if we have h _< Q phases, is at least

dillh -[- jh.=l Ci-llPjFj(1 qj) rh(diq) + Ci-lFh -=l //3j(1 qj)

r(diqh + Ci-1 zjh’=l wj(1 qj))

and qQ 1. When h Q, this last quantity is

Q-1

rQ(di + Ci-1 wj(1 qj)).
j----1

By Lemma 2.4, with di-1, d di, and Ps qs for all s, either

Q-1

di -I- Ci-1

_
wj(1 qj) > ci(2di)

j=l

or there is an h 6 1, 2 Q such that

h h

diqh -]- Ci-1 Z tOj(1 qj) >__ i tOj.
j=l j--1

In the former case, the optimal cost incurred by an adversary having servers in serving
A1A2... A Q’t" after serving o" equals 2di. A’s expected/-cost to serve the same sequence
after serving r is at least rQ[ci(2di)]. Let A AA2... AQ’gi. If z0 is vacant after rA is
served, then either z0 or zi is vacant after cr A A2 A Q is served. Thus the probability that

z0 is vacant after o’,5 is served is at most rQ, and therefore A suffices, since A’s length is at
most (2di)Ni_ + 2 Ni. (Q <_ 2di since wj > for all j.)

In the latter case, the optimal cost incurred by an /-server adversary in serving
A A2... Ahri after serving (r is at most = wj. A’s expected/-cost to serve the same

sequence after serving (r is at least rhci i’= wj.. Let A AA2... Ahri. If z0 is vacant

300 H. KARLOFF, Y. RABANI, AND Y. RAVID

after era is served, then either z0 or zi is vacant after era 1A2... Ah is served. Thus the
probability that z0 is vacant after er A is served is at most r,, and therefore A suffices.

We use the notation OPT(a) to denote the optimal off-line multipoint cost to serve er, and
we use A (er) to denote the (random) cost of our on-line multipoint algorithm A to serve er.

THEOREM 2.5. For all r, there is a multipoint request sequence err of length at most rNk
and optimal cost at least r such that

E[A(err)] > Ck. OPT(err).

Proof Take k. Build request sequence err A1A2A3"’" Ar via repeated applica-
tions of Lemma 2.3, by constructing A 1, then A2, then A3, and so on. Each Aj has length at
most Nk. The optimal cost of serving Aj with k servers is wj >_ 1. Each time the lemma is
applied, 1.

OPT(err) Wl -4- w2 +...-4- Wr.

(We have equality because each Aj ends with rk.) The expected value of A(err) is at least
CklJ)l -+- Ck11)2 2t- -- Ckll)r Ck OPT(err).

COROLLARY 2.6. There is no c-competitive multipoint k-server algorithm for Jl(k) if
c <Ck.

DEFINITION. Let be a metric space on the k + points {zo, Zl zk }. Let S C
S # 0. Say an S-request is a sequence of requests to all SI points in S, one at a time, in

increasing order by index.
DEFINITION. Let Jl be a metric space on the k + points {zo, zl zk}. We say a

(single-point) server algorithm A for Jl isfinitely converging if it has thefollowing property.
Let ot be a request sequence, and let S C+ .All, S # 0. If A serves a sequence consisting of
followed by enough S-requests, then at the end all the points in S are occupied with probability
one.

LEMMA 2.7. Let ./ be a metric space on k q- points. If there is a lazy, c-competitive,
finitely converging algorithmfor the single-point k-serverproblem on Jk4, then there is a lazy,
c-competitive multipoint k-server algorithmfor J.

Proof. Suppose ,4 is a lazy, finitely converging c-competitive k-server algorithm for
We argue that there is a lazy, c-competitive multipoint k-server algorithm B for .A4. Let er be
a multipoint request sequence for .A//. B simulates ,4 on a single-point request sequence er’
for .A4. B constructs er’ on the fly by replacing a request to the set S in er by a long sequence
of S-requests. The.number of these S-requests is chosen so large that ,4 is known to cover S
with probability one after serving the S-requests. Further, the number is chosen so large that
even the adversary is known to cover S afterward.

To serve a request to S, B flips coins for ,4 and "watches" A’s behavior on the long string
of S-requests. At the end, B moves to A’s configuration by moving at most one server.

Let OPT and OPT’ denote the optimal costs of a multipoint and single-point request
sequence, respectively. B(er) < ,4 (er’) and hence

E[B(er)] < E[A(er’)] < c. OPT’(tr’) + a

for a suitable a. But OPT(er) OPT’(er’), and thus B is a lazy, c-competitive, multipoint
k-server algorithm for AA.

THEOREM 2.8. There is no lazy, finitely converging C-competitive algorithmfor the single-
point k-server problem on A/[(k) if c < ck.

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 301

Proof Follows from Corollary 2.6 and Lemma 2.7.
Now we relate finitely converging and nonfinitely converging algorithms.
LEMMA 2.9. Suppose that A is a lazy, c-competitive k-server algorithm for a

(k + 1)-point metric space M. Then there is a lazy, finitely converging (c + 1)-competitive
k-server algorithm A’ for M.

Proof sketch. Let the points of M be ordered z0, zl zk. Without loss of generality,
suppose that the minimum nonzero distance in M equals one and the maximum distance
equals, say, D. Choose a > 0 such that E[A(r)] < c. OPT(a) + a for all

At all times, A’ simulates either A or the deterministic, lazy, k-competitive algorithm
BAL of [MMS], initially the former. A long sequence of S-requests will ensure that A fails
to occupy all the points of S with probability approaching zero, for otherwise it could not be
competitive. (Indeed, enough S-requests will ensure that any given competitive algorithm,
on-line or off-line, occupies S with probability approaching one. The adversary himself can
be forced to occupy S in this way.)

At all times, A’ attempts to write the list of requests seen to date, including the current
request, as r SL, where

L L(r) + [k2Dlrl2(clvl / 2cD + a)].

(Here, S represents an S-request.) If it fails, it simply flips coins and serves the request as A
would have. If it succeeds--and in this case r and S are unique--A’ flips its coins to simulate
A on the current request. If the coin flips dictate that A move to a configuration covering S,
A’ continues to mimic A. Otherwise, A’ switches to BAL in a lazy way, never to return to A.
If the next SI requests are an S-request, then L is so large that after those requests are served
A’ covers S. Thus A’ covers S with probability one by the time it has served r STM

It is not hard to prove that L is so large that the probability that A’ switches to BAL
when the list of requests seen to date is of the form rSL is at most 1/(k2DIrl2). Therefore,
the probability that A’ ever switches to BAL is at most Y=l 1/(k2Dl2) < 2/(k2 D). Now
A’(o-) A(cr) if A’ never switches to BAL, and A’(cr) < A(cr) + (D + BAL(o’)) if A’ does
switch.

D+BAL(cr) < D + (k OPT(cr) + (k2)D)
< k. OPT(a) + (k2/2)D.

Therefore,

k2
E[A’(cr)] < E[A(cr)] + (k. OPT(a) + -z-D)" P[A’ switches to BAL]

2
< E[A(cr)] -I- D OPT(a) +
< E[A(cr)] + (OPT(a) + 1)
< (c + 1). OPT(a) + (a + 1). U

THEOREM 2.10. There is no c-competitive algorithm A for the single-point k-setwer
problem on J[(k) ifc < ck 1.

Proof Lemma 2.9 proves that the existence of a c-competitive algorithm implies the
existence of a lazy, finitely converging (c + 1)-competitive algorithm. Theorem 2.8 completes
the proof. [3

302 H. KARLOFF, Y. RABANI, AND Y. RAVID

3. Ramsey theory for metric spaces. This section deals with the structure of metric
spaces. Theorem 3.2 shows that every metric space of cardinality n contains either a roughly
uniform subset of at least lg n points or an approximately superincreasing sequence of

((lg n / lg lg n points.
LEMMA 3.1. Let .All be a metric space on n points, w(e) denoting the length of edge e,

and let c > be a real. ,All contains either:
1. a subset S of size at least s lg n such that the distances within S differ by no more

than afactor of2 or
2. a point P and a subset T ofsize at least n / lg n such that P q T and

minxev d(x, P) c

maXx,ysr d(x, y) 4 2

Proof We may assume n > 3. Label edge e with [log w(e)J. Let j be the largest
label, and call those edges labeled j or j large and the rest, if any, small. Build a graph
G on the points of.A//" {u, v} E(G) if and only if {u, v} is small in .AA. The value of d, a
nonnegative real, will be chosen later.

If every vertex in G has degree at most d, then G has an independent set S of size at least
n / (d + 1). (The greedy independent set algorithm generates such an S.) If u and v are distinct
points of S, {u, v} is large. But the lengths of two large edges cannot differ by more than a
factor of c2.

Otherwise, some vertex v has degree exceeding d. Let {a, b} be the longest edge in the
d(a b) > cj Let T be vmetric space, labeled so thatd(a,v) > d(b,v); d(a,v) >

together with its neighborhood in G. All edges between points in T are of length less than
2cj-1. If x T,

cj cJ-Id(a, x) > d(a, v) d(v, x) >

Thus

minxv d(x, a) cj /2 cj- c
>

maXx,yr d(x, y) 2cJ- 4 2"

We have found either a set S of size at least n/(d + 1) whose interpoint distances differ
by at most a factor of c2 or a set T for which

minxT d(x, a) c
>.

maXx,y6T d(x, y) 4 2

with TI > + d. Taking d (n/lg n) and P a, the proof is complete. 71

THEOREM 3.2. Let .All be a metric space on n points, and let c > 1..All contains either

lg n whose interpoint distances differ by at most a factor of1. a subset of size at least -c2 or

2. a sequence ofdistinct vertices P, P2 Pt for 1/2 (lg n) / lg lg n such that

cminj>i d(Pj P/)
>

maxj>i+ d(Pj, P,.+) 4 2

fori 1,2 2.

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 303

Proof Construct a sequence of metric spaces .A/[W[, J2, J3 ./r and a set
of points P, P2 Pr-i (P/in Wli) as follows. Apply Lemma 3.1 to A/[i. If case is true
(where n [.A/[[, not [.A/[i [), halt. If case 2 is true but T has fewer than points, halt without
constructing .A//i+l. Otherwise, let/9,, be the point P of case 2 and .A//i+ be the metric space
induced by T.

If case is ever true, we have a set of at least lg /5 lg n points within the current
metric space whose interpoint distances differ by at most c2. Otherwise, since

I./ti I.AAi
lgI.A///[lgn

the number r of metric spaces we construct satisfies n/(lg n) < v/, i.e., r > (lg n)/lg lg n.
The r P’s satisfy condition 2 above. 71

4. General lower bounds.
LEMMA 4.1. Let Jl and A4’ be two metric spaces defined on the same set ofpoints with

distance functions d and d’, respectively. Let b > 1. Suppose thatfor every two points x, y,
d’ (x, y) < d(x, y) < b d’(x, y). Let c be a lower bound on the competitive ratio for
Then c/b is a lower bound on the competitive ratio for

Proof The cost of serving cr in .A/[is bounded above and below by b times and one
times the cost of serving it in A//’, respectively.

LEMMA 4.2. Let b > 1, and let .L4 be a metric space where

maXx.yM dist(x, y)
<b.

minx#yM dist(x, y)

Then the competitive ratio for any randomized on-line k-server algorithm for Jl is at least
7k/b, where 7-[+ + - +... + - is the kth harmonic number.

Proof Scale the distances in so that the minimum nonzero distance is 1. Apply
Lemma 4.1 and the lower bound of 7-/ for a uniform metric space [FKLMSY].

LEMMA 4.3. Let .All be a metric space defined on the k + points {x0 xk by the
distance function d, which satisfies"

1. d(xo, x) and
2. for every i, < < k,

minj<i d(xj, xi)
> 8Ci- e2Ci-

max.<i_l d(xj, xi-

Then (ck 1)/4 is a lower bound on the competitive ratio ofany on-line randomized k-server
algorithm serving requests in .All.

Proof For all i, _< _< k, define ai lmin0_<j<i d(xj, xi)]. Conditions and 2 imply
that the sequence al, a2 is superincreasing. Let .A/[’ be the superincreasing metric space
defined on {x0 x-} by setting dist(xj, xi) ai for j < i. It is not hard to prove that

-ai <_ dist(xj, Xi) a + a2 -k- -k- ai <_ 2ai for all j < i. Theorem 2.10 and Lemma 4.1
complete the proof. [3

LEMMA 4.4. Let > 2, and let Po, P Pt- be a sequence ofpoints in a metric space
such that dist(P0, P) andfor every i, < < 1,

minj<i dist(Pj, Pi)

maxj<i_ dist(Pj, Pi-)

304 H. KARLOFE Y. RABANI, AND Y. RAVID

lfr > 1, then there is a subset {Q0, Q1 Q,_I} ofsize u > t/(1 + lgr) so thatfor every
i,l<i<u,

minj<i dist(Qj, Qi)
>r.

maxj<i_l dist(Qj, Qi-)

Proofsketch. Take every [lg r] th point of the P’s.
THEOREM 4.5. If n IJl is sufficiently large, then there is a lower bound of f2 (log k)

on the competitive ratio ofany randomized on-line k-server algorithmfor Jl.
llgn >k+l we applyProof Apply Theorem 3.2 to AA with c 10. If case holds and

Lemma 4.2 to obtain a lower bound of 7-/k / 100. So suppose case 2 holds. Lemma 2.2 implies
that ci < + 1.51ni, so that 8cie2ci < 8(1 -if- 1.51ni)eZi 3. Define r 8(1 + 1.51nk)eZk3. If

[-(lgn)/lglgn]
+lgr

>k+l,

then Theorem 3.2 and Lemmas 4.3 and 4.4 give us a lower bound of a (Ck 1) > Ink
It is clear that there is a polynomial p(k) so that if n >_ 2p(k), then

[(lgn)/lglgn]-
+lgr

>k+l.

THEOREM 4.6. For any metric space with at least k + points, there is a lower bound of
f2 (log log k) on the competitive ratio ofevery randomized on-line k-server algorithm.

Proof Let A/[be a metric space on exactly k + points. (Ignore any others.) Let
s I-v/lg(k + 1)-]. The technique of Theorem 4.5 can be used to construct an (s + 1)-point
metric space ,5’ within A/[whose interpoint distances either differ by at most a factor of 100
or which "grow" by at least a factor of s4. (This holds for sufficiently large k.) In either case
we have a lower bound of f(s) on the competitive ratio of any randomized s-server algorithm
for S, where f(s) is f2 (log s) and hence f2 (log log k). However, the algorithm has k servers,
not s.

Suppose there is a lazy, finitely converging c-competitive k-server algorithm for .A/[. Then
by Lemma 2.7 we infer that there is a lazy, e-competitive multipoint k-server algorithm A for
A/[. Then there is a c-competitive s-server algorithm A’ for S: A’ simply replaces a request
to z S by a request to the set {z} t3 (A//- $) and feeds the request to A. Neither A nor
the adversary will ever move any server initially outside of S. It follows easily that A’ is a c-

competitive s-server algorithm for S. However, for c < f(s), this cannot be. Now Lemma 2.9
tells us that no (f(s) 1)-competitive k-server algorithm for .A/[can exist, finitely converging
or not. [3

5. On-line motion planning. In this section we study the on-line motion-planning prob-
lem of Papadimitriou and Yannakakis, as described in the introduction. [PY] proved that no
deterministic search strategy achieves a constant ratio. In this section we prove that even a
randomized searcher cannot achieve a constant ratio. Rather, the ratio must grow with the
number of obstacles.

Let dl, d2, d3 dk be a superincreasing sequence of integers. Set do 0. Define a
new metric space A/[’(k) on {zo, z Zk} by identifying zi with the point di on the real line
as dist(zi, zj) Idi dj I.

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 305

THEOREM 5.1. For all multipoint k-server algorithms A for .All’ (k), for all r, there is a
request sequence err ofoptimal cost at least r and of length at most rNk such that

Ck
E[A(crr)] > OPT(fir).

2

Proof Let A be a multipoint k-server algorithm for .M’ (k). Let A’ be the algorithm for
3//(k) that mimics the behavior of A on .Ad’(k). Each distance in .A4’ (k) is between one half
and one times the corresponding distance in .M (k). It follows that

1E[A’(tr)]E[A(cr)] >

for all or. By Theorem 2.5, for each r there is a request sequence trr’ for .M (k) of optimal cost
at least r and of length at most rN, such that

E[A’(Crr)] >_ ck OPT(o’r).

The optimal cost of crr’ in .Ad(k) is at least its optimal cost in Ad’(k). We may set err

Let N N. Fix a randomized searching algorithm. For scenes with at most (k+ 2)N+2
obstacles, we will prove a lower bound of f2 (log k) on the performance ratio.

Choose k. Let h N + 1. We first build a collection of (k + 2)N + 2 open rectangles as
follows. For each 1, 2 N, place k rectangles of width one in the region (x, y)li _<
x < known as column i. The jth rectangle Cij (1 < j < k) runs from y dj_ h to y dj h.
These k rectangles cover the region {(x, y)li < x < i, 0 < y < hdk }. Now add a rectangle
Cio of width one and infinite height just below Ci and add a rectangle Ci,k+ of the same size
as Cio just above Cik. Now add one infinite open rectangle L covering all of the plane to the
left of these (k + 2)N rectangles. To their right add an infinite rectangle R covering everything
to the right. Now we need to shift the rectangles slightly. Define e 2-i and slide upward
by e all k + 2 rectangles in column i, < < N.

To summarize, the final positions of the rectangles are as follows" For < j < k,

Cij {(x, y)li < x < i, dj_lh d-ei . y < djh -k-ei},
Cio {(x, y)li < x < i, y < e }, and
Ci,,+ {(x, y)li < x < i, y > hdk + ei}.

These rectangles together with L and R cover all but a set of measure 0 of the entire plane.
The input consists of a sequence trl, r2 aN, chosen in advance, with cri C+ {0,

k} and cri - 13 for all i. In column i, < < N, the adversary "fuses" rectangles Cij and
Ci,j+l for all j 6 oi. The searcher’s origins is (0, El), and his target is the vertical line x N.

As soon as the searcher first reaches column i, i.e., his x-coordinate first reaches 1, the
adversary tells him cri. The slight vertical displacement between columns and prevents
the searcher from learning anything about O" before he enters column i.

Against these possible inputs, we can convert any searching algorithm to an algorithm A
of no greater cost with this property"

As soon as the searcher’s x-coordinate reaches (and he learns oi), he chooses
a column-/ rectangle Cij with 0 < j < k and j ’ tr(i). (The choice of j 6

{0, k} is random and probably not uniform.) Because j ’ tr(i), rectangle Cij
has not been fused with its neighbor above. The searcher then moves vertically to
the upper-left corner of Cij and then one unit rightward.

306 H. KARLOFF, Y. RABANI, AND Y. RAVID

Let ai ai be the searcher’s random choice of j in column i, and let a0 0. His
cost of moving from the upper-right corner (i 1, d,,_h -4- ei-1) of Ci-.a,_, to the upper-
right corner (i, d,,h + ei) of Ci,,, is at least h[da, da,_l [. His total cost is therefore at least

h .N,= Ida, da,_ [. The random choice of ai - ai depends only on a, a2 ai. This is
precisely the situation of a randomized multipoint k-server algorithm that serves N multipoint
requests in 3,4’(k) and starts with its "hole" at do: da, is the location of the algorithm’s "hole"
after serving the ith request ai. We will view A as a multipoint k-server algorithm for .A4’ (k).

Given al aN, set b0 0 and let bl, b2 bx be the optimal way to serve requests
o oN in AA,. In other words, bl, b2 bN minimizes y"iN=l]db, dbi_, subject to the
constraint bi ai for all i. Then the length of the shortest obstacle-free s path is at most

N N

Eli + 2-i+ h tdbi- dbi_l [] < N + + h E [d,- d,_ [.
i=1 i=1

By Theorem 5.1 applied to A with r l, there is a request sequence a of length at most
N such that

Ck
E[A(a)] > OPT(a).

2

(Theorem 5.1 goes through even if A knows the length of the request sequence in advance.)
For that sequence,

E[,iL Idai da,_, l] Ck>
2

Thus

E[h =l Ida, da,_, I1
NN + + h Zi=I Idbi --db,_, l)

NhE i=1 da, da,_ll]
h (1 -1- z/N=I [dbi dbi_ 1)

NE Ei:I Idai da,_, II
2 ZY=I]dbi dbi-,
Ck

With at most 2 + (k + 2)N rectangles, we have proven a lower bound of ck/4, which is
f2 (log k). If desired, each of the rectangles with an infinite side length can be replaced by a

rectangle with finite but very large dimensions.
We choose

d, [4ck_leZc’-’ dk_l

for all k >_ 2 and d 1. A simple calculation yields Nk < 4’(dd2 d/,), dk <_ kd,-1, and

Nk _< 4k(k!)k. This means that we have a lower bound of (lnln n)/24, n being the number
of rectangles, for infinitely many n.

6. Acknowledgments. We are grateful to Prabhakar Raghavan for inspiring us to seek
a general k-server lower bound, to Lyle McGeoch for his help in fixing a mistake, to Mario

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 307

Szegedy for simplifying the proof of Lemma 3.1, and to Dean Foster and Amos Fiat for their
helpful remarks.

7. Appendix. Let/ > be a real, and let >/3 be a positive integer. Let d > 4/3e2g
be an integer. Let w, w2 WQ {1, 2 2e} where Q satisfies -/Q= wi < 2d <

We prove a lower bound on the solution of the following linear program LP"
Find p, P2 PQ-1, ?’ so as to minimize ?’ subject to

and

d(1- pt) + _psWs < ?" Ws
s=l s=l

fort Q-1

Q-1

+.)_fpsWs < Y" 2d,
s=l

and

0<ps < fors= Q-1.

We first prove that the solution of the linear program LP2:
Find r, r2 rzd-ze, ’ so as to minimize ’ subject to

J
d(1 rj) + ri < ’ (j + 2e) for j 2d 2

i=1

2d-2e

d+/. ri <,.2d
i=l

is a lower bound on the solution of LP. Then we prove that the solution of the linear program
LP3"

Find t, t2 t2a-2e, ’ so as to minimize , subject to

and

J
d(1 tj) + ti (j +

i=1

for j 2d 2

2d-2e

d+. Z ti <’.2d
i=1

is a lower bound on the solution of LP2. LP2 and LP3 are identical, except that the first 2d 2
inequalities in LP2 are equalities in LP3.

LEMMA 7.1. The solution ofLP2 is a lower bound on the solution ofLP.
Proof Suppose p PQ-1, ’ is a feasible solution to LP. Then the assignment

rl Pl

r2 Pl

308 H. KARLOFF, Y. RABANI, AND Y. RAVID

rw Pl

rwl + P2

rwl +2 P2

rwl +w2 P2

rwl+...+wo_2+l PQ-1

rwl+...+WQ_2+2 PQ-1

rw,+...+wo_ PQ-1

and ?, is a solution to LP2. (Because w + w2 + + WQ_ ;> 2d 2, we have constructed
at least as many r’s as we need, maybe more.) gl

LEMMA 7.2. The solution ofLP3 is a lower bound on the solution ofLP2.
Proof Suppose rl, r2 rza-ze, }’ is a feasible solution to LP2. Define R0 0 and

Rj rl + r2 +...-+- rj, _< j < 2d 2. Then

forl <j<2d-2gand

Therefore,

which is equivalent to

d(1 Rj + Rj-1) + Rj <_ g (j + 2e)

d + flR2d_2e < Y" 2d.

d Rj(d) q- dRj_l <_ y(j q- 2e),

d d- y(j + 2e)
Rj > Rj_I ---Also R2a-2e < d(2?’- 1) Now define To 0 and

ifl <j<2d-2/sothat

d d- ?,(j + 2e)
T d-/- +

d-

d(1 Tj + Tj_l) - Tj" g(j +
for _< j < 2d 2g. An easy inductive proof shows that Tj < Rj for all j. Thus

T2d-2e < R2d-2g < d(21- 1)

Definetj= Tj-Tj_lforj= 1,2 2d-2g. Forl <j<2d-2g,

d(1 tj) -- (tl -- t2 q-""-- tj) d(1 Tj -- Tj_I) -t-/Tj.
y(j + 2e).

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 309

Also

T2d-2 t + t2 +... + t2d-2 < d(2F 1)//3.

This means that tl, t2 t2d-2t, F is a feasible solution to LP3.
LEMMA 7.3. If t, t2 tZd-Ze, F is a solution to LP3, then

F >- fl [1 + 1/(2e2t- 1)].
Proof We have d(1 t) +/3t y(1 + 2), i.e.,

d- F(1 + 2)
tl

d-

J
d(1 tj) + ti F" (J + 2),

i=1

For j 2, 3 2d 2,

j-1

tj_) + _ti =F.(j-l+2).d(1
i=1

Subtracting, d(tj_ tj) + fltj F, or

d
tJ d_ fltj-l

j 2, 3 2d 2. An easy proof verifies that

tj
fl +2F-I d- fl

for j 1, 2 2d 2. We now use this assignment in the last constraint of LP3 to get

(d + F(Zd- 2) +/3
i=1

d -/3 < F.2d.

But

where D (d/(d -/))2d-2e. Therefore,

d+y(2d-2)+/3 1- - (D- 1) <F(2d),

y
2 Y)d+y(2d-2e)+d 1- (D-l) <y(2d),

d(l+D-1)+y(-2- fi+2 (D-l)) <0,

310 H. KARLOFF, Y. RABANI, AND Y. RAVID

dD<y 2e+(D-1) +2e
, >

2g+(D-1)(+2g)
Dd Ddfl

2gfl + (D- 1)(d +

2eft + Dd d + D2g.13

’ > fl Dd-d + D(2gfl) fl Dd-d + D(2gfl)

d-D(2g/?)] [Dd-d+D(2gfl)
=/3 1+ 213 Dg./d]

D(1 + 2flg/d) 1J
Now

d 2d-2g

< efl(2d-2g)/(d-fl)-/_

Because (2d 2)/(d fl) _< 2, D _< e2/. But

2eD/d]?, > 1+
D(l+2flg./d)-

As D increases, the bracketed quantity decreases. Therefore,

2ge23/d
e2 + e2(2flg/d) J

Because d > 4,Be2/, 2fl-e2 < 1/2. Thus

y >/3 + e2/ + 1/2
=/3 + 2e2/

LEMMA 7.4. The optimal value ofLP1 is at least

/3 [1 + 1/(2e2/ -1)].

Proof The lemma follows from Lemmas 7.1, 7.2, and 7.3.

ProofofLemma 2.4. If Lemma 2.4 is not true, then

Q-1

d + ci-1 _, psws < ci(2d)
s=l

and

LOWER BOUNDS FOR RANDOMIZED ON-LINE PROBLEMS 311

h h

d(l- Ph)q-ci-1 psWs ClEWs
s=l s:l

for all h, < h _< Q 1. In this case, there is a C < C such that

Q-1

d + Ci-1 psWs < C(2d)
s:l

and

h h

d(1 Ph) + Ci-1 .psW, < C

_
ws

s=l s=l

for all h, < h < Q 1. This contradicts Lemma 7.4 if we set/3 ci_ and V C, since
then

fl [1 + 1/(2e2/ --1)]--ci. [-]

[BBKTW]

[BCR]

[BLS]

[BRS]

[CKPV]

[CL]

[FFKRRV]

[FKLMSY]

[FRR]

[Ge]

[KMMO]

[LST]

REFERENCES

S. BEN-DAVID, A. BORODIN, R. M. KARP, G. TARDOS, AND A. WIGDERSON, On the power ofrandomiza-
tion in online algorithms, Proc. 22nd Annual ACM Symposium on Theory of Computing, 1990,
pp. 379-386.

R. A. BAEZA-YATES, J. C. CULBERSON, AND G. J. E. RAWLINS, Searching with Uncertainty, Tech. Report,
University of Waterloo, 1987.

A. BORODIN, N. LINIAL, AND M. SAKS, An optimal on-line algorithm for metrical task systems, Proc.
19th Annual ACM Symposium on Theory of Computing, 1987, pp. 373-382.

A. BLUM, P. RAGHAVAN, AND B. SCHIEBER, Navigating in unfamiliar geometric terrain, Proc. 23rd
Annual ACM Symposium on Theory of Computing, 1991.

M. CHROBAK, H. J. KARLOFF, T. PAYNE, AND S. VISHWANATHAN, New results on serverproblems, SIAM
J. Discrete Math., 4 (1991), pp. 172-181.

M. CHROBAK AND L. LARMORE, An optimal on-line algorithm for the server problem on trees, SIAM
J. Comput., 20 (1991), pp. 144 148.

A. FIAT, D. P. FOSTER, H. J. KARLOFF, Y. RABANI, Y. RAVID, AND S. VISHWANATHAN, Competitive
algorithmsfor layered graph traversal, Proc. 32nd Annual IEEE Symposium on Foundations of
Comp. Sci., 1991, pp. 288-297.

A. FIAT, R. M. KARP, M. LUBY, L. A. MCGEOCH, D. D. SLEATOR, AND N. E. YOUNG, Competitive paging
algorithtns, J. Algorithms, 12 (1991), pp. 685-699.

A. FIAT, Y. RABANI, AND Y. RAVlD, Competitive k-server algorithms, Proc. 31 st Annual IEEE Sympo-
sium on Foundations of Comp. Sci., 1990, pp. 454-463; J. Comput. System Sci. (to appear).

E. GROVE, The harmonic k-server algorithm is competitive, Proc. 23rd Annual ACM Symposium on

Theory of Computing, 1991, pp. 260-266.
A. R. KARLIN, M. S. MANASSE, L. A. MCGEOCH, AND S. OWICKI, Competitive randomized algorithms

for non-uniform problems, Proc. 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
1990, pp. 301-309.

L. LovAsz, M. SAKS, AND W. T. TROTTER, An online graph coloring algorithm with sublinear perfor-
mance ratio, Discrete Math. (1989), pp. 319-325.

312 H. KARLOFF, Y. RABANI, AND Y. RAVID.

[MMSI

[MS]

[PY]

[RSI

[ST]

[Vn]

M. S. MANASSE, L. A. MCGEOCH, AND D. D. SLEATOR, Competitive algorithms for on-line problems,
J. Algorithms, 11 (1990), pp. 208-230.

L. A. McGEOCH AND D. D. SLEATOR, A strongly competitive randomized paging algorithm, Algorith-
mica, 6 (1991), pp. 816-825.

C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Shortestpaths without a map, Lecture Notes in Comp. Sci.
372, Springer-Verlag, New York, 1989, pp. 610-620.

P. RAGHAVAN AND M. SNIR, Memory versus randomization in on-line algorithms, Lecture Notes in
Comp. Sci. 372, Springer-Verlag, New York, 1989, pp. 687-703.

D. D. SLEATOR AND R. E. TARJAN, Amortized efficiency of list update and paging rules, Comm. ACM,
28 (1985), pp. 202-208.

S. VISHWANATHAN, Randomized online graph coloring, Proc. 31 st Annual IEEE Symposium on Foun-
dations of Computer Science, 1990; J. Algorithms (to appear).

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 313-323, April 1994

() 1994 Society for Industrial and Applied Mathematics
007

AN ALPHABET INDEPENDENT APPROACH TO TWO-DIMENSIONAL
PATTERN MATCHING*

AMIHOOD AMIRt, GARY BENSONt, AriD MARTIN FARACH

Abstract. There are many solutions to the string matching problem that are strictly linear in the input size
and independent of alphabet size. Furthermore, the model of computation for these algorithms is very weak: they
allow only simple arithmetic and comparisons of equality between characters of the input. In contrast, algorithms
for two-dimensional matching have needed stronger models of computation, most notably assuming a totally ordered
alphabet. The fastest algorithms for two-dimensional matching have therefore had a logarithmic dependence on the
alphabet size. In the worst case, this gives an algorithm that runs in O(n log m) with O(m log m) preprocessing.

The authors show an algorithm for two-dimensional matching with an O(n2) text-scanning phase. Furthermore,
the text scan requires no special assumptions about the alphabet, i.e., it runs on the same model as the standard
linear-time string-matching algorithm. The pattern preprocessing requires an ordered alphabet and runs with the
same alphabet dependency as the previously known algorithms.

Key words, multidimensional matching, period, string

AMS subject classifications. 68Q05, 68Q20, 68Q25

1. Introduction. The classical string-matching problem has as its input a text string T
of length n and a pattern string P of length m. The elements in the text and pattern are
taken from an alphabet set E and re is the number of distinct characters in pattern P, so in
particular, Crp < min{IEI, m }. We will in general drop the subscript P and simply refer to
or. The output is all text locations where there is a character-by-character match with the
pattern, i.e., T[i + j- 1]-- P[j], j-- m.

String matching is one of the most widely studied problems in computer science 13]. Fis-
cher and Paterson 12] gave a convolutions-based solution oftime complexity O (n log m log o)
word operations (O (n log m log log m log or) bit operations). Karp, Miller, and Rosenberg 17]
gave a parallelizable label-doubling algorithm with complexity O(n log m). Knuth, Morris,
and Pratt [19] gave the first linear-time solution. A heuristically improved algorithm was
presented by Boyer and Moore [10]. Galil and Seiferas [15] showed a real-time algorithm
using a constant number of registers. The Knuth, Morris, and Pratt and Galil and Seiferas
algorithms have time complexity O(n), are alphabet independent, and use a weak model of
computation where only equality of symbols is tested.

Karp and Rabin 18] devised a randomized linear-time algorithm in a stronger arithmetic
model. They generate a large random prime number as well as use arithmetic operations (e.g.,
multiplication, modulo) on the characters. Vishkin [24] introduced a deterministic sampling
scheme that allowed using the "signature" idea in a deterministic weak model.

In recent years there has been growing interest in multidimensional pattern matching,
largely motivated by problems in low-level image processing [23]. Various algorithms exist for
the exact two-dimensional matching problem. The exact two-dimensional matching problem
is defined similarly to the string-matching problem but the text and pattern are rectangular
matrices rather than strings. For simplicity’s sake we assume that T is an n x n matrix and P
is an m x m matrix, although our results apply to rectangular matrices as well.

*Received by the editors February 18, 1992; accepted for publication (in revised form) November 20, 1992.
College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0280; (404) 853-0083

(amir@cc.gatech.edu). Partially supported by National Science Foundation grant IRI-90-13055.
tDepartment of Computer Science, University of Maryland, College Park, Maryland 20742; (301) 405-

2715 (benson@cs.umd.edu). Partially supported by National Science Foundation grant IRI-90-13055.
Center of Discrete Mathematics and Theoretical Computer Science, Box 1179, Rutgers University, Piscataway,

New Jersey 08855; (908) 932-5928 (farach@dimacs.rutgers.edu). Supported by Center for Discrete Mathematics
and Theoretical Computer Science under National Science Foundation contract STC-88-09648.

313

314 A. AMIR, G. BENSON, AND M. FARACH

Baker [8] and, independently, Bird [9] used the Aho and Corasick dictionary matching
algorithm to obtain a O (n2 log a) algorithm for the exact two-dimensional matching problem.
Their model requires a totally ordered alphabet (since it uses the Aho and Corasick algorithm
as a subroutine), and so the time is dependent on the alphabet size. For an unbounded alphabet,
their algorithm’s time is O (n2 log m). Two other algorithms for exact two-dimensional match-
ing appear in [6] and [4]. They both use subword trees and run in time O (n2 log or). Note that
while these algorithms require no arithmetic operations on the characters, they all assume a
total ordering on their alphabets and make order comparisons in addition to checking equality
of characters. A convolutions-based method was suggested by Amir and Landau [5]. There
the time is O(crn 2 log m) word operations in an arithmetic model (or also O(n2v/-- log m)).
The Karp and Rabin algorithm also generalizes to two dimensions but, as we noted before, it
is a randomized algorithm with a relatively powerful arithmetic model. Other algorithms with
good average case complexities and strong computational models are given in [26] and [7].

In this paper we present what is, to our knowledge, the first deterministic algorithm for two-
dimensional exact matching where the text scanning is alphabet independent and thus truly
linear. Moreover, our algorithm is comparison based using a weak model of computation.
During the text scan, the only character comparisons made are of the equality type, thus
the model is weaker than in the above-mentioned two-dimensional matching algorithms. As
opposed to previous algorithms, our algorithm is inherently two-dimensional, and uses a novel
technique in two-dimensional matchingmtwo-dimensionalperiodicity, as introduced by Amir
and Benson in [2].

1.1. The two-dimensional periodicity idea. A periodic pattern contains locations, other
than the origin, where the pattern can be superimposed on itself without mismatch. Suppose
our pattern is non-periodic, i.e., there are no such locations, other than the origin. We could
then narrow down the number ofpotential candidates for a pattern appearance in the text in a
fashion that ensures that all such candidates are "sufficiently far" from each other. Verification
of a candidate could then be done in the naive character-by-character comparison, but the time
would still be linear because the candidates do not overlap.

The problem with implementing this idea is that there is no guarantee that the pattern
is non-periodic. Indeed it has been shown [2] that there are four different types of two-
dimensional periodicity and that a pattern may contain many locations where it can superim-
pose on itself without mismatch. Moreover, it is not possible to subdivide all patterns into
non-periodic subunits, as is the case with one-dimensional strings. In this paper, we make
use of the very strong property that superimposable patterns can not disagree in the area of
overlap, and we present a new method for exploiting the pattern’s periodicity.

In contrast, previous algorithms have, to a lesser or greater degree, shared a common
weakness. They all treat a matrix as a set of rows, rather than as a sequence of rows. That
is, they only consider periodicity one dimension at a time. Thus, while exploiting periodicity
within rows, information about periodicity among rows is disregarded. The extra log factor
can be seen as a way to recompute information that was discarded in earlier stages of the
algorithm. Our unified approach to two-dimensional periodicity allows us to use all periodicity
information throughout the text-scanning algorithm.

Our algorithm consists of apattern analysis stage and a text-scanning stage. In the pattern
analysis we construct a WITNESS array that allows a constant time decision of whether two
overlapping pattern appearances conflict. This stage is done in time O(m2 log o’), O(m2 log m)
in the worst case, and assumes an ordered alphabet. Note that very recently, there have been
several advances in two-dimensional string matching. In [14] and independently in [3], it
was shown how to compute a witness table in O(m2) using the unordered alphabet model of
computation.

TWO-DIMENSIONAL MATCHING 315

The text-scanning stage has two phases, the compatibilityphase and the verificationphase.
We begin by assuming that the pattern could occur anywhere in the text. In the compatibility
phase we eliminate candidate locations until all remaining candidates agree on the expected
text characters. We are left with potential candidates that are all compatible with each other.
In the verification phase we verify which of these potential candidates are indeed a match.
The entire text-scanning stage is done in time O(n2).

The paper is organized as follows. The pattern analysis is described in 2. Section 3
consists of the text scan.

2. Pattern preprocessing. The idea of array overlap or periodicity and the pattern pre-
processing algorithm are given in [2]. For completeness, we review the algorithm here. Our
goal is to determine where two copies of an array A can overlap without conflict. Such sites
are called sources (Fig. 1). For each location that is not a source, there exists a witness that
proves that the overlapping copies of A mismatch.

A top source

a b

FIG. 1. (a) An array ,4. (b) A overlaps itself without a mismatch.

Given two copies of an m m array A[1 m; m] one directly on top of the
other, the two copies are said to be in register when all of the corresponding elements in the
area of overlap contain the same symbol. Clearly, A is in register with itself when A 1, is
aligned with A[1,]. If we can slide the upper copy over the lower copy to a point where the
copies are again in register, then at least one of the corner elements A[1, or ,4 [m, in one
copy overlaps an element of the other copy. If the overlapping corner is A 1, then we have
a top source. Otherwise, we have a bottom source.

We want to fill out two WITNESS arrays. For each location A[i, j], TOP-WITNESS[i, j]
(m + 1, m + 1) if A is in register with itself when element A[1, overlaps element A[i, j].

Otherwise, TOP-WITNESS[i, j] (r, c) where (r, c) identifies some mismatch. Specifically
A[r, c] :/: A[i + r 1, j + c 1] (Fig. 2). BOTTOM-WITNESS[i, j] is filled out similarly
except element A[m, 1] overlaps element A[i, j].

2.1. The pattern preprocessing algorithm. Our pattern preprocessing algorithm (Al-
gorithm A) makes use of two algorithms (Algorithms and 2) from [21 which are themselves
variations of the KMP algorithm 19] for string matching. Algorithm takes as input a pattern
string w of length m and builds a table Ippattern[1 m] where Ippattern[i] is the length
of the longest prefix of to starting at toi. Algorithm 2 takes as input a text string of length n
and the table produced by Algorithm and produces a table lptext[1..n] where Iptext[i] is the
length of the longest prefix of to starting at ti.

The idea behind Algorithm A is the following. We convert the two-dimensional problem
into a problem on strings (Fig. 3). Let the array A be processed column by column and suppose
we are processing column j. Assume we can convert the block A[1..m, j..m] into a string

316 A. AMIR, G. BENSON, AND M. FARACH

mismatch

i
i+r

j j+c

FIG. 2. The WITNESS table gives the location of a mismatch (if one exists) for two overlapping copies of the
pattern. Here TOP-WITNESS[i, j] (r + 1, c + 1).

j m-j-1

m

m-j+l columns

FIG. 3. Representing a block of the array by a string. For the preprocessing algorithm, 7 tl tm is the
text and Wj w Wm is the pattern.

Tj tl tm where ti represents the suffix of row starting in column j. This will serve
as the text string. Assume also that we can convert the block A[1..m, 1..m j + 1] into a
string Wj wl Wm where wi represents the prefix of row of length rn j + 1. This
will serve as the pattern string. Now, use Algorithm to produce the table Ippattern for Wj
and Algorithm 2 to produce the table lptext for Tj. If the longest prefix of the pattern in the
text starting at ti runs through the last row of the text (lptext[i] rn + 1), then A[i, j] is
a source. If the longest prefix stops before the last row (lptext[i] < m + 1), then there is
a mismatch between the prefix of row Iptext[i] and the suffix of row + lptext[i]. We need
merely locate the mismatch to obtain the witness. In order to treat the suffix and prefix of a
row as a single character, we will build a suffix tree for the array.

A suffix tree is a compacted trie of the suffixes of a string ([22], [25]). The suffix tree
is perhaps the most widely used data structure in string matching. A thorough description of
suffix trees and their properties appears in 11]. We note that since a suffix tree is a trie, each
node v has associated with it some string S(v). In [20], it was pointed out that if is the least
common ancestor (LCA) of two nodes v and w, then S(I) is the longest common prefix of
S(v) and S(w). In [16], an algorithm was given that preprocesses a tree in linear time and
answers LCA queries in constant time. Thus a suffix tree, in conjunction with LCA queries,
is a powerful tool for comparing the substrings of a string.

TWO-DIMENSIONAL MATCHING 317

ALGORITHM A. For building witness array
Step A." Build a suffix tree by concatenatin9 the rows o[the array. Pre-
process the suffix tree for least common ancestor queries in order to answer
questions about the length of the common prefix of any two suffixes.
Step A.2: For each column j, fill out TOP-WITNESS for column j:

Step A.2.1" Use Algorithm 1 to construct the table lppattern for W
1/31 LO Character W is the prefix of row of length rn j + 1. We can
answer questions about the equality of two characters by consulting the
suffix tree. If the length of the common prefix of the two characters is at
least rn j + then the characters are equal.
Step A.2.2: Use Algorithm 2 to construct the table Iptext for Tj. t tm.
Character t is the suffix of row starting in column j (also of length
rn j + 1). Again we test for equality by reference to the suffix tree.
Step A.2.3" For each row i, if Iptext[i] m + then we have found a
source and TOP-WITNESS[i, j] (m + 1, rn + 1) otherwise, using the
suffix tree, compare the suffix of row + lptext[i] starting in column j
with the prefix of row lptext[i]. The length of the common prefix will be
less than rn j -t- 1, and TOP-WITNESS[i, j] (Iptext[i], + 1).

Step A.3: Repeat step 2 for BOTTOM-WITNESS by building the automatons
and processing the columns from the bottom up.

THEOREM 2.1. Algorithm A runs in time 0(m2 log or).

Proof The suffix tree construction [25] takes time O(m2 log or) while the preprocessing
for least common ancestor queries [16] can be done in time linear in the size of the array.
Queries to the suffix tree are processed in constant time. The tables Ippattern and lptext can
be constructed in time O(m) [21]. For each of m columns, we construct two tables so the total
time for steps 2 and 3 is O(m2). The total complexity of the pattern preprocessing is therefore
O(m2 log or).

3. Text processing. Text processing is accomplished in two stages: candidate consis-
tency and candidate verification. A candidate is a location in the text where the pattern may
occur. We denote a candidate with origin at text location T[r, c] by (r, c). We say that two
candidates (r, c) and (x, y) are consistent if they expect the same text characters in their
region of overlap (two candidates with no overlap are trivially consistent). In terms of wit-
nesses, two candidates are consistent if they have no witness, i.e., if r < x and c < y then
TOP-WITNESS[x r -t- 1, y c -t- (m + 1, rn -t- 1). If r > x and c < y then BOTTOM-
WITNESS[m r + x, y c + 1] (m + 1, rn + 1). We use the shorthand (r, c) (x, y) to
mean that the candidates (r, c) and (x, y) are consistent. If the two candidates are inconsistent,
then we write (r, c) ?c (x, y).

Initially, we have no information about the text and therefore all text locations are candi-
dates. However, not all text locations are consistent. During the candidate consistency phase,
we eliminate candidates until all remaining candidates are pairwise consistent. During the
candidate verification phase, we check the candidates against the text to see which candidates
represent actual occurrences of patterns. We exploit the consistency of the surviving candi-
dates to rule out large sets of candidates with single text comparisons (since all consistent
candidates expect the same text character).

3.1. Candidate consistency. As stated above, the goal of the candidate consistency
algorithm presented in this subsection is to produce a set of candidates for the given text such
that the candidates are all consistent.

We begin with some transitivity lemmas for the relation.

318 A. AMIR, G. BENSON, AND M. FARACH

LEMMA 3.1. For any < rl < r2 < r3 < n and for any < Cl < 2 < 3 < n, if
(rl, cl) (r2, c2) and (r2, c2) (r3, c3), then (rl, c) (r3, c3).

Proof Suppose that (r, cl) ?c (r3, c3). Then, there exists an x < m r3 -k- rl and a
y < m c3 + Cl such that P[x, y] P[x + r3 rl, y -F c3 Cl]. But r3 >_ r2 so x + r3 > r2
andm > x q-r3-rl > r2-rl. Similarly, m > y+c3-cl >_ c2-cl. Since (r, cl) (r2, c2),
we have that P[x + r3 rl, y q- c3 Cl] P[x -F r3 r2, y -F c3 c2]. A similar argu-
ment shows that P[x, y] P[x + r3 r2, y -F c3 c2] since (r3, c3) (r2, c2). We con-
clude that P[x, y] P[x + r3 rl, y q- c3 Cl]. This is a contradiction. Therefore
(r3, c3) (rl, Cl). [-]

LEMMA 3.2. For any < r < r2 < r3 < n and for any <_ c3 < c2 < cl <_ n, if
(rl, c) (r2, c2) and (r2, c:z) (r3, c3), then (r, c) (r3, c3).

Proof The proof is analogous to that of Lemma 3.1. [3

3.1.1. A one-dimensional consistency algorithm. Let c be some column of the text.
Initially, all positions in this column are candidates. We would like to remove candidates
untd all candidates within the column are consistent. Further, we would like to preserve any
candidate that might actually represent an occurrence of the pattern in the text. Thus, we will
only remove candidates when we find some specific text location with which they mismatch.
The idea of Algorithm B is the following. Suppose we have eliminated inconsistent candidates
from the last rows of column c. The surviving candidates are placed on a list. Notice that
by Lemma 3.1, if the candidate in row n is consistent with the top candidate on the list,
it is consistent with all of them. This check takes constant time using the witness array. This
principle is used to produce an O(n) algorithm for column consistency.

ALGORITHM B. Eliminate inconsistent candidates within a column
Step B.I: Get column number, c.
Step B.2: We create a doubly linked list, S, of consistent candidates in column. Initialize S by adding candidate (n m + 1, c) to the top of S.
Step B.3: For row r n m to do:

Step B.3.1: Let (x, c) be the top candidate in S. Test if candidates (r, c)
and (x,) are consistent by reference to the witness arrays:

If (r, c) (x, c), then add (r, c) to the top of S.
If the two candidates under consideration are consistent, then they need not be compared with
any other candidates on S. This is because, by Lemma 3.1, consistency within a single column
is transitive.

If (r, c) 7c (x, c) then use the witness character in the text to eliminate
at least one of the candidates. If (x, c) is eliminated, remove it from
S and if (r, c) is not eliminated, repeat step B.3.1 with the new top
candidate in S. If no candidates remain in S, add (r, c) to S.

Clearly, if the two candidates are inconsistent, they can’t both match the text. Thus the
inappropriate one is eliminated.

Step B.4.3: Return S.

THEOREM 3.3. Algorithm B is correct and runs in time O(n).
Proof. The correctness of the algorithm follows largely from the comments within the

algorithm and from Lemma 3.1.
For the complexity bound, note that S can be initialized in constant time. For each row

r in the for loop, there is at most one successful test of consistency. For each unsuccessful
test, a candidate is eliminated, either the candidate (r, c) or the top candidate in S. Since the
number of candidates is bounded by n the total time is O (n).

TWO-DIMENSIONAL MATCHING 319

3.1.2. A two-dimensional consistency algorithm. We use the above algorithm as an
initial "weeding out" ofcandidates so that we get a list for each column ofconsistent candidates.
In the two-dimensional consistency algorithm, we start with the rightmost column, which we
know to be consistent, and add one column at a time from right to left. We will maintain
the following loop invariant: P(i) the candidates remaining in columns n are all
pairwise consistent.

No candidates can occur in columns n rn + 2 n so P(n rn + 2) P(n) are
trivially satisfied. As noted above, by calling Algorithm B with value n rn + 1 we are assured
of P(n rn + 1). The approach of the algorithm below is to quickly ensure P(i) once P(i + 1)
is known. When P(1) holds, we are done. We use a similar idea to that of Algorithm B. We
first have a phase where we make sure that each candidate is consistent with all candidates
above and to the right. A symmetric phase makes sure that candidates below and to the right
are consistent, thus assuring P(i). To reduce the work, we note that during the first phase, we
need only compare a candidate on column with the leflmost surviving candidate in each row
above it. To further reduce the work, once a candidate in column is found to be consistent
with candidates above it, all lower candidates in column are also consistent (see Fig. 4).

current
candidate

COIuIII C

row T

FIG. 4. In the bottom-up scan, the current candidate in column c need only be tested against the leftmost
candidates (marked by (R)) in rows r + m r that have not already been tested by candidates below c.

ALGORITHM C. Candidate consistency
Step G.l: For -- to n rn + do Ci +-- Gall AlSo B(i)
Step C.2: For +-- to n -m+ do initialize Ri to be an empty list of candidates
for each row i.
Step C.3: Put the candidates on C,,-m+ onto their appropriate Ri lists.
Step C.4: For +- n m downto do

Add one row at a time, making sure that it is consistent with all candidates added so far.
Step C.4.: Call Bottom-Up(i)

Make sure that all candidates in column are consistent with all candidates below them
in columns + n.

Step C.4.2: Call Top-Down(i)
Make sure that all candidates in column are consistent with all candidates above them

in columns + n.

320 A. AMIR, G. BENSON, AND M. FARACH

Step C.4.3: Add surviving candidates from column to the appropriate
Rj lists.

We describe procedure Bottom-Up only, since procedure Top-Down is symmetric.
Procedure C1. Bottom-Up(c)

Step C1.1" Initialize: cur gets bottom value from Cc. row n m + is a
pointer to the last row compared so far.
Step C1.2: While not at the top of Cc do

Step C1.2.1" If cur is consistent with leftmost item on Rro or Rro is
empty, then row +- row 1.

We compare the current candidate with the leftmost candidate in some row row below it.
If they are consistent, then by Lemma 3.1, all candidates above cur on Cc are also consistent
with all candidates on Row, even ifcur is later deleted as inconsistent with another candidate.
We need not consider that row again.

Step C1.2.2: If cur is not consistent with leftmost item on Rrow, then find
a witness to their inconsistency. Check which of them has a mismatch
against the text. If the leftmost item on Ro has a mismatch, remove
that candidate from its list. If cur has a mismatch, set cur to the next
item above cur on C.

We remove the candidate that has a mismatch against the text. If the item in Rrow is
removed, then we still need to check if cur is consistent with the remaining candidates in that
row. Thus, we don’t need to update any pointers. Otherwise, if cur is removed, we move
up in Cc. We don’t need to change row because of the comment above. None of the rows
below row need to be compared against the new candidate cur since we already know they
are consistent.

Step C1.2.3: If the row counter points to a row above cur’s row, set cur
to the next candidate above cur in Cc.

THEOREM 3.4. Algorithm C is correct and runs in O(n2).
Proof As in Algorithm B, no candidate is removed unless a mismatch is found against

the text. Therefore, no valid candidates are removed.
To show that at the end of the algorithm, only mutually consistent candidates are left on

the Ri lists (and on the Ci), we pick two arbitrary surviving candidates (r, c) and (r2, c2)
such that c < c2. We have two cases.

Case r <_ r2" We show this case by induction. Suppose that after processing column
c -t- that P(c -t- 1) holds. The base case is true by Theorem 3.3. Let (r2, c’) be the leftmost
candidate such that c’ > c and c’ appears on R after processing column c. By Lemma 3.1,
we need only show that (r, c) (r2, c’) since (r2, c’) (r2, C2).

Let (r’, c) be the last candidate with which (r2, c’) was compared during Bottom-Up(c).
CLAIM 3.4.1. r’ > r and (r’, c) (r2,
Proof. Suppose that (r’, c) ?c (r2, c’). Then we either delete (r’, c) or (r2, c’) from the

candidate list. If we remove (r2, c’) from the list, then we would compare the next candidate
on R_ with (r’, c), thus violating the assumption that (r2, c’) was the leftmost candidate
compared with a c candidate. If we remove (r’, c), then we would compare (r2, c’) with the
next candidate above (r’, c), thus violating the assumption that (r’, c) was the last candidate
on column c with which (r2, c’) was compared.

To show that r’ > r we observe that if r > r’, then we couldn’t have compared (r2,
with (r’, c) without first comparing (r, c) with (r2, c’). Since they both survived, they
would have had to have been consistent. But then we never would have compared (r2, c’) with
(r’, c) at all.

Finally, we know that (r, c) (r’, c), (r’, c) (r2, c’), (r2, c’) (r2, c2) and that

r < r’ < r2 and that c _< c’ _< c2. So by Lemma 3.1, we have proved the case.

TWO-DIMENSIONAL MATCHING 321

Case r > r2: This case is very similar to the one above, however, we refer the reader to
procedure Top-Down rather than Bottom-Up and Lemma 3.2 rather than Lemma 3.1.

The argument that shows the running time to be O(n2) is similar to the complexity analysis
in Theorem 3.3. We observe that during Bottom-Up (and Top-Down) in each, comparison of
candidates results in the removal of a candidate (which can only happen n 2 times in all calls to
these procedures), or in the cur pointer being decremented (respectively, incremented). This
can only happen O(n) time each time Bottom-Up (respectively, Top-Down) is called, and
they are each called O(n) times. Therefore the complexity is O(n2).

3.2. Candidate verification. All remaining candidates are now mutually consistent.
Each text element T[r, c] may be contained by several candidates, the relevant can-
didates. However, consistent candidates that share the same text element must agree on the
expected character in that element. This leads to the following crucial observation. Every
element in T can be labeled as either true orfalse, where true means that it equals the unique
pattern symbol expected by all relevant candidates, and false in all other cases. Thus, every
text element needs to be compared to a single pattern element, and every candidate source that
contains afalse element within it is not a pattern appearance and can be discarded.

The candidate verification algorithm follows:

ALGORITHM D. Candidate verification
Step D.I: Mark every text location T[r, c] with a pattern coordinate pair (i, j),
where (i, j) are the coordinates of the pattern element P[i, j] with which
T[r, c] should be compared.

There may be several options for some locations, namely, the position of the scanned text
element relative to each of its relevant candidates. However, any will do since all candidate
sources are now consistent. If a location is not contained in any candidate source it is left
unmarked. We will later see how this step is implemented (Procedure D 1).

Step D.2: Compare each text location T[r, c] with P[i, j], where (i, j) is the
pattern coordinate pair of T[r, c]. If T[r, c] P[i, j] then label T[r, c] as true,
else label it false.
Step D.3: Flag with a discard every candidate that contains a false location
within its bounds.

This flagging is done by the same method as in step D. 1.
Step D.4: Discard every candidate source flagged with a discard. The re-
maining candidates represent all pattern appearances.

Our only remaining task is to show how to mark the text elements with the appropriate
pattern coordinate pairs. We adopt the popular sports fan’s techniquethe wave.

Starting at the top (left) of each column (row), a wave is propagated going down (to the
right) as follows. The first element stands and waves its pattern coordinate pair, if such exists.
This nudges the neighbor below (to the right of) it to jump and raise its own pair. If it does not
have a pair, it borrows its antecedent’s pair, incrementing by its row (column) coordinate, to
adjust for its position relative to the same source. If the pair assigned to some position exceeds
the size of the pattern, that position is left unmarked.

Thus in two sweeps of the text, column waves and row waves, each text element is given
an appropriate pattern coordinate pair. Details of the wave follow:

Procedure D1. The wave

Step D1.1: Initialization: Mark every candidate origin with (1, 1).
Step D1.2: Column Waves: For each column c, and for all positions r from

to n in column c do the following step: If T[r, c] does not have a pair, and
T[r 1, c] has pair (i, j) with < m then assign to T[r, c] the pair (i + 1, j).

322 A. AMIR, G. BENSON, AND M. FARACH

Step D1.3: Row Waves: For each row r, and for all positions c from to n in
row r do the following step: If T[r, c] does not have a pair, and T[r, c- 1] has
pair (i, j) with j < rn then assign to T[r, c] the pair (i, j + 1).

A similar version of the wave can be used to flag candidates with discard. What is
propagated there is the discard flag, along with a counter pair to make sure the discard flag
doesn’t get propagated too far. The propagation is bottom-up in the columns and then from
right to left within the rows.

THEOREM 3.5. Algorithm D is correct and runs in time O(n2).
Correctness. The only non-trivial fact is that the wave correctly marks all elements. We

need the following terminology. If (r, c) is a candidate, we refer to the candidate origin T[r, c]
as a source. Let (r, c) be a candidate containing position T[r + i, c + j]. Then j is the
column distance and is the row distance between T[r + i, c + j] and the source for (r, c).
The column-close candidates containing location T[r, c] have sources whose column distance
to T[r, c] is minimal. The closest candidate containing location T[r, c] is the column-close
candidate whose source has smallest row distance to T[r, c].

CLAIM 3.5.1. The pattern coordinate pair marked by Procedure D in location T[r, c] is
the pair (i, j) where (r + 1, c j + 1) is the closest source to T[r, c].

Proof By induction on the column distance of the closest source. For column distance 0
the column wave assures that the marked pair is (i, 1) where is the row distance to the closest
source + 1. Assuming that for every text element whose column distance to its closest source
is d, the marked pair is correct, it is easy to see that the row wave will ensure correct marking
of all elements with column distance d + to the closest source.

Time. Each of the steps of Algorithm D is easily imp!ementable in time O(n2). Note
that, in each of steps D. and D.4, there is a single call to Procedure D 1, which clearly takes
O(n2) time. U

4. Conclusion. While string matching is extremely well studied and understood, multi-
dimensional matching has been somewhat neglected. This neglect does not stem from lack of
practical motivation but may be attributed to the fact that string-matching techniques do not
easily generalize to higher dimensions.

We feel that an inherently multidimensional approach is likely to produce better results.
This paper is a step along the way. All previously known algorithms for exact two-dimensional
matching pushed string-matching techniques as tools for solving the two-dimensional case.
However, none succeeded in achieving results similar to the string-matching case. Our new
idea of analyzing periodicity in two dimensions has been useful in improving results of the
most basic two-dimensional taskmthat of exact matching.

REFERENCES

[1] A. Argo AND M. CORASICK, Efficient string matching, C. ACM, 18 (1975), pp. 333-340.
[2] A. AMIr AND G. BENSON, Two-dimensional periodicity and its application, Proc. of 3rd Symposium on Discrete

Algorithms, Orlando, FL, 1992, pp. 440-452.
[3] A. AMIR, G. BENSON, AND M. FARACH, The truth, the whole truth and nothing but the truth: Alphabet independent

2-d witness table construction, Tech. Rep. GIT-CC-92-51, Georgia Tech, 1992.
[4] A. AMm AND M. FAACH, Two dimensional dictionary matching. Inform. Process. Lett., 44 (1992), pp. 233-239.
[5] A. AMm AND G. LANDAU, Fast parallel and serial multidimensional approximate array matching, Theoret.

Comput. Sci., 81 (1991), pp. 97-115.
[6] A. AMIR, G. LANDAU, AND U. VISHKIN, Efficient pattern matching with scaling, Proc. of First Symposium on

Discrete Algorithms, San Francisco, CA, 1990, pp. 344-357.
[7] R. BAEZA-YATES AND M. RIGNIER, Fast algorithms for two dimensional and multiple pattern matching, Proc.

of 2nd Annual Scandinavian Workshop in Algorithmic Theory, SWAT ’90, 1990.

TWO-DIMENSIONAL MATCHING 323

[8] Y. BAKER, A techniquefor extending rapid exact-match string matching to arrays ofmore than one dimension,
SIAM J. Comput., 7 (1978), pp. 533-541.

[9] R. BIRD, Two dimensional pattern matching, Inform. Process. Lett., 6 (1977), pp. 168-170.
10] R. BOYER AND J. MOORE, A fast string searching algorithm, Comm. ACM, 20 (1977), pp. 762-772.
[11] M. T. CHEN AND J. SEIFERAS, Efficient and elegant subword tree construction, in Combinatorial Algorithms

on Words, A. Apostolico and Z. Galil, eds., NATO ASI Series F: Computer and System Sciences, 1985,
Ch. 12, pp. 97-107.

[12] M. FISCHER AND M. PATERSON, String matching and otherproducts, in Complexity of Computation, R. M. Karp,
ed., SIAM-AMS Proceedings, 7 (1974), pp. 113-125.

[13] Z. GALIL, Open problems in stringology, in Combinatorial Algorithms on Words, A. Apostolico, ed., Vol. 12,
NATO ASI Series F, 1985, pp. 1-8.

14] Z. GALIL AND K. PARK, Truly alphabet-independent two-dimensional pattern matching, Proc. 33rd IEEE FOCS,
1992.

15] Z. GALIL AND J. SEIFERASS, Time-space-optimal string matching, J. Comput. System Sci., 26 (1983), pp. 280-
294.

16] D. HAREL AND R. TARJAN, Fast algorithms forfinding nearest common ancestor, J. Comput. System Sci., 13
(1984), pp. 338-355.

[17] R. KARP, R. MILLER, AND A. ROSENBERG, Rapid identification of repeated patterns in strings, arrays and trees,

Symposium on the Theory of Computing, 4 (1972), pp. 125-136.
[18] R. KARP AND M. RABIN, Efficient randomized pattern-matching algorithms, IBM J. Res. Develop., (1987),

pp. 249-260.
19] D. KNUTH, J. MORRIS, AND V. PRATT, Fastpattern matching in strings, SIAM J. Comput., 6 (1977), pp. 323-350.
[20] G. LANDAU AND U. VISHKIN, Efficient string matching in the presence oferrors, Proc. 26th IEEE FOCS, 1985,

pp. 126-126.
[21 M. MAIN AND R. LORENTZ, An O(n log n) algorithmforfinding all repetitions in a string, J. Algorithms, (1984),

pp. 422-432.
[22] E.M. MCCREICHT, A space-economical suffix tree construction algorithm, J. ACM, 23 (1976), pp. 262-272.
[23] A. ROSENFELD AND A. KAK, Digital Picture Processing, Academic Press, New York, 1982.
[24] U. VISHKIN, Deterministic sampling a new techniqueforfast pattern matching, SIAM J. Comput., 20 (1991),

pp. 303-314.
[25] P. WEINER, Linearpattern matching algorithm, Proc. 14 IEEE Symposium on Switching and Automata Theory,

1973, pp. 1-11.
[26] R. F. ZHU AND T. TAKAOKA, A technique for two-dimensional pattern matching, Comm. ACM, 32 (1989),

pp. 1110-1120.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 324-334, April 1994

() 1994 Society for Industrial and Applied Mathematics
008

TRADING SPACE FOR TIME
IN UNDIRECTED s-t CONNECTIVITY*

ANDREI Z. BRODER, ANNA R. KARLINt, PRABHAKAR RAGHAVAN, AND ELI UPFAL

Abstract. Aleliunas et al. [20th Annual Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1979, pp. 218-223] posed the following question: "The teachability problem for
undirected graphs can be solved in log space and O(mn) time [m is the number of edges and n is the number of
vertices] by a probabilistic algorithm that simulates a random walk, or in linear time and space by a conventional
deterministic graph traversal algorithm. Is there a spectrum of time-space trade-offs between these extremes?" This
question is answered in the affirmative for sparse graphs by presentation of an algorithm that is faster than the random
walk by a factor essentially proportional to the size of its workspace. For denser graphs, this algorithm is faster than
the random walk but the speed-up factor is smaller.

Key words, space-time tradeoff, connectivity testing, parallel random walks

AMS subject classifications. 05C40, 05C85, 60J15, 68Q25

1. Motivation and results. We consider the problem of s-t connectivity on an undirected
graph (USTCON). Given a graph G with n vertices and rn edges, and given two vertices s and
of G, we are to decide if s and are in the same connected component. We are interested in

space-bounded algorithms for USTCON, which is an important problem in the study of space-
bounded complexity classes [3], [8]. Throughout this paper, we assume that our workspace
takes the form of p registers, each capable of storing a log n-bit number.

There are two well-known approaches to solving USTCON: via a deterministic graph search
on G (e.g., depth-first search), and via a simulation of a random walk on G]. (The standard
random walk on G is the stochastic process associated with a particle moving from vertex to
vertex according to the following rule: if di is the degree of vertex then the probability of a
transition from vertex to vertex j is 1/di if {i, j} is an edge in G and 0 otherwise.)

The first approach can be implemented to run in time O (m) using space O (n). The latter
requires space O(1), and has been shown to decide USTCON in time O(mn) with one-sided
error (i.e., if s and are in the same connected component, the algorithm outputs YES with
probability at least 0.5; if they are in different components, the algorithm outputs NO). For
both these algorithms, the product of time and space is O(mn).

Given space that is insufficient for depth-first search, can we decide USTCON faster than
via a random walk? More precisely, given space p < n, can we bridge the gap between the
depth-first search and the random walk by devising an algorithm that runs in time O(mn/p)?
Considering the time-space product achieved at the two extremes, this seems a likely conjec-
ture.

In this paper we present an algorithm that runs in time O(m2 log5 n/p) in space O(p).
Therefore, for linear-sized graphs (i.e., m O(n)), it achieves the bound conjectured above
within a poly-log factor. For denser graphs, our algorithm does not achieve the bound, but it
is faster than the random walk for m !p sufficiently small.

The informal description of the algorithm is as follows.

*Received by the editors March 29, 1990; accepted for publication (in revised form) November 30, 1992.
DEC Systems Research Center, Palo Alto, California 94301.
DEC Systems Research Center, Palo Alto, California 94301. Part of this research was done while the author

was a research associate at Princeton University. Research supported in part by National Science Foundation grant
DCR-8605961 and Office of Naval Research contract N00014-87-K-0467.

IBM T.J. Watson Research Center, Yorktown Heights, New York 10598.
IBM Almaden Research Center, San Jose, California 95120 and Department ofApplied Mathematics, Weizmann

Institute of Science, Rehovot, Israel. Work at the Weizmann Institute supported in part by a Bat-Sheva de Rothschild
Award and by a Revson Career Development Award.

324

SPACE FOR TIME IN UNDIRECTED s-t CONNECTIVITY 325

Algorithm STConn.
1. Repeat O (log n) times

(a) Choose p random vertices according to the stationary distribution of the random
walk on G. (The stationary distribution of the random walk is fro do/(2m)
where do is the degree of vertex v.) Call these vertices, together with s and t,
leaders.

(b) Repeat O(log n) times: Starting from each leader, take a random walk of length
rl O(m2/p2 log n). If such walks connect two leaders, then mark them and
all the other leaders known to be connected to them, as belonging to the same
component. If at any point s and are marked as being in the same component,
then stop and report "connected."

2. Report "probably not connected."
End STConn.

A more precise description of the algorithm is given in 3. Clearly the space required
is O(p) and the time required is O(m 2 log5 n/p). (The leaders are marked via a standard
union-find algorithm.) Notice that this algorithm resembles standard search when p n and
the random walk when p 0. (However, throughout this paper we shall assume p > 0.)

There are three facts that must be proven in order to show that this algorithm works. The
first is to show that a set of p random walks of length r, one from each of the randomly
chosen leaders, visits all the vertices of a connected graph with high probability. Otherwise
an adversary could choose s and among those vertices unlikely to be visited from the other
leaders and conceivably foil the algorithm. In other words, we need to derive a bound on
the expected time required by p parallel and independent random walks to cover the graph,
a problem of interest in its own right. Typically, results about graph coverage rely heavily
on the long-run behavior of the corresponding Markov chain and its convergence to a limit
distribution. Here we must prove something about short-term behavior of the Markov chain
and coverage of local neighborhoods in a graph.

The second fact to prove is that if s and are in the same component and enough leaders
are chosen within that component, then with high probability s and are linked up after a
small number of walks from each leader. Coverage of the graph as described above does not
ensure linkage, since s and may be visited only by walks from two disjoint sets of leaders
that are never linked. Furthermore, all the vertices in G could be visited by the walks even
with s and in different components.

The third fact to show is that, with high probability, within O (log n) choices of the set of
leaders, the component containing s and gets enough leaders at least once.

To aid the intuition of the reader, let us consider the case when G is a simple path
on n vertices. For p leaders chosen at random, with high probability, the maximum gap
between two leaders is no more than n In n /p; the expected time to cover this maximum gap is
(R)(n 2 log2 n/p2). Hence O(log n) trials (random walks of length O(n2 log2 nip2) from each
leader) will almost surely cover all the gaps between them for a total of (R) (n 2 log n/p) steps.
Thus each leader "discovers" its closest neighbor leader in both directions, and therefore all
leaders are marked as being in the same component.

Extending this technique to even 3-regular graphs requires considerably more complicated
machinery and the general bound is weaker. (In particular, the walks need to have length
O(n2 log5 nip2) and we need to try O(log n) choices for leaders.)

Our main results are:
THEOREM 2.4. Let G be a connected, undirected graph with n vertices and m edges. Let

L be a subset of p vertices chosen at random according to the stationary distribution. Let
So(t) denote the set of vertices seen in a random walk of length starting at v. Define the
random variable Cp by

326 A.Z. BRODER, A. R. KARLIN, E RAGHAVAN, AND E. UPFAL

Cp inf{t U S(t) V},
leL

that is, Cp is the time neededfor p parallel random walks to visit all the vertices in the graph.
Then

(m2 lgan)E(Cp)-- O p2

THEOREM 3.1. There is an algorithm that, given an undirected graph G with n vertices
and m edges, and given two vertices s and of G, decides USTCON with one-sided error

using space p and time O(m2 log n/p). Ifs and are in the same connected component, the
algorithm outputs YES with probability O(n -1), otherwise it outputs NO.

Remark. The algorithm mentioned in Theorem 3.1 runs in time, that is, within a log5 n
factor of our target time-bound of O(mn/p) for linear-sized graphs. It is conceivable that a
better analysis would lead to a similar algorithm with a lower overhead factor; however, the
path example shows that a factor of log n is inherent to our approach.

2. Covering a graph with p random walks. In this section we derive an upper bound
on the time taken by p parallel and independent walks to cover the graph (Theorem 2.4).

We denote by {v, w} the undirected edge between vertices v and w and by Iv, w] its
directed version. For the purposes of the proof, we need to look at the random walk in two

ways" first, as a Markov chain X(t) where each state is a vertex in G (the vertex process);
second, as a Markov chain Y(t) where each state is a directed edge (the edge process). The
transition rule for the vertex process is that if X(t) v, then X(t + 1) is equally likely to be
any of the neighbors of vertex v. The edge process is defined by Y(t) [X(t 1), X(t)],

>_ 1. The stationary distribution of the vertex process, denoted Jr, is given by 7to do/(2m)
where do is the degree of the vertex v, and the stationary distribution of the edge process,
denoted Jr’, is given by Jr(o,wl 1/(2m).

Let No(u, T) (respectively, No([u, w], T)) be the number of visits to the vertex u (re-
spectively, traversals of [u, w]) in a random walk of length T starting at v. (By definition,
No(v, 0) 0.) Let So(T) (respectively, Eo(T)) be the set of vertices (edges) visited in a
random walk of length T starting at v. Finally, let Ho(u) (respectively, Ho([u, w]) be the
first time the vertex u (the edge [u, w]) is encountered by a random walk starting from v.
(We define Ho(v) to be 1/Jro, i.e., the return time to v.) For all of these random variables, a

replacement of the subscript v with the subscript Jr (respectively, [v, w]) denotes a random
walk starting at the stationary distribution (respectively, the directed edge [v, w]).

LEMMA 2.1. Let G be a connected, undirected graph on n vertices. Consider a random
walk oflength r startingfrom the stationary distribution. Thenfor every directed edge [v, w],

Pr([v, w]6 Er(r)) >_

Proof. Clearly

E(N ([v, w], r))
(NI)"+ E v,wl([v, w], r)

E(Nrr([v, w], r))= Zl<t<rPr(Hzr([v, w])= t)(1-I-E(N[v,wl([V, w],r-t)))
<_ Pr(Hr ([v, w])_< z’)(1 + E(Nto,wl([v, w], r))).

But Pr(H([v, w]) < r) Pr([v, w] E,(r)), yielding the lemma. S

SPACE FOR TIME IN UNDIRECTED s-t CONNECTIVITY 327

LEMMA 2.2. Let G be a connected, undirected graph with n vertices and rn edges. Then

for every directed edge Iv, w],

E Nio,ol([v, w], r) < m + ,/r Inn,

where , is an absolute constant.

Proof We consider the edge process Yr. From standard results in renewal theory [9, Thm.
3.7.1 we obtain that

zrtv,01 r + E Hrto..(r)([v, w]) 1.

Clearly

(2)

Let d(x, y) be the distance (the length of the shortest path) between two vertices x and y
in G. Let c be a sufficiently large constant.

We first bound E(Hx.()(v)) using the fact that d(Xw(r), w) is not likely to be more

than c/r In n, for some c > 0 such that c/r In n is an integer. By the law of total probability

(3)

Since d(Xo(r), v) < + d(Xo(r), w), we obtain from the main result of [4] that

(4)

Pr(d(Xw(r), v)> c/r inn) < Pr(d(Xw(r), w)> c/r Inn)
< y 2 (Zrww) exp (d(w’x)2)--
x:d(w,x)ac

2r

c2r lnn)3nlexp
2r

for a sufficiently large c.
For any two vertices x and y in the same component we can apply the bound implicitly

proven in

(5) E(Hx(y)) < 2md(x, y) < n 3.

Plugging equation (5) and equation (4) in equation (3) we obtain that

(6) E(Hx,(v)) < 2cm/r Inn + 2.

328 A.Z. BRODER, A. R. KARLIN, E RAGHAVAN, AND E. UPFAL

Turning to the second term of the right side of equation (2), we observe that

(7) E(H([v,/])) < 2m + 1,

because the expected time to return to v given that v was left through an edge other than
[v, w] is at most 2m/(do 1) and the expected number of returns to v before exiting through
[v, w] is d 1. (The former fact follows from 2m/do E(Ho(v)) > (do 1)/do E(H
v not left via [v, w]).)

Combining equations (6), (7), and (2), we obtain that

E(Hrt lr)([v, w])) < 2cm/r Inn + 2m + 3.

Finally, from equation (1), because rr(o.ol 1/(2m) for any edge Iv, w]

E Nl,ml([v, w], r) _< m + c/r Inn + 0(1).

From here, the lemma follows with an appropriate value for ,.
LEMMA 2.3. Let G be a connected, undirected graph with n vertices and rn edges. Let L

be a set of p vertices (called leaders) in G chosen independently according to the stationary
distribution. For every constant Cl > 0 there exists a constant c2 such thatfor every directed
edge [v, w], a set of p walks of length C2m2 In n/p2, onefrom each ofthe leaders, satisfies

Pr([v, w]E U El(C2m2 ln3 n/p2)) >1
IL He

Proof. For p O(log n) the conclusion is obvious. For larger p we start from

Pr([v, w], U E,(r))- H Pr([v, w] E,(r)),
I6L 16L

and, since each vertex is chosen independently according to the stationary distribution,
Lemma 2.1 gives us a bound on Pr([v, w] El(r)). By Lemma 2.2 and because

E(N (Iv, w], r)) r/Zm, there exists a constant c3 > 0 such that

Pr([v,w]UE,(r))< (1- c3v/)P
6L m l

provided that r O(m 2 logn). Now taking r c2m2 In n/p2 yields the result.
THEOREM 2.4. Let G (V, E) be a connected, undirected graph with n vertices and

m edges. Let L be a subset of p vertices chosen at random according to the stationary
distribution. Let So(t) denote the set of vertices seen in a random walk of length starting at

v. Define the random variable Cp by

Cp inf{t U St(t) V},
16L

that is, Cp is the time neededfor p parallel random walks to visit all the vertices in the graph.
Then

(m2 lg3n)E(Cp)-- O p2

Proof Corollary of Lemma 2.3. [

In fact Lemma 2.3 implies the stronger result that the time needed for p parallel random
walks to traverse every edge in the graph is O(m2 log n/p2).

SPACE FOR TIME IN UNDIRECTED s-t CONNECTIVITY 329

3. An algorithm for USTCON in O(p) space. We now present the algorithm for USTCON
using O(p) space. As a subroutine, we use a standard Union/Find algorithm.

We use three constants, kl, k2, and k3, in the description of the algorithm, which must
be chosen sufficiently large. The choice of these constants determines the error probability
of the algorithm. For ease of reference, we note here that kl is the constant c2 of Lemma
2.3, Theorem 4.1, and Corollary 4.2, k is the constant c of Lemma 4.6, and k3 is bound in
Theorem 4.7.

algorithm STConn;
begin

do k3 In n times begin
Let L be a set of p elements of V, chosen independently at
random according to the stationary distribution;

L :- L U{s, t};
(* Set(l) are the leaders known to be connected to leader *)
for every in L do Set(l) := {1};
do k2 Inn times begin

for every in L do begin
Take a random walk Xt(t), starting at l, of length
klm 2 In nip2.

At each step, if Xt(t) L then
Union(Find(X (t)), Find(l));

end;
end
if Find(s) =Find(t)

then return ("YES: s and are connected")
end;

return ("NO: s and don’t seem to be connected") end.

THEOREM 3.1. Given an undirected graph G with n vertices and rn edges, and given
two vertices s and of G, the algorithm STConn decides USTCON with one-sided error using
space O(p) and time O(m2 log5 n/p).

Proof. Choosing a random set of p vertices according to the stationary distribution can

be done in O(m) steps using O(p log n) random bits and O(p) space. Since only O(p) space
can be used to store L and do lookups on, a binary search tree or a perfect hash function must
be used. (Constructing a perfect hash function for storing L requires expected time O(p)
[6].) If the unions are weighted and each union causes path compression on all elements of
the set, then each find has cost O(1). Since at most O(n) non-trivial unions are performed,
the cost of all the unions is O(n log n). Performing all O(logn) random walks of length
O(m2 log nip2) takes time O(m2 log4 nip2) per leader for a total of O(m2 log4 n/p) time.
Since this is also the total number of finds and lookups performed, this is the running time of
each execution of the outermost loop.

Remark. Note that this algorithm is easily parallelizable using p processors and O(p)
space. The parallel hashing scheme described in [7] can be used to implement a parallel
version of this algorithm that runs on p processors, n < p < n 1-’, > 0, that are connected
by a bounded degree network. Briefly, storing the leader set using parallel hashing allows for
the p processors to execute parallel unions and parallel finds in time O(p’) for any ’ > 0,
and consequently the random walks from each of the leaders can be executed in parallel.
The resulting parallel implementation of the STConn algorithm runs in time O(m2+’’/p2)
("> ’).

330 A.Z. BRODER, A. R. KARLIN, P. RAGHAVAN, AND E. UPFAL

4. The correctness of STConn. Because our algorithm has one-sided error, it suffices
to analyze its correctness in the case when s and are in the same component of G. If G is
actually connected, the results of 2 show that, in one pass through the inner loop of STConn,
every edge is traversed with high probability. From this, it is possible to deduce that every
leader is discovered by some leader. As mentioned earlier, however, this is not enough to

prove that s and become linked. The rest of this section shows that s and will be "linked
up" with high probability after O(log n) passes through the inner loop.

THEOREM 4.1. Let G be a connected, undirected graph with n vertices and m edges. Let
L be a set ofp leaders, each chosen at random according to the stationary distribution. Then
for any c > 0 there is a constant c2 > 0 such that

Pr(L (q S[v,wl(C2m2 In nip2) 5 13) >
nCl

where S|,o](T) denotes the set ofdistinct vertices visited in a T step random walk starting at

[v,w].
Proof. The proof is very similar to that of Lemma 2.3. As before the case p O(log n)

is trivial.
Let e be a directed edge chosen uniformly at random. By a proof virtually identical to

that of Lemma 2.1,

Pr(e Eto,wl(r)) >
E(Nto,I (e, r))

+ E(N(e, r))

Obviously, if e is chosen uniformly at random then

E(N[o,wl(e, r))
2m

By Lemma 2.2

E(Ne(e, r)) < mm + y/r Inn.

Hence, for e chosen uniformly at random, there exists a constant c such that

Pr(e E[o,u,l(c2m 2 in n/p2)) > C3
In n

provided that P 92 (log n).
In order to choose a leader according to the stationary distribution, one can choose a

directed edge e uniformly at random and let the leader be the head of e. Since the probability
of reaching a leader is greater than or equal to the probability of traversing the edge chosen to
determine it, we obtain that

Pr(L A S[v,wl(c2m 2 In nip2)) (1 Pr(e E[v,w](c2m 2 In n/p2)))p <_
F/el

for a sufficiently large C2. I-]

COROLLARY 4.2. Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen at random according to the stationary distribution. Then

for any cl > 0 there is a constant c2 > 0 such that

Pr(L l’q Ss(c2m2 In nip2) 5) >_
nCl

SPACE FOR TIME IN UNDIRECTED s-t CONNECTIVITY 331

and

Pr(L fq St(c2m2 in n/p2)

_
0) >

nCl

Let L be any set of p leaders. We say the set L is good if for an absolute constant
(determined in Lemma 4.3 below) the following two properties hold.

Property 1. The probability that a set of p independent random walks of length r

1/2km2 In n/p2, one from each leader in L, traverses every edge in G is at least 1/n3.
Property 2. For every edge [v, w]

starting from Iv, w] visits some leader in L is at least 1/n3.
LEMMA 4.3. Let G be a connected, undirected graph with n vertices and m edges. Let

L be a set of p leaders chosen uniformly at random according to the stationary distribution.
Then Pr(L is good) > 2/n.

Proof. Say that a set of random walks, one from each of the leaders, is unsuccessful for
Iv, w] if Iv, w] is not visited by any of them. Letting cl 6 in Lemma 2.3, we see that
at most 1/n of the possible leader sets can have probability greater than 1/n 3 of yielding
unsuccessful random walks for any fixed Iv, w]. Similarly, letting Cl 6 in Theorem 4.1, we
see that at most /n of the possible leader sets have probability greater than /n of remaining
undiscovered in a random walk of length r from any fixed edge [v, w]. The probability that
a leader set is not good is bounded by the sum of the probabilities that it isn’t good because it
violates properties or 2. Since there are less than n2/2 edges, the probability that a leader set
is bad is bounded by 1/n. The constant kl is determined by the requirements of Lemma 2.3
and Theorem 4.1.

LEMMA 4.4. Let G be a connected, undirected graph with n vertices and rn edges. Let
L be a set of p leaders chosen uniformly at random according to the stationary distribution.
Suppose that L is a good set of leaders. Let A and B be a partition of L into two nonempty
subsets. Consider a random walk of length 2r from each of the leaders in L. Then the
probability that some leader in A is visitedfrom some leader in B or vice versa is greater than
1/18.

Proof. (Unless stated otherwise, all edges referred to in this proof are directed.) We assign
to each edge in the graph two labels: a "To" label T and a "From" label F. These labels are
subsets of the set {A, B}. By definition, A T (e) (respectively, B T (e)) if the probability
that e is visited by a walk of length z emanating from one of the leaders in A (respectively,
a walk from one of the leaders in B) is at least 1/3. Analogously, A F(e) (respectively,
B F(e)) if the probability that some leader in A (respectively, B) is visited in a random
walk of length z starting from e is at least 1/3.

Properties and 2 of good leader sets imply that for each edge neither label is empty. We
now consider four cases.

Case 1. There is some edge [v, w] with A F([v, w]) and B T([v, w]) or vice
versa. Then with probability > 1/3 edge Iv, w] is visited by one of the random walks of
length r originating in A and with probability >_ 1/3 a leader in B is visited in the remaining
at least r steps. Hence, with probability >_ 1/9 a leader in B is visited from a leader in A.
After eliminating this case, the only remaining possibility is that for every edge F([v, w])
T ([v, w]) {A or F([v, w]) T ([v, w]) {B}.

Case 2. There is some undirected edge {v, w} such that F([v, w]) T([v, w]) {A},
and F([w, v]) T([w, v]) {B}. Then with probability > 1/3, Iv, w] is visited by one of
the walks of length r originating in A and hence the vertex v is visited by one of these walks
with probability > 1/3. Since a leader in B is visited from [w, v] in r steps with probability >
1/3, a leader in B is visited from v in r steps with probability >_ 1/3. Hence with probability
> 1/9 a leader in B is visited from a leader in A.

332 A.Z. BRODER, A. R. KARLIN, E RAGHAVAN, AND E. UPFAL

Case 3. No label in the graph contains A or no label in the graph contains B. Without
loss of generality, consider the first of the two conditions. Then every edge directed towards
leaders in A, has a "To" label of B. Therefore, with probability > 1/3, each such edge is visited
by one of the random walks of length r originating in B and a leader in A is immediately
visited. Hence, with probability > 1/3, a leader in A is visited from a leader in B.

Case4. For each undirected edge {v, w}, we have T([v, w]) F([v, w]) T([w, v])
F([w, v]) {A} or we have T([v, w]) F([v, w]) T([w, v]) F([w, v]) {B}. Since
case 3 does not hold and the graph is connected, there must be a vertex v that is simultaneously
the endpoint of some all-A labeled edge and some all-B labeled edge. Assume without loss of
generality that at least 1/2 of the undirected edges with one endpoint at v have all their labels
equal to B. Then since some edge [w, v] has an A T-label, with probability > 1/3 v is visited
in the first r steps of the random walks originating at A. Since the majority of edges leaving
v have a B F-label, with probability > 1/2 one of these edges will be traversed and then with
probability > 1/3, a leader in B will be reached during the remaining at least r steps. Hence
with probability > 1/18 a leader in B is visited from a leader in A. E]

We say that a subset of leaders forms a component if, during some prior phase of the
algorithm, they have all been connected up with one another. During a particular phase, we
say that a component C is successful if it discovers some other component or some other
component discovers it. The previous lemma proves that, if the leader set is good, every
component has probability at least 1/18 of being successful. The next lemma shows that the
number of separate components decreases exponentially with the number of phases.

LEMMA 4.5. Let G be a connected, undirected graph with n vertices and rn edges. Let
L be a set of p leaders chosen uniformly at random according to the stationary distribution.
Suppose that L is a good leader set. Let Ni be the number ofcomponents after the th phase.
Then there exist constants ot and , with 0 < or, fl < 1, such that if Ni > then

Pr(Ni+ > 3Ni) < .
Proof. Plainly, Ni+l equals Ni minus the number of non-redundant links formed in phase

i. Since the number of such links formed in phase exceeds one-half the number of successful
components, and the previous lemma shows that the probability that a component is successful
is at least 1/18,

E(number of links formed in phase i) >
-2.18

Hence,

E(Ni+I) < (1---7)Ni

and so there is a positive constant/3 < such that

Pr(Ni+I > 3Ni) < u.]

LEMMA 4.6. Let G be a connected, undirected graph with n vertices and rn edges. Let
L be a set ofp leaders chosen uniformly at random according to the stationary distribution.
Suppose that L is a good leader set. Let Ni be the number ofcomponents after the th phase.
Thenfor any constant cl > 0, there is a constant c2 > 0 such that

Pr(Nc2 in n > 1) _<
ncl

SPACE FOR TIME IN UNDIRECTED s-t CONNECTIVITY 333

Proof We say that a phase is successful if Ni+ < flNi. Since the leader set is fixed
and good, successive phases are independent (the random walks are independent), and by the
previous lemma, phase has probability greater than c of being successful for each i. But
the probability that No2 Inn is greater than is bounded by the probability that there are fewer
than ln/ n successful phases out of c2 In n phases. This in turn is bound by the probability
that there are fewer than ln/ n successes in c2 In n Bernoulli trials with probability greater
than c of success, which by Chernoff’s bound is less than 1/nc for appropriately chosen
C2.

THEOREM 4.7. The algorithm STConn decides USTCON using space O(p) and time
O((m2 log5 n)/p) with one-sided error, lf s and are in the same connected component, the
algorithmfails to output YES with probability 0(n-); ifs and are in different components,
it outputs NO.

Proof. If the graph consists of a single connected component, then we need only consider
one execution of the outer loop of the algorithm, wherein the algorithm can fail to output YES
when it should if either the leader set is not good or the leader set is good but the number of
components did not reduce to 1. By Lemma 4.3, the former has probability at most 1/n, and
by Lemma 4.6 the latter, when choosing the constant k3 appropriately, has probability at most
1/n, and so the theorem follows in this case.

The other case is when s and are in a single component C containing h vertices and rh
edges. If mZ/p2 > tht7 or fi < In3/2 n, then in k3 Inn random walks of length km2 In nip2

starting from s, the vertex will be seen with overwhelming probability, since the expected
cover time of the component is bounded by 2th fi].

Otherwise, if mZ/p2 < tht, the algorithm can fail to output YES when it should, if either
none of the c0 Inn selections of leaders include enough leaders that are in the component C,
or if some selection of leaders includes enough leaders in C but the associated random walks
do not succeed in connecting s to t. For the latter case, we observe that, in each of the co Inn
executions of the outer loop of the algorithm, the expected number of leaders that are chosen
from C is [prh/m. If/3/2 leaders are indeed chosen from C, then since

c3m
2 In n c3/ 2 In n

p2 /32

the analysis given for a single connected graph on h vertices and th edges with/3 leaders yields
a failure probability of O(h-1) o(1). To bound the probability that a leader selection is not
sufficiently dense, we note that the probability that fewer than/3/2 leaders are chosen from C
is bounded by the probability of fewer than/3/2 successes in p trials with probability th !m of
success. By standard bounds, this probability is at most

e-p, <e

for some constant c < (since m/p < x/-fi). Therefore, the probability that a single
execution of the outermost loop fails is bounded by c + o(1), and hence the overall probability
of failure is bounded by O (n -1), for a sufficiently large constant k3. [-1

5. Open problems. Can the bound on the parallel cover time given in Theorem 2.4 be
improved? Note that we bound the cover time for all vertices by bounding the cover time for
all edges. It is not clear that this is necessary.

Theorem 3.1 shows that for p slightly larger than the average degree rn/n, our algorithm
runs faster than the random walk. Devising an algorithm that runs in time O(mn logk n/p) is
perhaps the most interesting open problem.

334 A.Z. BRODER, A. R. KARLIN, E RAGHAVAN, AND E. UPFAL

There is no fundamental reason why our upper bound is the best possible. We thus
hope that this work will spark interest in proving a time-space tradeoff for USTCON, even in
a restricted model of space-bounded computation such as the JAGs of Cook and Rackoff [5].
Beame et al. [2] give a number oftime-space tradeoffs for structured models based on automata
that traverse graphs. For one natural variant that admits implementations of our algorithms,
they show that the product of time and space is f2 (n 2) for d-regular graphs (d > 3), and is
f2 (m n) for non-regular graphs.

Acknowledgments. We are grateful to Lyle Ramshaw for a thorough reading of the
manuscript and many useful comments and corrections. We also thank Larry Ruzzo and
Martin Tompa for their many comments and suggestions, and also the anonymous referees.

REFERENCES

[1] R. ALELIUNAS, R. M. KARP, R. J. LIt’TON, L. LovAsz, AND C. RACKOFF, Random walks, universal traversal
sequences, and the complexity ofmaze problems, in 20th Annual Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1979, pp. 218-223.

[2] E BEAME, A. BORODIN, P. RAGFIAVAN, W. L. Ruzzo, AND M. TOMPA, Time-space tradeoffsfor undirected graph
traversal, in Proc. of the 31st IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1991, pp. 429-438.

[3] A. BORODIN, S. A. COOK, P. W. DYMOND, W. L. Ruzzo, AND M. TOMPA, Two applications of inductive counting

for complementation problems, SIAM J. Comput., 18 (1989), pp. 559-578. See also 18 (1989), p. 1283.
[4] T. K. CARNE, A transmutation formulafor Markov chains, Bull. Sci. Math., 109 (1985), pp. 399-405.
[5] S. A. COOK AND C. W. RACKOFF, Space lower bounds for maze threadability on restricted machines, SIAM J.

Comput., 9 (1980), pp. 636-652.
[6] M.L. FREDMAN, J. KOMLOS, AND E. SZEMERDI, Storing a sparse table with 0(1) worst case access time, J. ACM,

31 (1984), pp. 538-544.
[7] A.R. KARLIN AND E. UPFAL, Parallel hashing: An efficient implementation ofshared memory, J. ACM, 35 (1988),

pp. 876-892.
[8] H.R. LEwIs AND C. H. PAPADIMITRIOU, Symmetric space-bounded computation, Theoret. Comput. Sci., 19 (1982),

pp. 161-187.
[9] S. Ross, Stochastic Processes, Wiley, New York, 1983.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 335-354, April 1994

S6ciety for Industrial and Applied Mathematics1994
009

BOUNDS ON THE COSTS OF MULTIVALUED REGISTER IMPLEMENTATIONS*

SOMA CHAUDHURI AND JENNIFER L. WELCH

Abstract. A fundamental aspect of any concurrent system is how processes communicate with each other.
Ultimately, all communication involves concurrent reads and writes of shared memory cells, or registers. The stronger
the guarantees provided by a register, the more useful it is to the user, but the harder it may be to implement in practice.
This paper considers the problem of implementing a k-ary regular (respectively, safe) register out of binary regular
(respectively, safe) registers, assuming a single writer. While algorithms have been developed previously for these
problems, no nontrivial lower bounds were known. The cost measures considered here are the number of physical
registers and the number of reads and writes on the physical registers required to implement the logical register. Tight
bounds are obtained on the cost measures in many cases, and interesting trade-offs between the cost measures are

identified. The lower bounds are shown using information-theoretic techniques. Two new algorithms are presented
that improve on the costs of previously known algorithms: the hypercube algorithm implements a k-ary safe register
out of binary safe registers, requiring only one physical write per logical write; and the tree algorithm implements a

k-ary regular register out of binary regular registers, requiring only [log k] physical operations per logical operation.
Both algorithms use novel combinatorial techniques.

Key words, registers, concurrent distributed system, concurrent computation, shared memory registers, time
and space complexity

AMS subject classifications. 68Q22, 68Q25

1. Introduction. A fundamental aspect of any concurrent system is how processes com-
municate with each other. Ultimately, all communication involves concurrent accesses to
shared memory cells, or registers. The stronger the guarantees provided by the shared mem-
ory, the more useful it is to the user, but the harder it may be to implement in practice. Thus
it is of interest to determine which types of registers can implement which other types. Many
such implementations are known, e.g., [1], [2], [6], [7], [10], [11], [12], [13], [15], [16], [17],
among many others.

The contribution of this paper is to study the costs of implementing one type of register
(the logical register) out of registers of another type (the physical registers). Cost measures
considered are the number of physical registers and the number of operations on the physical
registers used to perform the operations of the implemented register. Bounds on the number
of physical operations can be used to obtain time bounds for the logical operations in terms
of the time taken by the physical operations.

A register is a shared variable or memory cell that supports concurrent reading and
writing by a collection of processing entities. The operations of reading and writing are
not instantaneous; instead, they have duration in time, from a starting point to an ending
point. Although each entity accessing a register is assumed to issue operations sequentially,
operations on behalf of different entities can overlap in time.

A variety of types of registers can be defined, differing in several dimensions, including
the number of concurrent readers supported, the number of concurrent writers supported, the
number of values the register can take on, and the strength of the consistency guarantees
provided in the presence of concurrent operations. Throughout this paper we assume there

*Received by the editors November 19, 1990; accepted for publication (in revised form) November 30, 1992.
This work was done while the authors were at the Department of Computer Science, University of North Carolina at

Chapel Hill, and supported in part by National Science Foundation grant CCR-9010730, an IBM Faculty Development
Award, and National Science Foundation Presidential Young Investigator Award CCR-9158478.

Department of Computer Science, Iowa State University, Ames, Iowa 50011
(chaudhur@cs. iastate, edu).

Department of Computer Science, Texas A&M University, College Station, Texas 77843
(welch@cs. tamu. edu).

335

336 SOMA CHAUDHURI AND JENNIFER L. WELCH

is only one writer, leaving three parameters of interest: the number of readers, the number
of values, and the consistency guarantees. We distinguish between 1-reader registers and
n-reader registers, for n > 1, and between binary registers and k-ary registers, for k > 2. (A
k-ary register can take on k different values.)

Lamport [6] defines three consistency guarantees of increasing strength, namely, safe,
regular, and atomic. Roughly speaking, a read of a safe register always returns the most recent
value written to the register, unless the read overlaps with a write, in which case any legal
value of the register can be returned. A read of a regular register always returns the most
recent value written, unless the read overlaps one or more writes, in which case it returns
either the old value or one of the values written by an overlapping write. An atomic register
provides the illusion, via the values returned by read operations, that each operation happens
at a single instant in time within its range, i.e., that the operations are totally ordered. In this
paper, we only consider safe and regular registers. In particular, we consider the problem
of implementing an n-reader k-ary regular (respectively, safe) register out of n-reader binary
regular (respectively, safe) registers.

We study the costs incurred by these implementations. Let M, R, and W be the minima,
over all implementations between two particular types of registers, of the number of physical
registers, the maximum number of physical operations in a logical read, and the maximum
number of physical operations in a logical write, respectively. Our algorithms will involve no
physical reads in a logical write and no physical writes in a logical read. Our lower bound
results give bounds on the number of physical reads per logical read, and the number of
physical writes per logical write. These are stronger results than just giving bounds on the
number of physical operations per logical action.

Our results are summarized in Tables and 2. Table gives the bounds when all algorithms
are considered. Table 2 gives the bounds when certain classes of algorithms are considered,
as specified by the column labeled S--namely, 1-write algorithms, c-write algorithms, and
[log k]-register algorithms. (All logarithms are base 2.)

For implementing a k-ary safe register out of binary safe registers, we show tight bounds
of R [-logk], W 1, and M [-logk-]. The upper bound of on W is obtained from
a new algorithm, which we call the hypercube algorithm. The best previous upper bound on
W was [log k] [6]. These three optimal bounds are not obtained simultaneously in a single
algorithm, and in fact, we show some nontrivial trade-offs between the three cost measures.

For implementing a k-ary regular register out of binary regular registers, we show the tight
bound that R [log k], and the bounds <_ W < [log k, and max{ [log k + 1,2(log k)
loglogk 2} _< M < min{k 1,n(31ogk + 68)}, where n is the number of readers of
the logical register. The upper bounds on R and W are simultaneously achieved by a new
algorithm, which we call the tree algorithm. We also present some lower bounds on R and M
that follow if we restrict attention to implementations that use only a small constant number
of physical writes per logical write.

The lower bounds in Table for safe registers and those on R and W for regular registers
are obvious from information-theoretic considerations. All of the remaining lower bounds
are new. Little previous work has been done concerning lower bounds or trade-offs for
register implementations. One such previous result is in [6], where it is shown that in any
implementation of an atomic register using regular registers, a read of the logical register must
involve a write to a physical register. Tromp [13] uses this result to show that three binary
safe registers are necessary to construct a binary atomic register.

In 2 we present our model and some results for all implementations. Section 3 considers
safe registers and 4 considers regular registers. We conclude in 5 with some open questions.

2. Preliminaries. In this section, we give formal definitions for the types of registers that
we will study (n-reader, k-ary, safe, and regular), describe the rules we impose on implementing

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 337

TABLE
hdependent boundsfor binary to k-ary algorithms.

R [log k] [log k]
W

M [log k] [log k]

Regular
lower upper

[log k] [log k]
[log k]

max{ [log k] + 1, min{k 1,

[21ogk loglogk] 2} n(31ogk +68)}

TABLE 2

Trade-off resultsfor binary to k-ary algorithms.

{A WA 1} Rs
Ms

{A WA c} Rs
Ms

{ALMA [logk]} Ws

Safe Regular
lower upper

k-1 2 Flog k]

k or kl 2 [log k]

(c!k/2) 1/c c- 2 + [k/2c-2]
(c!k/2) I/c c- 2 + Fk/2c-2]
[log k] [log k]

lower [upper
k-1 ex

k

(c!kl2) i/c ex

(c!k/2)l/c

one type of register with another, and define the cost measures we will use. Then we present
some definitions and lemmas that are true for implementations between any types of registers.

2.1. Model. We use a simplified form of the I/O automaton model [9] to describe our

system.
To implement a logical register with value set V, where VI k, we compose a collection

of physical registers Xj, <_ j <_ m, each with value set {0, }, a collection of read processes
RPi, < < n, and a single write process WE The read and write processes implement the
protocols used by the readers and writer of the logical register. Each such protocol consists of
accessing certain of the physical registers and doing some local computation.

Communication between these components takes place via actions. Each action is an
output of one component (the component that generates it) and an input to another component.
Components are modeled as state machines in which actions trigger transitions. Components
have no control over when inputs occur and thus must have a transition for every input in every
state. Components do have control over when outputs occur; if an output labels a transition
from a state, then the output is enabled in that state.

An execution of the implementation consists of a sequence in which state tuples (one entry
for the state of each component) and actions alternate, beginning with a tuple of initial states.
For each action sr in the execution, sr must be enabled in the preceding state of the component
for which it is an output. In the following state tuple, the states of the two components for
which sr is an input and an output must change according to the transition functions, while
the remaining components’ states are unchanged.

A schedule is the sequence of actions in an execution.
The logical actions are READ(i), RETURN(i, v), WRITE(v), and ACK, < < n and

v 6 V. READ(i) is an input to RPi from the outside world; RETURN(i, v) is an output from
RPi to the outside world. WRITE(v) is an input to WP from the outside world and ACK is an
output from WP to the outside world. Although we do not explicitly model the outside world
with a component, we do assume that for each i, the outside world and RPi cooperate so that
READs and RETURNs strictly alternate, beginning with a READ, and analogously for WP.

k if k is a power of 2; k otherwise.

338 SOMA CHAUDHURI AND JENNIFER L. WELCH

The physical actions are readj(i), returnj(i, v), writej(v), and ackj. The subscript j
is between and m; it indicates that Xj is the physical register being read or written. The
parameter v is either 0 or and indicates the value being read from or written to Xj. For a
fixed j, the parameter for reads and returns ranges over some subset of {0 n} of size
at most n; this subset indicates which of the read and write processes read Xj. (The value 0
indicates WE) For a fixed j, there is no parameter for writes and acks, since there is a unique
read or write process that writes Xj.

A READ(i) and its following RETURN(i, v) form a logical operation, as do a WRITE(v)
and its following ACK. Physical operations are defined analogously. An operation is pending
if its first half is present but not its second half.

We assume that the read and write processes cooperate with the physical registers so that
for each i, 0 _< < n, and each j, < j < m, readj(i) and returnj(i, .) alternate beginning
with a read, and analogously for writes. We also assume that no read or write process has a
physical operation pending unless it has a logical operation pending.

Each physical register Xj satisfies this liveness property: Immediately after an input
action occurs, the matching output is enabled.

A safe physical register satisfies the Safe Property: For every physical read operation
that does not overlap a physical write operation, the value returned is the value written by the
most recent physical write operation. If there is no preceding write operation, then it returns
the initial value.

A regular physical register satisfies the Regular Property: Every physical read operation
returns a value written by an overlapping write operation or by the most recent preceding write
(or the initial value if there is no preceding write).

The read and write processes must work together to implement a logical register. The
liveness property for a logical register differs from that for a physical register, as discussed
below. A safe (respectively, regular) logical register satisfies the safe (respectively, regular)
property, as defined for physical registers, replacing "physical" with "logical."

The liveness property for a logical register is that the implementation must be wait-free,
meaning that in every finite execution, if a logical operation by RPi (respectively, WP) is
pending, then there is a finite sequence of actions involving only RPi (respectively, WP) that
finishes the operation. Our algorithms actually provide a bounded number of actions, while
our lower bounds hold for algorithms satisfying the weaker definition.

A natural question that may arise is why the liveness property is different for physical
and logical registers. The wait-free definition for the logical register implies that every logical
operation must complete using only physical operations initiated by that logical operation. In
the case of the physical register, where we don’t model the "internal" actions, this wait-free
property reduces to the physical liveness property given.

We now define the cost measures.
Consider two register types, physical and logical, and let A be an algorithm for a physical-

to-logical register implementation. Let MA be the number of physical registers used in A, let
RA be the maximum number of physical operations performed during any logical READ in
any execution of A, and let WA be the maximum number of physical operations performed
during any logical WRITE in any execution of A. Given a set S of physical-to-logical register
implementations, let Ms be the minimum of MA over all A S, Rs be the minimum of RA
over all A 6 S, and Ws be the minimum of WA over all A 6 S. (If S 0, then Ms, Rs,
and Ws are infinity.) Finally, let M Ms, R Rs, and W Ws, where S is the set of all
physical-to-logical register implementations (for these two types). (The physical and logical
register types are implicit parameters to M, R, and W.)

In the rest of this paper, we derive upper and lower bounds on M, R, and W, and trade-offs
between them, for different physical and logical register types.

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 339

These bounds on R and W can be converted into time bounds for performing logical
operations as follows. Suppose we know bounds Rt, Ru, Wt, and Wu such that Rt < R < Ru
and Wt < W < W,. Let r be an upper bound on the time to read a physical register and let
w be an upper bound on the time to write a physical register. Let s be an upper bound on
the time for a read or write process to perform an action once it becomes enabled. Our upper
bounds on R and W come from algorithms, all of which have the property that no logical
READ involves a physical write and no logical WRITE involves a physical read. Since we
assume that all physical operations are enclosed within logical operations and that only one
physical operation can be pending at a time, we deduce that an upper bound on the worst case
time to perform a READ of a logical register that is implemented with physical registers is
R,(r + s) / s. Similarly, an upper bound on the worst case time to perform a WRITE of
a logical register that is implemented with physical registers is Wu(w + s) + s. Our lower
bounds on R and W do not assume that logical READs do not involve physical writes, or that
logical WRITEs do not involve physical reads, and thus they imply analogous lower bounds
on the worst case times.

2.2. General results. Given a finite schedule cr of an algorithm A, let the configuration
of cr be the tuple of sets of "possible values" of the physical registers at the end of the schedule,
i.e., if Xi is the ith physical register, then the ith element of the configuration is the set of
all values that could be returned by a physical read of that register at that point, according to
the safe/regular property. A configuration is stable if each element of the tuple is a singleton
set. Thus it can be represented as x Xm, where xi is the value of register Xi for all i. The
initial configuration is the (stable) configuration of the empty schedule, consisting of the
initial value of each physical register.

Let VO (for "write-only") be the set of all schedules of A in which only WP takes steps
and no physical write is pending. Let ,5’ {C C is the configuration of some cr 6 WO}. It
is easy to see that all configurations in $ are stable.

For each i, define L , V as follows. Li(C) is the logical value returned by RPi
when RPi starts in its local initial state, the physical registers have the values specified in C,
and no other read or write process takes a step.

What we would like is a function that returns the value of the logical register when the
physical registers are in a given configuration. However, an arbitrary algorithm may have
different protocols for different read processes (necessitating our use of a subscript on L), and
it may use the history of the read process to determine what value is returned. Thus it might
be the case that RPi returns different values at different times in an execution, even given the
same configuration. In order to accommodate such algorithms, we define each Li specifically
when RPi has taken no steps yet.

The next lemma states that Li is well defined, i.e., that the current configuration (values
of the physical registers) and nothing else determines the value of the logical register (as
perceived by RPi). This can be shown by a simple induction on the length of the execution.

LEMMA 2.1. For any algorithm A, the function Li is well definedfor all i.

Let WOC (for "write-only, completed") be the set of all schedules of A in which only
WP takes steps and no logical WRITE is pending. Let 7- {C C is the configuration of
some r 6 A20C}. It is easy to see that 7"

_
S. Every configuration in 7" is defined to be a

terminal configuration.
The next lemma states that if no read process has taken any steps and no logical WRITE

is in progress, then each L is equal to the value of the most recent WRITE to the logical
register.

LEMMA 2.2. For any algorithm A, if cr is in]/VOC with configuration C, then, for all i,

Li(C) equals the value of the most recent WRITE (the initial value if or is empty).

340 SOMA CHAUDHURI AND JENNIFER L. WELCH

’SThe previous lemma implies that all the L must agree whenever the argument is in the
set 7". Thus we define L 7" --+ V to be L(C) Li(C) for any i. It is easy to see that for
each v 6 V, there is a C 6 7" such that L(C) v.

In most of our proofs, we only need to consider situations in which no logical WRITE
is pending, and thus we can use the notation L. However, in a few places (notably Lemmas
4.4 and 4.5), we must consider what happens in the middle of a logical WRITE, and thus we
must use a specific L (we choose L for concreteness).

3. k-ary safe register from binary safe registers. We consider the problem of imple-
menting an n-reader, k-ary, safe register out of n-reader, binary, safe registers, for any n > 1,
where k > 2. Subsection 3.1 is devoted to proving tight, independent bounds on R, W, and M.
In 3.2, we present an algorithm A such that WA 1. We also show some nice combinatorial
properties related to one-write algorithms. Subsection 3.3 discusses algorithms that allow c
physical accesses per logical WRITE. We also give some additional trade-offs between the
cost measures.

Let the value set of the logical register be V {0 k with initial value v0 6 V.

3.1. Independent bounds. The following theorem gives matching upper and lower
bounds on R, W, and M.

THEOREM 3.1. The implementation of an n-reader, k-ary, safe register by n-reader,
binary, safe registers gives the following independent bounds: R [log k], W 1, and
M [log k].

Proof. The upper bounds on R and M follow from the binary representation algorithm in
[6] described below. The upper bound on W follows from our hypercube algorithm presented
in 3.2. The lower bounds on W and M are obvious.

We now show the lower bound on R. For each v 6 V, there is a schedule o- of A of the
form

WRITE(v) co ACK READ(l)/3 RETURN(I, v),

where cto consists solely of actions of WP and contains no ACK, and/3 consists solely of
actions of RP1 and contains no RETURN.

By the definition of read processes, for all distinct v and w,/ -/3w and the maximal
common prefix of/3 and/3o is immediately followed by a return(0) action from some physical
register X in flo and by a return(I) action from X in/3 (or vice versa); that is to say, RP does
the same thing in/ and/3o until it reads a different value. Let Fo be the sequence of physical
values read in/, for all v.

Thus, if v :/: w, then the sequence ?, of physical values read in /3 is not equal to
the sequence F of physical values read in/o. There are k distinct sequences of physical
values corresponding to the Fo’s, i.e., k binary strings. Thus at least one string, say that
corresponding to Fo, must have length at least [log k], implying that/ contains at least
[log k] physical reads. [3

The binary representation algorithm in [6] implements an n-reader, k-ary, safe register
out of [log k] n-reader, binary, safe registers. The write process writes the binary representation
ofthe logical value into the physical registers. Each read process reads all the physical registers
and returns the logical value whose binary representation was read, as long as the value is less
than k. Otherwise, it ceturns any value less than k. This algorithm implies that R _< [log k-I,
W < [logk, and M < [log k]. By Theorem 3.1, the number of registers and number of
physical reads in the binary representation algorithm are both optimal.

The unary representation algorithm presented next shows that W _< 2. There are k-
physical registers, X Xk_. Logical value 0 is represented when all registers are 0.

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 341

Logical value v : 0 is represented when Xv is and the other registers are 0. Each read
process reads registers X, X2, and so on, in order, until reading a 1, and RETURNs logical
value v, where Xv is the register that returned 1. If no register returns 1, then 0 is RETURNed.
To WRITE logical value v, assuming w is the old value of the logical register, the write process
writes 0 to Xw if w - 0, and writes to X if v - 0.

In the next subsection, we will present an algorithm which brings down the number of
physical writes per logical WRITE to 1.

3.2. One-write algorithms. In this subsection, we discuss the class of one-write algo-
rithms. We show that their existence depends on satisfying a combinatorial coloring property
of hypercubes.

Figure presents our new hypercube algorithm, which shows that W _< 1; it relies on a
function f, which will be defined shortly. For now, assume that k is a power of 2. Later we
will show how to remove this restriction.

Physical Registers: X X,_, initially f(X... Xk_) Vo and Xj. for at most one j
Read Process RPi, < < n" variables x x._

READ(i):
for j "= to k do x. read Xj endfor

RETURN(i, f(x...xk_))
Write process WP: variables x x._ , initially x. equals the initial value of Xj. for all j

WRITE(v):
if v : f(x ...x._) then

write to Xj., where j is such that f(x...x_xxj+...x_) v

x "= x
endif

ACK

FG. 1. Hypercube algorithm.

We notice an interesting relationship between the correctness of the hypercube algorithm
and coloring the nodes of a (k 1)-dimensional hypercube with k colors such that each node
has a neighbor with each of the k colors other than its own. The following definition
and lemmas formalize this idea. (Nodes are labeled with (k- 1)-bit strings, the colors are
elements of V, and the function is the coloring.)

A function g is said to have the rainbow-coloring property if g {0, }k-1 V such
that for all x G {0, }k-l, and for all v V, if v :/: g(x), then there exists y 6 {0, }k-1 such
that v g(y) and x and y differ in exactly one bit. That is, every node x has a neighboring
node with every color other than x’s color.

Lemma 3.2 states that if the function f used in the algorithm has the rainbow-coloring
property, the hypercube algorithm correctly implements a k-ary safe register using binary safe
registers such that each logical WRITE requires one physical write. The rainbow-coloring
property ensures that each READ RETURNs the correct value if it does not overlap a WRITE.

LEMMA 3.2. Iffunction f has the rainbow-coloring property, then the hypercube algo-
rithm is correct.

We define a function f {0, 1}k- __+ V for use in the algorithm. Lemma 3.3 shows
that f has the rainbow-coloring property. For positive integer < k, let bin(i) be the binary
representation of in log k bits (remember that k is a power of 2). For x 6 {0, }k-l, let xi
be the ith bit of x, i.e., x XlX2... xk-. For all x 6 {0, 1}k-l, we define f(x) to be the
element of V whose binary representation is)x,.= bin(i), where @ represents exclusive-or.
This expression consists of log k bits and thus represents a value in the range 0 to k 1, i.e.,
a value in V.

342 SOMA CHAUDHURI AND JENNIFER L. WELCH

The intuition behind the coloring function f is that we want to go from a (k 1)-bit
string, the label of a node in the hypercube, to a (log k)-bit string, indicating one of k colors.
Given a node with label x, the color assigned is the one whose binary representation is equal
to the exclusive-or of the set of bin(i), for all such that xi 1. Note that if two nodes x and
y differ in the single bit i, then f(x) 3 f(y) bin(i). So, given the color of a node x, we
can derive the color of any adjacent node y in a consistent manner.

Given this definition of f, the initial values of the physical registers are all 0, except that
if v0 - 0 then Xv0 1. The computation of j in the writer’s code is bin(j) bin(v)
bin(f(x .x_)).

LEMMA 3.3. The function f definedfor the hypercube algorithm (when k is a power of
2) has the rainbow-coloring property.

Proof First we must show that for all x, y 6 {0, }k- that differ in exactly one bit,
f(x) f(y). Suppose x and y differ in bit i. Then f(x) @ f(y) bin(i). Since

bin(i) # 0gk, we are done. Second we must show that for all x, y, z 6 {0, 1}k- such
that y - z and y and z both differ from x in exactly one bit, f(y) 5/= f(z). This can be shown
similarly. These two facts together show that f has the rainbow-coloring property.

Figure 2 illustrates how our algorithm works in the simple case where k 4. Our
hypercube is then a three-dimensional cube, whose vertices can be colored with four colors,
r, b, g, and y. Note that the coloring satisfies the rainbow-coloring property.

ii0

010

000 001

i01

FIG. 2. An example illustrating the hypercube algorithm.

Combining Lemmas 3.2 and 3.3 shows that the hypercube algorithm is a one-write algo-
rithm (using k registers) if k is a power of 2. To obtain a one-write algorithm for values of
k that are not powers of 2, we modify the power-of-2 hypercube algorithm for rn physical
registers, where rn 2rlg kl, i.e., rn is the smallest power of 2 larger than i.. The modification
is to change the RETURN statement to be RETURN(min{k 1, f(xl...Xm-)}). This im-

plementation of a k-ary register by binary registers will not cause the binary registers to take
on all possible 2m-1 values, i.e., no stable configuration of the algorithm will be mapped to

a value that is out of the range of the logical register. However, a slow read process, which

overlaps a number of writes, might (spuriously) observe a configuration corresponding to a
value larger than k- 1, thus necessitating the modification. Thus we have shown the following
theorem.

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 343

THEOREM 3.4. The hypercube algorithm correctly implements a k-ary safe register using
binary safe registers.

The following theorem summarizes our results for the class of 1-write algorithms.
THEOREM 3.5. Let S be the set ofalgorithms A such that WA < 1. Then
(i) k- < Rs < 2Flgk] 1,
(ii) Ms k 1, ifk is a power of 2, and
(iii) k < Ms < 2Flgkq 1, if k is not a power of 2.

Proof All the upper bounds follow from the hypercube algorithm. The rest of the proof
concerns the lower bounds.

Choose an algorithm A 6 S. Let Coo be the initial configuration. For all v v0, let Cv be
the configuration of a schedule in /V(,gC of the form WRITE(v) oto ACK, where co contains
no ACK. Since ot only contains one physical write, Coo and Co differ in a single bit, say that
for physical register

Since there are k choices for v - v0, there are at least k- physical registers. Since
A was chosen arbitrarily, Ms > k 1. The improved lower bound of k for Ms when k is not
a power of 2 follows from Lemmas 3.6 and 3.7.

To show Rs > k- 1, we assume, for contradiction, that RA < k- 1. Consider the
schedule READ(I)/3 RETURN(I, v0), where/3 consists solely of actions ofRP and contains
no RETURN./ contains a sequence of less than k physical reads. Let Xo (as defined
above) be one of the physical registers not read in/3; note that v v0. Since Coo differs from
Co in the value of register Xv and nowhere else, an easy induction on the length of/3 shows
that WRITE(v) cv ACK READ(l)/ RETURN(l, v0) is a schedule of A, violating the safe
property since v v0. We therefore have a contradiction, implying RA >_ k 1.

We now consider the number of registers when k is not a power of 2. Lemma 3.6,
which is the converse of Lemma 3.2, shows that the existence of a function with the rainbow-
coloring property is necessary for the existence of a one-write algorithm using k registers.
Lemma 3.7, which is the converse of Lemma 3.3, shows that when k is not a power of 2, no
function with the rainbow-coloring property can exist. Together, these two lemmas imply that
if k is not a power of 2, then any one-write algorithm must use more than k registers.

LEMMA 3.6. If there is an algorithm A with WA and MA k 1, then there exists
a function with the rainbow-coloring property.

Proof We show that L has the rainbow-coloring property. Recall that L maps 7-, the set
of terminal configurations, to V. We know 7- is not empty. Choose any configuration C 6 7-.
Let v be the color of C under L. Every neighbor of C is also in 7- and has a unique color
different from C’s color, since there are only k registers and k possibilities for the next
value not to be v. To finish the proof, we note that 7- {0, }k-l, since every neighbor of a
terminal configuration is also a terminal configuration. 71

LEMMA 3.7. Ifk is not a power of2, then there is nofunction with the rainbow-coloring
property.

Proof. Assume in contradiction that there is a function f with the rainbow-coloring
property. Choose any color, say blue, and let b be the number of nodes colored blue by f. Let
B be the set of edges in the hypercube that have one endpoint colored blue and one endpoint
not colored blue. Since each nonblue node is adjacent to exactly one blue node and there are
2’- b nonblue nodes, BI must be 2k- b. However, since each blue node is adjacent to
k- nonblue nodes and there are b blue nodes, IBI must be b(k 1). The implication is that
2k- b b(k 1), implying 2k- kb. This implies that k divides 2k-, contradicting the
fact that k is not a power of 2.

In this subsection, we showed that the existence of a one-write implementation of a k-
ary safe register was based on solving an underlying combinatorial problem. Specifically, a

344 SOMA CHAUDHURI AND JENNIFER L. WELCH

one-write algorithm using k physical registers exists if and only if we can color a (k 1)-
dimensional hypercube with k colors such that each node has a neighbor with every color other
than its own. We can generalize this to any number of physical registers as follows. A one-
write algorithm using m registers exists if and only if we can partially color an m-dimensional
hypercube with k colors, such that each colored node has a neighbor with every color other
than its own. By a partial coloring, we mean a coloring where not all nodes of the graph need
to be colored.

Lemmas 3.3 and 3.7 imply that there is rainbow-coloring of the (k 1)-dimensional
hypercube if and only if k is a power of 2. Kant and van Leeuwen [5] have independently
shown the same result. Their proof uses notions from coding theory and is based on showing
a correspondence between 1-error-correcting codes and these colorings. They applied this
result to the file distribution problem.

3.3. c-write algorithms and trade-off results. As we showed for 1-write algorithms,
the problem of implementing c-write algorithms can also be shown to have a corresponding
parallel in a combinatorial problem. Here, we are interested in a partial coloring of the m-
dimensional hypercube such that for each colored node, there exists a node of every other
color within a distance ofc from this node.

This combinatorial characterization also helps us obtain lower bounds for M and R. For
example, we know that for there to exist a one-write algorithm that uses m physical registers,
there must be a configuration Co that differs from k different configurations Cv in exactly
one bit. Since each configuration is represented in m bits, this says that there is a binary string
.of length m that differs from k different strings of the same length in exactly one bit. To
satisfy this combinatorial property, we require that m >_ k 1. This sequence of reasoning
was implicit in the proof of Theorem 3.5.

Along similar lines, for there to exist a c-write algorithm that uses m registers, there must
exist a binary string of length m which differs from k different strings of the same length
in at most c bits.

We formalize this property in Lemma 3.8 and Theorems 3.10 and 3.11. These theorems
give lower bounds on M and R for c-write algorithms, i.e., algorithms that use a small bounded
number of physical writes per logical WRITE.

The next result is Theorem 3.12, which gives trade-offs on I versus R and M. An
application of this result is to give upper bounds on M and R for c-write algorithms.

The final result in this subsection, Theorem 3.13, states that if no more than [log k
registers are used, then some WRITE must write at least [log k-i physical registers.

LEMMA 3.8. Given any binary string x of length m, if there are at least k distinct strings
oflength m which differfrom x in at most c bits, where c < (log k)/3, then m >_ (c!k/2) l/c.

Proof. Let x be a string of length m. The number of distinct strings of length m that differ
from x in at most c bits is

Since we know that there are at least k such distinct strings, we have i:0 () >- k. We
obtain the following upper bound on (.) for all i" (.) m(m-1)(m-2)...(m-i+l) < mi/il
To get an upper bound on the entire summation, we need the following claim, which is taken
from [14]. First, we introduce some notation. Let Sm,j denote Y{=0 ()" Let bm,i denote (7)"

CLAIM 3.9. If < j < m/3, then Sm,j < 2bm,j.
Proof. We compute a lower bound for bm j/bm,j-1 m-j+l Note that m-j+l is larger

than 2 for j < m/3. Therefore, for j < m/3, bm,j/bm,j-1 > 2. The remaining proof is by
induction.

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 345

Inductive hypothesis: Sm, j < 2bm,j for j < rn/3.
Basis: For j- (assume rn > 3), Sm,O bm,o-- and bm,l --m. Therefore,

Sm, rn + and Sm, < 2bm, 1.

Inductive step: Let the inductive hypothesis hold for all such that < j < m/3.
We show that it holds for j. By the inductive hypothesis, Sm,j_ 2bm,j-1. Note that
Sm,j Sm,j-1 -- bm,j. This implies that Sm, j 2bm,j-I -+- bm,j. Also, we showed earlier
that 2bm,j_l < bm,j. Therefore, sm,j < bm,j -+- bm,j

The above claim holds for j c since we know that m > log k (it takes log k bits to
represent k distinct values), and this implies that c < rn/3. Now, using the above claim and

c rn mour previous upper bound for (.), we have Zi=0 (i) 2(c) < 2mC/c!" So, k <_ 2mC/c!
by manipulating this inequality, we get rn > (c!k/2) 1/.

THEOREM 3.10. For all algorithms A, if WA c, where c < (log k)/3, then MA
(c!k/2) 1/.

Proof Given an algorithm A such that WA C, where c < (log k)/3, let Cv0 be the initial
configuration. Then L(Coo) vo. For all v
ACK yields the terminal configuration Co. Since each WRITE can initiate at most c physical
writes, each Co differs in at most c bits from Coo.

Since there are k values v, there must be at least k terminal configurations Co differing in
at most c bits from Coo. The number of registers used in the algorithm is MA. Each terminal
configuration is therefore a binary string of length MA. Therefore, there are at least k strings of
length MA which differ in at most c bits from Coo. Since, c _< (log k)/3, Lemma 3.8 applies,
and we have the result MA >_ (c!k/2) 1/.

THEOREM 3.11. For all algorithms A, if WA c, where c < (log k)/3, then RA
(c!k/2) 1/.

Proof For any algorithm A, where WA < c, consider the following schedules, for all v,

WRITE(v) co ACK READ(!)/v RETURN(I, v),

where oto and/o contain only physical actions. We claim that for some v,/3 initiates at least
(c!k/2) 1/c physical reads. We prove this by contradiction.

Suppose, for every v,/3 initiates at most p physical reads where p < (e!k/2)l/c. Let Po
be the sequence of values read, in order, on accessing any given register for the first time in
/3v. Note that we don’t include values obtained from registers which have been read before or
been written before in/3o. Clearly, [po[<_ p.

First we assume that the initial configuration is the zero-vector. Therefore, the initial
values of all the physical registers are 0. Since otv contains at most c physical writes, there
can be at most c l’s in pv. Clearly, each pv is distinct. Otherwise, if for some v, v’ such
that v - v’, p p,, then a READ in both cases would RETURN the same value, which
would be a contradiction. Therefore, {polv V} is a set of k distinct strings of length at most
p that differ from the zero-vector in at most c bits. Since p < (c!k/2) 1/, this contradicts
Lemma 3.8.

In the general case where the initial configuration is not the zero-vector, we can no longer
claim that Po contains at most c l’s. We therefore define the string go, for every v, as follows.
For every bit in p, if the value is the same as the initial value of the register read, place the
bit 0 in 6,. If the value is different from the initial value of the register read, place the bit in
go. Since co contains at most c writes, go can contain at most c l’s. Also, each go is distinct.
Now, the same argument as in the previous paragraph holds, with go substituted for po.

Therefore, for some v,/3v initiates at least (c!k/2) l/c physical reads. This gives our lower
bound for RA. [3

Theorem 3.12 presents bounds on the costs of algorithms that are a hybrid of the binary
and unary representation algorithms. Using this theorem, we can derive upper bounds on M

346 SOMA CHAUDHURI AND JENNIFER L. WELCH

and R for c-write algorithms. Theorem 3.13 concerns bounds on W for algorithms that use
[log k physical registers.

The binary representation algorithm yields an upper bound of [log k-[for R, W, and M.
The unary representation algorithm brings down the upper bound for W to 2, while pushing up
the bounds for R and M to (k). This suggests a trade-off between these measures. We can
construct a class of algorithms, by borrowing from the two previously mentioned algorithms,
that have bounds on RA and MA varying from (R)(log k) to (R)(k) and bounds on WA varying
from (R) (log k) to (R) (1).

THEOREM 3.12. For any m, < m < k, there is an algorithm A such that RA

(R)(log m + k/m), MA (R)(log m + k/m), and WA [log m] + 2.

Proof We implement our k-ary register by combining an a-ary register and a b-ary
register as follows. Let a be the smallest power of 2, which is at least as large as m, i.e.,
a 2[lgml. Let b [k/a]. We implement an a-ary register by the binary representation
method, and a b-ary register by the unary representation method. Both these methods have
been described earlier. Let the values represented by the a-ary register be in A a}
and the values represented by the b-ary register be in B b}. We obtain an ab-ary
register by combining these two registers, where the ab values represented are in A B. Note
that ab >_ k, so we have our k-ary register.

We consider the bounds of our combination register. The a-ary register uses [log m-]
registers and [log m] physical operations per logical operation. The b-ary register uses
registers, [k/a] physical reads per logical READ, and 2 physical writes per logical WRITE.
Therefore, the total number of registers used is [log m] + k/2Flgm]]. This is also the number
of physical reads per logical READ. There are [log m + 2 physical writes per logical WRITE.
This gives the combined bounds claimed by our theorem.

The preceding theorem helps us to derive upper bounds for Ms and Rs, where S is the
class of c-write algorithms. Choose m 2c-2. Since c < log k, it follows that m <_ k and
Theorem 3.12 applies. Therefore, there exists an algorithm A such that

(i) WA c,
(ii) RA c 2 + [k/2C-2], and
(iii) MA c 2 + [k/2C-2].
We thus have the corresponding upper bounds for Rs and Ms, where S is the class of c-

write algorithms. Clearly, the upper bounds obtained earlier for the class of 1-write algorithms
also hold for c-write algorithms. These new bounds surpass the earlier bounds when c > 3.

The next theorem states that if an algorithm uses only [log k] physical registers, then
some logical WRITE must use at least]log k] physical writes.

THEOREM 3.13. For any algorithm A, if MA <_ [log k, then WA >_ [log k].
Proof Let A be an algorithm with MA [log k]. (We have already shown MA cannot

be smaller.) Since the physical registers are binary, 17-1 < 2rlgk]. Recall that for all v 6 V,
there is an x 6 7" with L (x) v.

Let U be the subset of 7- such that x is in U if and only if there is no y :/: x in 7- such
that L(y) L(x). Thus for each configuration x in U, x is the only terminal configuration
which has the logical value L (x).

CLAIM 3.14. There is an x U such that Y 7-. (-Y is the binary string that differs from
x in every bit.)

Proof Suppose there is no such x. Let IUI l. Each element of U corresponds to a
distinct element of V, accounting for elements of V. The remaining k elements of V
are represented among the configurations of 7- that are not in U and are not the inverse of an
element of U. There are at most 2Flg kq 2l of these configurations. There are at least two of
these configurations for each remaining element of V. Thus 2rlgk] 2l > 2(k l), which
implies [log k] > log k + 1, a contradiction.

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 347

Choose x 6 U such that 2 6 7". Let a be a schedule in WOC with configuration 7.
Suppose L(x) v. Then there is a schedule r in /VOC of the form cr WRITE(v) ot ACK,
where c contains no ACK. The configuration of r must be x since x U. Thus c contains at
least [log k] writes, and WA >_ [log k].

4. k-ary regular register from binary regular registers. We now shift our attention
to regular registers. We would like to implement an n-reader, k-ary, regular register using
n-reader, binary, regular registers. Binary regular registers and binary safe registers have the
same power. In other words, one can be implemented from the other using one physical
register per logical register, at most one physical write per logical WRITE, and one physical
read per logical READ [6].

As with safe registers, the problem of implementing k-ary regular registers can also be
shown to have a parallel in a combinatorial problem. If there exists an algorithm to implement
a k-ary regular register that uses m binary registers, then there is a partial k-coloring of an
m-dimensional hypercube with the following restriction. For each colored vertex v, let c be
its color. Then, for each color ci such that ci c (there are k such colors), there exists a
path in the hypercube from v to some vertex vi with color ci all ofwhose intermediate vertices
are colored c.

This characterization takes care of a slow WRITE that overlaps a number of READs. The
path corresponds to the intermediate configurations reached during aWRITE. It makes sure that
whatever value is RETURNed by a READ that sees an intermediate configuration preserves
the regular property of registers. Note, however, that while this restriction is necessary for an
algorithm, it is not sufficient. This is because the restriction doesn’t take care of the problem
of a slow READ overlapping a number of WRITEs, as we will show later. In particular, our
hypercube algorithm for safe registers satisfies this characterization, but cannot be used to

implement a regular register. Therefore, this characterization may help us get a lower bound
for this problem, but not an upper bound.

Subsection 4.1 shows our independent bounds on R, W, and M. Subsection 4.2 contains
our trade-off results. As before, we let V {0 k }.

4.1. Independent bounds. The following theorem establishes the independent bounds
achieved for this problem.

THEOREM 4.1. The implementation ofan n-reader, k-ary, regular register by n-reader,
binary, regular registers gives the following independent bounds:

(i) R [log k],
(ii) < W_< [logk],and
(iii) max{[logk] + 1, [21ogk-loglogkq 2} _< M < min{k- 1,n(31ogk +68)}.
Proof. The lower bound for R follows directly from a similar proof as the one for safe

registers. The lower bound for W is obvious. The lower bound for M is shown in Lemmas 4.4
and 4.5.

The upper bounds on R and W appear simultaneously in the tree algorithm, presented
below. However, this algorithm uses k- physical registers. Lamport [6] describes a complex
composition ofimplementations to achieve an algorithm using n(3 log k+68) 1-reader physical
registers (recall that n is the number of readers for the logical register). It is unknown whether
a better result, for example without the factor of n, is possible by taking advantage of the
additional power when the physical registers are n-reader. V1

The modified unary algorithm is a simple algorithm in [6] that gives upper bounds of
W < k, R < k and M < k. Given registers X0 Xk_, the index of the lowest indexed
register that has the value determines the k-ary value represented. A READ operation reads
X0, X in order, until a is returned. It subsequently RETURNs v, where the was read

348 SOMA CHAUDHURI AND JENNIFER L. WELCH

from X. A WRITE(v) operation writes in register Xo, and then writes 0 in So_ S0,
in order. (It is possible to optimize the algorithm so as to remove register Xk-l.)

Our hypercube algorithm, which we used to implement a k-ary safe register from binary
safe registers, cannot be used to implement a k-ary regular register. The reason for this is
as follows. In case of a slow READ that overlaps a number of WRITEs, the physical reads
initiated by the READ may return a set of register values that do not represent a configuration
that occurred during the course of the READ. Thus a logical value may be RETURNed that
does not correspond to a value written by an overlapping or last preceding WRITE. A stronger
result, stating that no 1-write algorithm using k registers can implement a k-ary regular
register from binary regular registers, is proven in Theorem 4.6.

We now present our new tree algorithm, which gives the improved bounds ofR < [log k],
W < [log k], and M < k 1. The registers are the nodes in a binary tree. The tree represents
a sort of binary search conducted by the READ operation to find the value written. The READ
takes a path from the root to a leaf, while the WRITE follows a path starting from a leaf to the
root. The path in the tree taken by the READ, along with the values it reads, uniquely defines
the value read.

The tree representation of the registers is described as follows. Given any binary tree of
k leaves, the internal nodes of the tree correspond to the registers, while the leaves correspond
to the k-ary values. Let the leaves of the tree be labeled in some arbitrary manner by the k
values in V.

Let v0 be the initial value of the logical register. The initial values of the physical registers
are those that would result from starting with all 0’s in the physical registers and then executing
a single WRITE(v0) operation described as follows.

A WRITE(v) operation writes into the set of registers that form the path from the leaf
labeled v to the root, beginning with the parent of the leaf, following the path, and ending with
the root. The value written to the ith node on the path is 0 (respectively, 1) if the (i 1)-st
node on the path is the left (respectively, right) child.

A READ operation reads a set of registers that form a path from the root to a leaf labeled
v, for some v, beginning with the root. Suppose the th node read has value 0 (respectively,
1). If its left (respectively, right) child is a leaf, then v is RETURNed, where v is the label of
the leaf. Otherwise, the left (respectively, right) child of the ith node is the (i + 1)-st node
read.

We just showed that any binary tree with k leaves completely specifies our algorithm.
Simple results in graph theory imply that for any k, there exists a binary tree with k leaves,
k internal nodes, and height [log k] (the number of edges in the longest path from the root
to a leaf). To obtain the desired complexity bounds, we base our algorithm on one of these
trees. Since only internal nodes correspond to registers, MA k 1, Ra < [log k-I, and
W,4 _< [log k].

Figure 3 illustrates a 7-ary register with value 3. The path marked on the tree corresponds
to the physical registers read by a logical READ operation.

If k is a power of 2, the registers and values form a complete binary tree of height log k.
We describe the algorithm, for this special case, formally in Fig. 4. Let Vm 1)m-1 Vl be the
binary representation of the k-ary value v, where rn log k. The root register is labeled with
the empty string . For each register labeled with the binary string l, the strings l0 and
are the labels of its left and right children, respectively. Let the initial value of the logical
register be v0 with its binary representation being V0,m 1)0,m-1 1)0,1. Then the initial value of
the physical register labeled Vo,m Vo,p+ is Vo, p, for all p 6 {1 m}. All other physical
registers have initial value 0.

Here, the log k physical values read by the READ operation form the binary representation
of the k-ary number. Clearly, the algorithm has the bounds stated.

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 349

o i

o I o i

FIG. 3. An example illustrating the tree algorithm.

To WRITE(v),

for p := to m do

write Up to register U Up+

ACK

To READ,

for p :: rn to do

Up :’-- read register V 1)p+

RETURN(vm... vl)

FIG. 4. Tree algorithmfor k a power of 2.

In order to prove the correctness of the tree algorithm, we need some definitions and a
lemma. We define a physical read r to reflect a physical write w, in a given schedule, if r and
w access the same physical register, and either (1) w completely precedes r, or (2) w and r
overlap and r returns the value that w writes. We say that a logical READ R notices a logical
WRITE W if R contains a physical read that reflects a physical write contained in W.

LEMMA 4.2. Given any schedule ofthe tree algorithm, and any READ R in the schedule,
R RETURNs the value written by the last WRITE W that R notices (note that there is a
total order among the WRITE operations). Ifno such WRITE exists, R RETURNs the initial
value.

Proof. Let R be a READ in some schedule. Suppose R notices no WRITEs. Then every
physical read r initiated by R returns the initial value of the physical register read. Therefore,
R RETURNs the initial value of the logical register.

Otherwise, R notices some WRITEs. Let W be the last WRITE that R notices. Let s be
the last register read by R such that R’s read from s reflects W’s write to s. Clearly, R reads
the value b written by W into s. Otherwise, there is a later WRITE W such that W1 writes s
and R notices W; which contradicts the fact that W is the last WRITE that R notices.

Without loss of generality, let b 0. (The argument for b is identical by replacing
"left" in the following discussion with "right.")

We claim that s is the last register read by R. Suppose not. Then, R next reads the register
corresponding to the left son of s. Since W wrote b in register s, it must have earlier written

to register t. This contradicts the definition of s.
Now, the left son of s must be a leaf node. Let v be the label of this leaf node. Clearly, v

is RETURNed by R. Since W writes b into s, the logical value written by W is v. l-1
THEOREM 4.3. The tree algorithm implements a k-ary regular register using binary

regular registers.

350 SOMA CHAUDHURI AND JENNIFER L. WELCH

Proof. We need to argue that our logical k-ary register behaves correctly; i.e., given that
our algorithm is implemented using regular binary physical registers, it actually implements
a regular k-ary register. Clearly the algorithm has the wait-free property.

Given any schedule, and any READ R in that schedule, we need to prove that R RETURNs
the value of one of the WRITE operations it overlaps with or the last preceding WRITE W (or
the initial value, in the case that no WRITE completely precedes R). We consider two cases.

Case 1" R notices no WRITEs. Since R reads the root node, and any WRITE must
write into the root node, it follows that no WRITE completely precedes R. By Lemma 4.2, R
RETURNs the initial value, and this satisfies regularity.

Case 2: R notices some WRITEs. Let W be the last WRITE that R notices. By
Lemma 4.2, R RETURNs the value written by W. We show that W1 either overlaps with R
or is the last WRITE preceding R. This would satisfy regularity.

Clearly, W cannot completely follow R, since, by the definition of notice, W contains
a physical write that either precedes or overlaps a physical read contained in R. The only
other case to consider is that W precedes another WRITE W2, which completely precedes R.
Since W1 is the last WRITE that R notices, R does not notice W2. Since W2 completely
precedes R, R must read the root node after W2 writes into it, which implies that R does notice

W2. This gives a contradiction. Therefore, W either overlaps with R or is the last WRITE
preceding R.

The tree algorithm simultaneously gives us the best bounds we have for this problem.
If the frequencies of READs and WRITEs of all the k values were known in advance, then
the number of accesses per READ or WRITE could be optimized by organizing the binary
registers as a Huffman tree. For a discussion of Huffman codes, see Hamming [4].

We present our lower bounds for M as follows. Both ofthe bounds we obtain are significant
for different values of k. The bound of Lemma 4.5 supersedes the bound of Lemma 4.4 for
k>55.

LEMMA 4.4. M > [log k-I + 1.

Proof. Choose any algorithm A. We assume, for contradiction, that MA [log k]. Note
that the lower bound for M of [log k], proved for safe registers, holds here as well. For all
v E V, there is a schedule o’o of A in W(.9C of the form WRITE(v) co ACK, where co contains
no ACK. Let Co be the configuration of cro" it is easy to see that Co is stable.

Choose v E V. For each w V, w :/: v, there is a schedule crow inWOC of the
form WRITE(v) oto ACK WRITE(w)/3ow ACK, where/3ow contains no ACK. Let Cow be the
configuration of crow; it is easy to see that Cow is stable.

Since only WP takes steps in crow and physical writes are done serially,/3ow goes through
a sequence of stable configurations (corresponding to schedules in WO). By Lemma 2.2,
L(Cow) w and L(Co) v. Since w - v and L is a function by Lemma 2.1, Cow :/: Co.
Thus a stable configuration is reached in/ow that is different than Co. Let Dow be the first
such configuration. Dow and Co differ in a single bit, i.e., in the value of a single register.

Since there are only [log k] bits in each configuration, there are only [log k] configurations
that differ in a single bit from Co. Since there are k values in V different than v, there
exist distinct w and u in V such that Dow Dot,. Call this configuration Do. By regularity,
L(Dow) {v, w} and L(Dou) {v, u}. Thus L(Do) v.

Since L(Co) v, all the Co’s are distinct. Since L(Do) v, all the Do’s are dis-
tinct. It is easy to see that Co Dw for all v and w. Thus there are at least 2k distinct
stable configurations, requiring at least [log k-I + registers. Therefore, we have a con-
tradiction.

LEMMA 4.5. M > [2 log k log log k] 2.

Proof Choose any algorithm A. Let d be the number of registers used in the algorithm.

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 351

For all v 6 V, there is a schedule cro of A in WOC of the form WRITE(v) co ACK,
where co contains no ACK. Let Co be the configuration of cro" it is easy to see that Co is stable.
Clearly, L (Co) v.

We claim that for any two k-ary values v and w, there exists a pair of stable configurations
Do and Dw that differ in exactly one bit such that L(Do) v and L(D,) w. Suppose
not. Then, consider the schedule crow in /VOC of the form cro WRITE(w)/3ow ACK, where
/oo contains no ACK. Let the configuration of croo be Dow. The configuration of cro is Co.
Note that Doo is a stable configuration and L(Dow) w. Consider the sequence of stable
configurations reached by the schedule crow starting from Co and ending at Dow. By the
assumption, there exists a stable configuration Dx in the sequence such that L(Dx) x but
x - v and x :/: w. A READ starting at Dx would therefore RETURN x, which violates
regularity. This gives a contradiction.

Recall that S is the set of all configurations resulting from schedules in YVO (only WP
takes steps and no physical write is pending). Let co be the number of stable configurations C
in $ such that L(C) v, for each k-ary value v. Let c min{cxlx V}, and let v V be
such that c co. For each value w such that w - v, there are stable configurations Do and
Do in S that differ in exactly one bit such that L(Do) v and L(Dw) w. Since each
stable configuration C, such that L t(C) v, has d neighbors, and there are (k 1) values
w, it follows that cd > k 1. Since there are k different values and at most 2a possible
stable configurations, ck < 2a. Solving the two inequalities, we obtain that k2 k < d 2a,
which implies that 2(logk) < d + logd + 1, for k >_ 2. The last inequality implies that
d > 2(log k) log log k 2. [3

4.2. Trade-offs. We have the following lower bounds for R and M relating to one-write
algorithms. In particular, we show that any one-write algorithm for this problem would require
at least k registers. In other words, our hypercube algorithm for safe registers does not work
for regular registers.

THEOREM 4.6. For all algorithms A, if WA then RA >_ k- and M > k.
Proof The lower bound for RA follows from a similar proof as the one for safe registers.

By using a similar argument, we can actually make the additional claim that every READ
reads at least k distinct physical registers. We use this claim in the following proof of the
bound for MA.

To show MA > k, suppose in contradiction that a one-write algorithm A exists that uses
k registers. Then Lemma 3.6 carries over from the safe case, implying that the function
L has the rainbow-coloring property. Let Co be the initial configuration; clearly, L(Co) vo.
Consider the following schedule c: READ(l) 3 RETURN(I, v0), where 3 consists only of
physical actions taken by RP1. We claim that 3 does not contain any physical write.

CLAIM 4.7. The sequence ofactions 3 does not contain a physical write.

Proof. Suppose 3 does contain a physical write, i.e., 3 3 write/(b) 32, where 3 contains
no physical write. Then, there is a schedule of the form

READ(l) 31 writei(b) 32 RETURN(l, v0) READ(l) 3’ RETURN(l, v0),

where 3’ contains only physical actions. Let C be the configuration that differs from Co only
in position i. Then L (C) v, for some v Vo.

Consider the schedule WRITE(v) ?’ ACK, where , contains only physical actions ofWE
Then , consists of a single physical write, to register (as well as possibly some physical
reads). An easy induction shows that

READ(l) 3 WRITE(v) y ACK writei(b) 32 RETURN(I, v0) READ(l) 3’ RETURN(l, v0)

is a schedule, since there is no physical write in 3 and the physical write within the logical

352 SOMA CHAUDHURI AND JENNIFER L. WELCH

WRITE is "obliterated" by writei(b). This violates regularity because the second READ
should RETURN v, not v0.

Now, we continue with the proof of the theorem. Pick two distinct registers (call them
registers and j) that are read in schedule c.

We define C.to be the stable configuration that differs from Co in position j, C3 to be the
stable configuration that differs from Co in position i, and C2 to be the stable configuration
that differs from Co in positions and j. For all 6 1,2, 3}, Ct is a terminal configuration.
Let L(Ct) vt. It is easy to verify that v0, v, 1)2, and v3 are distinct values in V. Suppose,
without loss of generality, that the initial value of both registers and j is 0. Figure 5 illustrates
the relation between the four configurations defined. Adjacent configurations differ in a single
bit. The label on the edge between two configurations corresponds to the particular bit in
which they differ.

Co --0

i=0
C3 C

j=0 j=l

C2

j=l

FIG. 5. Relationship between the four configurations.

Now, consider the sequences of actions, specified in Table 3, which can be applied at a
configuration Cstart and results in the configuration Cnnish.

TABLE 3
Sequencesfor proofof Theorem 4.6.

Cstart sequence Cfinish

Co /301 WRITE(vl)Fo writej(1)Fl ACK CI

C1 /3:z WRITE(v2) ’12 writei(1)F2 ACK C2

C2 /323 WRITE(v3) F23 writej(0)F3 ACK C3

C3 /332 WRITE(v2) F32 writej(l)F2 ACK C2

C2 /321 WRITE(v)F2 writei(0)Fl ACK C

We claim that if we have a schedule r with the configuration Cstart and no pending WRITE,
we can concatenate an appropriate sequence of actions/3 (from Table 3) to cr to obtain the
schedule or’ with the configuration Cnnish. The sequence/3 is a single logical WRITE which

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 353

consists of a single physical write (and possibly some physical reads)--thus none of the y,,’s
contain any physical writes. It is easy to see that each/3 exists.

We create a new sequence c’ by taking ot and inserting certain sequences at certain points,
according to the following rules. First, we insert/301 immediately before READ(l), resulting
in configuration C1. Then, immediately before each readj of RP1, if the configuration is
we insert/32/323, resulting in configuration C3. Immediately before each read/of RPI, if the
configuration is C3, we insert/332/321, resulting in configuration C.

To see that or’ is a schedule, it is sufficient to observe that the only time the configuration
changes within the schedule is when a sequence/ab is inserted. This follows from the fact,
proven in Claim 4.7, that ot contains no physical writes. In particular, inserting/301 changes
the configuration to CI, inserting/32/323 changes the configuration to C3, and inserting/332/321
changes the configuration to C. We can prove, by a simple induction, that the configuration
reached by any prefix of schedule or’ up to a read/ by RP is always C1. Similarly, the
configuration reached by any prefix of schedule c’ up to a readj by RP1 is always C3. Therefore,
read/ and readj always return the value 0. It follows that v0 is the value RETURNed by the
READ(I) in the schedule or’. Since, to satisfy regularity, the READ should RETURN v, v2,

or v3, we have a contradiction.
We conclude this section with a trade-off result relating to a constant number of writes.

This follows from the identical result derived in the safe case.
THEOREM 4.8. For all algorithms A, if WA C, where c <_ (log k)/3, then MA >_

(c!k/2) /c and RA > (c!k/2) /c.

5. Conclusion. We have demonstrated upper and lower bounds on the number ofphysical
registers, the number of physical reads in a logical read, and the number of physical writes
in a logical write, for a variety of multivalued register implementations. In many cases,
our bounds are tight. Some of our upper bounds follow from two new algorithms that we
present, one for implementing a k-ary safe register out of binary safe registers, and another
for implementing a k-ary regular register out of binary regular registers. We also presented
several interesting trade-offs between these cost measures, for implementing k-ary registers
out of binary registers. The bounds on the number of physical operations can be converted
into bounds on the time to perform the logical operations, in terms of the time for the physical
operations.

Future work includes finding such bounds for more algorithms, in particular, those in-
volving atomic registers and multi-writer registers. The bounds in this paper on W and M for
implementing a k-ary regular register out of binary regular registers are not tight. (Current
work shows that the tight bound for W is 1, i.e., that there exists a 1-write algorithm for a

k-ary regular register [3].) A final question is what difference does it make, if any, if clocks
are available to the read and write processes?

Acknowledgments. We would like to thank Brian Coan for the proof of Lemma 3.7.
Akhilesh Tyagi suggested the combinatorial techniques required in proving Theorems 3.10
and 3.11. We are grateful to Hagit Attiya, Paul Beame, Richard Ladner, Mike Saks, Martin
Tompa, and George Welch for many helpful conversations that improved some of the results
and presentation. The notes [8] from the Distributed Algorithms class taught by Nancy Lynch
at MIT served as a useful survey and tutorial of earlier work. The anonymous referees made
helpful comments that improved the presentation.

REFERENCES

B. BLOOM, Constructing two-writer atomic registers, in Proceedings of the Sixth Annual Association for Com-
puting Machinery SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Vancouver,
Canada, August 1987, pp. 249-259.

354 SOMA CHAUDHURI AND JENNIFER L. WELCH

[2] J. E. BURNS AND G. L. PETERSON, Constructing multi-reader atomic values from non-atomic values, in Pro-
ceedings of the Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on

Principles .of Distributed Computing, Vancouver, Canada, August 1987, pp. 222-231.
[3 S. CHAUDHURI, M. KOSA, AND J. L. WELCH, Upperand lowerboundsfor one-write multivalued regular registers,

in Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing, Dallas, December
1991, pp. 134-141.

[4] R.W. HAMMING, Coding and Information Theory, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1986.
[5] G. KANT AND J. VAN LEEUWEN, Thefile distribution problemforprocessor networks, in Lecture Notes in Com-

puter Science 447: Proceedings of the Second Scandinavian Workshop on Algorithm Theory, Springer-
Verlag, Berlin, 1990, pp. 48-59.

[6] L. LAMPORT, On interprocess communication, Distributed Computing, (1986), pp. 86-101.
[7] M. Ll, J. TROMP, AND P. M. B. VITANYI, How to Share Concurrent Wait-Free Variables, manuscript.
[8] N.A. LYNCH AND K. J. GOLDMAN, Distributed Algorithms: Lecture Notesfor 6.852, Research Seminar Series

MIT/LCS/RSS 5, Massachusetts Institute of Technology, Cambridge, MA, May 1989.
[9] N. A. LYNCH AND M. R. TUTTLE, Hierarchical correctness proofs for distributed algorithms, in Proceedings

of the Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, Vancouver, Canada, August 1987, pp. 137-151.

[10] R. NEWMAN-WOLFE, A protocol for wait-free, atomic, multi-reader shared variables, in Proceedings of the
Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Vancouver, Canada, August 1987, pp. 232-248.

11 G. PETERSON, Concurrent reading while writing, Association for Computing Machinery Trans. Programming
Languages and Systems, 5 (1983), pp. 46-55.

[12] A. K. SINGH, J. H. ANDERSON, AND M. G. GOUDA, The elusive atomic register revisited, in Proceedings of
the Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Vancouver, Canada, August 1987, pp. 206-22 I.

[13] J. T. TROMP, How to Construct an Atomic Variable, Tech. report CS-R8939, Centre for Mathematics and
Computer Science, Amsterdam, the Netherlands, October 1989.

[14] A. TYAGI, The Role ofEnergy in VLSI Computations, Ph.D. thesis, Department ofComputer Science, University
of Washington, Seattle, WA, 1988. Available as UWCS Tech. report 88-06-05.

[15] K. VIDYASANKA.R, Converting Lamport’s regular register to atomic register, Inform. Process. Lett., 28 (1988),
pp. 287-290.

16] Concurrent reading while writing revisited, Distributed Computing, 4 (1990), pp. 81-85.
17] E M. B. VITANYI AND B. AWERBUCH, Atomic shared register access by asynchronous hardware, in Proceedings

of the Twenty-Seventh Annual IEEE Symposium on Foundations of Computer Science, Toronto, Canada,
October 1986, pp. 233-243.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 355-372, April 1994

() 1994 Society for Industrial and Applied Mathematics
010

PARALLEL INFORMATION DISSEMINATION BY PACKETS*

A. BAGCHIt;, E. E SCHMEICHEL, AND S. L. HAKIMIt

Abstract. Each vertex of an undirected graph possesses a piece of information that must be sent to every other
vertex. They communicate by sending bounded size packets of messages from one vertex to another. The authors
describe parallel algorithms, which accomplish the desired tasks for six prominent architectures. The algorithms are
optimal, or nearly so, in every case.

Key words, parallel gossiping, interprocessor communication, algorithms for parallel communication on net-
works

AMS subject classification. F.2.2

1. Introduction. One of the most important issues in parallel and distributed computing
is the issue of communication among the processors. In this paper we will consider a commu-
nication problem in networks (or graphs) that is usually termed "gossiping" and that abstracts
a large class of communication problems in distributed systems. In the standard gossiping
problem, each vertex of a connected graph G begins with a unique piece of information (its
message), and the goal is to disseminate this message to every other vertex in the graph. (The
precise model of communication for accomplishing this will be discussed in the next para-
graph.) Gossiping provides a suitable framework in which to study a number of important
issues related to communication in multiprocessor systems. Clearly, gossiping problems arise
naturally in studying such matters as load balancing, congestion control, synchronization, and
billing. More broadly, the gossiping problem is an abstraction of communication that arises
in a large class of distributed computation problems. Thus, optimal solutions to gossiping
provide a lower bound for the communication complexity of such problems. Often, the solu-
tion to a problem in distributed systems is essentially a solution of gossiping using a different
communication model [3], [14]. In addition, the efficiency of an optimal time algorithm for
gossiping on a particular topology is a useful measure of that graph’s parallel communication
capability when viewed as an interconnection network.

Because of its wide applicability and interesting theoretical aspects, gossiping problems
have been studied by many researchers. An excellent survey of previous work on gossiping
and related problems is provided by Hedetniemi, Hedetniemi, and Liestman [9].

There are two prominent models of communication used in the study of gossiping prob-
lems: the telephone model and the mail (or telegraph) model. We may think of each edge
(x, y) in a connected graph G as providing a two-way communication link between the end
vertices x and y. In the telephone model, communication between x and y can take place in
both directions simultaneously; that is, in a single call, x and y may exchange all the messages
they possess. By contrast, in the mail model, communication between x and y takes place in
only one direction at a time. Thus, in a single transmission x may send y a letter containing
all messages known to x, or vice versa, but both letters cannot be sent during the same trans-
mission. In either model, when x and y are communicating with each other, it is assumed that
neither is involved in any other activity in the network. In this paper, we will exclusively use
the mail model of communication.

*Received by the editors December 10, 1990; accepted for publication (in revised form) November 30, 1992.
Supported by National Science Foundation grant NCR-8716876.

tBell Communications Research, Red Bank, New Jersey 07701.
Department of Mathematics and Computer Science, San Jose State University, San Jose, California 95192.

Supported by National Science Foundation grant DMS-8904520.
Department of Electrical Engineering and Computer Science, University of California, Davis, California 95616.

355

356 A. BAGCHI, E. E SCHMEICHEL, AND S. L. HAKIMI

In the earliest work on gossiping, the objective was to accomplish gossiping using the
minimum number of telephone calls or letters. Let G denote any connected graph with n > 4
vertices. Bumby [5] and Kleitman and Shearer 10] showed that 2n -4 (respectively, 2n 3)
telephone calls are both necessary and sufficient to complete gossiping in G if G contains
(respectively, does not contain) a cycle of length 4. Conversely, Harary and Schwenk [8]
showed that in the mail model of communication, 2n 2 letters are both necessary and
sufficient to complete gossiping in G. A generalization of these results in which the edges are
assigned weights has been considered by Wolfson and Segall 14].

The minimum number of telephone calls or letters needed to gossip in a graph G is,
however, an inherently sequential measure of the difficulty of gossiping in G. In the sequel,
we will instead measure optimality in terms of the overall finishing time, allowing many of the
transmissions to occur in parallel. More precisely, we will assume that any set of transmissions
(xl, y), (x2, y2) that form an independent set of edges (i.e., a matching) in G could be
performed simultaneously. We will call such a set of simultaneously performed transmissions
a round, and our goal will be to accomplish gossiping in G in as few rounds as possible,
regardless of the number of transmissions actually used.

All previous work on parallel gossiping has assumed transmissions of unbounded length;
i.e., a vertex is allowed to send everything it knows to an adjacent vertex in a single transmission.
The earliest important work considered parallel gossiping in complete graphs using the mail
model of communication. Entringer and Slater [6] gave an algorithm to gossip in Kn with
unbounded length letters in logan + 5 1.44 logzn + 5 rounds, where q (1 +)/2.
Later, Even and Monien [7] showed that this number of rounds was optimal to within a small
additive constant. In], the authors studied parallel gossiping with unbounded length letters
in other prominent families of graphs (e.g., trees, hypercubes, and cycles) and presented nearly
optimal algorithms for each of the architectures considered. Several of the results in were
subsequently improved by Krumme and by Krumme, Cybenko, and Venkataraman [11], [12].

Our goal in this paper is to study parallel gossiping in the mail model of communication
with transmissions of bounded length. Thus, we will think of each transmission as a letter (or
packet) of fixed size. For uniformity, we will assume that the message of each vertex has size
1. As will be seen, the constraint of fixed packet size renders the parallel gossiping problem
substantially more challenging. However, the number of rounds required to gossip with fixed
size packets in a network is a more realistic measure and gives a good estimate of the real time
needed to disseminate information in the network.

It is known [1 that determining the optimal number of rounds for gossiping with un-
bounded size packets in general graphs is NP-hard; almost certainly, the problem remains
NP-hard with packets of fixed size, although this problem remains open. This suggests two
directions in which we might profitably proceed. One is the development of efficient approx-
imation algorithms for parallel gossiping with fixed size packets. The other is to consider
parallel gossiping with fixed size packets in specific families of graphs (architectures). We
have chosen the latter direction in this paper. In particular, we will consider parallel gossip-
ing with fixed size packets in complete graphs, hypercubes, paths, grids, cycles, and binary
trees--the latter architecture being by far the most difficult. The algorithms we give will be
optimal in the number of rounds, or nearly so, in every case.

While the focus of our paper is on parallel algorithms that assume an observer with global
knowledge of the graph, we wish to point out that all of our algorithms can nonetheless be
readily implemented as distributed algorithms. In particular, the algorithms for hypercubes
and binary trees could be directly incorporated for use in a distributed system. Further con-
sideration of this possibility is left to the reader.

PARALLEL INFORMATION DISSEMINATION BY PACKETS 357

2. Parallel gossiping algorithms using bounded size packets. Let g(p, G) denote the
number of rounds needed to gossip in G (V, E) using packets of size p, assuming all initial
messages have size 1. Before considering the various architectures, we state an easy lower
bound on g(p, G) that is nonetheless quite useful.

THEOREM 1.

g(p, G) >
Ivl(Ivl-)

V

and the inequality is strictfor p > 1.

Proof Each vertex must receive IVI- messages, and so IVl(IVI- 1) messages must be
received altogether by the vertices. But in a single round, at most p[- messages altogether
can be received. Thus we obtain g(p, G) >_ IVl(IVI 1)/p[llJ.

We note that the inequality in Theorem is strict if p > 1, since no vertex can send p
messages in the first round.

We now consider how to gossip with fixed size packets in various prominent architectures.
Complete graphs. We begin with the case p 1, which will also prove useful for the

general case. Let x’(G) denote the edge chromatic number of G.
LEMMA 1.

2(n 1), n even,
g (1, K,)

2n, n odd.

Proof Edge color Kn with x’(Kn) colors. Then we use the following simple procedure:

for j to x’(K) do
for each edge (v, w) colored j do in parallel

begin
v sends his initial message to to during round 2j 1;
to sends his initial message to v during round 2j;

end.

This completes gossiping in 2x’(K,) rounds. The fact that

x’(K,,)
n 1, n even,

/ n, n odd

is well known [4].
On the other hand, by Theorem we have

n(n-1) { 2(n-l), neven,
g(1, K,)>

/n/21 2n, nodd.

We now turn to the case p > 1. It will be convenient to partition the vertices of K, into
[n/p-I "row sets" R, R2 R[n/p], where we assume IRil p, for < < [n/p] 2
and gil >__ , for I-n/p] < < In/p]. If the vertices in Ri are say {vi,1, vi,2 }, we
define the p "column sets" C Cp by Cj {v,j, v2,j }. Note that Cj [n/p], for
< j < ; see Fig 1. Our gossiping algorithm is now easily described.

358 A. BAGCHI, E. F. SCHMEICHEL, AND S. L. HAKIMI

R1
R2
R3
R4

C1 C2 C3 C4
$ $ $

--) Vl, 1 Vl,2 Vl,3 Vl,4
--) V2,1 V2,2 V2,3 V2,4-- V3,1 V3,2 V3,3 V3,4
---) V4,1 V4,2 V4,3

FIG. 1. Partitioning KIT for p 5.

C5

V 1,5

V2,5

algorithm {gossiping in K, with p packets}
begin
(1) for to In/p] do in parallel gossip in Ri;
(2) for j to p do in parallel gossip in Cj;

{if ICjl In then each node in Cj knows the cumulative message after (2)}
(3) for to l-n/p-] do in parallel

for j to Lp/2_i do in parallel
begin
(i) vi,j sends l)i,j+[p/2 (if the latter exists) a packet containing the messages

in R[n/p]-l
(ii) vi,) sends Vi,j+[p/2] (if the latter exists) a packet containing the messages

in R [-n PI
end

end. {gossiping in K, with p packets}

It is easy to verify that the algorithm completes gossiping in a correct way.
For the analysis, note that since Ril < p for all i, we can use the algorithm of Entringer

and Slater [6] to complete Step (1) in logp + 5 1.44 logzp + 5 rounds. Each node begins
Step (2) knowing < p messages, which all can fit in a single packet. So for gossiping in Cj,
we can apply the result in Lemma when p in an obvious way. Thus Step (2) takes at

most 21Cjl < 2[n/p] <2 (+ 1)rounds. Finally Step (3), if needed, takes two rounds. In
summary, we obtain the following theorem.

THEOREM 2. g(p, Kn) < + 1.44 log2p + O(1).
We now show that the above algorithm is optimal to within a small constant number of

rounds.
> 2nTHEOREM 3. g(p, Kn) + 1.44 log2p- 3.

Proof At any time during the running of an algorithm, let the knowledge vector be the
n-vector whose ith component is the number of messages known to the ith vertex at that time.
Let t denote the knowledge vector after rounds, so that initially the knowledge vector is

T0 (1, 1). At the conclusion, the knowledge vector will be (n, n n).
Consider the earliest round r at which the "total knowledge" (i.e., the L -norm of the

knowledge vector) is at least pn. Since Ilvr II1 > pn, it follows easily that the euclidean norm

IIrll2 > II(p, p p) l12 p/-. Since 110112 /-, we see that the euclidean norm of
the knowledge vector increases by a factor of at least p during the first r rounds.

LEMMA. (Even and Monien [7]). In a single round, the euclidean norm ofthe knowledge
vector increases by afactor ofat most 49.

PARALLEL INFORMATION DISSEMINATION BY PACKETS 359

Sketch of Proof of the Lemma (when n is even). Let -t (x, X2 Xn). By suitably
permuting the indices, we may assume that t+l (x /x2, x2, x3 +x4, x4 x,,_ +xn, xn)"
i.e., t+l A-ft, where

0

0

Thus --7-t-tl]2 A 11211112, where

IIAII2A 112 sup
112112

/
denotes the euclidean norm of A. But it is well known [13] that IIAII2 V/l-max (ArA)I.
Since

2

2

has maximum eigenvalue (3 + x/), we obtain A 112 , completing the proof of the lemma
when n is even. For n odd, we refer the reader to [7].

It follows immediately from the lemma that r > [log4,p]. Thus after]-logp]
rounds the total knowledge is less than pn. So after the first I-logCp] rounds, the total

knowledge must increase by more than n2 pn. Since the total knowledge increases by
at most pin/21 per round, it follows that after the first [logCp] rounds, we need more

2nthan (n 2 pn)/pl_n/2] > 2n 2 additional rounds. Thus g(p, Kn) > - + logOp 3 >
p

2--n-n -at- 1.44 1Ogzp 3.

Hypercubes. Let Qd denote the d-dimensional hypercube with n 2d vertices. We
think ofthe vertices of Qd in the usual way, as d-tuples of 0’s and l’s, with two vertices adjacent
if they differ in exactly one component. Let us say an edge (v, w) belongs to dimension j if v
and w differ in the jth coordinate. We have the following easy algorithm for gossiping in Q,.

algorithm {gossiping in Qa with p packets}
begin

for j-- ltoddo
for all edges (v, w) belonging to dimension j do in parallel

begin
v sends w all messages known to v using [2j-1/p] rounds;
to sends v all messages known to w but not yet known to v

using [2j-1/p] rounds;
end

end. {gossiping in Qa with p packets}

360 A. BAGCHI, E. F. SCHMEICHEL, AND S. L. HAKIMI

The correctness of the algorithm is immediate. The algorithm requires

2 y[2J-/p] < 2 +1 --2 + d
j=l "= j=l

2n
+ 2 log2n

P

rounds. If p is a power of 2, say p 2c, then the number of rounds becomes

a a 2n
2 Z[2j-/p] =2c+2 y 2j-c- 2 (c + 2d-c -1)
j= j=c+ P

+ 2 log2p- 2.

By way of comparison, we have g(p, Qd) > g(p, Kn) > 2n + 1.44 logzp- 3. Thus our
algorithm is close to optimal for gossiping in Qa, especially when p is a power of 2.

We summarize our results.
2n 2THEOREM 4. (i) g(p, Q,) _< --b- + 2 logzn p.

2n(ii) If p is a power of2, then g(p, Q) < - + 2 logzp 2.
Paths. Let Pn denote the path with n vertices. We begin by showing that for p 4 (and

a priori p > 4), we can gossip in Pn in diam(P,,) + O(1) rounds; this is clearly optimal up to
an additive constant since g(p, G) >_ diam(G) for any p and G.

Let p 4, and for simplicity of presentation assume n 2 (mod 8); the modifications
needed for other values of n will be easy.

Partition the vertices of P,, into n__2 groups of four vertices each, and one group of two
vertices (the center two vertices), as shown in Fig. 2. Call the edge immediately to the left of
the center edge the crossover edge.

Crossover Edge Center Edge

FIG. 2. Groupsfor path algorithm, p > 4.

Consider any group that occurs to the right of the crossover edge. A packet will begin at
the right vertex of the group, and then move steadily to the left (except for "collisions" with
other packets, as discussed below). We will call such a packet a major packet. It will pick
up the messages of the vertices in its own group and proceed to the left endpoint of the path
without, picking up any additional messages. Similarly, a minor packet will begin at the left
endpoint of this group and move steadily to the right in a similar way, picking up only the
messages in its own group. There are symmetric definitions for a major and minor packet for
each group to the left of the crossover edge.

The protocol when collisions occur between packets moving in opposite directions is as
follows:

(1) A major packet is never delayed by a minor packet; the minor packet waits two rounds
for the major packet to pass.

PARALLEL INFORMATION DISSEMINATION BY PACKETS 361

(2) When two major packets collide, the one that started farther from the crossover edge
has priority, and the other waits two rounds until it passes.

It is readily checked that for two packets moving to the right, the one that started farther
to the right will always remain ahead, i.e., packets moving to the right will not "pile up." The
same holds for any two packets moving left.

Since the major packet from the right end vertex is never delayed, it follows by the above
paragraph that all left-moving packets will have reached their destination in diam(Pn) rounds.
The major packet from the left end vertex is delayed only by a collision with the major packet
from the right end vertex. Thus all packets moving right will reach their destination in just
diam(Pn) + 2 rounds.

Consider now the case when p 3; we assume for simplicity that n -= 2 (mod 6). We
use the above approach, except that we change the size of the large groups from 4 to 3 and
delay the start of the major packets. In particular, if the major packets to the right of the
crossover edge are ordered by increasing distance from the crossover edge, then the start of
the jth major packet to the right is delayed j rounds. (The intuition is to create the same
spread between the left-moving major packets that we had when the large groups had size 4).
Similarly, we delay the start of the jth major packet to the left of the crossover edge by j
rounds. In particular, the major packets at the end vertices of the path are delayed by + O (1)
rounds. The minor packets start as soon as possible, and the protocol for collisions is exactly

7as above. Thus we have g(3, P,) < gn + O(1).
For p and 2, we use a different strategy; for simplicity of presentation we assume n

is even. The idea is to take a census at the (+ 1)th vertex from the left end (denoted v0 in
the sequel) and then to broadcast from v0 the messages from each half of the path to the other
half. At the same time, we disseminate the messages of the vertices in each half to the other
vertices in the same half. We illustrate the method for p 1, n 6 and p 2, n 8 in Fig.
3, in which the number(s) above an arrow indicates the number of the unit(s) whose messages
are being sent.

For p 1, it takes n rounds to complete a census at v0, another n + rounds until v0
sends out its final packet (v0 needs to send its own message in both directions), and a final 2
rounds until the last packet sent by v0 reaches its final destination. Thus g(1, Pn) <_ 2 + 0(1).

For p 2, it takes g" rounds to complete a census at v0, g + more rounds until v0 sends
out its last packet, and a final 2 rounds until this last packet reaches its final destination.

Thus g(2, Pn) <- + O(1).
We now show that these upper bounds for g(p, Pn) are optimal to within a small additive

constant. For p >_ 4, this is immediate. For p < 3, the optimality follows by the following
result.

LEMMA 2.

g(p,P) > + + -2
p p

Proof Let v0 be a centermost vertex on Pn. Note that v0 needs to receive at least
[(n 1)/p] crucial packets (i.e., packets bringing v0 a new message) and to send >_ [(n + 1)/p]
crucial packets (i.e., packets bringing the recipient a new message). Clearly the last cru-
cial packet sent by v0 must occur after the last crucial packet received by v0, and so the
last crucial packet sent by v0 cannot occur before round [(n 1)/p + (n + 1)/p]. But
the last crucial packet sent by v0 contains a message that needs > 2 rounds to reach the
appropriate end vertex of the path. This proves the lemma.

362 A. BAGCHI, E. E SCHMEICHEL, AND S. L. HAKIMI

Round
1

2

3
4

5
6
7
8

9
10

11
12
13

1 2 3 4 5 6

p= 1, n=6

Round 1 2 3 4 5 6 7 8

5 3

6

8

9 5,6

10

11 7.8 5

p=2, n=8

We summarize our results as follows.

THEOREM 5.

g(P, Pn)

5/2n + 0(1), p 1,

3/2n + 0(1), p 2,

7/6n + 0(1), p 3,

diam(Pn) / 0(1), p > 4.

Rectangular grids. Let Gm,n denote the grid with rn rows and n columns. Since Gm,n
2mncontains mn vertices, it follows by Theorem 3 that g(p, Gm,n) > -I- 1.44 logzp. A natural

PARALLEL INFORMATION DISSEMINATION BY PACKETS 363

way to gossip in Gm,n would be: "Gossip in each of the columns in parallel, and then gossip
5 m___.n_n rounds. This bound can bein each of the rows in parallel. Such an approach uses

p
asymptotically improved. We present below a slightly more complex algorithm which yields

2mng(p, Gm,n) <_ + O(m + n).
We begin with the following result.
LEMMA 3. For n odd, g(1, G3,,,) _< 6n + 2.

Proof. Let n 2k + 1. Label the units in row r by #r-)n+ #rn from left to right,
for r 1, 2, 3. We will term a unit/zi odd (respectively, even) if is odd (respectively, even).
Note that there are 3k + 2 odd units and 3k + even units.

If we delete any odd unit from G, the resulting graph is Hamiltonian. In fact, for each unit

#i, 1, 3, 5 2n + 1, G #i contains a unique directed Hamiltonian cycle, denoted Ci,
which contains the directed path/z3,/z3,,_, #3n-2 2n+l. The algorithm will employ
only the cycles C, C3, C5 C2-. We note two useful facts about this collection of cycles:

(1) Let #i be any even unit. The even unit which immediately follows #i OIl Cj is the
same for all j 1, 3, 5 2n 1.

(2) Let #i be any odd unit. The even units which immediately precede and follow #i on

Cj(j =/: i) are the same for all j 1, 3, 5 2n with j :/: i.

The algorithm is conveniently described in two stages. During the first (second) stage,
each unit will learn the message of all the even (odd) units.

Stage will begin with the following 6k rounds.

for/= 0tok- do
begin

during rounds 6i + and 6i + 3, every even unit transmits the last message it
learned to the following (odd) unit on C2i+;

during rounds 6i + 2 and 6i + 4, every odd unit transmits the last message it
learned to the following (even) unit on C2i+;

{during these four rounds, we use the cycle C2i+1 which omits an odd unit
in the first row}

during round 6i + 5, every even unit transmits the last message it learned to
the following (odd) unit on Cn+2i+2;

during round 6i + 6, every odd unit transmits the last message it learned to
the following (even) unit on Cn+2i+2;

{during these two rounds, we use the cycle Cn+2i+2 which omits an odd unit
in the second row}

end

It is easy to see by (1) that after these 6k rounds, every even unit knows the messages of all
the other even units. Similarly by (2), after 6k rounds each odd unit in the first (respectively,
second, third) row knows the messages of all the even units with at most two (respectively,
one, zero) exceptions. Thus we can easily finish Stage in three additional rounds, for a total
of 6k + 3.

In Stage 2, we disseminate the messages of the odd units. In the first round we use C,
letting each odd unit (except #1) send its message to an even unit. We then use a scheme
analogous to the one above, with four rounds on C+2, two rounds on C3, four rounds on

Cn+4, two rounds on C5, etc. The key change is that/z, which belongs to all these cycles
except the initial C1, delays sending the message just received from #,+ for two rounds. In
particular,/zl sends its own message at round 3. So Stage 2 is analogous to Stage except
for this two-round delay. It follows that Stage 2 can be completed in 6k + 5 rounds, and so
altogether we can gossip in G3,n in just 12k + 8 6n + 2 rounds as asserted.

364 A. BAGCHI, E. E SCHMEICHEL, AND S. L. HAKIMI

The algorithm is now quite easy to describe. First gossip in each of the columns in
parallel; this takes < m + O(1) rounds, by Theorem 5. Next, partition the rows into sets of
two consecutive rows {Row 1, Row 2}, {Row 3, Row 4} with a final set of three rows if
n is odd. For each pair {Row 2j 1, Row 2j}, note that the vertices in the odd (respectively,
even) positions in Row 2j (respectively, Row 2j) together know all the messages. These
vertices are darkened in Fig. 4. It is now easy to complete gossiping in these two rows

in 2n m/p] < 2n (+ 1) rounds, using the directed cycle in Fig. 4 and moving the rn

messages which begin at each darkened vertex one position along the cycle every [m/p]
rounds.

Row 2j-

Row 2j

FG. 4.

For the final set of three rows (if it exists), we assign, to each of the three vertices in a
column, [m/3-1 messages from that column in the original grid so that together these three
vertices are assigned all rn original messages from that column. We now simulate the algorithm
in Lemma 3 in an obvious way, simulating each transmission in the Lemma by [m/3p]
transmissions here. We thus complete gossiping in the final three rows in (6n + 2). [m/3pl
2mn ._ O(m + n) rounds. We have thus proved Theorem 6.
p

2mn
THEOREM 6. g(p, Gm,n) < + 0(m + n).

P
Cycles. Let Cn denote the cycle on n vertices. It will be convenient to consider the case

when p is even first.
We begin by noting that

Cn)=
n, neven,

g(2,
! n + 1, n odd;

we leave the easy proof of this to the reader, mentioning only that the lower bound follows
from the remark following Theorem 1. Suppose therefore that p > 4. For simplicity of
explanation, let us also assume for the moment that p divides n. Label the vertices of Cn
in clockwise order as 1)11, 1)12 1)lp, l)21, 1)22 1)2p 1)n/p, 1)n/p,p. We define
group j to be the vertices with first index j. We now give a high level description of our
gossiping algorithm for C, under these assumptions. For each j, < j < n/p, a packet will
begin at vj,1 (respectively, Vj, p) and move clockwise (respectively, counterclockwise), first
picking up all the messages of the vertices in group j and then continuing without picking up
additional messages to the vertex which is, roughly, diametrically opposite the vertex 1)j,p/2.
We illustrate the movement of these two packets in Fig. 5. Whenever two packets moving in
opposite directions "collide," we delay each packet one round in allowing the other packet to
pass. If a packet moved without collisions, it would take exactly + 2 rounds to reach
its final destination. But each packet will collide with < "- packets moving in the oppositep
direction. Thus g(p, C,) < + + when p is even and pin.

If p does not divide n, we instead partition C, into In/p] groups of consecutive vertices,
each group containing at most p, but at least 2, vertices. We then mimic the algorithm above,
holding up packets as they are about to exit groups with > p vertices so that all packets leave the

PARALLEL INFORMATION DISSEMINATION BY PACKETS 365

Vj, 1 V

FIG. 5.

groups in synchrony. With this approach, it is easy to see that g(p, Cn) <_ In/2] + In /p] +
for any even p.

Consider now the case when p is odd. For p 1, it is easy to show that

2n 2, n even,
g(1, Cn)

2n, n odd.

For p > 3, we simply define the packet size to be p (even) and apply the algorithm above.
We summarize our result below.

THEOREM 7.
2n 2, n even,

(i) g(1, Cn)
2n, n odd.

+
(ii) g(p, C,,) <

if p is even,

1, ifp > is odd.

Although the bound above is tight for p and 2, the only lower bound we have when
p > 3 is the trivial g(p, C,) >_ + diam(C) + [n/2J.

Binary trees. Let Bn denote the complete binary tree on n vertices. We begin by describing
an easy algorithm for gossiping in B,. Color the edges of B, with three colors, say {0, 1, 2}.
If r =_ j (mod 3), the edges colored j will be termed active during round r. Throughout the
algorithm each node v will maintain a queue Q(v) which initially contains just v’s message.
As usual, each node also maintains a list of all messages received in its local memory, which
is separate from the queue. As messages arrive at v from v’s sons, they are inserted in Q(v) in
the order received. Let f(v) denote the father of v in B,. Suppose (v, f(v)) is active during
round r. If Q(v) is nonempty, then v sends f(v) the first rain{p, Q(v)[] messages in Q(v) in
a packet to f(v). Otherwise, if f(v) knows any messages not yet known to v, then f(v) sends
v a packet containing as many messages, not yet known to v, as possible. The algorithm halts
when each unit knows all the messages. Our goal is to show that this algorithm is optimal to
within O(1) rounds if n is sufficiently large relative to p.

366 A. BAGCHI, E. E SCHMEICHEL, AND S. L. HAKIMI

We will establish the following upper bound for the running time of the algorithm.
THEOREM 8. lfp > 2andn > 4p3/21g*2, the above algorithm uses atmost 3__n -t-2 log2n +p

logp + O(1) rounds.
Although the algorithm given above is quite easy, the proofofTheorem 8 is rather involved.

Before formally establishing the complexity of the algorithm, we will informally discuss the
execution of the algorithm and the ideas behind the analysis.

Let rl and r2 denote the two sons of the root f(r). Suppose the edge (rl, f(r)) is
colored 1. It is easily checked that in rounds 1,4, 7 r sends to f(r) packets containing
1, min{p, 6}, min{p, 26} messages, respectively. There is a similar pattern for the number
of messages sent by any vertex u to f(u) in successive early transmissions. We will establish
that if n is large enough in terms of p, then rl sends a packet with min{p, 2F3k+l messages
to f(r) during round 3k + 1, for k 1, 2 until rl sends f(rl) at most one final packet
with < p messages, where Fj is the jth Fibonacci number. Once rl has sent f(r) all the
messages in the subtree Tr of T rooted at r, then f(r) starts sending rl the messages from
Try. t_) {f(rl)}. Using the above facts, it is easy to show that the root and both of its sons will
have learned the cumulative message by round R + O (1), where R 3 + logp.p

Now consider vertex x in Fig. 6. Vertex x must receive from x and x2 all the messages
in subtrees T and T2, respectively. Once x knows all the messages in T (respectively, T2),
x begins sending to Xl (respectively, x2) the messages from subtree T2 (respectively, T).
Meanwhile, x continues to send messages from T’ T1 tO T2 t_J {x} to f(x) x3. When x3
knows all the messages from T’, it starts sending to x the messages from T T’. Once x
starts receiving these messages, it sends them down to X and x2. Note that if x has finished
sending all the messages from T1 (respectively, T2) to x2 (respectively, Xl) before receiving any
message from x3, then the messages from x3 will encounter no delay at x. If each downward
moving packet encountered no delay at any vertex in the tree, then of course gossiping would
be completed in R + 2 logzn + O(1) rounds. It will be shown, however, that the total delay
encountered by any packet moving down the tree is just O(1) rounds, and thus the desired
bound of R + 2 logzn -t- O(1) rounds will be established.

root

FIG. 6.

To establish a delay of O(1) rounds on any downward moving packet, we will first study
the number of messages that are sent by a vertex v to f(v) in successive transmissions (the
so-called "upsequence" of the edge (v, f(v))). It will be shown that there are only a few types
of upsequences. One possible upsequence occurs if v sends f(v) first some packets containing
less than p messages, then a series of full packets (containing p messages), and finally at most
one packet with less than p messages. We mentioned above that the two edges incident to

the root will have this type of upsequence if n is sufficiently large. Indeed, this will be the
upsequence of any edge (v, f(v)) that is "high enough" in the tree (i.e., the distance h from v

PARALLEL INFORMATION DISSEMINATION BY PACKETS 367

to its leaf descendants is large enough). On the other hand, if this is not the upsequence type
of (v, f(v)), then we will show that v will have completed sending all messages in To to f(v)
by round 2h + 3. Once f(v) knows the messages in To, f(v) begins sending the messages
from T To to v in packets containing p messages, and v will know the cumulative message
by round R + 2 logz(n h) + O(1).

Before giving the actual proof, it will be useful to develop a number of lemmas. On any
edge e of Bn, packets are first sent upward (towards the root) and then downward later on.
The first lemma concerns the number of messages which are sent upward on e in successive
packets.

LEMMA 4. Suppose a packet is sent upward on e during round r containing Upe(r)
messages, lf upe(r) > upe(r + 3), then Upe(r + 3) > Upe(r + 6) > ..., as long as packets
are being sent upward on e.

Proof. For any edge e, let r(e) denote the first round r in which UPe(r < UPe(r 3). It
is easy to see that if el, e2 are two edges colored the same with el higher in the tree than e2,

then r(el) > r(e2).
We now proceed by induction on the height of the edge e above the leaves. Suppose the

lemma holds for all edges of height at most h, and let e e0 have height h + 1, with say
r(eo) r + 3. We need to show that UPe(r + 3) > UPe(r + 6).

We see clearly in Fig. 7 that r(el) < r + 2 or r(e2) _< r + 2 or both. Without loss of
generality suppose r(e) _< r + 2 and color(e) -= r / (mod 3). By the induction hypothesis

(1) 1APe (r 4- 1) > lAPel (r 4- 4).

Suppose (again, see Fig. 7) that color(e0) color(e3) and color(e) color(e4). By the
observation in the preceding paragraph r(e3) < r(eo) and r(e4) < r(e). Thus

(2) lAPe3 (r) > lAPe3 (r 4- 3),

(3) ltPe (r + 1) > lAPe4 (r + 4).

From (2) and (3) we get

(4) upe (r + 2) > UPe (r + 5),

and from (1) and (4) we get the desired result. [-1

e0

e

FG. 7.

Given an edge e colored 0, we call the sequence (UPe(3), UPe(6) the upsequence
of e. Analogous definitions give the upsequence of edges colored or 2. By Lemma 4,
the upsequence of each edge is one of the following three types. (We use formal language
notation to describe the three types, letting denote the empty string, and (<p) denote the set
of positive integers less than p.)

368 A. BAGCHI, E. E SCHMEICHEL, AND S. L. HAKIMI

(1) All-partial: (<p)*(<p),
(2) Good" (<p)*p*p{<p, },
(3) Bad: <p)*p*p(<p)* <p)2.

We will call an edge all-partial, good, or bad according to the type of its upsequence.
Our immediate goal is to show that we can bound the height (above the leaves) of bad

edges in B,, in terms of p. As we shall see, ifn >_ 4p3/21go2 then nobad edge will occur more
than halfway up the tree.

Consider a message m moving towards the root. We identify two kinds of delays it can
encounter, say at vertex u, along the way.

(1) Blocking delay: after m reaches u, it is not sent to f(u) at the first opportunity
(u, f(u)) becomes active. (There are at least p messages in Q(u) ahead of m.)

(2) Coloring delay: after m arrives at u, it is sent to f(u) at the first opportunity (u, f(u))
becomes active, but this is two rounds after m arrives at u. (This delay of one round is entirely
due to the coloring of the edges incident to u.)

The following will be useful.
LEMMA 5. If (u, f(u)) is bad, then the last message u sends f(u), say mlast, did not

encounter any blocking delay before reaching f(u).
Proof. Suppose v is a descendant of u at which mlast encounters a blocking delay.
CLAIM 1. (v, f(v)) is good.
Proof If (v, f(v)) were bad, then the last two packets sent upward on (u, f(u)) were not

full. The first of these packets cleared all messages at v waiting to be sent to v. Since mlast
is in the following packet sent up by v, it could not have encountered a blocking delay at v, a
contradiction.

CLAIM 2. If(v, f(v)) is good, all the edges in the pathfrom v to f(u) must also be good.
In particular, (u, f(u)) would be good, a contradiction.

Proof Let (w, f(w)) be the first bad edge we come to as we move upward from v to

f(u). Let x, y denote the sons of w, with mlast sent upward along (x, w). Then (y, w) must
send its last packet upward to w before x does. Moreover, since (x, w) is good, the upward
packet on (x, w) before the one containing mlast must be full. It follows easily now that
(w, f(w)) would be good, a contradiction. This proves Claim 2, and completes the proof of
Lemma 5. [3

Lemma 5 implies that if (u, f(u)) is bad, then all messages in the subtree T rooted at u
will reach f(u) within at most 2h + 3 rounds, where h denotes the height of u (the distance
from u to a leaf descendant), since the last message of T, to reach u encounters only coloring
delays before arriving at u.

We next establish an upper bound on the number of messages that are sent upward on an
edge during round r. This bound will be useful in the sequel.

LEMMA 6. During round r > 2, an upward packet on (u, f(u)) contains at most 2Fr
messages, where Fr denotes the rth Fibonacci number, with equality if h (the height of u) is
at least r.

Proof It is easy to see that during rounds 1, 2, and 3, a unit can send at most 1, 2, and 4
messages, respectively. In round r > 4, a unit can send at most min{p, Messages learned in
rounds r and r 21}. Thus if Mr denotes the maximum number of messages which can be
sent upward on an edge at round r, then M satisfies Mr < Mr- + Mr-, M 2, M3 4.
Thus, Mr < 2Fr for r >_ 2.

Let us assume now that (u, f(u)) is bad, and that u has height h. We saw above that u
will send to f(u) all the messages in T,,, of which there are 2’+l 1, within 2h + 3 rounds.
On the other hand, u could send f(u) at most

2p+
+ I(2h + 3).3.--- lgoPl p

PARALLEL INFORMATION DISSEMINATION BY PACKETS 369

messages during the first 2h + 3 rounds. (Simply note that if (u, f(u)) has color c, then by
Lemma 6 u could send f(u) at most

[(log,t p-c)/3J [lg4’ PJ

’ 2F3j+ < + Z Fk FLlog, p_l+2 < (qsL’go p-1+2 + 1) <
qSzp /

j=0 k=

messages during the first logp rounds.) But this implies that we must have

q2p+ I(2h+3).3.-lgPlp>2,+l(5) +

in order to have a bad edge (u, f(u)) with u at height h. But if n >_ 4p3/21g*:z, it is easily
log2n. In other words there will be no bad edges inchecked that (5) fails to hold for h >

the top half of the tree. In particular, both edges incident to the root will be good.
The following fact is easy to verify (formally by induction on h)" Let u be any node of

height h. Then, by the end of round 2h + 3, either u has sent f(u) a full packet or u has
completed sending up packets to f(u).

Let us call a good edge (u, f(u)) complete if u sends f(u) exactly 2F messages in every
round r during which (u, f(u)) is active prior to sending f(u) a first full packet. Otherwise,
we call a good edge (u, f(u)) incomplete.

ProofofTheorem 8. Assume for now that both good edges incident to the root are complete.
(We will show in a moment that this is true.) Then the root will learn the cumulative message

within logp + + O(1) rounds. Within more rounds, both sons of the root will

also know the cumulative message, and so both sons will have learned the cumulative message
by round R + O(1) where R 3 + logp. To complete the proof, we will show that each

p
u will learn the cumulative message by round R + 2(log2n h) + O(1), where h denotes the
height of u. The proof is by induction on log2n h; the case log2n h is given above.

Consider an edge (u, f(u)), where u has height h. If f(u) does not always have a full
backlog of messages to send u once u has completed sending messages upward, then clearly
u will learn the cumulative message at most two rounds after f(u) does. So by the induction
hypothesis, u will learn the cumulative message by round R + 2(log2n -h)-t- O(). Therefore,
we assume in the sequel that u always has a backlog of messages to send u once u completes
sending messages up to u.

We now consider three cases.
Case 1. (u, f(u)) is complete.
Let u be a descendant of the son r of the root, and for the moment assume (u, f(u))

and (r, root) are colored the same. Let k (respectively, n) denote the number of packets
(respectively, messages) which are sent from u to f(u) prior to the first full packet. Then the
total number of packets sent across the edge (u, f(u)) is

On the other hand, the total number of packets sent across (r, root) will be

These two quantities differ by 0 (1), and thus u will know the cumulative message by round
R + 0(1). The argument remains essentially unchanged if (u, f(u)) and (r, root) are colored
differently.

370 A. BAGCHI, E. E SCHMEICHEL, AND S. L. HAKIMI

Case 2. (u, f(u)) is incomplete.
By the fact given above, u must have sent its first full packet to f(u) by round 2h + 3.

Thus the number of rounds before u learns the cumulative message is at most

We would be done if we had

I2’+l- 11 In 2’+1 + 11R+2(log2n-h) > (2h+3)+3 +3
P P

or 2 log2 n > 4h log0p. However, h < logp (or else 2Fh > p and u would have sent 2 Fr
messages to f(u) in each round r prior to sending the first full packet, contradicting the fact
that (u, f(u)) is incomplete). Thus, it suffices to have 2 log2n > 3 logp, or n > p3/21og2,
which we have by assumption.

Case 3. (u, f(u)) is bad or all-partial.
Then u will have completed sending messages up to f(u) within 2h + 3 rounds. So the

number of rounds before u learns the cumulative message will be

(h + 3) + 3 + o(1).
P

We would be done if we had

R+2(log2n-h >2h+3In--2h+l?.p
[1 lg2n"Since R > 3 it follows easily that the desired inequality will be true if h _<

But if n > 4p3/21g2 and u has height h, we have argued that (u, f(u)) cannot be bad if
h > logzn. The same argument shows that (u, f(u)) cannot be all-partial if h > logzn.

logzn as desired.Thus h <

This completes the proof of Theorem 8.
We now establish a lower bound for the number of rounds needed to gossip in Bn using

size p packets. It matches the upper bound in Theorem 8 to within O (1) rounds.
3nTHEOREM 9. g(p, Bn) > + 2 log2n + logp O(1).

Proof. In what follows, we assume no vertex receives the same message twice. Clearly
this is no loss in generality.

Let x denote a son of the root of Bn, and let T, T2, T3 denote the binary subtrees of
as shown in Fig. 8.

Consider any round r0 after which x knows < p messages, including his own. We begin
with two useful facts concerning round r0.

(1) After round r0, x must still receive > [(n 1)/p] packets.
Proofof (1). After round r0, x must still receive

I lMessages in T/ not known to x after round r011
IMessages in T,. not known to x after round>-

i=

> --(n-l-p) 1.
P P

PARALLEL INFORMATION DISSEMINATION BY PACKETS 371

nn:

x3 (root)

FIG. 8.

(2) After round r0, x must still send

packets.
Proofof (2). After round r0, x still needs to send

Iln-ITilmessagesinTinotknowntoxiafterroundrol 1.= P

3 packets,

since each Xi knows less than p messages outside of T/after round r0.
We observe that

Moreover, we note that the last message sent by x must follow the last message received
by x. Finally, it can be seen that the last message sent by x needs at least 2 logzn O(1)
rounds to reach all the leaves of the T/to which it is sent.

In summary, we see that

1 2n
g(p, Bn) > ro + +R-

P P
3/,/

r0 + + 2 log2n O(1).
P

O(1) + 2 log2n O(1)

So, to complete the proof, it suffices to show that there exists a value of r0 satisfying
(3) r0 > logCp- O(1).
Proof of (3). To prove (3), let mr denote the maximum number of messages, including

its own, that the root of a binary tree could know after r rounds. It is easy to see that mr
satisfies the recurrence relation mr mr-1 + mr-2 + 1, m0 1, m 2. (Intuitively, one
should get as many messages as possible to the jth son of the root, for j and 2, in r j
rounds, and then use round r (respectively, r) to have the second (respectively, first) son
send everything it knows to the root. The addition of is for the root’s own message.) Solving
this recurrence yields mr Fr+3 1, where Fk is the kth Fibonacci number.

372 A. BAGCHI, E. F. SCHMEICHEL, AND S. L. HAKIMI

Consider now the earliest round at which x could know > p messages, including its own.
It is easy to verify that after r rounds, x could know at most mr-4 + mr-2 -Jr- mr-1 -1- 2
Fr- + Fr+ + Fr+2 3Fr+ messages (see Fig. 9).

FIG. 9.

Thus, for x to know >_ p messages, we need > r rounds, where r satisfies 3fr+ >

p, or (/)r > fr+l >_ (p -t- 1)/3, or r > loge ((p + 1)/3) > logOp 3. Thus, we can
take r0 > logp O(1) as asserted. This proves (3), and completes the proof of Theo-
rem 9.

REFERENCES

A. BAGCHI, S. L. HAKIMI, J. MITCHEM, AND E. E SCHMEICHEL, Parallel algorithmsfor gossiping by mail, Inform.
Process. Lett., 34 (1990), pp. 197-202.

[2] A. BAGCHI, E. E SCHMEICHEL, AND S. L. HAKIMI, Sequential information dissemination by packets, Networks,
22 (1992), pp. 317-333.

[3] A. BAGCHI AND S. L. HAKIMI, Information dissemination in distributed systems with faulty units, IEEE Trans.
Comput., (to appear).

[4] J. A. BONDY AND U. S. R. MURTY, Graph Theory with Applications, North Holland, Amsterdam, 1976.
[5] R. BUMBY, A problem with telephones, SIAM J. Alg. Discrete Math., 2 (1981), pp. 13-18.
[6] R.C. ENTRINGER AND P. J. SLATER, Gossip and telegraphs, J. Franklin Inst., 307 (1979), pp. 353-359.
[7] S. EVEN AND B. MONIEN, On the number of rounds necessary to disseminate information, in Proc. 1st ACM

Symposium on Parallel Algorithms and Architectures, 1989.
[8] E HARARY AND A. SCHWENK, The communication problem on graphs and digraphs, J. Franklin Inst., 297 (1974),

pp. 491-495.
[9] S.M. HEDETNIEMI, S. T. HEDETNIEMI, AND A. L. LIESTMAN, A survey ofgossiping and broadcasting in commu-

nication networks, Networks, 18 (1988), pp. 319-349.
[10] D. KLEITMAN AND J. B. SHEARER, Further gossip problems, Discrete Math., 30 (1980), pp. 150-156.
11 D.W. KRUMME, Fast gossipingfor the hypercube, SIAM J. Comput., 21 (1992), pp. 365-380.
12] D. W. KRUMME, G. CYBENKO, AND K. N. VENKATARAMAN, Gossiping in minimal time, SIAM J. Comput., 21

(1992), pp. 111-139.
13] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK, 1965,
14] O. WOLFSON AND A. SEGALL, The communication complexity ofatomic commitment and ofgossiping, SIAM J.

Comput., 20 1991), pp. 423-450.

SIAM J. COMPUT.
Vol. 23 No. 2, pp. 373-386, April 1994

() 1994 Society for Industrial and Applied Mathematics
011

GENERATING LINEAR EXTENSIONS FAST*

GARA PRUESSE AND FRANK RUSKEY

Abstract. One of the most important sets associated with a poset 79 is its set of linear extensions, E(79). This

paper presents an algorithm to generate all of the linear extensions of a poset in constant amortized time, that is, in
time O(e(79)), where e(79) IE(79)1. The fastest previously known algorithm for generating the linear extensions
of a poset runs in time O(n.e(79)), where n is the number of elements of the poset. The algorithm presented here is the
first constant amortized time algorithm for generating a "naturally defined" class of combinatorial objects for which
the corresponding counting problem is #P-complete. Furthermore, it is shown that linear extensions can be generated
in constant amortized time where each extension differs from its predecessor by one or two adjacent transpositions.
The algorithm is practical and can be modified to count linear extensions efficiently and to compute P(x < y), for
all pairs x, y, in time O(n + e(79)).

Key words, poset, linear extension, transposition, combinatorial Gray code

AMS subject classifications. 05C45, 06A05, 06A06, 68Q25

1. Introduction. One definition of the adverb "fast" is "in quick succession" (Webster’s
Collegiate Dictionary]). The purpose of this paper is to show that the linear extensions of
a partially ordered set (poset) can be generated fast--so fast, in fact, that no algorithm can
be faster, up to constant factors. Furthermore, the constants involved are very small and our
algorithms extend the practical range of posets for which extensions can be generated and
counted.

Linear extensions are of great interest to computer scientists because of their relation to
sorting and scheduling problems. For example, there are many NP-complete one-processor
scheduling problems with precedence constraints [1 3], and one obvious way of solving such
problems is by generating all linear extensions of the precedence constraints and picking
the best extension. Linear extensions are also of interest to combinatorists because of their
relation to counting problems [2], [21]. Our results can be used to generate efficiently the
standard Young Tableau of a given shape, alternating permutations, and any of the many other
combinatorial objects that can be viewed as linear extensions of particular posets.

Given a poset 79, two questions naturally arise. The generation question asks whether
the linear extensions, E(79), of 79 can be efficiently generated. The counting question asks
whether e(79), the size of the set E(79), can be efficiently determined. The recent result
of Brightwell and Winkler [4], that the counting question is #P-complete, indicates that the
counting question may be no easier than the generation question. We give the best possible
answer to the generation question in the sense that our algorithm generates E(79) in time
complexity O(e(T’)) (aside from a small amount of preprocessing).

We say that a generation algorithm runs in constant amortized time if it runs in time O(N),
where N is the number of objects generated. In the case of linear extensions we assume that
a unit cost oracle that takes two poset elements a and b and returns whether a -< b or not is
available. We also assume that the poset elements have been labeled in a particular manner,
to be described later. This labeling can be carried out in time O(n2) on an n element poset.
Aside from the space used for the poset, the amount of space required by our algorithm is

*Received by the editors July 24, 1991; accepted for publication (in revised form) December 3, 1992.
tDepartment of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4,

(Nara@cs. utoronto, ca). The work of this author was supported in part by Natural Sciences and Engineering
Research Council of Canada while the author was visiting Simon Fraser University, Burnaby, Canada.

tDepartment of Computer Science, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
(fruskey@c s r. uvi c. ca). The work of this author was supported in part by Natural Sciences and Engineering
Research Council of Canada grant A3379.

373

374 GARA PRUESSE AND FRANK RUSKEY

O(n). No constant amortized time generation algorithm was previously known for a class of
combinatorial objects for which the corresponding counting problem is #P-complete.

The problem of generating the linear extensions of a poset has been considered by Knuth
and Szwarcfiter 12], Varol and Rotem [24], and Kalvin and Varol [11]. In these papers the
term "topological sorting" is used instead of "linear extension." The most efficient of these
algorithms appears to be that of Varol and Rotem [24], whose time complexity is given as
O(n .e(7:’)) in 11], where n is the number of elements in the poset. It is worth noting that
the Varol and Rotem algorithm is very simple and elegant and quite efficient in practice. The
only algorithm of which we are aware for counting linear extensions of arbitrary posets is that
of Wells [25], but it appears to be difficult to analyze. For particular classes of posets, such
as series-parallel or bounded width, efficient algorithms for counting are known (see, e.g.,
Bouchitte and Habib [3]).

2. Strategy and definitions. A popular strategy for efficiently generating some set of
combinatorial objects is to insist that successive objects in the listing differ by some small
and prescribed way. Listings of combinatorial objects that have this property are called
(generalized or combinatorial) Gray codes. For example, the binary-reflected Gray codes
yield a method for generating all the n-bit strings such that each bit string differs from its
predecessor by the flipping of one bit. Gray codes have been found for several classes of
combinatorial objects; many of these are described in Wilf [26].

We will regard linear extensions as permutations of the elements of the poset. When
generating various classes of permutations, the most common "closeness" criteria is that
successive permutations differ by a transposition of two of their elements; sometimes this
is further restricted to a transposition of adjacent elements only. The well-known algorithm
of Steinhaus [22], Johnson [10], and Trotter [23] provides a Gray code listing of all the
n! permutations of n elements where each permutation differs from its predecessor by a
transposition of two adjacent elements. Thus we say that the n! permutations can be generated
by (adjacent) transpositions. The permutations of an n-set correspond to the linear extensions
of the poset that is an n element antichain.

In general, it is not always possible to generate the linear extensions of a poset by trans-
positions, adjacent or not--for example, the linear extensions of the poset consisting of two
nontrivial chains and only if n and m are both odd [5], [6], 16]. Thus, the linear extensions of
the poset in Fig. (two 2-element chains) cannot be generated by transpositions. The linear
extensions of some classes of posets have been shown to be generable by transpositions (see
[18], 15], [20]). It is an open problem to characterize the posets that have this property. Even
when the linear extensions of a family of posets can be generated by transpositions, a fast
algorithm to perform the generation may not exist.

The basic strategy of our initial algorithm is to generate each linear extension twice,
where each extension is flagged plus or minus. The algorithm keeps track of the signs of
the extensions and only "outputs" the plus extensions. Thus, in a sense, this algorithm falls
into the class of generation algorithms that generate more objects than those that are actually
output.

We now introduce our terminology and notation.
A poset (or partially ordered set) 79 is a reflexive, transitive, and antisymmetric relation

R(79) on a set S(79). An ordered pair (a, b) 6 R(79) is denoted a -<7 b or, when it will not
lead to confusion, simply a <__ b. By a -< b we mean a -< b and a :/: b. An element a is
minimal in 79 if there is no element b such that b -< a. Let Min(79) denote the set of minimal
elements of 79. If a -< b and there does not exist a c in S(79) such that a -< c -< b, then we
say that b covers a. Let Cover(a) denote the set of elements that cover a. Elements a and b
are said to be incomparable if a b and b a. We write a b to indicate that a and b are

GENERATING LINEAR EXTENSIONS FAST 375

incomparable. If no pair of elements of S(79) are incomparable, then 79 is a total ordering.
If 79 is a total ordering on S(79) {x, x2 xn such that xi -< xj if and only if < j,
then we sometimes use xlxz...xn to denote 79. An extension of 79 is a poset Q such that
S(79) S(Q), and R(79) __c R(Q). An extension of 79 which is a total ordering is called a
linear extension of 79. Let E (79) denote the set of linear extensions of 79, and let e(79) denote
IE(79)1. We let +E(79) denote {+/,-I E(79)}.

The height, h(x), of an element x is the average position that it occupies in a linear
extension. Thus, a minimum element has height 1, a maximum element has height IS(7)1,
and if 79 is an antichain then all elements have height (IS(79)1 / 1)/2. The probability that x
precedes y is denoted P(x < y)" it is the number of extensions in which x precedes y divided
by the total number of extensions. In connection with sorting algorithms it is desirable to find
pairs of elements x and y where P(x < y) is close to 1/2.

For T __c S(79), we let 79\ T denote the poset on the set S(79)\ T with the relations set
R(79) A (S(79)\T)2. Suppose a and b are incomparable elements of S(79) such that a has
the same relationship to all other elements of S(79) as b; more precisely, suppose that, for all
c 6 S(79), c -< a if and only if c -< b and a -< c if and only if b -< c. Then a and b are called
siblings. For posets 79 and Q, if R (79) to R (Q) is antisymmetric, then we let 79 + Q denote the
poset on the set S(79) to S(Q) with the relation set that is the transitive closure of R (79) to R (Q).
For example, 7:’ + abc is the poset on the set S(79) to {a, b, c} with the relation set that is the
transitive closure of R(79) tO {(a, b), (b, c)}. If 79 + Q 79, then we say 79 induces Q. For
example, if 79 + abc 79, then {(a, b), (b, c)} c__ R(79), and every linear extension of 79 has
a -< b -< c; therefore, we say 79 induces abc. For element disjoint total orders or,/3, V, 3, we
let o(/3 + ,)3 denote the poset 0t/36 + c,6.

Consider the graph that has E(79) as its vertex set, such that two vertices are adjacent in
the graph whenever the corresponding linear extensions differ by a single transposition. This
graph is called the transposition graph of the poset 79 and is denoted G(79). The subgraph
of G(79) on the same vertex set but containing only the edges that correspond to adjacent
transpositions is called the adjacent transposition graph and is denoted G’(79). Generating
the linear extensions of 79 by (adjacent) transpositions is equivalent to finding a Hamiltonian
path in the graph G(79) (G’(79)). Figure shows a poset and its transposition graph. If ce and
/3 are linear extensions of 79, then by D(c,/3) we denote the distance in G(79) from c to/3
and by D’ (or,/3) we denote the corresponding distance in G’ (79).

a2 b2

a bl

blb2ala2

/abza2
albla2b2

aa2bb2

G (79)

FIG. 1. A poset and its transposition graph.

Transposition graphs are bipartite and connected. If the partite sets of G (79) are not the
same size, then there is no Hamiltonian cycle through the graph; if the difference in the size of
the partite sets is more than one, there is no Hamiltonian path through the graph and thus the

376 GARA PRUESSE AND FRANK RUSKEY

linear extensions of 79 cannot be generated by transpositions. Ruskey [17] conjectures that
this necessary condition for the existence of a Hamiltonian path is also sufficient, suggesting
a possible characterization of the posets whose linear extensions can be generated by transpo-
sitions. In Fig. 1, the partite sets have a size difference of two, so the linear extensions of that
poset cannot be generated by transpositions.

If G is a graph, then let G K2 be the graph that results from taking two copies of G and
adding the edges that correspond to an isomorphism between the two copies. To differentiate
between the copies of G, we will prefix the vertices of one copy of G with "+" and the other
with "-". For example, Fig. 2 shows G(79) K2, where 7-9 is the poset shown in Fig. 1.

+bl b2al bl -bb2ala2

+ala2blb2 -ala2bi b2
FIG. 2. The graph G(79) x K2.

A lemma that will be useful in later sections can be stated as follows.
LEMMA 2.1. lfa and b are siblings in 79, then G (79) G (79 + ab) K2.
Proof Observe that E(79) E(7"9 + ab) t.) E(79 + ha). For any linear extension of 79,

transposing a and b in yields another linear extension of 79. Therefore, tle operation that
transposes a and b in a linear extension provides an isomorphism between G(79 + ab) and
G(79 + ba). [3

If e(79) (i.e., if T’ is a total order), G(79) K2 is an edge. For the purpose of
inductively showing the existence of Hamiltonian cycles, we consider this graph to have a
Hamiltonian cycle, since it has a Hamiltonian path such that the endpoints are adjacent.

3. The graph Gt(T’) K2 is Hamiitonian. The proof that G’(79) K2 is Hamiltonian
forms the basis of the efficient algorithm to be presented in the next section. That this is true
for a certain kind of poset, called a B-poset, was shown by Pruesse and Ruskey 15], and this
result will be used in the proof of the general case.

DEFINITION 3.1. A B-poset is a poset 79 whose elements can be partitioned into two

disjoint chains, x -< X2 "< "< Xn and y -< y2 -< -< Ym, such that yj Xi for all and
j, wherel <i <nandl <j<m.

An example of a B-poset is shown in Fig. 3. Note that x xlxz"’xnylyz’"ym is a
linear extension of any B-poset. The extension x is called the canonical linear extension of a
B-poset. Define mr(xi) to be the largest index j such that xi Yj; ifxi -< y, then mr(xi) O.
For the B-poset of Fig. 3, mr(a) 4 and mr(b) 7.

The following lemma was proved in [15].
LEMMA 3.2. Let 79 be a B-poset. Then there exists a Hamiltonian cycle in G’(79) K2

that uses the edge [+x, -x].
Figure 4 shows the graph G’ (79) K2, where 79 is the B-poset shown in Fig. 3. The edges

corresponding to the isomorphism between the two copies of G’(79) have been omitted for the

GENERATING LINEAR EXTENSIONS FAST 377

Y9

Y5
X2-- b

x’4 l a

FIG. 3. A B-poset.

sake of clarity. One can think of traveling up a vertical edge as transposing b x2 with its
neighbor on the right and traveling along a horizontal edge as transposing a Xl with one of
its neighbors. A Hamiltonian path between +to and -x is shown in Fig. 5. All B-posets used
in the remainder of the paper have n 2; we call these 2B-posets.

+ayl... y7by8Y9YlO

+abyl y2" ylo +to
FIG. 4. The graph G’ (79) x K2.

-ay y2 yvbygy9ylo

--to -abyl Y2" YlO

FIG. 5. A Hamiltonian cycle through G’(79) x K2.

A graph similar to that shown in Fig. 4 arises whenever a y; we call this the typical
case. If a -< y then G’ (79) is a path; we call this the atypical case. In other words, the typical
case occurs when mr(a) > 0 and the atypical case occurs when mr(a) O.

378 GARA PRUESSE AND FRANK RUSKEY

THEOREM 3.3. For every poset 79, the graph G’ (79) K2 is Hamiltonian.

Proof. The proof of the theorem is by induction on IS(7)1, For the base cases of the
induction, 79 is the poset on zero or one element; in both of these cases G’ (79) K2 is an edge.

Suppose IS(7)1 > 1. If 79 has a unique minimum a, then G’(79) - G’(79\{a}), and by
the inductive hypothesis G’(79\{a}) K2 is Hamiltonian.

Otherwise, let 79 have two minimal elements a and b. By the inductive hypothesis, the
graph G’(79\{a, b}) K2 has a Hamiltonian cycle H’. Replace each signed linear extension

+ci on H’ with abci; replace each linear extension -ci with baoti. The result is a cycle
/,/2 /t, where M 2. e(79\{a, b}), in G’(7:’) K2, which visits exactly those linear
extensions in which a and b precede all other elements of S(79). That is, this cycle visits all
the linear extensions of

+ _, ax + bx.
x6S(79)\{a,b}

The poset 79’ is 79 extended so that a and b are covered by every other element of Min(79).
For each/i xi Yii, where xi a, Yi b or xi b, Yi a, the poset 79 + xi Yi + i is

a B-poset. By Lemma 3.2, there is a Hamiltonian path through G’(79 + xiYi / i) x K2 from

+fli to --/3i. We substitute the occurrence of i with this path in H’, for each odd i. For each
even i, we substitute the reverse of this path for the occurrence of/3i. Call the resulting walk
H.

To prove that H is a Hamiltonian cycle through G’ (79) x K2, it is necessary to show that
every vertex on the cycle H is a linear extension of 79; this is true, since E(79’) c_ E(79),
and hence each B-poset generated is an extension of 79. It is also necessary to show that for
each linear extension of 79, +l and -1 both occur exactly once on H. Suppose induces the
order xy on {a, b} and the order on S(79)\{a, b}. Then xy is a linear extension of 79’, and

is a linear extension of the B-poset 79 + xy / ; also, every other B-poser that is generated
either does not induce the order xy or does not induce the order . Therefore, +l and -l are
generated only during the generation of E(7) + xy /); i.e., each +l and -l are generated
exactly once.

Observe that the reference to Lemma 3.2 in the preceding proof was not strictly necessary
because the B-posets that occur are all 2B-posets. In the "typical" case, the cycle of Fig. 5
could be used; in the "atypical" case the cycle is obvious (move b to the right as far as possible,
change signs, and then move the b back to the left). If mr(b) is even, the cycle of Fig. 5 is
slightly different and uses the edge [+a,b, -ayb], where y yy2"" Ym. These cycles are
used in the algorithm of the following section.

COROLLARY 3.4. If79 is a poset with a pair ofsiblings, then G (79) is Hamiltonian.

Proof Suppose 79 has a pair of siblings a, b. By Theorem 3.3, G’(79 + ab) K2 is
Hamiltonian; therefore, G(79 + ab) Ke is Hamiltonian. Hence by Lemma 2.1, G(79) is
Hamiltonian. V1

It is an open problem to determine whether G’(79) is Hamiltonian, where 79 is a poset
with a pair of siblings.

4. The algorithm. The proof of Theorem 3.3 is constructive. In this section, we present
the recursive algorithm implicit in the inductive proof. The algorithm runs in constant amor-

tized time, i.e., generating all the linear extensions of a poset 79 takes time O (e(79)).
We first give an overview of the algorithm and use a small example to give a general

description of how it works. We then give the details of the algorithm and a proof of its
correctness.

The algorithm is an in-place algorithm; it maintains an array 3_e, which contains the
current linear extension, and maintains a variable q-sP3_u, which keeps track of the sign

GENERATING LINEAR EXTENSIONS FAST 379

C+" or "-"). We go from one linear extension to the next by making changes to the array or
reversing the sign.

The main procedure used by the algorithm, which we call GenLE, is recursive and ba-
sically follows the path indicated in Fig. 5. Every level of the recursion has an associated
pair of minimal elements of the current subposet. For example, in the poset shown in Fig. 1,
al, bl are a pair of minimal elements of 791 T’ and a2, b2 are a pair of minimal elements of
792 T’ \ {al, bl }. These pairs are determined by some preprocessing, which will be described
later.

The procedures Move and Swi tch are used to change the current linear extension. They
operate in O (1) time as follows.

Swi tch i If 0, then the sign is changed; that is, I s Plus is chan,ed. If > 0,
then ai and bi are transposed.

Move (x, 1 e f t This call transposes x with the element on its left.
Move (x, right This call transposes x with the element on its right.
Each time a new linear extension of 79i is generated by the call GenLE i (i.e., each

time Move or Switch is called), GenLE i-1 is called; the call GenLE i-1 moves
al, bl ai-1, bi-1 in all possible ways through l, while maintaining the order ai- -< bi-1
(or bi-1 -< ai-1, depending on their order at the point of calling GenLE i-1). If 1,
then GenLE i-1 does nothing.

For example, starting with +albla2b2 and executing the calling sequence GenLE 2),
Switch 2 GenLE 2 on the poset shown in Fig. leads to the trace of calls shown in
Fig. 6.

Procedure Call Linear Extension

-}-aba2b2
GenLE (2)

GenLE (i)
Move(bl,-+) +ala2bl b2
Switch (0) -ala2blb2
Move(bl, -) -albla2b2

Switch 1 -blaa2b2
GenLE i

Switch (0) +blala2b2
Switch (2) +blalbza2
GenLE (2)

GenLE 1
Move(al,-+) +b b2a a2
Swi tch 0 -bbzaa2
Move(al, +-) -blalb2a2

Switch i -albb2a2
GenLE 1

Swi tch 0 +al bl b2a2

FIG. 6. The trace of the calling sequencefor the poset ofFig. 1.

We now follow with the details of our implementation. The reader should refer to the
Pascal procedure GenLE of Fig. 8.

The implementation of the algorithm maintains four global arrays: array 1 e is the linear
extension; array 1 i is its inverse. Arrays a and b store the elements ai and bi. In our discussion
of the algorithm, ai and bi are considered fixed at the outset and unchanging throughout the
run of the algorithm. The arrays will be maintained so that a i always contains the value

380 GARA PRUESSE AND FRANK RUSKEY

of the leftmost of the ith pair and b i contains the rightmost. Also, the current sign, either
plus (+) or minus (-), is maintained.

The boolean function R+/- ght () is used to determine whether the element can move
to the right. It operates in O(1) time as follows:

Right (b f] Returns true only ifb i is incomparable with the element to its right
in the array 1 e.

Right a i Returns true only if a i is incomparable with the element to its right
in the array 1 e and the element to the right is not b i].

We now describe our preprocessing. We successively strip off pairs ai, bi of minimal
elements for 1, 2 until there are no elements left. If a unique minimum element is
encountered then it is simply deleted and does not become part of a pair. Let MaxPair be
the index of the last pair of minimal elements we strip from 79, the remainder of 79 being a
total ordering or empty. This preprocessing is detailed in Fig. 7. Note that MaxPair is not
uniquely determined by the poset but that it depends on the order in which the elements are
stripped from 79

i--j+--O;

while S(Q) # 0 do
if Q has exactly one minimal element x then begin

j+-j+l;
le[j] -- x;
2 *-- \{x};

end else begin
let a’, b’ be any two minimal elements of Q;

+-- + 1;
j +- j +2;
a[i] -- a’;
b[i] +- b’;
le[j- 1] -a’;
le[j] ,-- b’;
2 2\{a’, b’};

end {else}
end {while}
MaxPair -- i;

FIG. 7. The preprocessing routine.

We say the linear extension is in proper order up to if for all < j < the elements

aj and b] are adjacent in and if induces the orders aaz...aiah and ala2.., aibh for all h,
where < h < Maxpair. The initial linear extension of the listing must be properly ordered
up to MaxPair; the preprocessing of Fig. 7 does this.

Assuming that Right(b[MaxPair+l] is false, the initial call is simply
GenLE MaxPair + 1 this is the same as the following procedure calls, which we call
the calling sequence.

GenLE(MaxPair); Switch(MaxPair); GenLE(MaxPair);

The algorithm consists of executing the preprocessing, setting IsPlus to plus (+), and
then executing the calling sequence.

A Pascal procedure implementing GenLE is given in Fig. 8. We now prove the following
theorem.

THEOREM 4.1. The algorithm GenLE generates the linear extensions along a Hamiltonian
path in G’(79) x K2.

GENERATING LINEAR EXTENSIONS FAST 381

procedure GenLE i integer
var mrb,mra,mla,x integer; typical boolean;
begin
if i > 0 then begin
GenLE(i-i);
mrb 0; typical false;
while Right(b[i] do begin

mrb := mrb + i;
Move(b[i], riht GenLE(i-i
mra 0;
if Right(a[i] then begin

typical := true;
repeat

mra mra + i;
Move(a[i], riht); GenLE(i-i);

until not Right(a[i]);
end i f
if typical then begin

Switch(i-i GenLE(i-I
if odd(mrb then mla := mra- 1 else mla := mra + i;
for x := 1 to mla do begin

Move(a[i], left); GenLE(i-i);
end;

end if
end {while}
if typical and odd(mrb

then Move(a[i], left
else Switch(i-I);

GenLE(i-i);
for x := 1 to mrb do begin

Move(b[i], left GenLE(i-i
end;

end i f
end {GenLE}

FIG. 8. Pascal procedure GenLE.

Proof In order to prove the theorem, we first prove the following proposition.
PROPOSITION 4.2. Let the linear extension in array i e be aibi ’, and let beproperly

ordered up to i. Thenfor each linear extension E(79 + aibi +), GenLE i generates
each of +l, -1 exactly once. Furthermore, if then the last extension generated is -,
and if > then the last extension generated is +’, where ’ differsfrom by a transposition
ofai-1 and bi-1.

Proof The proof proceeds by induction on i. If 1, the recursive calls Gen.E 0 do
nothing, Swi tch 0 just changes the sign, and 3a is induced by 79.

It is easy to confirm that the algorithm in Fig. 8, when stripped of its recursive calls and
in which witch just changes the sign, simply follows the path indicated in Fig. 2. In this
case, Gen,E 1 just finds a Hamiltonian path from + to - through G’(Q) K2, where
Q is the 2B-poset 79 + ab + ,.

If > 1, then assume without loss of generality that the sign in storage when Gen,E is
invoked is "+". There are c,/3, , such that + +otai_bi_aibi,. Because of the way
the preprocessing selects the pairs aj, bj, we are assured that 79 induces the order (ai + bi)
(of course,/ could be empty).

As mentioned before, the basic structure of the algorithm, stripped of recursive calls, fol-
lows the Hamiltonian path in a 2B-poset as indicated in Fig. 2, where witch now transposes
ai-1 and bi-1; therefore, it generates

382 GARA PRUESSE AND FRANK RUSKEY

+E’ +E(79 + ot(ai-1 4- bi-1)fl(aibi 4- ’)).

Each linear extension in 4-E’ is properly ordered up to 1.
As each such linear extension +l +ai-lbi-[(or +l’ +otbi-ai-ltS), where
E(aibi 4-],’), is generated, GenLE +/--1 is called on +1. By the inductive hypothesis,

that call generates -t-E(79 + ai- bi- + (or -+-E (79 + bi- ai-1 +), respectively), starting
at 4-1 and ending at 4-l’ if > 2, and ending at -l if 2. Since there are an even number
of vertices in the product of the graph with an edge, there are an even number of calls to
GenT,E i- 1). Thus if > 2 then the sign of the final permutation is unchanged, and if 2
then the relative ordering of ai-I and bi-1 is unchanged. The union over all such is

+E(79 + ai-lbi-1 4- aibi 4- y) +E(79 + bi-lai-1 4- aibi 4- /) -+-E(79 + aibi -Jr- y). [-]

Let a, b be a [MaxPair] b [MaxPair] respectively, and suppose the calling se-
quence is executed on the preprocessed poser 79. By the proposition, the first call to GenLE
generates +E(79 + ab); then a and b are transposed, and then +E(T9 + ba) is generated.
Therefore, E(79) is generated, and the theorem is proved.

In analyzing the time complexity of the algorithm, we assume that Right, Switch,
and Move can be implemented in constant time. This is easily accomplished as long as the
inverse 1 i of 1 e is maintained. Each call to Move and Switch generates one more linear
extension. Observe that the call GenLE i generates at least two calls to GenLE i-1).
Each iteration of a while-loop or for-loop in the algorithm executes a Move, thereby generating
a linear extension. The only occasion in which GenLE can be recursively called and no
linear extension generated is when 0, and this happens at most once per linear extension
generated. Therefore, the algorithm runs in constant time per linear extension, when generating
+E(79). By suppressing the linear extensions which are prefixed with "-", we generate E(79)
in constant amortized time. Another way to think of the preceding argument is to consider
the underlying computation tree, where each internal node is a recursive call and each leaf
is a linear extension. The total amount of computation can be apportioned so that each node
is assigned a constant amount of computation. Since each internal node has at least two
children, the number of leaves is greater than the number of internal nodes and, therefore, the
total amount of computation is proportional to the number of leaves.

Observe that the generation of the minus ("-") vertices only occurs when in
Algorithm GenLE. This suggests that be treated as a special case and that minus ("-")
vertices be omitted entirely by simply skipping to the next plus ("4-") vertex. If this is done,
then it saves some computation, but the same list of extensions is produced as before, and
successive extensions can differ by a large number of transpositions.

If one only wants to compute the number of extensions, then some computation can
be saved by only computing the number of vertices at the level of the recursion,
and not generating the extensions explicitly, i.e., never moving a and b. The number of
vertices (extensions) can be determined from mr(a) tara and mr(b) mrb; the number is
(mr(a) + 1)[mr(b) + mr(a) Furthermore, mr(a) and mr(b) change by at most unity
from one extension to the next, since only adjacent transpositions are used. This leads to an
algorithm whose running time is O(e(79 \ {al, bl })). In general, we have

2.e(79\{al,b}) < e(79) _< n(n-1).e(79\{a,b}).

The lower bound is attained when a -< c and b -< c for all elements c of 79 \ {a, b }. The
upper bound is attained when a and b are maximal, as well as minimal.

GENERATING LINEAR EXTENSIONS FAST 383

5. Gray codes for linear extensions. We now show that linear extensions can be listed
so that successive extensions differ by at most a few adjacent transpositions. We first show the
existence of such listings and then how to modify the results of the previous sections to show
that the set of linear extensions of a poset can be listed so that successive extensions differ by
only one or two adjacent transpositions. Let us say that an ordering or l, or: Ore(T, of the
extensions of 79 has delay C if D’(oti, 0/i-I-1) C for all 0 < < e(79), where c0 Ore(T,).
Thus we are going to show the existence of a delay 2 ordering of E(79). Furthermore, such
a listing can be done in constant amortized time. The existence of a delay 3 ordering is not
difficult to show.

If G is a graph then by Gk we denote the graph with the same vertex set as G but which
has an edge between every pair of vertices that are connected by a path of length at most k in
G. In other words, if M is the incidence matrix of G, then Mk is the incidence matrix of Gk,
where arithmetic is done mod 2. The cube of G is G3, and the square of G is G2. A poset 79
has a delay k ordering if and only if G’ (79)k is Hamiltonian. A result of Sekanina 19] is that
the cube of every connected graph is Hamiltonian. Since G’ (79) is always connected, G’ (79)3

is Hamiltonian and a delay 3 ordering exists.
The graph G’ (79) is not always 2-connected; otherwise the existence of a delay 2 ordering

would by implied by a result ofFleischner [7], which states that the square of every 2-connected
graph is Hamiltonian.

Even though G’ (79) is not in general 2-connected, the posets with 2-connected transposi-
tion graphs are easy to characterize. First, consider the question of which transposition graphs
have pendant vertices. If 79 consists of two disjoint chains, then G’(79) has two pendant ver-
tices; if 79 is a B-poset and is not the disjoint union of two chains, then G’ (79) has one pendant
vertex; otherwise, G’(79) has no pendant vertices.

LEMMA 5.1. For every poser 79, the graph H(79) is 2-connected, where H(79) is G’(7"9)
minus any pendant vertices.

This may be proved by showing that every pair of incident edges of H(T’) is on a 4-, 6-,
or 8-cycle. This lemma does not help us in finding an efficient algorithm for listing a delay 2
ordering of E(79). Instead, we prove it by applying Theorem 3.3 and the following lemma.

LEMMA 5.2. IfG is bipartite and G x K2 is Hamiltonian, then G2 is Hamiltonian.

Proof Let G be a bipartite graph on n vertices, and let

(Vl, Xl), (1)2, X2) (1)2n, X2n)

be a Hamiltonian cycle through G x K2, where 1)i E V (G) and X V (K2) 1, 2}, for all
i, < _< 2n. Consider the sequence of vertices S v2, v4 v2,,.

Since G is bipartite, so is G x K2; thus the vertices of S are all the vertices of one partite
set of G x K2. Also, for a vertex u of G, (u, 1) and (u, 2) are adjacent and therefore are in
different partite sets of G x K2. Therefore, each vertex of G appears exactly once in S. For
each i, the vertices 1)i and vi+2 are either of distance one in G (if xi 7 X/+Z) or of distance two
in G (if X Xi+2). Therefore, S is a Hamiltonian cycle in G2. [3

We conjecture that Lemma 5.2 may be extended to graphs that are not bipartite.
CONJECTURE 5.3. IfG K: is Hamiltonian, then G2 is Hamiltonian.
A graph is in class 7-/(s, t) if it has a closed walk that visits every vertex at least s times

and at most times. (See [8], [14].) Thus (1, 1) is the class of Hamiltonian graphs. Observe
that if G K2 is Hamiltonian, then G 6 7-/(1, 2) (just consider the walk that results when the
two copies of G are identified). The converse is not true; if G is the triangle with a pendant
edge added to each vertex, then G 6 7-/(1, 2) but G x K2 is not Hamiltonian. Theorem 3.3

384 GARA PRUESSE AND FRANK RUSKEY

shows that for every poset 79, the graph G’(T’) is in 7-((1, 2). In general, these graphs are not
Hamiltonian. We make a conjecture.

CONJECTURE 5.4. If G 7-((1, 2), then G2 is Hamiltonian.
The example of K2,6 shows that the converse of the conjecture is false.
The proof of Lemma 5.2 is constructive; applying that construction to G(79) yields the

following result.
THEOREM 5.5. The linear extensions of any poset can be generated with delay 2 in

constant amortized time.

Proof We run the Algorithm Gen-I e given in Fig. 8, but instead of suppressing the linear
extensions with a negative sign we suppress every other linear extension; i.e., if we generate
the list ll, 12, 13, 14, 15 then we output the list ll, 13, 15 By the, proof of Lemma 5.2,
this is a delay 2 listing of the linear extensions. It has the same running time as Gen]_, i.e.,
constant amortized time. [3

In the remainder of this section we discuss how to use the algorithm to compute P(x < y)
and h (x). We use the version of Gr.E that generates each extension exactly twice, where
each successive extension differs by an adjacent transposition from its predecessor. We first
discuss how to compute P(x < y).

Let us define an xy-run to be a maximal sequence of successive extensions where x
precedes y. We maintain two arrays of integers, call them S and T. The value of Six, y] is
the sum of the lengths of the previous xy-runs. The value of T[x, y] is the iteration at which
the current xy-run started. At each iteration, exactly one adjacent pair, say xy, is transposed.
If this occurs at the tth iteration, then S[x, y] is incremented by T[x, y] and T[y, x] is set
to t. At the termination of the algorithm, P(x < y) is S[x, y] divided by 2e(79). Since only
a constant amount of update is done at each iteration, the total computation is O(n2 + e(79)).

To compute h (x) we proceed in a similar fashion. An x-run is a maximal sequence of
extensions in which x occupies the same position. Here the value of S[x] is the weighted
sum of the lengths of the previous x-runs and T[x] is the iteration at which the current x-run
started. At each iteration exactly one adjacent pair, say xy, is transposed. If this occurs at the
tth iteration, then for z x, y, S[z] is incremented by p[z] (t T[z]) and T[z] is set to t,
where p[z] is the position that z occupied in the extension. At termination the value of h(x)
is Six] divided by 2e(7).

Ii. Concluding remarks. The algorithm given in 6 generates the linear extensions of
a poset in constant amortized time, an improvement over the O(n) amortized time algorithm
of 11], which is the fastest previously known algorithm. A further refinement to the work
presented here would be to generate the linear extensions by a "loopfree" algorithm (i.e.,
constant computation in the worst case in producing a new extension from the current one).

We have fully implemented the counting and generating algorithms in C and found them
to be quite efficient in practice. On a Sun SPARCstation SLC, the program generated the
2,702,765 extensions of a 12-element fence poset in 4.2 seconds. These extensions are counted
by the Euler numbers; counting took 1.7 seconds. The 199,360,981 extensions of a 14-element
fence were counted in 91 seconds and generated in 281 seconds. The 2,674,440 extensions of
the 2 by 14 grid were generated in 8.3 seconds. These extensions are counted by the Catalan
numbers.

Enumeration ofthe linear extensions ofa poset has recently been shown to be #P-complete.
The algorithm in 3 constitutes the first constant amortized time algorithm for generating a

naturally defined class of combinatorial objects where the associated counting problem is #P-

complete. This leads to some interesting questions about the complexity of generating other
combinatorial objects for which counting is #P-complete.

GENERATING LINEAR EXTENSIONS FAST 385

Do all #P-complete problems admit constant amortized time generation algorithms? In
asking this question we assume that an initial object has been supplied as part of the input.
For example, for Hamiltonian cycles the input would consist of a graph G and a Hamiltonian
cycle in G; similarly, in this paper we have assumed that 12... n is a linear extension of the
input poset.

Intuitively, if the existence question is difficult (NP-complete), then the generation ques-
tion will be difficult as well, but we have not answered, or even formalized, this intuition. Even
if the existence question is easy (in P), there are many problems for which the complexity of
generating is unknown. For example, can the ideals of a given input poset be generated in
constant amortized time? Counting ideals is #P-complete, but finding an ideal is trivial. What
about generating the spanning trees of a graph in constant amortized time? Finding a spanning
tree and counting the number of such trees are both in P, but no one has discovered a constant
amortized time algorithm for generating the spanning trees. Is there, in fact, any interesting
relationship between constant amortized time generation algorithms and the complexity of
existence and/or counting? Some related questions, for various polynomial time complexity
measures (instead of constant amortized time), were considered by Johnson, Yannakakis, and
Papadimitriou [9].

Acknowledgments. We would like to thank Derek Corneil, Mike Fellows, and Carla
Savage for helpful discussions, Malcolm Smith for work on the figures, and especially Ken
Wong for implementing the algorithms and carefully reading the manuscript.

Note added in proof. As was pointed out by L. Babai (private communication), it is easy
to contrive a #P-complete object that can be generated quickly by starting with a #P-complete
object and pumping up the number of instances by taking the union with an easily counted
and easily generated but more numerous object. For example, given a poset T’ on n vertices,
consider the set {x x is an ideal of 79} U {x x c_ [n2]}. This set is #P-complete to count
and, given an appropriate representation, is easy to generate in constant amortized time.

A counterexample on twenty-four vertices to Conjectures 5.3 and 5.4 has recently been
found by J. van den Heuvel (private communication).

REFERENCES

Webster’s New Collegiate Dictionary, Merriam, Springfield, MA, 1980.
[2] M. AIaNFR, Combinatorial Theory, Springer-Verlag, New York, 1979.
[3] V. BOUCHITTE AND M. HA3m, The calculation of invariants for ordered sets, Algorithms and Order, I. Rival,

ed., Kluwer Academic Publishing, Dordrecht, 1989, pp. 231-279.
[4] G. BRIGHTWFtt AND P. WNKLER, Counting Linear Extensions is #P-complete, Order, 8 (1992), pp. 225-242.
[5] M. Buck ANO D. WEDZMANN, Gray codes with restricted density, Discrete Math., 48 (1984), pp. 163-171.
[6] P. EADES, M. HCKEY, AND R. C. READ, Some Hamilton paths and a minimal change algorithm, J. Assoc.

Comput. Math., 31 (1984), pp. 19-29.
[7] H. FIZSCHNR, The square ofevery two-connected graph is Hamiltonian, J. Combin. Theory Ser. B, 16 (1974),

pp. 29-34.
[8] B. JACKSON AND N. C. WORMAtD, k-walks ofgraphs, Austral. J. Combin., 2 (1990), pp. 135-146.
[9] D.S. JOHNSON, M. YANNAKAKIS, AND C. H. PAPADIMTRIOU, On generating all maximal independent sets, Inform.

Process. Lett., 27 (1988), pp. 119-123.
[10] S.M. JOHNSON, Generation ofpermutations by adjacent transpositions, Math. Comp., 17 (1963), pp. 282-285.
[11] A. D. KALWN AND Y. L. VAOL, On the generation of all topological sortings, J. Algorithms, 4 (1983), pp.

150-162.
[12] D. E. KNUTH AND J. SZWARCTr, A structured program to generate all topological sorting arrangements,

Inform. Process. Lett., 2 (1974), pp. 153-157.
13] J.K. LENSTRA, A. RNNOOY KAN, AND P. BRVCKER, Complexity ofmachine schedulingproblems, in Ann. Discrete

Math., Vol. 1, North-Holland, Amsterdam and New York, 1977, pp. 343-362.

386 GARA PRUESSE AND FRANK RUSKEY

[14] G. PRUESSE, A generalization of Hamiltonicity, Tech. report 236/90, University of Toronto, Toronto, Ontario,
1990.

[15] G. PREUSSE AND E RUSKEY, Generating the linear extensions of certain posets by transpositions, SIAM J.
Discrete Math., 4 (1991), pp. 413-422.

16] E RUSKEY, Adjacent interchange generation ofcombinations, J. Algorithms, 9 (1988), pp. 162-180.
[17] Research problem 90, Discrete Math., 70 (1988), pp. 111-112.
[18] Generating linear extensions ofposets by transpositions, J. Combin. Theory Ser. B, 54 (1992), pp.

77-101.
[19] M. SEKANINA, On an ordering ofthe set ofvertices ofa connected graph, Publ. Fac. Sci. Brno., 412 (1960), pp.

137-141.
[20] G. STACHOWIAK, Hamilton paths in graphs oflinear extensionsfor unions ofposets, SIAM J. Discrete Math., 5

(1992), pp. 199-206.
[21 R. E STANLEY, Enumerative Combinatorics, Vol. I, Wadsworth, Belmont, CA. 1986.
[22] H. STEINHAUS, One Hundred Problems in Elementary Mathematics, Pergamon Press, New York and Oxford,

1963.
[23] H. E TROTTER, Algorithm 115: Perm, Comm. Assoc. Comput. Math., 5 (1962), pp. 434-435.
[24] Y. L. VAROL AND D. ROTEM, An algorithm to generate all topological sorting arrangements, Computer J., 24

(1981), pp. 83-84.
[25] M.B. WELLS, The elements ofcombinatorial computing, Pergamon Press, New York and Oxford, 1971.
[26] H. S. WILE, Combinatorial Algorithms, An Update, Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 1989.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 387-397, April 1994

1994 Society for Industrial and Applied Mathematics
012

RANDOMIZED PARALLEL ALGORITHMS FOR MATROID UNION AND
INTERSECTION, WITH APPLICATIONS TO ARBORESENCES AND

EDGE-DISJOINT SPANNING TREES*

H. NARAYANANf, HUZUR SARANt, AND VIJAY V. VAZIRANI

Abstract. The strong link between matroids and matching is used to extend the ideas that resulted in the design
of random NC (RNC) algorithms for matching to obtain RNC algorithms for the matroid union, intersection, and
matching problems, and for linearly representable matroids. As a consequence, RNC algorithms for the well-known
problems of finding an arboresence and a maximum cardinality set of edge-disjoint spanning trees in a graph are
obtained. The key tools used are linear algebra and randomization.

Key words, parallel algorithms, randomized algorithms, graph algorithms, matroids

1. Introduction. We obtain random NC (RNC) algorithms for the fundamental problems
of matroid union and matroid intersection, for linearly representable matroids.

A key step in the matroid union algorithm is a simple method, using randomization,
for obtaining a linear representation for the union (it is well known that the union will be a
matroid, and will also be linearly representable). Once this is done, it is straightforward to
find a maximal independent set in the union matroid. This set is partitioned into independent
sets in the corresponding matroids using our RNC matroid intersection algorithm.

An RNC algorithm for the matroid intersection problem, which is a generalization of
bipartite matching, is obtained using the Binet-Cauchy Theorem and the Isolating Lemma
of [MVV]. Similar techniques, together with a theorem of Lovfisz [Lo2], yield an RNC
algorithm for the matroid matching problem as well. This problem, also called the matroid
parity problem, generalizes matroid intersection and general graph matching.

Using the matroid union and intersection algorithms, we obtain RNC algorithms for the
matroid covering and packing problems. For the case of a graphic matroid, these correspond
to the well-known problems of finding an arboresence in a graph (i.e., the minimum number
of forests that cover all edges), and of finding a maximum cardinality set of edge-disjoint
spanning trees in a graph. The latter has applications to fault tolerant communications [IR],
[Gu]. It also has applications in the analysis of electric networks [IF], [OIW] and in the study
of rigidity of structures [LY].

The first polynomial time algorithms for matroid union and matroid intersection were
given by Edmonds [Edl], and Lovfisz [Lo2] gave the first such algorithm for the matroid
matching problem for linearly representable matroids.

Our results draw on the ideas used in the design of RNC algorithms for the maximum
matching problem [KUW], [MVV]. Broadly speaking, the solution for matching consisted of
taking the problem into linear algebra, and the use of randomization for extracting a maximum
matching. Indeed, we are also forced to work within the realm of linear algebra; our results
hold only for linearly representable matroids. However, since almost all useful matroids have
this property, this is not a major restriction.

It is interesting to see matroid theory and the matching problem playing their typical
roles once again--the former unifies and generalizes concepts, and the latter "serves as an
archetypical example of how a ’well-solvable’ problem can be studied" (quoted from [LP]).

2. Preliminaries. Let us first review some basic definitions and notation from matroid
theory; details may be found in [Ai], [La], [We].

*Received by the editors February 7, 1991; accepted for publication (in revised form) January 11, 1993.
Department of Electrical Engineering Indian Institute of Technology, Bombay 400 076, India.
Department of Computer Science and Engineering, Indian Institute of Technology, Delhi 110016, India.

387

388 H. NARAYANAN, H. SARAN, AND VIJAY V. VAZIRANI

A matroid M is a finite set S {el e,, together with a collection 2 of subsets of S
(called independent sets) such that the following conditions hold.

1. 0 2-.
2. If X 27 and Y c X then Y 27.
3. If U, V 2- with IUI IVI + then there exists x U V such that V {x} 2-.
A subset of S that is not independent is called dependent. The rank of a set A

_
S,

denoted by p(A), is the cardinality of a maximal independent subset of A. The rank of the
matroid M is the rank of S. A maximal independent set of M is called a base. A fundamental
consequence of the matroid axioms is that all bases of a matroid have the same cardinality,
thus every maximal independent set is actually maximum.

A matrix B over a field F is a linear representation of M if there is a one-to-one cor-
respondence between the elements of S and the columns of B, such that a subset of S is
independent in M if and only if the corresponding set of columns of B is independent over
F. If the rank of M is r then B need only have r rows. A matroid M is said to be linearly
representable over F if there exists such a matrix.

For convenience, we will restrict our attention to matroids that are linearly representable
over the rationals; it is easy to check that our results are valid as long as IFI is large enough
as a function of n and r. Henceforth, "representable" will mean "representable over Q."

Given a graph G, the matroid obtained by taking S to be the set of edges of 6; and 2- to
be the forests of G, is called a graphic matroid. Every base of corresponds to a spanning
forest in G. It is easily seen that if we delete any one row of the vertex-edge incidence matrix
of G, we obtain a linear representation of 6; over G F(2). A linear representation of over
Q is obtained by changing one to a -1 in each column of the above matrix.

The dual of a matroid M, denoted by M*, is the matroid whose independent sets are
{X" qB a base of M such that X

_
S- B} i.e., the independent sets of M* are the subsets of

complements of bases in M.
Given a set S and a partition $1, $2 S, of S, the matroid obtained by taking 2"

{I c_ S "11 fq Sjl < 1, < j < k} is called a partition matroid. It is easily seen that partition
matroids are linearly representable (pick k linearly independent vectors and let all elements
in Si be represented by the th vector).

Let M1, Me Mk be matroids on S. Let 27 {X X XI tO... tO Xk such that

Xi is independent in Mi, < < k}. Then 2- is the collection of independent sets of a
matroid on S. We call this matroid the union of M M, and denote it by kf/=l Mi. If X
is an independent set in /= Mi, then a partition of X into sets X X, such that Xi is
independent in Mi is called a proper partition of X.

The intersection of matroids can be defined analogously. However, the collection of sets
so obtained does not form the independent sets of a matroid. As a consequence, a maximal
set in this collection need not be maximum. The problem of finding a maximum cardinality
set in the intersection of two matroids is called the matroid intersection problem.

The matroid matching problem is: given matroid M (S, 2-), and a partition of S into

pairs (Xl, xe) (Xen-, Xen), pick the largest number of pairs so that the picked elements
form an independent set.

The (i, j)th entry of a n x n matrix A will be denoted by A (i, j) and its determinant will
be denoted by [A["

IAI-- Y sign(o’)value(o)

Here, the sum is taken over all permutations of n }, sign(or) is + if o is even and
if r is odd, and value(a) 1--Ii= A(i, r(i)).

RANDOMIZED PARALLEL ALGORITHMS 389

In this paper, we state all our results assuming the arithmetic CREW PRAM model of
computation [KR]. The arithmetic operations we require are addition, multiplication, and
subtraction of O(n) bit numbers, where n is the size of the ground set. We use M(n) to
denote the number of processors required to multiply two n n matrices in O(log n) time,
M(n) o(n2"376) [CW].

3. Obtaining a representation for the union matroid. If matroids
M, M2 Mk over set S are linearly representable, then the union /= Mi is also lin-
early representable. However, the standard way of constructing such a representation does
not seem to be parallelizable. We first give an RNC algorithm for constructing a linear
representation of the union of k matroids, for any k > 1.

We will give details for k 2; the generalization will be obvious. Let the ranks of M
and M2 be r and r2, respectively. Let A1 be an rl x n matrix representing M1 and A2 be
an r2 x n matrix representing M2. Obtain A from A2 by multiplying the columns of A2
by distinct variables Xl, x2 xn, i.e., A’2(i, j) A2(i, j) xj. It is easy to verify that a
set of columns of A is independent if and only if the corresponding set of columns of A2 is

independent. (Linear independence for matrices containing variables is defined in a natural
way, using operations over the field of multivariate polynomials.)

Define B, an (r + r2) x n matrix, whose first r rows are the same as the rows of A and
the last r2 rows are the same as the rows of A, i.e.,

A1 (i, j) if < rl,
B(i, j)

A’2(i r, j) otherwise.

LEMMA 3.1. A set S’ c_ S is independent in Ml v M2 if and only if the corresponding
columns of B are linearly independent.

Proof Let us first state a key property of matrix B that makes the lemma hold. Let C
be a (k + 1) x (k + 1) submatrix of B that picks k rows from A1 and rows from A, and
some set of k + columns. Corresponding to a set of of these columns, we define a k x k
submatrix C and an x submatrix C2 of C as follows: C2 consists of rows of A and these
columns, and C consists of the unpicked rows and columns of C. Let the indices of the

columns of C2 be i it in B. Consider]CI Y, sign(zr)value(rr), where as usual, the
sum runs over all permutations 7r mapping rows of C onto columns of C. Let P be the set of
permutations mapping rows of C1 onto columns of C, and rows of C2 onto columns of C2.
Then it is easy to check that

sign(zr)value(zr) IC111C2l;
7rEP

this term is of the form CXil Xil C 6 Q. Furthermore, a monomial of this form is not
generated by any permutation zr ’ P. Therefore, if C1 and C2 are both non-singular then so
is C. Similarly, if C is non-singular then for a suitable choice of i it (corresponding to
a monomial with non-zero coefficient in ICI), C and C2 must be non-singular.

The rest of the proof is now straightforward. Suppose S’

_
S is independent in M1 v M2.

Let (S, $2) be a proper partition of S’, and let ISll k and IS21 1. Then the columns of
AI(A) corresponding to S ($2) are linearly independent, and one can pick k(l) rows to get a
k x k(l x l) non-singular matrix C (C2). Then by the above stated property, the (k+ l) x (k+ l)
matrix C consisting of all the picked rows and columns is non-singular. Hence the columns
of B corresponding to the elements of S’ are linearly independent.

To prove the other direction, pick a maximal non-singular square submatrix, C, of the
linearly independent columns of B. The columns in C correspond to some set S’ c_ S. By

390 H. NARAYANAN, H. SARAN, AND VIJAY V. VAZIRANI

the above-stated property, there exist non-singular submatrices C1 and C2 of C. These yield
a partition of S’ into ($1, $2) such that Si is independent in Mi, 1, 2. This implies that S’
is independent in M1 v M2.

The construction given above clearly generalizes to k matroids M M, of rank

r r,: multiply the columns of M2 M, with distinct variables, x x,-)n, and
"stack up" the resulting matrices, together with M, to obtain an (r +... + r,) n matrix B.
Since matroid union is associative, the proof that this construction works follows immediately
using induction.

LEMMA 3.2. Given matroids MI MI,, the matrix B obtained above is a linear repre-
sentation of/=1 Mi.

We next show, using randomization, how to obtain a linear representation of //-1 Mi
using only rational entries, i.e., with no variables.

LEMMA 3.3. Let be obtainedfrom B by substituting each indeterminate randomly and
independentlyfrom 1,..., 2n (n/2 }" Then

Pr is a linear representation of Mi >
i=1

2

Proof. Note that it is enough to show that our substitution maintains the independence
of every base of B. Let the rank of the union matroid be r. Then, it can have at most (7)
distinct bases. Corresponding to each base/3 there is an r r non-singular submatrix, C, of
B. Consider the polynomial

p FI IC I,

where the product is taken over all bases of B. The degree of p is no more than () r. Now
it is enough to obtain a substitution for the indeterminates such that p evaluates to a non-zero
value. By Lemma 3.4, it is sufficient to substitute for the variables randomly and independently
from the integers {1,2 2r (7)}, i.e., using O(n) bits for each number, since 2r (7) <

2n2n.
LEMMA 3.4. [Sc], [Zi] Let p(x, x2 xn) be a non-trivial polynomial ofdegree d over

field F and let S c_ F. Ifx, x2 Xn are randomly and independently chosenfrom S then,

Pr[the substitution is a zero of p] < d/ISI.

Hence we get the following theorem.
THEOREM 3.5. Given the linear representations ofk matroids M M2 Mk with ranks

r, r2 rk, there is an RNC algorithmfor obtaining a representation of the union using
kn(i=l ri) <_ n2k processors.
Once we have a representation,/, for the union matroid M V= Mi, we can find the

lexicographically first base, I, for M by finding the lexicographically first base of/. The
lexicographically first base of a matrix can be obtained in NC2 by computing in parallel the
rank of first columns, for n, and choosing indices where rank increases. We get
the following corollary.

COROLLARY 3.6. Given k matroids M Mk via their linear representations over Q,
there is an RNC2 algorithm that uses O(max{kn2, nM(n)}) processors for obtaining the
lexicographically first maximal independent set in the union /i= Mi.

Remark. Notice that even if the random substitution was a zero of p, if a set of columns is
independent in/ then it must be independent in B. Therefore I is guaranteed to be independent
in M.

RANDOMIZED PARALLEL ALGORITHMS 391

Next we would like to obtain a proper partition of I. For this we need a parallel algorithm
for the matroid intersection problem.

4. Matroid intersection and matroid matching.

4.1. Matroid intersection. We use the Isolating Lemma of [MVV] and the Binet-
Cauchy Theorem to obtain an RNC algorithm to compute the maximum cardinality set in
the intersection of two matroids. Recall that the Binet-Cauchy Theorem states that, given two
n m matrices A and B,

IABVl IA=IIBI

where the sum is taken over all possible ways, or, of choosing n columns out of m, and by
A(B) we mean the n n submatrix of A (B) consisting of columns chosen by c.

We shall need the following slightly modified version of the Isolating Lemma (this is a
straightforward extension of the original lemma).

LEMMA 4.1 (Isolating Lemma [MVV]). Let (X, .T) be a set system, where X {x, x2,

x, and .T c_ 2x is afamily ofsubsets ofX. Let {el, C2 Cn }, ci 6 Q be a set ofinitial
weights on the xi ’s. Pick w, w2 w, randomly and independently from [1 2hi.
Define the weight ofxi to be ci + wi, and let the weight ofa set be the sum of the weights of
its elements. Then,

Pr[Zl unique minimum weight set in ’] >_ -.
THEOREM 4.2. There is an RNC2 algorithm using O(n4"5) processors for the matroid

intersection problemfor linearly representable matroids.
Proof Let the two matroids M and M2 be represented by the matrices ,4 and B, re-

spectively. Without loss of generality assume that A and B have the same number of rows,
say r (since the smaller matrix can be padded with rows of zeroes). In general, the required
maximum cardinality subset of S may have fewer than r elements; if so, by the Binet-Cauchy
Theorem ABr 0, and we get no information from this determinant. We shall overcome
this problem by first augmenting A and B with extra columns. Let el, e2 er be the unit
vectors over Qr. Obtain r r2 matrices C and D such that for each < i, j < r, there is an
index < k _< r2, such that the kth column of C is e; and the kth column of D is ej.

Let [A, C] represent the r (n + r2) matrix whose first n columns are the same as those
of A, and the last r2 columns are the same as those of C. Similarly, obtain [B, D]. The
augmented matrices have the following property: any subset of indices from n] such
that the corresponding columns are linearly independent both in A and in B can be extended
to a set of r indices from [1 n -k- r2] such that the corresponding columns are linearly
independent both in [A, C] and [B, D].

Randomly and independently pick wl Wn+r from [1 2(n +r2)]. For _< _< n,

multiply the ith column of [A, C] by xw;, and for n + < _< r2 -k- n, multiply the ith column
of [A, C] by Xwi+zr(n+r2) to obtain a new r (n + r2) matrix E. Compute IE[B, D] r I. This
can be done in NC2 using O(n4"5) processors (see [BCP]).

We now apply the Isolating Lemma. Here the set system, X, consists of the set of n + r2

indices and .T" consists of all choices of r indices such that the corresponding columns are

independent both in [A, C] and in [B, D]. Then with probability at least 1/2, the minimum
weight set of indices, or, is unique for the chosen weight distribution, and has weight w,. By
the Binet-Cauchy Theorem IE[B, D]rl 0, since the coefficient of the minimum power of
x (i.e., x-) is non-zero. The minimum weight set of indices c can be obtained as follows:

392 H. NARAYANAN, H. SARAN, AND VIJAY V. VAZIRANI

For to n +r2, in parallel do.
decrease I/) by I, keeping the
rest of the weights unchanged,
and compute IE[B, D]TI. If
the coefficient of xw changes,
then pick index i.

end;

The weight of any column of C is greater than the sum of weights of all columns of A,
irrespective of the random choices made. Therefore, ot must pick as many indices from

n as possible. Hence, the subset ofc in the range n will constitute a maximum
cardinality subset of S that is independent in both matroids. [3

Remark. The algorithm given above extends to the weighted matroid intersection problem,
provided the weights are given in unary. Let the ith element of the ground set have weight
Wi; find a minimum weight maximum cardinality set in the intersection of the two matroids.
In this case, we multiply the ith column of [A, C] by Xwi+2(n+r2)Wi for < < n, and by
xw’+zr(n+r2)w for n < _< n + r2, where W is the weight of the heaviest ground set element.
Extending this to the case of binary weights is left open.

4.2. Matroid matching. In this section we shall give an RNC algorithm for the ma-
troid matching problem for linearly representable matroids: given m pairs of vectors over
Q2n, {a(l), b(1)} {a (m), b(")}, pick the largest number of pairs so that the picked vectors
are linearly independent. Let us first define the wedge product of vectors a, b over Q2n as an
2n 2n matrix A such that

A(i, j) aibj -ajbi.

Denote this by (a/ b). We will need the following theorem of Lovisz.
THEOREM 4.3. [Lo2], [LP]. Let {a (1), b(1)} {a (m), b(m)} be pairs of vectors over

Qzn. Then there exists a set ofn pairs whose union is a basis iff B z O, where

B Z(a(i) /k b(i))xi
i=1

Here the x ’S are distinct indeterminates.
THEOREM 4.4. There is an RNC2 algorithm using O(n45) processors for the matroid

matching problemfor linearly representable matroids.

Proof. As in Theorem 4.1, we will first deal with the issue that there may not be n pairs
(ai, bi) whose union is a basis, by throwing in (2,) additional pairs of vectors. Let e,
be the unit vectors in Q2n. The added vectors are chosen in such a way that for every pair of
indices (i, j), < < j < 2n, (ei, ej) is included.

As before, as a result of the augmentation, any subset of the original m pairs that are
linearly independent can be extended to n pairs using the added pairs. Let

m+(n)
B (a (i) A b(il)xi

i=1

Randomly and independently pick w tOm+(,, from [1 2(m + ("))]. For <

_< m, substitute xi x wi, and for m + < _< m + (22"), substitute xi xw;+Z"(m+(")), and
compute IB[.

Note that B is skew-symmetric, and hence IBI (pf(B))2, where pf(B) is the pfaffian
of B. Lov?asz [Lo2] shows that pf(B) is linear in each ofthe variables xi and each monomial in

RANDOMIZED PARALLEL ALGORITHMS 393

the polynomial pf(B) is the product of n distinct variables X We will now apply the Isolating
Lemma with X as the set of rn + (n) indices, and consisting of all choices of n indices
such that the corresponding monomial has non-zero coefficient in pf(B). Then, after the
random substitution given above, with probability at least g, there is a unique term having the
minimum power of x (say xw) in pf(B). Consequently, the polynomial IBI will also contain
a unique term having minimum power of x, x2w. Hence BI - 0. The indices contributing to
this term can be obtained as in Theorem 4.1, by decreasing wi by in parallel for each i. By
the choice of weights, the number of indices in the range [1 m] is maximized. Hence,
this set of indices is a solution to the matroid matching problem. [

As in the case of matroid intersection, the above algorithm extends to the weighted
problem, if the weights are given in unary. Once again, the weighted matroid matching
problem for binary weights is left open.

5. Partitioning the independent set. Suppose set I is independent in M1 v M2. In this
section, we show how to obtain a proper partition of I.

5.1. Obtaining a representation for the dual matroid. First, we need a parallel algo-
rithm for obtaining a representation of the dual matroid. The standard method parallelizes in
a straightforward manner; essentially, it involves finding a base for the null-space of A, where
A is a r n matrix representing M. Denote the submatrix of A consisting of the first r (last
n r) columns of A by A (A2). The columns of A can be permuted in NC to ensure that A
is non-singular.

For each n-r dimensional unit vector ei,

_< < n --r in parallel do-

-1A2eCompute x ---A
Output the n dimensional vector
whose first r components
consist of xi and the remaining
n-r components consist of ei.

end;

Let C be the matrix consisting of these n r n-dimensional column vectors (in any order).
Then B CT is a linear representation for M* [We]. Since matrix inversion is in NC2 (see
[Cs]) we get the following lemma.

LEMMA 5.1. There is an NC2 algorithm using O(nM(n)) processors for obtaining the
linear representation of the dual, M*, ofa linearly representable matroid M.

5.2. The partitioning algorithm. We may assume without loss of generality that I is
the ground set for M and M2 (if not, we can restrict M and M2 to I, and pick only the
corresponding columns of matrices A and B). The partitioning algorithm is as follows:

i. Find a representation B* for M.
2. Apply the matroid intersection algorithm on A and /3*.

3. Let 11 be the set found in step 2. Output (11,12) where

I2:I--I.

LEMMA 5.2. Assuming that the matroid intersection algorithm in step 2 is successful,
(I1, I2) is a proper partition of I.

Proof. It is sufficient to prove that I2 is independent in M2, since clearly 11 is independent
in M1. Since I is independent in M, I2 contains a base of M2. We will finish the proof by
showing that 1121 must equal the cardinality of a base of M2.

394 H. NARAYANAN, H. SARAN, AND VIJAY V. VAZIRANI

Let (I;, I) be a proper partition of I that maximizes II I. Then I must be a base of M2;
if not, we should be able to move an element from I to I (note that I t.) I is the ground set
of M2). Clearly, I is independent in MI and M. Therefore Illl >_ I1, and so 1121 _< Il.
Since 12 contains a base of M2, we have that 1121 II1. The lemma follows. H

When we are given I over M1 v M2 v... v M, using the previous algorithm, we can first
partition it into 11 and 12 such that 11 is independent in M v... v Mk/2 and 12 is independent
in M/2+1 v v Mk. For this, we need to construct representations for the two matroids

M v v Mk/2 and M/2+1 v v Mk. Clearly, this just involves choosing the appropriate
rows of the representation of M1 v M2 v v Mk. Now recursively, in parallel, solve the
problem for 11 and 12. Note that this will take at most log n iterations of the above algorithm.

THEOREM 5.3. There is an RNC algorithm using O(n4"5) processors for the following
problem. Given matroids M1 Mk, via their linear representations and an independent
set I in /= Mi, find a proper partition of I.

6. Covering and packing problems. We give RNC algorithms for solving the covering
and packing problems for a linearly representable matroid M. Let M denote //=1 M.

The matroid covering problem is" Find a minimum cardinality collection C of independent
sets in M such that [..Jxc X S. Let ICI k, then k < n, assuming that there are no trivial
elements in S (i.e., elements that participate in no independent set). Clearly k min{i
p(Mi) n }. Thus, we can carry out a binary search in the interval [1 n] to obtain
k. This would involve at most log n iterations of the matroid union algorithm. We can then
partition S into k independent sets using the algorithm of Theorem 5.1 to get the required
cover.

THEOREM 6.1. There is an RNC algorithm using O(n4"5) processors for obtaining a
minimum cardinality cover by independent sets ofa linearly representable matroid M.

Since the graphic matroid of a graph is linearly representable (see 2), we get the following
corollary.

COROLLARY 6.2. There is an RNC algorithm using O(n45) processors for obtaining
an arboresence ofa graph G.

The matroid packing problem is: Find a maximum cardinality set of mutually disjoint
bases of M. Let k be the cardinality of this set and r be the rank of M. Clearly, k max{i
19 (Mi) ri }, and k < /n / rl. To find k, we can do a binary search over the range In / rl.
A partition of any base of Mk will then give the required set of bases.

THEOREM 6.3. There is an RNC algorithm using O(n4"5) processors for obtaining a

maximum cardinality set ofdisjoint bases ofa linearly representable matroid M.
COROLLAR’: 6.4. There is an RNC algorithm using O(n4"5) processors forfinding a

maximum cardinality set ofedge-disjoint spanning trees ofa graph G.

7. Las Vegas extensions. The algorithms presented so far have all been Monte Carlo,
i.e., they work with probability at least . We now give parallel algorithms for verifying the
solutions obtained, thereby giving their Las Vegas extensions, i.e., the running time of the
algorithm is probabilistic; however, it is guaranteed to produce the correct solution.

The matroid intersection algorithm can be made Las Vegas as follows. Suppose the
intersection computed is I. Now for each element e E S I, check using Edmonds’ matroid
intersection algorithm whether the set can be augmented with e (this will be a transitive closure
computation in an appropriately defined graph, see [PS]). If this fails for each element, then
I is the largest set in this intersection.

Next, we make the matroid union algorithm Las Vegas. Let I be the lexicographically
first maximal independent set found in M1 x/... x/Mk, and Let 11 Ik be the partition of
I obtained. Notice that randomization is used at two points: in finding I, and in partitioning

RANDOMIZED PARALLEL ALGORITHMS 395

it. Because of Remark 3.1, I must be independent, though it may not be the lexicographically
first maximal independent set. We can verify this solution as follows"

1. Verify that Ii is independent in Mi, < < k; if not, halt. This can be done easily
since linear representations of Mi are available. (Notice that a failure here indicates a bad
choice in the randomization done in the partitioning phase. Hence, if this test is passed, then
the partitioning of I is correct.)

2. Verify that I is the lexicographically first maximal independent set of M1 v... v Mk as
follows: Let el en be the ordering on the elements of S, and let I(i) denote the restriction
of I to {e ei}. It is sufficient to verify that for each i, < < n if ei+ I then
I(i) U {ei+l} is dependent in the union matroid. This can be done in parallel for each i, as in
the matroid intersection case given above. Notice that a partition of I(i) is available.

We next turn to covering. Suppose our algorithm found that k min{i S is independent
in M }. Now we only need to verify that S is not independent in Mk-1 This can easily be
done by finding a maximal independent set in Mk-1. Finally, the quantity k returned by the
packing procedure can be verified by checking if p(M+) < r(k + 1), where r is the rank of
M. We leave the open problem of obtaining a Las Vegas extension for the matroid matching
problem.

8. Discussion and open problems. (1) Our results hold only for linearly representable
matroids. Although almost all interesting matroids have this property, it is still interesting
to check whether there exist fast parallel algorithms for the matroid union and intersection
problems when the matroids are not linearly representable. We may assume that a rank oracle
or an independence oracle is given for the matroids. In the sequential setting, either of these
oracles suffices for running Edmonds’ algorithms. The importance of linear representability
to algorithm design has been noted previously. For example, Lovfisz [Lol has given a
polynomial time algorithm for the matroid matching problem if the given matroid has a linear
representation; however, the general problem is not polynomial time solvable [Lol], [JK]
(interestingly, this result does not depend on the P NP hypothesis). In the spirit of [Lo],
[JK] can one prove negative results in the parallel setting? For other work along these lines
see [KUW2].

(2) The ideas in this paper can also be applied to finding branching(s) in digraphs. In
a directed graph G (V, E), a branching rooted at vertex v is an acyclic subgraph of G in
which v has indegree zero, and every other vertex has indegree one.

Lovfisz [Lo3] gives an NC2 algorithm for finding a branching in a directed graph. It is
well-known that sequentially a branching can be found using matroid intersection. Let us first
remark that our parallel matroid intersection algorithm gives an RNC2 algorithm for finding
a branching, although the algorithm in [Lo3] is superior not only because it is deterministic,
but also because it uses fewer processors. The advantage of the matroid approach is that it
extends to the problem of obtaining k edge-disjoint branchings rooted at v, using the following
theorem.

THEOREM 8.1. [Ed2] A set E E can be partitioned into k edge-disjoint branchings
rooted at v ifand only if

(i) when considered as a set of undirected edges, E’ can be partitioned into k spanning
trees,

(ii) every vertex other than v has indegree k.
Let M be the graphic matroid on E obtained by ignoring edge directions, and let P be

the partition matroid on E where the elements of the th partition are the edges that point into
the vertex i. To find a set E (if it exists) of edges that can be partitioned into k edge-disjoint
branchings rooted at v, obtain a maximum cardinality set in the intersection of M and P.
The problems of partitioning E’ into k branchings, and of making this algorithm Las Vegas

396 H. NARAYANAN, H. SARAN, AND VIJAY V. VAZIRANI

are left as open problems.
(3) What is the parallel complexity of finding

(a) a lexicographically first intersection of two matroids
(b) a lexicographically first maximum cardinality intersection of two matroids.

Special cases of (a) and (b) are lexicographically first maximal and maximum matching,
respectively, in bipartite graphs. Analogous problems can also be stated for the graphic
matroid. Finding a lexicographically first maximal matching is known to be CC-complete.
On the other hand, the parallel complexity of lexicographically first maximum matching is
unresolved. Is problem (a) CC-complete?

Acknowledgments. We wish to thank Prasoon Tiwari and Umesh Vazirani for valuable
discussions during which a restricted version of Theorem 4.1 was obtained. Also we would
like to thank Naveen Garg, Samir Khuller, Shachin Maheshwari, Sachin Patkar, Milind Sohoni,
and Prakash Sunderasan for useful discussions.

[Ai]
[BCP]

[Cs]
[CW]

[Edl]

[Ed2]

[Gu]

[IF]

[IR]

[JK]

[KK]

[KR]

[KUWl]

[KUW2]
[La]

[Lo

[Lo2]

[Lo3]

[LP]
[LY]

REFERENCES

M. AIGNER, Combinatorial Theory, Springer-Verlag, New York, 1979.
A. BORODIN, S. A. COOK, AND N. PIPPINGER, Parallel computation for well-endowed rings and space

bounded probabilistic machines, Inform. and Control 58 (1983), pp. 113-136.
L. CSANCV, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), pp. 618-623.
D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithematic progressions, Proc. 19th

Annual Symp. on Theory of Computing, 1987, pp. 1-6.
J. EDMONDS, Minimum partition of a matroid into independent subsets, J. Res. National Bureau of

Standards, 69B (1965), pp. 67-72.
Edge-disjoint branchings, Combinatorial Algorithms, R. Rustin, ed., Algorithmics Press, New

York, 1972, pp. 91-96.
D. GUSFIELD, Connectivity and edge-disjoint spanning trees, Inform. Process. Lett., 16 (1983), pp.

87-89.
M. IRI AND S. FUJISHIGE, Use of matroid theory in operations research, circuits, and systems theory,

Internat. J. Systems Sci., 12 (1981), pp. 27-54.
A. ITAI AND M. RODEH, The multi-tree approach to reliability in distributed networks, Proc. 25th Annual

Symp. on Foundations of Comp. Sci., 1984, pp. 137-147.
P. M. JENSEN AND B. KORTE, Complexity ofmatroid property algorithms, SIAM J. Comput., 11 (1983),

pp. 184-190.
G. KISHI AND Y. KAJITANI, Maximally distant trees and principal partition of a linear graph, IEEE

Trans. Circuit Theory, CT-16, 3 (1969), pp. 323-330.
R. M. KARP AND V. RAMACHANDRAN, A survey ofparallel algorithms for shared-memory machines,

Handbook of Theoretical Computer Science, vol. A, MIT Press/Elsevier, New York, 1990, pp.
869-941.

R. M. KARP, E. UPFAL, AND A. WIGDERSON, Constructing a maximum matching is in random NC,
Combinatorica, 6 (1986), pp. 35-48.

The complexity ofparallel search, J. Comput. System Sci., 36 (1988), pp. 225-253.
E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rhinehart and Winston,

New York, 1976.
L. LovAsz, The matroid matching problem, Algebraic Methods in Graph Theory, II, L. Lovisz and

V. T. S6s, eds., Colloq. Math. Soc. Jinos Bolyai, vol. 25, Elsevier-North-Holland, Amsterdam,
1981, pp. 495-517.
,On determinants, matchings, and random algorithms, Fundamentals of Computation Theory,

FCT’79, L. Budach, ed., Math Research 2, Akademie-Verlag, Berlin, 1979, pp. 565-574.
Computing ears and branchings in parallel, Proc. 26th Annual Symp. on Foundations of

Computer Science, 1985, pp. 464-467.
L. LovAsz AND M. PLUMMER, Matching Theory, Academic Press, Budapest, 1986.
L. LovAsz AND Y. YEMINL On generic rigidity in the plane, SIAM J. Algebraic Discrete Methods, 3

(1982), pp. 91-98.

RANDOMIZED PARALLEL ALGORITHMS 397

[MS]

[MVV]

[Nw]

[PSI

[OIW]

[Sc]

[We]
[Zi]

E. W. MAYR AND A. SUBRAMANIAN, The complexity ofcircuit value and network stability, submitted to
J. Comput. System Sci.

K. MULMULEY, U. V. VAZIRANI, AND V. V. VAZIRANI, Matching is as easy as matrix inversion, Combi-
natorica, 7 (1987), pp. 105-114.

C. ST. J. A. NASH-WILLIAMS, Edge-disjoint spanning trees offinite graphs, J. London Math. Soc., 36
(1961), pp. 445-450.

C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms & Computing, Pren-
tice Hall, Englewood Cliffs, NJ, 1982.

Z. OHTSUKI, Y. ISHIZAKI, AND n. WATANABE, Topological degrees offreedom and mixed analysis of
electrical networks, IEEE Trans. Circuit Theory, CT-17, 4 (1970), pp. 491-499.

J. T. SCHWARTZ, Fast probabilistic algorithms for verification of polynomial identities, JACM, 27
(1980), pp. 281-292.

D. J. A. WELSH, Matroid theory, Academic Press, New York, 1976.
R. E. ZIPPEL, Probabilistic algorithmsfor sparse polynomials, Proc. EUROSAM 79, Ng, ed., Springer

Lecture Notes in Computer Science, vol. 72 (1979), pp. 216-226.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 398-414, April 1994

() 1994 Society for Industrial and Applied Mathematics
013

ON THE CONSECUTIVE-RETRIEVAL PROBLEM*
R. SWAMINATHAN AND DONALD K. WAGNER

Abstract. A {0, }-matrix M has the consecutive-retrieval property if there exists a tree T such that the vertices
of T are indexed on the rows of M and the columns of M are the incidence vectors of the vertex sets of paths of T. If
such a T exists, then T is a realization for M. In this paper, an O(r2c) algorithm is presented to determine whether
a given standard, r x c matrix has the consecutive-retrieval property and, if so, to construct a realization.

Key words, consecutive-retrieval property, tree realization, matrix decomposition, polynomial-time algorithm

AMS subject classifications. 05C05, 68P20

1. Introduction. A {0, }-matrix M has the consecutive-retrievalproperty if there exists
a tree T such that the vertices of T are indexed on the rows of M and the columns of M are
the incidence vectors of the vertex sets of paths of T. (Note that not every path of T needs
to correspond to a column of M.) If such a T exists, then T is a realization for M and M is
consecutive-retrieval graphic (abbreviated cr-graphic). The consecutive-retrieval problem is
to determine whether a given {0, }-matrix M is cr-graphic and, if so, to construct a realization.
This paper presents an O (r2c) algorithm for the consecutive-retrieval problem, where the given
matrix is a standard, r x c {0, }-matrix.

The consecutive-retrieval problem defined above was introduced by Tanaka [20] as a

generalization of versions of the problem defined by Ghosh [9] and Lipski 15].
The problem defined by Ghosh is as follows. Let R be a set of records, and let Q be a

collection of subsets of R called queries. The problem is to determine whether the members
of R can be arranged linearly in storage locations in such a way that the members of each
Q E Q are stored in consecutive locations. One advantage of such a storage arrangement is
that any query can be retrieved from storage using just two parameters, namely, a pointer to
the beginning of the query and the number of records in the query. Ghosh’s problem can be
rephrased in the terminology of the present paper as follows. Let M be a matrix, the columns
of which are the incidence vectors of the members of Q. Then the problem is to determine
whether there exists a path P such that the vertices of P are indexed on the rows of M and
the columns of M are the incidence vectors of the vertex sets of subpaths of P. Thus, the
consecutive-retrieval problem defined above is an extension of Ghosh’s problem from paths
to trees. Different aspects of Ghosh’s problem have been studied by Ghosh [10], [11], [12],
Gupta [13], Kou [14], Patrinos and Hakimi [18], and Waksman and Green [25].

A different rephrasing of Ghosh’s problem is that of determining whether the rows of M
can be permuted such that the ones in each column occur consecutively. A matrix admitting
such a permutation is called a consecutive-ones matrix. Such matrices were introduced by
Fulkerson and Gross [7], [8] and studied further in Tucker [22], [23], Nakano [16], [17], and
Booth and Lueker [4]. In particular, Booth and Lueker gave a linear-time algorithm (linear in
the number of nonzeros) for determining whether a given matrix is a consecutive-ones matrix.

Lipski 15] generalized Ghosh’s problem as follows. For a given {0, }-matrix M, Lipski’s
problem is that of determining whether there exists an arborescence T such that the vertices
of T are indexed on the rows of M and each column of M is the incidence vector of the

*Received by the editors July 16, 1992; accepted for publication (in revised form) February 5, 1993.
tDepartment of Computer Science, University of Cincinnati, Cincinnati, Ohio 45221

(swamy@jupiter.csm.uc.edu).
tMathematical Sciences Division, Office of Naval Research, Arlington, Virginia 22217 (dwagner@

onr-hq.navy.mil). The research of this author was partially supported by Office of Naval Research Grant N00014-86-
K-0689 at Purdue University.

398

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 399

vertex set of a directed path of T. Thus, the consecutive-retrieval problem of this paper
is an undirected version of Lipski’s problem. As in Ghosh’s problem, if M represents a
set of queries, then each query can be retrieved from the arborescence T using just two
parameters, the end of the corresponding directed path and its length. Truszczytiski [21 gave
an O(c + c2r) algorithm for determining whether M admits such an arborescence. Dietz,
Furst, and Hopcroft [5] improved this to linear time. An almost-linear-time algorithm and
several different applications of the problem are provided by the authors in [19].

Observe that if a cr-graphic matrix represents a set of queries, then each query can be
retrieved from a realization T using just four parameters as follows. First, assign directions
to the edges of T so as to make it an arborescence. Then any path of T is either a directed
path of the arborescence or is the union of two directed paths. Since each of these directed
paths can be retrieved using just two parameters, any path of T corresponding to a query can
be retrieved with just four.

An edge analogue of the consecutive-retrieval problem has previously been studied. De-
fine a {0, }-matrix M to be edge-tree graphic if there exists a tree T such that the columns
of M are the incidence vectors of the edge sets of paths of T. If such a T exists, then T
is an edge-tree realization for M. The edge-tree realization problem is that of determining
whether a given matrix M is edge-tree graphic and, if so, to construct an edge-tree realiza-
tion. A polynomial-time algorithm for this problem was first devised by Tutte [24]. Several
other algorithms have been developed, the most efficient of which are the almost-linear-time
algorithms of Bixby and Wagner [2] and Fujishige [6].

The algorithm presented here for the consecutive-retrieval problem is reminiscent of
Tutte’s algorithm [24] for the edge-tree realization problem. The basic idea of the present
algorithm is as follows. The algorithm consists oftwo phases, a decomposition phase followed
by a composition phase. In the decomposition phase, the matrix M is recursively decomposed
into smaller matrices with the final set of matrices each having exactly one row. Such matrices
are obviously cr-graphic. The composition phase starts with realizations of these one-rowed
matrices and undoes the recursion of the first phase in an attempt to construct a realization
of M.

The remainder of the paper is outlined as follows. Section 2 develops the decomposition
phase of the algorithm, and 3 develops the composition phase. Section 4 combines these
results to yield an algorithm for the consecutive-retrieval problem.

Undefined graph-theoretic terminology is consistent with Bondy and Murty [3]. With
respect to the main algorithm and its subroutines described in the remaining sections, the data
structures required are standard and so are not stressed in the derivation of the complexity
bound. In particular, it is assumed that matrices are stored in a column-by-column fashion
and that the nonzero positions for a given column are stored in a linked list. Graphs are stored
by keeping the set of ends for each edge. In all stated complexity results, r is the number of
rows of the given matrix, c is the number of columns, and n is the number of nonzeros.

2. A matrix decomposition. In this section, a matrix decomposition is described. This
decomposition is first described independently of the consecutive-retrieval problem. Then the
decomposition and corresponding composition results are related to the consecutive-retrieval
problem.

A {0, }-matrix M is standard if M (I, N), where I denotes an identity matrix of
appropriate size. Associated with a matrix M is a bipartite graph B(M) defined as follows.
The vertex set of B(M) is R(M) t2 C(M), where R(M) denotes the index set of the rows of
M and C(M) denotes the index set of the columns of M, and 6 R(M) and j 6 C(M) are
adjacent in B(M) if and only if the/j-entry of M is nonzero. The vertex set of a component

400 R. SWAMINATHAN AND DONALD K. WAGNER

of B induces a unique submatrix of M, called a component of M. The matrix M is connected
if it has exactly one component.

Let M be a connected, standard {0, 1}-matrix, and let B B(M) be its associated
bipartite graph. Let D be a proper subset of C(M). If B \ D is disconnected and no vertex of
R(M) is isolated in B \ D, then D is a disconnecting set (abbreviated d-set) of M. A d-set is
minimal if it does not properly contain a d-set.

LEMMA 2.1. Let M (I, N) be a connected {0, }-matrix. IfM has at least two rows,
then M has a minimal d-set. Moreover, every minimal d-set ofM is contained in C(N), and
a minimal d-set can be computed in O(n) time.

Proof Let B B(M), and let the vertex set of B be R A C, where R "= R(M) and
C C(M). Let D be a minimal subset of C such that B \ D is disconnected. (Since B is
bipartite and M has at least two rows, such a set D exists.)

Suppose that D contains an element of C(I), say u. Observe that u has degree one in B.
Thus, B \ (D- {u}) is disconnected, a contradiction to the minimality of D. Thus, D c_ C(N).

Consider any vertex v R in B \ D. Since D c_ C(N), v is adjacent, in B \ D, to a vertex
in C(I). Therefore, no vertex of R is isolated in B \ D. Thus, D is a d-set of M. Moreover,
by the choice of D, it is a minimal d-set of M.

Now, let D be a minimal d-set of M. As above, if D contains an element u of C (I), then
B \ (D {u}) is disconnected, which implies that D {u} is a d-set. Thus, every minimal
d-set is contained in C(N).

From the above, it follows that a minimal d-set ofM can be found by computing a minimal
subset D of C such that B \ D is disconnected. This can be done as follows. Choose any
v 6 R. Let u 6 C index the identity column such that u and v are adjacent in B. Then u has
degree one in B. Thus, v is a cut vertex of B. Let B1 Bt be the blocks (i.e., maximal
2-connected subgraphs) of B that contain v, and let H Ht be the maximal edge-disjoint
connected subgraphs of B such that Bi is a subgraph of H,. for _< _< t. Since M has at least
two rows, it can be assumed without loss of generality that V (H1)[> 3. Let D’ be the set of
vertices of H adjacent to v. Then D’ is a d-set; it is a minimal d-set if H1 \ D’ is connected.
In the case that H \ D’ is not connected, let K a component of H \ D’ that has the fewest
neighbors in D’; let D be this set of neighbors. Then D is the required set.

Constructing B requires O(n) time by scanning each column of M, and finding the
blocks of B requires O (n) time using the algorithm ofAho, Hopcroft, and Ullman designed
for this purpose. Constructing the subgraphs H Ht and the set D’ also takes O(n)
time. Finally, computing the components of H1 \ D’ and constructing the set D require O (n)
time.]

Let D be a minimal d-set of a connected, standard matrix M. Let R Rt and
C Ct be the partitions of R(M) and C(M) D induced by the components of B(M) \ D.
For < < t, define Mi to be the submatrix of M having row set Ri and column set C; U D.
Then {M Mt is a simple decomposition of M with respect to D. A matrix picture of
a simple decomposition is given in Fig. 2.1. Observe that each M; is a connected, standard
matrix.

I1 0

0

N1 0

o N,

Ol

FIG. 2.1. Matrix picture ofa simple decomposition.

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 401

Applying the notion of a simple decomposition recursively leads to the following defini-
tion. A decomposition tree associated with M is an arborescence 7- such that" (i) the vertex
set of 7- is a collection of {0, }-matrices with the root of 7- equal to M, (ii) the set of children
of a vertex is a simple decomposition of the vertex, and (iii) each vertex of outdegree zero is
a matrix having exactly one row. Observe that associated with each vertex having outdegree
greater than one is a minimal d-set, namely, the minimal d-set with respect to which the set of
children of the vertex is a simple decomposition.

THEOREM 2.2. Let M be a standard, connected {0, }-matrix. Then any decomposition
tree associated with M has O(r) vertices. Moreover, a decomposition tree can be computed
in O(rn) time.

Proof. By Lemma 2.1, a minimal d-set can be computed in O(n) time. Therefore, it
suffices to show that any decomposition tree, say 7-, associated with M has O(r) vertices.
This is done by showing by induction that 7- has at most 2r vertices.

If r 1, then 7" has exactly one vertex. Thus, assume r >_ 2. Let {M Mr} be
a simple decomposition of M, and let ri be the number of rows of Mi for < < t. By
induction, any decomposition tree associated with Mi has at most 2ri vertices.

Let Tll Ttt be the components of the arborescence obtained by deleting M from
such that Mi is a vertex of Ti. Then Ti is a decomposition tree associated with Mi. Therefore,
the tree 7- has at most I= (2ri 1) + vertices. Since i=1 ri r and > 2, the result
follows.

The above decomposition is now related to cr-graphic matrices. Recall that the decom-
position applies only to connected, standard matrices. Clearly, a matrix M is cr-graphic if
and only if the standard matrix (I, M) is cr-graphic. Thus, nothing is lost by the restric-
tion to standard matrices. Moreover, the following proposition reduces the analysis of the
consecutive-retrieval problem to the connected case.

PROPOSITION 2.3. Let M be a {0, }-matrix, and let M1 Mt be the set ofcomponents
of M. Then M is cr-graphic ifand only if M1 Mt are cr-graphic.

Proof Suppose that M is cr-graphic, and let T be a realization of M. Consider a
component M1 of M, and let T1 be the subgraph of T induced by R(Ml).

Let c 6 C(M1). Then c 6 C(M). Let P be the vertex set of the path of T for which
column c of M is the incidence vector. Since M1 is a component of M, all of the vertices of
P are vertices of T1. Thus, P is the vertex set of a path in T1, which implies that column c
of M is the incidence vector of P in T1. Thus, if T1 is a tree, then T is a realization of M1.
Since T1 is a subgraph of a tree, it is a tree if it is connected. If T1 is not connected, then there
exists a partition of its vertex set, say Vx, V2 }, such that no vertex set of a path corresponding
to a column of M1 has nonempty intersection with both V1 and V2. It follows that M is not
connected, a contradiction.

Suppose that M1 Mt are cr-graphic with respective realizations T1 Tt. Let vi
be a vertex of Ti for < < t. Define T to be the tree obtained from T T be adding
1)11)2, 1)21)3 l)t-1Vt as edges. Then the tree T is a realization of M.

Let G be a connected graph, and let T be a spanning tree of G. Then the ordered pair
(G, T) is a graph-tree pair (abbreviated gt-pair). For each edge e of G not in T, there exists
a unique cycle in T U {e}, called afundamental cycle of (G, T).

Let M be a connected, standard, cr-graphic matrix, and let T be a realization of M. For
each column c, add an edge c joining the two ends of the corresponding path in T and call the
resulting graph G. The gt-pair (G, T) is a graph-tree realization (abbreviated gt-realization)
of M. Observe that in solving the consecutive-retrieval problem, it is sufficient to construct a

gt-pair that is a gt-realization of the matrix.

402 R. SWAMINATHAN AND DONALD K. WAGNER

The next sequence of results relates a simple decomposition of a matrix M to a gt-
realization (G, T) of M.

LEMMA 2.4. Let M be a cr-graphic matrix, and let (G, T) be a gt-realization ofM. Then
M is connected ifand only if G is 2-edge connected.

Proof Suppose M is not connected. Then the associated bipartite graph is not connected.
This implies that there exists a partition V, V2 of the vertex set of G such that the vertex set
of every fundamental cycle of (G, T) is contained in either V or V2. It follows that either G
is disconnected or has a cut edge. Thus, G is not 2-edge connected.

By reversing the above argument, if G is not 2-edge connected, then M is not con-
nected. [3

Let H be a connected graph, and let K be the set consisting of the cut edges of H. Then,
each component of H \ K is a 2-block of H. Observe that each 2-block of H is 2-edge
connected.

Let M be a connected, standard, cr-graphic matrix, and let (G, T) be a gt-realization of
M. Lemmas 2.1 and 2.4 imply that a minimal d-set of M corresponds to a minimal subset D
of E(G) T such that G \ D has at least two 2-blocks.

LEMMA 2.5. Let M be a connected, standard, cr-graphic matrix, and let (G, T) be a

gt-realization of M. Let D be a minimal d-set of M, and let H1 Itt be the 2-blocks of
G \ D. Let H be the graph obtainedfrom G by contracting the edges ofl= E(Hi), and let
P H \ D. Then P is a path with at least two vertices. Moreover, in H, the ends ofevery
edge in D are coincident with the ends of P.

Proof Clearly, P is a tree with at least two vertices. Let J be a 2-block of G \ D that
corresponds to a vertex of degree one in P. Let D’ be the subset of the edges of D that have an
end in V (J). Then D’ is a d-set, and by minimality, D’ D. It follows that P has exactly two
vertices of degree one and thus is a path. Moreover, every edge of D has its ends coincident,
in H, with those of P. [3

Let (G, T) be a gt-pair in which G is 2-edge connected, and let M be a matrix for which
(G, T) is a gt-realization. Let D be subset of E(G) T such that D is a minimal d-set of M.
Let H Ht be the 2-blocks of G \ D such that H and Ht correspond to the end vertices of
the path specified by Lemma 2.5. Then H and Ht each have exactly one vertex of attachment
in G \ D. Consider H, and let x denote its vertex of attachment. By Lemma 2.5, each edge of
D has exactly one of its ends in H. For edge e D, denote this end by H (e). Let G be the
graph obtained from H by adding the edges of D such that e 6 D has ends H (e) and x in G .
Define the graph G in an analogous fashion. Now, consider one of the remaining 2-blocks,
say Hj for some j 6 {2 }. Then Hj has two vertices of attachment, say u and v, with
the possibility that u v. For each j 6 {2 }, define Gj to be the graph obtained
from Hj by adding the edges of D such that every edge of D has ends u and v in Gj. Finally,
for < < t, define Ti := T N E(Gi). Then (G, T) (Gt, Tt) are the D-components
of (G, T); (G, T) and (Gt, Tt) are the end D-components. Observe that if {M Mr} is
a simple decomposition of M with respect to D, then for each 6 }, there exists a
j 6 such that V (Gi) R (Mj). Thus, by suitably ordering the M Mr, it can
be assumed that V (Gi) R (Mi) for _< < t.

LEMMA 2.6. Let M be a connected, standard, cr-graphic matrix, and let
{M Mr} be a simple decomposition ofM with respect to D. Let (G, T) be a realization
of M, and let {(G, T) (Gt, Tt)} be the D-components of(G, T) with V(Gi) R(Mi)
for < < t. Then, for < < t, (Gi, Ti) is a gt-realization of Mi.

Proof By Lemma 2.5, every edge of G not in T is either an edge of D or has both
of its ends in G for some 6 {1 t}. Also by Lemma 2.5 and the definition of the D-
components, for a given edge e of G not in Ti, the vertex set of the fundamental cycle of

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 403

(Gi, Ti) that contains e is the restriction of the vertex set of the fundamental cycle of (G, T)
that contains e to the vertex set of Gi. From the definition of simple decomposition, it follows
that each column of Mi is the restriction of a column of M to the row set of Mi. The result
follows. 1

A set D of edges in a graph G is a single star if there exists at least one vertex of G to
which all of the edges of D are incident; each such vertex is an end of D. Note that some of
the edges in D might be loops. A set D of edges in a graph G is a double star if there exist
at most two vertices of G to which the edges of D are incident. Note that these two vertices
can be identical. Observe that every double star is also a single star. Also, observe that in the
definition of the D-components above, the set D is a single star in G and G and is a double
star in G2 Gt-1.

The composition of gt-pairs is now examined. Let {(G1, TI) (Gt, Tt)} be a set of
gt-pairs, and let D be a subset of ti= E(Gi). Then {(G, T) (Gt, Tt)} is mergeable
with respect to Dif: (i) V(Gi)fqV(Gj) 0for < < j < t, (ii) DNT/ 0for <_ < t,
(iii) D is a single star in G Gt, and (iv) D is a double star in at least 2 of G Gt.

Consider a mergeable set of gt-pairs with respect to a set D. An ordering of the members
of this mergeable set is feasible if D is a double star in the second through the penultimate
gt-pairs (actually, the graphs of the gt-pairs) of the ordering. Every mergeable set has a feasible
ordering.

Let {(G1, TI) (Gt, Tt)} be a mergeable set with respect to a set D, and suppose
(G , T) (Gt, Tt) is a feasible ordering. A sequence X "= xl X2t-2 is a merging
sequence for (G, T) (Gt, Tt) and D if D is a single star of (G, T) with end x l, D is
a single star of (Gt, Tt) with end x2t-2, and, for 2 < 5 1, D is a double star of (Gi, Ti)
with ends X2i-2 and x2i-1. Note that for a given feasible ordering, there can exist several
merging sequences. However, given a mergeable set and a merging sequence, there exists
exactly one corresponding feasible ordering. Thus, it is well defined to associate a merging
sequence directly with a mergeable set.

Let {(G, T1) (Gt, Tt)} be a mergeable set with respect to a set D, and let X
X Xzt-2 be an associated merging sequence such that x is a vertex of G1, xzt-2 is a
vertex of Gt, and X2i_2 and x2i- are vertices of Gi for 2 _< < 1. A gt-pair (G, T)
is constructed as follows. For f 6 D, if f is not a loop of G1, then let u(f) denote the
end of f different from x l; otherwise, let u(f) x. For f 6 D, if f is not a loop of
Gt, then let v(f) denote the end of f different from Xzt-2; otherwise, let v(f) x2t_2.

Define G to be the graph obtained from G \ D G \ D by adding the edges of D such
that f 6 D has ends u(f) and v(f) and by adding new edges e et- such that ei has
ends Xzi_ and Xgi Define T := {[,_jt t-1

i= Ti} t2 {[..Ji_ {ei}}. Then (G, T) is the mergence of
(G 1, T1) (Gt, Tt) with respect to D and X. Observe that (G , T1) (Gt, Tt) is

precisely the set of D-components of (G, T).
LEMMA 2.7. Let M be a standard, connected, cr-graphic matrix, and let M1 Mt

be a simple decomposition ofM with respect to a minimal d-set D. For < < t, let (Gi, Ti)
be a gt-realization of Mi. Suppose {(G, T1) (Gt, Tt)} is mergeable with respect to D.
Then, the mergence of {(G, TI) (Gt, Tt)} with respect to D and any merging sequence
is a gt-realization for M.

Proof Let (G, T)denote the mergence of {(G, TI) (Gt, Tt)} with respect to D and
some merging sequence.

Consider a column d of M. If d ’ D, then d is exactly in one Mi, so by Lemma 2.6,
column d of Mi is the incidence vector of the vertex set of a fundamental cycle, say Ca, in
(Gi, Ti). Observe that the mergence maintains Ca, and thus, Ca is a fundamental cycle in
(G, T). If d 6 D, then d is partitioned into subcolumns such that subcolumn di is in exactly

404 R. SWAMINATHAN AND DONALD K. WAGNER

one Mi. Moreover, each di is the incidence vector of the vertex set of some fundamental cycle
Cai of (Gi, T/). Again, from the definition of the mergence, I,.Jl= V (Cai) is the vertex set of a
fundamental cycle of (G, T) whose corresponding incidence vector is d. Thus, every column
of M is the incidence vector of the vertex set of a fundamental cycle of (G, T).

Observe that the number of fundamental cycles of (G, T) is equal to the number of
columns of M. It follows that the vertex set of every fundamental cycle of (G, T) has its
incidence vector as a column of M.

Lemmas 2.6 and 2.7 can be combined to yield the following result, which motivates the
algorithm for solving the consecutive-retrieval problem.

THEOREM 2.8. Let M be a connected, standard matrix, and let M Mt be a simple
decomposition ofM with respect to a minimal d-set D. Then M is cr-graphic if and only if
M Mt are cr-graphic and have gt-realizations such that the set of these gt-realizations
is mergeable with respect to D.

3. Composition. The purpose of this section is to develop the theory used to carry out the
composition phase of the algorithm. The idea is as follows. Let M be a connected, standard
{0, }-matrix, and suppose that it is desired to determine whether M is cr-graphic. Let 7" be
a decomposition tree of M. Each vertex of 7" of outdegree zero is a matrix having exactly
one row. Such matrices are evidently cr-graphic; in fact, they have unique gt-realizations. At
a general stage of the composition phase, a vertex N of 7" is considered. Suppose that all
of the children of N in 7" have been found to be cr-graphic, and let {(G, T),..., (Gt, Tt)}
be gt-realizations for the children of N. If {(G, T) (Gt, Tt)} is mergeable, then, by
Lemma 2.7, a gt-realization of N can be obtained by first choosing a merging sequence and
then constructing the resulting mergence. In this case, this process can be repeated at another
vertex of 7-. However, it might be the case that {(G, T) (Gt, Tt)} is not mergeable.
Unfortunately, if this happens, then it does not necessarily follow that N is not cr-graphic. It
might be the case that {(G, T) (Gt, Tt)} is an unsuitable set of gt-realizations for the
children of N. That is, there might exist another set of gt-realizations of the children of N that
is mergeable. In particular, ifM is cr-graphic, then it follows from Lemma 2.6 that a mergeable
set of gt-realizations exists. Thus, it is sufficient to find a mergeable set of gt-realizations of
the children of N or to show that no such set exists.

Observe that the choice of the set of gt-realizations of the children of N (and the cor-

responding merging sequence) not only determines the gt-realization of N but also affects
those of the ancestors of N in 7-. Therefore, in order to make a judicious choice for the gt-
realizations for the children of N, one must take into account information about the minimal
d-sets associated with N and all of its ancestors in 7-. The following set of definitions are
aimed at making these ideas precise.

Let M be a connected, standard matrix, and let 7- be a decomposition tree of M. Let N
be a vertex of 7- different from M, and let P be the (M, N)-dipath of 7-. Let M Mm
be the vertex set of P in the order specified by P. Then Mi+ is a member of a simple
decomposition of Mi with respect to some minimal d-set of Mi, say Di. Define the ordered set
] (D1 Dm-1) to be the decomposer of N with respect to T. The critical decomposer
of N is the subset {Di E IDi c_ C(N) and Oi Oj k J for every m >_ j > i}. The
decomposer and critical decomposer of M are defined to be the empty set.

Observe that if N’ is the parent of N in 7-, then (D Din-2) is the decomposer of N’.
Moreover, if f2 is the critical decomposer of N, then the critical decomposer of N’ is obtained
from f2 by first deleting D,,_ and then adding the members of {Di EIDi c Dm-1 and

Di Dj 7k J for every m 2 >_ j > i} and the members of {Di E IDi C(N) Vk 0, Di C

C(N’), and Di Dj 7k J for every m 2 > j > i}.

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 405

Let (G, T) be a gt-pair. Let f2 {D Dm} be a set of subsets of E(G) T such
that, for < < m, Di is a single star of G. Define Vf := {v 6 V (G)lv is an end of some
Di f2}. A labeling of (G, T) with respect to S2 is a function L that maps elements of V
into subsets of such that each Di L(v) for some v and if Di L(v), then v is an end of
Di. If Di L(v) for some v 6 V, then v is Di-labeled by L. A labeling L is consistent with
respect to f2 if it satisfies properties (C 1) and (C2) below.

(C 1) For every < < j < m, if e 6 Di (q Oj and e is not a loop, then no end of e is
both Di-labeled and Dj-labeled by L.

(C2) For every < < m, if Di is a double star and Di (q Oj) for all j - i, then both
ends of Di are Di-labeled by L.

If (G, T) has a consistent labeling with respect to f2, then (G, T) is consistent with respect
to

In the context of the composition phase of the algorithm described at the beginning of
this section, consistent labelings are used as follows. As before, let N be a vertex of the
decomposition tree 7- associated with M, and let {(G, T) (Gt, Tt)} be st-realizations
of the children of N. Assume that each (Gi, Ti) has a consistent labeling, say Li, with respect
to the critical decomposer of the corresponding vertex in 7-. Then L Lt are used to
construct an appropriate merging sequence for {(G1, T) (Gt, Tt)}. In particular, it will
be seen that if D is the minimal d-set associated with N and D L (x) for some x V (Gi),
then x is a good vertex to put in the merging sequence.

The next result says that if M is cr-graphic, then a consistent labeling does, in fact, exist.
LEMMA 3.1. Let M be a connected, standard, cr-graphic matrix, and let 7- be a decom-

position tree of M. Let N and N’ be vertices of 7" such that N’ is a child of N, and let D
be the minimal d-set associated with N. Let and ’ be the respective critical decomposers
of N and N’. Let (H, S) and (H’, S’) be respective st-realizations of N and N’ such that
H’, S’) is a D-component of H, S). If H, S) is consistent with respect to f2, then H’, S’)

is consistent with respect to

Proof. Since (H, S) is consistent with respect to , every member of 2 is a single star
of H. Observe that f2’

2 t D}. From the definition of the D-components, it follows that

every member of f2’ is a single star of H’. Now, let L be a consistent labeling of (H, S) with
respect to f2. It suffices to construct a consistent labeling, say L’, of (H’, S’) with respect to
f2’. This is done by specifying L’(v) for each vertex v of H’ that is an end of some member
of f2’ in H’. Let v be such a vertex, and choose D’ f2’ such that v is an end of D’ in H’.
If D’ - D and D’ L(v), then define D’ to be a member of L’(v). If D’ D and v is not
an end of D in H, then define D to be a member of L’(v). Finally, if D’ D, v is an end
of D in H, and either D is a set of loops of H’ incident to v or D is a double star of H’ and
D A D" 13 for all D" 6 f2’ {D}, then define D to be a member of L’(v).

It is claimed that L’ defined above is a consistent labeling of (H’, S’) with respect to
The first step is to show that L’ is a labeling. Let D’ 6 f2’ D}. It follows from the definition
of the D-components that every end of D’ in H is also an end of D’ in H’. Since L is a
labeling, it follows that D’ L(v) for some end v of D’ in H’. From the definition of L’,
D’ L’(v). Also from the definition of L’ and the D-components, it follows that D L’(v)
for some end v of D in H’. Thus, L’ is a labeling.

The next step is to show that (C1) and (C2) are satisfied by L’ and f2’. Consider (C1),
and let D’ and D" be members of f2’ that have a common edge, say e u v, that is not a loop
of H’. Moreover, assume L’(v) contains both D’ and D". Since e is not a loop of H’, it is
not a loop of H. Assume, without loss of generality, D" D. Since D" 6 L’(v), it follows
from the definition of L’ that D" L(v). Thus, v is an end of D" in H, which implies that v
is an end of e in H. If D’ :/: D, then similarly D’ L(v), which is a contradiction to (C1).

406 R. SWAMINATHAN AND DONALD K. WAGNER

Thus, D’ D. Now, from the definition of L’, it follows that v is not an end of D in H. The
definition of the D-components together with the facts that v is an end of e in H, v is an end
of D in H’, but v is not an end of D in H imply that e is a loop of H’, a contradiction.

Finally, consider (C2). Let D’ be a member of f2’ such that D’ is a double star in H’ and
D’ Y D" 0 for all D" E f2’ {D’}. If D’ D, then the definition of L’ implies that both
ends of D’ in H’ are D’-labeled, as required. If D’ - D, then D’ is a double star of H and
D’ N D" 0 for D" E {D’}. Since L is consistent, both ends of D’ in H are D’-labeled
by L. It follows that both ends of D’ in H’ are D’-labeled by L’, as required.

The next set of results is aimed at proving the converse of Lemma 3.1. For this purpose,
the following notations are fixed for the remainder of the section. Let M be a connected,
standard {0, }-matrix, and let 7- be a decomposition tree of M. Let N be a vertex of T, and
let N Nt be the children of N in 7". Let D be the minimal d-set associated with N, and
let f, fl f2t be the critical decomposers of N, N Nt, respectively. Throughout the
remainder of the section, N Nt are assumed to be cr-graphic and have gt-realizations
that are consistent with respect to their respective critical decomposers. In particular, for
< _< t, let (H/, Si) denote a gt-realization of Ni, and let L be a consistent labeling of

(ttg, Si) with respect to f2i. On occasion, N is assumed to be cr-graphic. In this case, (G, T)
denotes a gt-realization of N and (G1, TI) (Gt, Tt) are the D-components of (G, T). By
Lemma 2.6, (G, T) (Gt, Tt) are also gt-realizations of N Nt. By the definition
of the D-components, D is a double star in at least 2 of G Gt.

Under the assumption that M is cr-graphic, Lemmas 3.2 to 3.4 establish the existence
of a special type of merging sequence for {(H, S) (Ht, St)} with respect to L Lt
and D. Lemmas 3.5-3.8 then show that the resulting mergence is consistent with respect to
f2. This is done algorithmically; Procedures LABEL1, LABEL2, and LABEL3 construct a
consistent labeling from L L t.

LEMMA 3.2. IfN is cr-graphic, then (H, S (Ht, St) is mergeable.
Proof. By assumption, each (., Si) is consistent with respect to f2i. From the definition

of consistency, D is a single star in each of H1 Hr. Thus, it suffices to show that D is a
double star in at least 2 of H Hr.

As observed, D is a double star in at least 2 of G Gt. Since (Hi, Si) and (Gi, 7",.)
are both gt-realizations of the matrix Ni, it follows that if D is a double star in Gg, then it is a
double star of Hg.

For < _< t, define (., Si) to be an end piece of (HI, S) (Ht, St) with respect
to D if either D is a single star and not a double star of/-/g or D is a double star of Hg and
D’ N D :/: 0 for some D’ 6 f2i {D}.

LEMMA 3.3. If M is cr-graphic, then at most two of {(HI, S) (Ht, St)} are end
pieces with respect to D.

Proof Since M is cr-graphic, repeated application of Lemma 2.6 implies that N is cr-

graphic with gt-realization (G, T). It is shown that if (Hi, Si) is an end piece of HI Ht },
then (Gi, 7,.) is an end D-component of (G, T). Since (G, T) has exactly two end D-
components, the result follows.

Suppose that (., Si) is an end piece for some 6 }. If D is a single star and
not a double star of Hi, then D is a single star and not a double star of Gg, which implies that
(Gi, Ti) is an end D-component of (G, T). Now suppose that D is a double star of Hi. and
that D’ D - 0 for some D’ 6 f2i {D}. Since f2i is a critical decomposer, D’ D - 0.
Since D’ 6 f2i, D’ is a single star of Gi. Since D’ D - 0, there exists an edge e of D’ D
that, in G, has both ends in V (Gi). Since D’ (D - 0, there exists an edge f of G in D’ D.
By repeated application of Lemma 3.1, (G, T) is consistent with respect to f2. Since D’
it is a single star of G. Thus, e and f are adjacent in G. It follows that (Gi, Ti) is an end
D-component of (G, T).

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 407

A feasible ordering of {(H1, S1) (Ht, St)} is good if none of the second through
penultimate gt-pairs in the ordering is an end piece of {(H1, S1) (Ht, St)}. If M is
cr-graphic, then Lemma 3.3 implies that {(H1, S1) (Ht, St)} has a good ordering. A
merging sequence X X X2t-2 for a good ordering of {(H1, S1) (//t, St)} is good
with respect to L1 Lt and D if D Li(xj) whenever xj V(Iti). As before, it is well
defined to associate a good merging sequence directly with a mergeable set; the associated
unique ordering of the mergeable set is necessarily good. The next result shows that there
exists a good merging sequence.

LEMMA 3.4. If M is cr-graphic, then there exists a good merging sequence for
{(H1, S1) (Ht, St)} with respect to L1 Lt and D.

Proof. By Lemma 3.3, it can be assumed that (H1, St) (Ht, St) is a good ordering
of {(H1, S1) (Ht, St)}. Since L1 is consistent, there exists a vertex Xl 6 V(H) such that
D L(xl). Similarly, there exists a vertex Xzt-2 V(Ht) such that D Lt(x2t-2). Now,
consider 6 {2 1}. Since (Hi, S1) (Itt, St) is a good ordering, D is a double
star of H/. Moreover, since (Hi, Si) is not an end piece, D N D’ 13 for all D’ 6 f2i {D}.
If the ends of D in/-/,, are X2i-2 and Xzi-1, then property (C2) of the consistency of Li implies
that D Li(x2i_l) and D Li(x2i_2). Thus, the sequence Xl Xzt-2 is a good merging
sequence.

The remainder of the section assumes that H1 Ht is mergeable. If M is cr-graphic,
then Lemmas 2.6 and 3.2 imply that this is indeed the case. The following notations are fixed:
X denotes a merging sequence of {(H1, S1) (H, St)} with respect to L1 L and D,
and (H, S) is the mergence of {(H1, S1) (H, St)} with respect to D and X. In the case
that M is indeed cr-graphic, it is further assumed that X is a good merging sequence, the
existence of which is provided by Lemma 3.4. Finally, it is also assumed that the ordering
of (H1, S1) (Ht, St) corresponding to X is given by (H1, S1 (Ht, St). The next
lemma establishes a necessary condition for the existence of a consistent labeling of (H, S)
with respect to

LEMMA 3.5. IfM is cr-graphic, then every member of f2 is a single star in H.
Proof. Let D’ 6 f2. Since M is cr-graphic, Lemma 2.6 implies that N is also cr-graphic.

Moreover, Lemma 3.1 implies that (G, T) is consistent with respect to f2. Thus, D’ is a single
star of G. It follows that D’ c_ E(Gi) for some {1 t}. Thus, either D’ ’i for some
{1 t} or D’___ D.

First, suppose that D’ 6 "2 for some 6 t}. Since Li is a consistent labeling of
(It,., Si) with respect to f2i, there exists a vertex v 6 V(H/) such that D’ Li(v). Moreover,
v is an end of D’ in H/. If D N D’ 13, then it follows directly from the definition of the
mergence that D’ is a single star in H with v as an end. Thus, assume D C) D’ - 0. Then
(Hi, Si) is an end piece. Moreover, by (C1), either D q Li(v) or every edge of D D’ is a
loop of Hi. In either case, from the definition of the mergence, it follows that D’ is a single
star in H.

Next, suppose that D’ c_ D. Let v be an end of D’ in G. Then v is a vertex of one of
the end D-components of (G, T), say (Gj, Tj) for some j 6 {1 t}. It follows that D’ is
a double star of Gj. By definition, D, and therefore D’, is a double star in all of the nonend
D-components of (G, T). Thus, D’ is a double star in at least of G1 Gt, which
implies that D’ is a double star in at least of H1 Ht. Now, from the definition of the
mergence, D’ is a single star in H.

The construction of a consistent labeling of (H, S) with respect to f2 is done in three
stages. Define E1 (f21 U... U t) {D}. Define 2 to be those members of f2 that are
contained in D and are not a double star in H. (By Lemma 3.5, each member of 2 is a single
star in H.) Finally, define E3 to be those members of f2 that are contained in D and are a

408 R. SWAMINATHAN AND DONALD K. WAGNER

double star in H. Then 2 t_J 2 1,3 3. Moreover, ,]2, and 3 are pairwise disjoint.
Define 1, 22, Y3} to be the principal partition of . A consistent labeling of (H, S) with
respect to 2 is constructed by first constructing a consistent labeling of (H, S) with respect to, then to 21 to 2, and finally to Y; to 2 to 3. The following procedure provides the first
construction.

Procedure LABEL1.
Input: (H, S), , and L Lt.
Output: A labeling L of (H, S) with respect to
Step For each v V(H) that is an end of some member of , set
L (v) <-- 0.
Step 2 For each D’ 6 and each v 6 V(H) that is an end of D’, if
D’ Li(v) for some 6 {1 t}, then set L(v) <--- L(v) to {D’}.

LEMMA 3.6. The output L ofProcedure LABEL1 is a labeling of (H, S) with respect to. Moreover, ifM is cr-graphic, then L is consistent.

Proof. Since L Lt are labelings, it follows that L is a labeling. Thus, assuming that
M is cr-graphic, it suffices to show that properties (C1) and (C2) are satisfied.

Consider (C 1), and let D’ and D" be members of such that D’ and D" have a nonloop
edge e uv of H in common. Now, suppose that D’ and D" are both members of L(v).
Thus, v is an end of D’ and D" in H. It follows that there exists an 6 {1 t} such that
D’ and D" are members of E2i. From the definition of L, it follows that D’ and D" are both
members of Li(v). Since Li is a consistent labeling of (H/, Si) with respect to 2;, it follows
that e is a loop of H/. Thus, e 6 D and 6 1, t}. Without loss of generality, assume 1.

Since D’ and D" are in fl, D’ D and D" D are nonempty. Since e is a loop at v in
H, it is a loop at v in G . Therefore, v is an end of both D’ and D" in G . It now follows
from the definition of D-components of (G, T) that v is the unique end of both D’ and D" in
G. Thus, in any labeling of (G, T) with respect to , D’ and D" violate property (C2). Thus,
(G, T) has no consistent labeling with respect to , contradicting Lemma 3.1.

Now, consider (C2). Let D’ 2 be such that D’ is a double star of H and D’ A D" 0
for all D" 6 Y {D’}. Observe that D’ 3 D 0. Thus, D’ is a double star in for
some 6 {1 t}. Moreover, D’ has the same set of ends in H,. as it does in H. Since

2i {D} c_ , it follows that D’ A D" 13 for all D" 6 i {D’}. Therefore, by (C2),
both ends of D’ in H/ are D’-labeled by Li. By Procedure LABEL1, both ends of D’ in H
are D’-labeled by L, as required.

The following procedure extends the labeling L to a consistent labeling with respect to

Procedure LABEL2.
Input: (H, S), 2, and the labeling L that is the output of LABEL1.
Output: A labeling L of (H, S) with respect to
Step For each v 6 V (H) that is an end of some member of 2 but not
an end of any member of El, set L (v) +-- 0.
Step 2 For each D’ 6 Y22, let vertex v be its unique end in H and set
L(v) +- L(v) tO {D’}.

LEMMA 3.7. The output L ofProcedure LABEL2 is a labeling of (H, S) with respect to
tO 2. Moreover, ifM is cr-graphic, then L is consistent.

Proof Since the input to Procedure LABEL2 is a labeling, it is evident that the output
is a labeling. Thus, assuming that M is cr-graphic, it suffices to show that (C1) and (C2) are
satisfied. Since (C2) is satisfied by the input to the procedure, it is also satisfied by the output
because no member of]2 is a double star. Thus, consider (C1).

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 409

Suppose that there exist D’ and D" in E to E2 having a nonloop edge e of H in common,
and suppose that D’ and D" are both members of L(v), where v is an end of e in H. By
Lemma 3.6, at most one of D’ and D" is in El. Without loss of generality, assume D" ’ El.

First, consider the case when D’ 6 El. Since D" 6 E2, D" c_ D. Since v is anendofein
H and e 6 D, v is a vertex of either H or Hr.. Without loss of generality, assume the former.
Since D" is not a double star in H, there exists an edge f 6 D" in H that is not parallel to e.
Since D’ L(v), v is an end of D’ in H. Thus, D’ D is contained in the edge set of H1.
Observe that e and f are parallel in H1. A contradiction is obtained by showing that they are
not parallel in G 1. By Lemma 3.1, (G, T) is consistent with respect to 92. Thus, D’ and D" are
single stars of G. Let e have ends x and y in G. Since D’ D

E(H1), D’ D c_ E(G1).

D!Since D’ 6 E, D :/: 0 It follows that (G, T) is an end D-component of (G, T)
and x (say) is a vertex of G . Moreover, y is a vertex of the end D-component of (G, T)
different from (G , T). Therefore, x is the unique end of D’ in G and so is D’-labeled by any
consistent labeling of (G, T) with respect to 92. By consistency, x is not D"-labeled by any
such labeling. Therefore, y is D"-labeled by any consistent labeling of (G, T) with respect
to 92. Thus, y is an end of D" in G. Since e and f are not parallel in H, they are not parallel
in G. Therefore, x is not an end of f in G. It follows that e and f are not parallel in G1, as
required.

Second, consider the case that D’ and D" are both members of E2. Thus, both are
contained in D and neither is a double star of H. Let f be an edge of D’ that is not parallel to
e in H, and let g be an edge of D" that is not parallel to e in H. By the consistency of (G, T)
with respect to 92, the respective ends of D’ and D" in G are in different end D-components of
(G, T). It follows that f and g are not parallel in either end D-component of (G, T). Thus,

f and g are parallel in precisely 2 of the D-components of (G, T). This is a contradiction
since f and g are parallel in of (H1, S1) (Ht, St) }" in particular, f and g are parallel
in each of {(H2, $2) (Ht-, St-)} and the member of {(H, S), (Ht, St)} that contains
the vertex v.

The final step is to extend the output L of Procedure LABEL2 to a consistent labeling of
(H, S) with respect to 92. The idea is as follows. Recall that each member of E3 is a double
star of H contained in D. Consider a graph I I (H, E3), the vertex set of which is E3 and
the edge set of which is defined by declaring two members of E3 to be adjacent if they have
an edge of H in common. Consider a component J of I. Then there exist distinct vertices of
H, say u and v, such that every member of E3 that is a vertex of J is a double star with ends
u and v. Now, suppose that the consistent labeling L of (H, S) with respect to E1 to 2 has
been extended to E1 tO E2 tO {D’} for some D’ V (J), and suppose that under this extension
D’ 6 L (u). Consider a member D" 6 V (J) that is adjacent to D’ in J. Then, if L is extended
to include D", it must be that D" L(v), for otherwise L would violate (C1). More generally,
if D" 6 V (J) {D’} and some path in J from D’ to D" has an odd number of edges, then
D" 6 L(v); otherwise D" L(u). (It follows that if a consistent labeling exists, then the
graph I is bipartite.) The following procedure makes these ideas precise. For any two vertices
D’ and D" in the same component of I, let d(D’, D") denote the number of edges in a shortest
path from D’ to D" in I.

Procedure LABEL3.
Input: (H, S), E3, and the labeling L that is the output of LABEL2.
Output: A labeling L for (H, S) with respect to 92.
Step 1: For each v 6 V (H) that is an end of some member of E3 but not an
end of any member of E tO E2, set L(v) -- t3.
Step 2 Compute I := I (H, E3), and let 2- be the set of components of I.
Step 3 If 2- 0, then output L and stop; otherwise, choose J 6 2-.

410 R. SWAMINATHAN AND DONALD K. WAGNER

Step 4 Determine whether there exists a vertex D’ of J thathas an edge in
common with a member D* of El tO E2; if so, let u’ be an end of D’ such
that D* ’ L (u’). Otherwise, let D’ be an arbitrary vertex of J, and let u’ be
an end of D’. In either case, let v’ be the end of D’ different from ut.
Step 5 For each D" 6 V (J) such that d(D’, D") is even, set L(u’)
L(u’)tO{D"}. For each D" V(J) such that d(D’, D") is odd, set L(v’) +-

L(v’) U D"}. If D’ is the unique vertex of J and D’ does not have an edge
in common with any member of E1 tO E2, then set L(v’) +-- L(v’) tO {D’}.
Set 2- +-- 2-- {J}, and go to Step 3.

LEMMA 3.8. The output L ofProcedure LABEL3 is a labeling of H, S) with respect to

f2. Moreover, ifM is cr-graphic, then L is consistent.

Proof The first step is to verify that the output L is a labeling of (H, S) with respect
to f2. In particular, it must be verified that each member D’ of f2 is in L (v) for some vertex
v 6 V (H) that is an end of D’. By Lemma 3.7, this is true for D’ 6 E tO E2. Now, consider
3, and in particular, consider a component J of the graph I computed in Step 2. The key
point is to show that the vertex u’ defined in Step 4 exists. Suppose that there exists D’ 6 V (J)
and D* 6 Ej t2]2 such that D’ and D* have an edge in common. Since D* 6 E U E2, either
D* is a single star and not a double star or it is a double star not contained in D. Since D’
is a double star contained in D, it has an end that is not an end of D*. Therefore, the vertex
u’ exists. Given that u’ exists, then Step 5 evidently assigns each vertex D" of J to some
appropriate L(v). Therefore, L is a labeling of (H, S) with respect to

The next step is to verify the consistency of L in the case that M is cr-graphic. By Lemma
3.7 and Step 5, property (C2) is evidently satisfied. Consider property (C l). First, observe
that it is sufficient to show that property (C1) is satisfied by L for pairs of members from

E1 [--) ’2 tO V (J) for each component J of I.
Let J be a component of I, and let u and v be the ends of some member (and therefore,

every member) of V (J) in H. Let x and y be the analogous vertices in G. Since every member
of V (J) is contained in D, u 6 V(H) (say) and v V (Ht). Similarly, x and y are contained
in the respective vertex sets of the end D-components of (G, T). Without loss of generality,
assume that if (G, T) is an end D-component of (G, T), then x V(G1), and if (Gt, Tt) is
an end D-component, then y V(Gt). By Lemma 3.1, (G, T) has a consistent labeling with
respect to f2, say L’.

First, suppose that no member of V (J) has an edge of H in common with a member of
E I,_J E2. Then, by Lemma 3.7, L satisfies property (C 1) with respect to Zl tO E2 tO V (J) if and
only if it satisfies property (C 1) with respect to V (J). Let D’ be the member of V (J) chosen
in Step 4. Observe that the graph I is identical to the analogous graph for G and E3" that
is, I I(G, E3). Observe that if D’ L’(x) (say), then, for any D" V(J), D" L’(y)
if and only if d(D’, D") is odd. It follows that either L(u) N V(J) L’(x) fq V(J) and
L(v)CqV(J) L’(y)fqV(J)or L(u)f3V(J) L’(y)f3V(J) and L(v)NV(J) L’(x)CqV(J).
Since L’ satisfies property (C1) with respect to V (J), so does L.

The case when some member of V (J) has an edge in common with a member of E1 U]2
is similar but more complicated. The following claim is used. Let D’ and D* be as in Step 4.
Then either D* L(u) or D* L(v). The claim is that if D* L(u) (respectively, L(v)),
then D* 6 L’ (x) (respectively, L’ (y)).

First, suppose that D* 6 El. Then D* D - 13 and D* rq D - 13. It follows that D* has a
unique end in H and this end is either u or v. If it is u, then D* 6 L (u) and D* D E(HI).
Thus, D* D

_
E(G), from which it follows that (G1, T1) is an end D-component of

(G, T). Moreover, since x is a vertex of G in this case, it is the unique end of D* in G. Thus,
D* L’(x), as required. Similarly, if v is the unique end of D* in H, then D* L(v), from
which is follows that D* 6 L’(y).

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 411

Second, suppose that D* 6 E2. By definition of E2, D* is a single star, but not a double
star, in H. Thus, either u or v is the unique end of D* in H. Consider the former case. Then
D* 6 L (u). Since u is the unique end of D* in H, D* is a double star in H1 and a single star,
but not a double star, in Hr. Thus, D* is a double star in G1 and a single star, but not a double
star, in Gt. It follows that (Gt, Tt) is an end D-component of (G, T) and that y is not an end
of D* in G. This implies that D* L’(x). Similarly, D* L(v) implies D* L’(y). Thus,
the claim is proved.

The claim is now used to prove that L satisfies property (C with respect to E1 t0 E2t3 V (J).
Let D’ and D* be as in Step 4. From the claim it follows that if D’ is added to L (u) (respectively,
L(v)) in Step 5, then D’ L’(x) (respectively, L’(y)). Since I I(G, E3), if D" 6

V(J) is added to L(u) (respectively, L(v)) in Step 5, then D" L’(x) (respectively, L’(y)).
Since L’ satisfies property (C1) with respect to El U E2 t3 V(J), the claim implies that L also
does.]

The final result of the section is a complexity analysis of Procedures LABEL1, LABEL2,
and LABEL3.

LEMMA 3.9. Procedures LABEL1, LABEL2, and LABEL3 each requires O(rc) time.

Proof Consider Procedure LABEL1. Step requires determining the ends, in H, of
each member of E. Given that the ends of each edge of H are stored with the edge name,
determining the ends of D’ 6 E1 can be done in O(ID’[) time. Evidently, ID’l _< c. Since E
is a subset of a decomposer, levi < r. Thus, Step requires O(rc) time.

Observe that each vertex of H is in exactly one of Hi Hr. It follows that for each
v that is the end of some member of E1 in H, L(v) Li(v) for some 6 t}. Thus,
Step 2 of the procedure amounts to creating a copy of Li(v) for each vertex v that is an end of
some member of El. Since each member of E1 has at most two ends, this copying requires
O(IEI) time. Thus, Step 2 requires O(r) time.

Consider Procedure LABEL2. The main work is in determining the end, in H, of each
member in E2. As in Procedure 1, this requires O(rc) time.

Consider Procedure LABEL3. By the above argument, the initialization in Step requires
O(rc) time. Step 2 requires the construction of the graph I :-- I(H, E3). This can be done
in O(rc) time as follows. First, construct the union of the members of E3 by scanning each
member. Then, for each edge of the union, find the members of E3 that contain it. Each step
so far requires O(rc) work. For each pair of members of E3 that contain a given edge of H,
an edge of I is constructed. Since there can be at most O(r2) edges in I, this last step requires
O(r2) work.

Since the graph I has O(r2) edges, its components can be computed in O(r2) time. The
next step is to determine, for each component J of I, whether some member of V (J) has
an edge of H in common with some member of E1 t3 E2. Using a procedure similar to that
of the previous paragraph, this can be done in O(rc) time. Thus, the D’ and D* required in
Step 4 for each component J can be found in this time. For each component J, the numbers
d(D’, D") needed in Step 5 can be computed by breadth-first search applied to J. This requires
O(IE(J)I) time for each component J and so requires O(r2) time overall. [3

4. The main algorithm. This section contains the main algorithm, a proof of its correct-
ness, and its time complexity analysis.

Algorithm MAIN.
Input: Astandard, connected r c {0, }-matrix M.
Output: A gt-realization of M or the conclusion that M is not cr-graphic.
Step Compute a tree decomposition 7- of M, and then for each vertex of
"T, compute the associated critical decomposer. Let h be the height of 7-,

412 R. SWAMINATHAN AND DONALD K. WAGNER

and for 0 < < h, compute the set H :"- {N 6 V (T) the distance from
the root of 7- to N is }.
Step 2 For each N Fib, construct a consistent gt-realization of N and
a corresponding consistent labeling with respect to the critical decomposer
ofN. Seti --h-1.
Step 3 Choose N Fli, and let D be the associated minimal d-set. Let
N1 Nt be the children of N. Let (H1, S1) (Ht, St) be respective
gt-realizations that have been constructed, and, for < < t, let L be the
labeling of (Hi, Si) with respect to the critical decomposer of Ni that has
been constructed.
Step 4 If (H, S) (He, St) is not mergeable, then stop with the
conclusion that M is not cr-graphic. If {(HI, S) (He, St)} has more
than two end pieces, then stop with the conclusion that M is not cr-graphic.
If there does not exist a good merging sequence for (H, S (Ht, St)
with respect to L L and D, then stop with the conclusion that M is
not cr-graphic; otherwise construct such a sequence X, and let (H, S) be
the mergence of {(H, S) (Ht, St)} with respect to D and X.
Step 5 Compute the principal partition of the critical decomposer of N, and
apply Procedures LABEL1, LABEL2, and LABEL3 to compute a labeling
L of (H, S) with respect to the critical decomposer of N.
Step 6 If N is the root of 7", then stop with (H, S) as the output. Otherwise,
set l"I l"I {N}. If l"I J, then set -- 1. Go to Step 3.

THEOREM 4.1. Algorithm MAIN is correct.

Proof. Suppose that M is cr-graphic. Each member of Flh is a matrix with one row.
Each such matrix is evidently cr-graphic and has a unique gt-realization that is consistent with
respect to the associated critical decomposer. Thus, Step 2 is correct. The gt-realizations and
the labelings in Step 3 are evidently well defined when h 1, and given that Steps 4-6 are
correct, they are well defined for all {0 h 2}. Moreover, since M is cr-graphic, Step
5 and Lemmas 3.6-3.8 imply that each of the labelings Li in Step 3 is a consistent labeling.
Also since M is cr-graphic, Lemmas 3.2-3.4 imply that Step 4 constructs both a good merging
sequence X for (H1, S1) (Ht, St) and the resulting mergence (H, S). By Lemma 2.7,
(H, S) is a gt-realization of N. Thus, in Step 6 when N is the root of 7- (i.e., N M), (H, S)
is a gt-realization of M, as required.

In the case that M is not cr-graphic, Lemma 2.6 implies that for some N chosen in
Step 3, the corresponding set of gt-realizations {(HI, S1) (Ht, St)} of its children is not
mergeable. Therefore, the algorithms correctly stops in Step 4. [3

THEOREM 4.2. The time complexity ofAlgorithm MAIN is O(rZc).
Proof. By Theorem 2.2, the time complexity for computing a decomposition tree 7" in

Step is O(rn), which is O(r2c) since n <_ rc. The computation of l-I1 1-Ih can easily
be incorporated into the computation of 7" within the same time bound. For future use, it is
convenient to also keep track of the set of minimal d-sets associated with the vertices of 7- that
contain a given column of M. These sets are easily constructed during the computation of 7-.

The computation of the critical decomposer associated with each vertex of 7- can be done
as follows. First, for each pair of minimal d-sets (from the set of minimal d-sets associated
with the vertices of 7-), compute the corresponding intersection. This requires O(c) time per
pair since each minimal d-set has at most c elements. By Theorem 2.2, 7- has O(r) vertices,
so finding the collection of all such intersections requires O(rZc) work. Given the critical
decomposer associated with a vertex N of T, the critical decomposer of one of its children N’

ON THE CONSECUTIVE-RETRIEVAL PROBLEM 413

in 7" can be found by first adding the minimal d-set D associated with N and then by deleting
the members that are subsets of D together with the members that are not subsets of C(N’).
For the child N’, deletions of the first and second kind each require O(rc) work; deletions
of the first kind can be done using the collection of intersections, and deletions of the second
kind can be done by comparing each of the remaining members to C(N’). Thus, to find the
collection of critical decomposers for the vertex set of 7- requires O (r2c) work.

In Step 2, gt-realizations for the members of Fin are constructed. There are r such
members, one for each row of M. Each such gt-realization has exactly one vertex and at
most c edges. Thus, construction of the set of gt-realizations requires O(rc) work. Given
the critical decomposer of a particular gt-realization, a consistent labeling can be computed
in O(r) time since each critical decomposer has at most r members. Thus, the total work for
constructing the set of consistent labelings is O(r2).

In Step 4, determining whether the given set is mergeable can be done by checking the ends
of each edge of D in each of the gt-pairs in the set. Since D has at most c elements and there
exist at most r gt-pairs, this requires O(rc) time. The next part of Step 4 requires checking
to see if (., Si) is an end piece, for < < t. Let f2 t be the respective critical
decomposers of N1 Nt. Observe that for -7/: j, "2 {D} is disjoint from f2j {D}. It
follows that determining which of (H, S) (1-It, St) are end pieces can be done in O(rc)
time by determining the sets D’ N D for each D’ 6 (f21 D}) U... U (S2t D}). Given that
there exist at most two end pieces, an ordering of (H1, S1) (Ht, St) so that the resulting
ordered set is good is easily found. The next part of Step 4 is constructing a good merging
sequence, if one exists. This can be done by first determining the ends of D in each H/and then
by checking, for each end v of D in//i, whether D Li (v). Since DI < c, finding its ends in
a given/-/i requires O(c). Since < r, this requires O(rc) overall. Scanning the appropriate
Li(v) requires O(r) work since the union of all such Li(v) has O(r) members. Thus, a good
merging sequence, if one exists, can be found in O(rc) time. The final part of Step 4 is the
construction of (H, S). This can be done by deleting D from each of (H, $1) (Ht, St),
adding edges joining consecutive vertices in the merging sequence, and then adding the edges
of D with the appropriate ends. Since IOl _< c and < r, this step requires O(rc) work.

Step 5 first computes the principal partition of the critical decomposer of N. This can
be done by first determining, for each member of f2, whether it is in the critical decomposer
of one of the children of N. This requires O(r2) work since IS21 _< r and the cardinality of
the union of the critical decomposers of the children of N is O(r). For a member of f2 that is
not in one of the critical decomposers of the children of N, it needs to be determined whether
it is a double star of H. For a given member, this can be done in O(c) time by finding the
ends of each edge in the member. Since f2 has at most r members, the total work for this part
is O(rc), so the principal partition can be found in O(rc). Step 5 then applies Procedures
LABEL1, LABEL2, and LABEL3, which is O(rc) by Lemma 3.9.

Step 6 ensures that each of Steps 3-5 is executed at most O(r) times, once for each vertex
of 7-. Thus, Algorithm MAIN requires O(r2c) time. [2

REFERENCES

A.V. AHO, J. E. Hor’cRovr, AND J. D. ULLMAN, Design andAnalysis ofComputerAlgorithms, Addison-Wesley,
Reading, MA, 1974.

[2] R.E. BIXBY AND D. K. WAGNER, An almost-linear time algorithmfor graph-realization, Math. Oper. Res., 13
(1988), pp. 99-123.

[3] J. A. BONO" ANO U. S. R. MURTV, Graph Theory with Applications, North-Holland, New York, 1976.
[4] K.S. BOOTH AND G. S. LUEKER, Testingfor the consecutive ones property, interval graphs, and graph planarity

using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335-379.

414 R. SWAMINATHAN AND DONALD K. WAGNER

[5] P. DIETZ, M. FURST AND J. E. HOPCROFT, A linear-time algorithm for the generalized consecutive retrieval
problem, Tech. report TR-79-386, Department of Computer Science, Cornell University, Ithaca, New
York, 1979.

[6] S. FUJISHIGE, An efficient PQ-graph algorithm for solving the graph realization problem, J. Comput. System
Sci., 21 (1980), pp. 63-86.

[7] D. R. FULKERSON AND O. A. GROSS, Incidence matrices with the consecutive ’s property, Bull. Amer. Math.
Soc., 70 (1964), pp. 681-684.

[8] Incidence matrices and interval graphs, Pacific J. Math., 15 (1965), pp. 835-855.
[9] S.P. GHOSH, File organization: the consecutive retrievalproperty, Comm. ACM, 15 (1972), pp. 802-808.

[10] On the theory ofconsecutive storage of relevant records, Inform. Sci., 6 (1973), pp. 1-9.
[11 File organization: consecutive storage ofrelevant records on a drum-type storage, Inform. and Control

(Shenyang), 25 (1974), pp. 145-165.
12] Consecutive storage of relevant records with redundancy, Comm. ACM, 18 (1975), pp. 464-471.
13] U. GUPTA, Bounds on storagefor consecutive retrieval, J. ACM, 26 (1979), pp. 28-36.
[14] L. T. Kou, Polynomial complete consecutive information retrieval problems, SIAM J. Comput., 6 (1977),

pp. 67-75.
[15] W. LIPSKI, Information storage and retrieval-mathematicalfoundations II (combinatorial problems), Theoret.

Comput. Sci., 3 (1976), pp. 183-211.
[16] T. NAKANO, A characterization of intervals; the consecutive (one’s or retrieval) property, Comment. Math.

Univ. St. Paul., 22 (1973), pp. 49-59.
[17] , A remark on the consecutivity of incidence matrices, Comment. Math. Univ. St. Paul., 22 (1973),

pp. 61-62.
[18] A.N. PATRINOS AND S. L. HAKIMI, File organization with consecutive retrieval and related properties, in Large

Scale Dynamical Systems, R. Sacks, ed., Point Lobos Press, North Hollywood, CA, 1974, pp. 276-297.
[19] R. SWAMINATHAN AND D. K. WAGNER, The arborescence-realiation problem, Discrete Appl. Math., to appear.
[20] K. TANAKA, Tree-structured data organization with consecutive retrieval property, in Polish Conference on

Consecutive Retrieval, W. Lipski and S. Ghosh, eds., Academic Press, New York, 1983, pp. 271-276.
[21] M. TRUSZCZYIqSKI, An algorithm offinding an acyclic f-graph for a family of sets, Fund. Inform., 3 (1980),

pp. 379-396.
[22] A.C. TUCKER, Characterizing the consecutive ’sproperty, in Proceedings ofthe Second Chapel Hill Conference

on Combinatorial Mathematics and its Applications, University of North Carolina, Chapel Hill, NC, 1970,
pp. 472-477.

[23] A structure theoremfor the consecutive ’s property, J. Combin. Theory, 12 Ser. B (1972), pp. 153-162.
[24] W.T. TUTTE, An algorithmfor determining whether a given binary matroid is graphic, Proc. Amer. Math. Soc.,

11 (1960), pp. 905-917.
[25] A. WAKSMAN AND M. W. GREIN, On the consecutive retrievalproperty infile organization IEEE Trans. Comput.,

C-23 (1974), pp. 173-174.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 415-436, April 1994

() 1994 Society for Industrial and Applied Mathematics
014

POLYNOMIAL ROOT-FINDING ALGORITHMS AND BRANCHED COVERS*

MYONG-HI KIM ANO SCOTT SUTHERLAND

Abstract. A family of root-finding algorithms is constructed that combines knowledge of the branched covering
structure of a polynomial with a path-lifting algorithm for finding individual roots. In particular, the family includes
an algorithm that computes an E-factorization of a polynomial of degree d that has an arithmetic complexity of

O(d(log d)21 log El + d2(log d)2). At the present time, this complexity is the best known in terms of the degree.

Keywords. Newton’s method, approximate zeros, arithmetic complexity, path-lifting method, branched covering

AMS subject classifications, primary 68Q25" secondary 58C10, 65H05, 30C15, 58F08

Introduction. The problem of devising optimal methods for numerically approximating
the roots of a polynomial has been of interest for several centuries, and is far from solved.
There are numerous recent works on root-finding algorithms and their cost, for example,
the work of Jenkins and Traub [JT70], Renegar [Ren87], Sch6nhage [Sch82], and Shub and
Smale [SS85], [SS86], [Sma85]. This list is far from complete; the reader should refer to the
aforementioned papers as well as [DH69] for more detailed background. The work in this
paper is most closely related to that of Smale.

Our algorithm computes an approximate factorization of a given polynomial (that is, it
approximates all the roots). In constructing it, we combine global topological information
about polynomials (namely, that they act as branched covers of the Riemann Sphere) with a
path-lifting method for finding individual roots. Utilizing this global information enables us
to use fewer operations than applying the path-lifting method to each root sequentially.

Renegar’s algorithm in [Ren87] approximates all d roots of a given polynomial using
O(d log d + d2(log d)(log log el)) arithmetic operations in the worst case. He has shown
that the factor oflog log el in the complexity is the best possible ifone restricts to the operations
+, -, , and +. This algorithm has a component (the Shur-Cohn algorithm) that requires
exact computation and so is not suitable for an analysis of bit complexity, that is, one that
accounts for rounding errors introduced by finite precision. In [Pan87], Pan gives a different
algorithm that slightly improves the complexity to O(d2 log d log log el); this algorithm also
operates effectively as a parallel algorithm.

Sch6nhage [Sch82] gives an algorithm that produces an e-factorization with a bit complex-
ity ofO(d log d + d21 log el) log(dl log el) log log(dl log el), via the"splitting circle method."
Note that the customary parameter for bit length of the coefficients does not appear in the com-
plexity. This is because, as Sch6nhage states, for fixed degree d and output precision e, there is
a number so for which "the input [coefficients] av can be restricted to complex integer multiples
of 2-’ without loss of generality." In [Ren87], it is stated that Sch6nhage believes that, if exact
arithmetic is used, this method "should yield a complexity bound [in e] of O(d log log el),
most likely with c < 3."

Smale’s path lifting algorithm in [Sma85] approximates a single root of the polynomial
with a worst case arithmetic complexity of O(d(log d)l log el + d2(log d)2), and an average
complexity of O(d2 + dl log el). One good feature of this line of work is that it is stable under
round-off error. In [Kim89a], Kim shows that if f and f’ are computed with relative error 10-3

until an approximate zero (see 1.2) is reached, then the algorithm behaves exactly the same.

*Received by the editors July 8, 1991; accepted for publication March 25, 1993. Part of this work was done
while the first author was at Bellcore, Morristown, New Jersey. An earlier version of this paper was circulated with
the title "Parallel Families of Polynomial Root-Finding Algorithms."

Institute for Mathematical Sciences, State University of New York at Stony Brook, Stony Brook, New York
11794-3600 (myonghi@math. sunysb, edu and scott@math, sunysb, edu).

415

416 MYONG-HI KIM AND SCOTT SUTHERLAND

A recent series of papers by Shub and Smale [SS93a], [SS93b], [SS93c], [SS93d] generalizes
the path lifting algorithm to systems of homogeneous polynomials in several variables.

The algorithm presented here exploits the branched covering structure of a polynomial
to choose good starting points for a variant of Smale’s algorithm, and we obtain a worst-case
arithmetic complexity of O(d(log d)l log el + d2(log d)2) to compute an -factorization. In
a subsequent paper, we shall compute the bit complexity of this algorithm. Because of the
stability mentioned in the previous paragraph and the ability to exploit bounds on the variation
of f and f’, we hope to achieve results comparable to Sch6nhage’s.

At first glance, it may appear that our complexity results are inferior to some of those
above in terms of . However, in practice there is usually a relationship between the degree
d and the desired precision . In particular, if we have > 2-a, then the complexity of our

algorithm compares favorably with all of those mentioned above. Furthermore, our algorithm
is simple to implement and is numerically very stable.

Our algorithm is suitable for some amount of parallelization, but has a sequential com-
ponent of O(d +l log el) operations. However, we think of this algorithm as acting on d
points simultaneously, and techniques that evaluate a polynomial at d points (see [BM75], for
example) are used to cut the cost involved. Of course, the algorithm can be implemented on
a sequential machine while still taking advantage of these techniques. In fact, evaluation of
the polynomial is the only point at which we need to use asymptotic estimates to achieve the
stated complexity; the other places where we use asymptotic estimates are only for ease of
expositon.

The reader should also see the papers [BFKT88], [BT90], [Nef90] for fully parallel
algorithms for solving polynomials with integer coefficients. In [BFKT88], it is shown that
if all roots of the polynomial are real, this problem is in NC. Neff extends this result to allow
complex roots in [Nef90].

This paper is structured as follows. In 1, after some background material, we recall the
"path lifting method" of Smale and present a version of the relevant theorem (our Theorem 1.5)
that improves the constants involved somewhat. We then discuss how we can exploit the
branched-covering structure of a polynomial to choose initial points for the algorithm, many
of which will converge to roots. We close the section with a brief explanation of how to
construct families of algorithms that locate _d roots at a time, for various values of n.

a points atSection 2 presents an explicit algorithm for a specific family, which locates 7
a time. Our main theorem, Theorem 2.1, states that this algorithm always terminates with
an -factorization of the input polynomial, and gives a bound on the number of arithmetic
operations required in the worst case. As a corollary, the algorithm can be used to locate all
d roots of the polynomial to within e with a complexity of O(d2(log d)l log el + d2(log d)2).
In the subsequent sections, each component of the algorithm is analyzed, and the relevant
lemmas are proven. Finally, we tie all the components together and prove the main theorem.

1. Preliminaries.

1.1. Root and coefficient bounds. Given a polynomial 4)(z) -’J=0 ai z with ai E (,
it is our goal to determine an approximate factorization of 4), that is, approximations i to
the actual roots i of D SO that 114,(z) 1-](z /)ll < . The norm we shall use here is the
max-norm, that is, 11411 max lal. A related problem is to ensure that Ii il < ’; there
are well-known estimates giving the relationship between e and e’, so solving one problem
essentially solves the other.

In order to have an estimate on the complexity of a root-finding algorithm, we need
a compactness condition on the space of polynomials. This can be done either by placing
conditions of the location of the roots or on the coefficients; such bounds are interrelated.

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 417

Since our goal is to minimize a functional norm, it seems most natural to place our
conditions on the coefficients. We shall assume our input polynomial q5 is an element of the
family

79a (1) zct q- ajzj, with lajl <
j=0

This is the same space as used by Smale and others [SS85], [SmaS1], [Sma85]. One can
always transform an arbitrary polynomial into an element of 79a (1)" if p(z) Y/d__0 bi z and
B max Ibj/bd[1 then p(Bz)/B

One should not confuse this family with the degree d polynomials whose roots are in the
unit disk, although unfortunately this space is also often denoted by 79(1) (for example, in
[Fri90] and [Ren87]).

There are a number of estimates that relate the coefficients of a polynomial to a bound on
the modulus of the zeros (see [Hen74] or [Mar66], for example). Such an estimate is important
to us, since although membership in 79 (1) is not preserved under deflation (division of factors),
bounds on the modulus of the roots are. We state one such bound here (Corollary 6.4k of
[Hen74]).

LEMMA 1.1. All the zeros ofthe polynomial z + -jd=-lo_ ajz
j lie within the open disk with

center 0 and radius

2 max lajl /(a-j).
O<j<d

As an immediate consequence, we see that the roots of a polynomial in 79a(1) lie within ll2.
1.2. Approximate zeros. Our algorithm uses a path lifting method (see below) to get

close to the roots of our polynomial, and then uses the standard Newton’s method to further
refine these approximations. This is done because Newton’s method converges very quickly in
a neighborhood of a simple root, but can fail for some initial points outside this neighborhood.
One ofthe authors [Sut89] has shown how one can guarantee convergence ofNewton’s method,
but a bound on the arithmetic complexity has not been computed. Instead, we use the more
certain path lifting method as described in 1.3; this allows an explicit computation of the
complexity.

Following Smale [Sma81], we call a point z0 an approximate zero if Newton’s method
converges rapidly (that is, quadratically) when started from z0. Such terminology is reasonable,
because given such a point, we can quickly obtain an approximation of a root to arbitrary
precision.

DEFINITION 1.2. Let f be a polynomial and let Zn be the nth iterate under Newton’s
method of the point zo, that is, zn Zn- f(Zn-)/f’(zn-). Then we say that zo is an

approximate zero of f if, for all n > 0 we have

Iz, 1 _< 8 Iz0 1,

for some root of f
Notice that this definition is never satisfied in the neighborhood of a multiple root of f,

since the convergence of Newton’s method is asymptotically linear there. In our algorithm,
we perturb the polynomial slightly to ensure that we always have simple zeros. Refer to 2.1
and 2.3 for more details.

Kim [Kim88] and Smale [Sma86] have developed readily tested criteria for determining,
based on the values of the derivatives f(k)(z), when a point z is an approximate zero. These

418 MYONG-HI KIM AND SCOTT SUTHERLAND

can be extended to a much more general setting, namely for f a mapping between Banach
spaces. The following is essentially Theorem A of [Sma86].

LEMMA 1.3. Let

l/(k-1)f(k)(z)
f(z) maxk>, f.f,(Z)(z) k! f’ (z)

Ifotf (z) < -, then z is an approximate zero of f
We will find the following also very useful.
LEMMA 1.4. Let f(z) be a polynomial and z be a complex number so that ft(z) 5/: O,

and let Rf(z) be the radius ofconvergence ofthe branch of the inverse f-I which takes f(z)
to z. If

If(z)l
Rf(z) 10’

then z is an approximate zero of f. Furthermore, if we have f(z)[/Rf(z) < , then
Olf(Z) < ".

Remark. If Smale’s mean value conjecture holds (see [Sma81], [Tis89]), then the hy-
potheses of the lemma imply that af(z) < .

Proof The first result is a consequence of the proof of Theorem 4.4 of [Kim88], and the
second is an immediate consequence of Corollary 4.3 of the same paper. This, in turn, uses
the Extended Loewner’s Theorem in [Sma81].

1.3. The path lifting method. Here we review the path lifting method, which forms the
core of our iteration scheme. This method is sometimes referred to as a "generalized Euler
method" or "modified Newton’s method"; we prefer the term "path lifting method" as it is
the most descriptive (to us, anyway). This method appears in the work of Smale [Sma85],
although the version we present here is slightly different and we present another proof of the
relevant theorem, which is quite simple. It should be emphasized that the path lifting method,
like Newton iteration, is an algorithm for finding a single root of a polynomial; we discuss
how to combine these to find all roots in 1.5 below.

We think of a polynomial f as a map from the source space to the target space; that is,

f Csource Ctarget. Given an initial value z0 in the source space, we connect its image
wo f(zo) to 0 in the target space, and then lift this ray under the proper branch of f- to a
path connecting z0 with a root of f. Of course, we don’t explicitly know this inverse, but
if the path in the target space stays well away from the critical values of f, the local inverse
map fz- is well-defined on a neighborhood of the ray. Even if the path does contain critical
values, a local inverse can still be defined for some z0. See 1.4.

The basic idea of the path lifting method is to take a sequence of points Wn along the ray
in the target space, with w0 f(zo). We then construct a sequence of points zn in the source
space so that f(zn) is near Wn in the target. See Fig. 1.1. This is done using a single step of
Newton’s method to solve f(z) w, with z,,_ as the starting point. That is,

f(z,_l)-W,_
Zn Zn_

f’(z,-1)

This construction will converge to a root in the source space if there is a wedge about
the ray in the target space on which there is a well-defined branch of the inverse f-, and if
the w are chosen properly (in a way that depends on the angle of the wedge). The larger
the wedge about the ray, the faster the method converges. We now state the exact theorem,
although we shall defer the proof until 2.3.

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 419

Zn Z2

Wn0

source space target space

FIG. 1.1. The source and target spaces in the path lifting method. In the source space, each z is indicated by a

black dot, and f(zi) is indicated by a black dot in the target space. Similarly, the wi are indicated by tick marks in
the target space, and f-l (wi) by ticks in the source space.

Notation. By a wedge "I/VA,w, we mean the set

{z 0 < zl < 21wl, arg w A < arg z < arg w + A}.

THEOREM 1.5. Suppose that the branch ofthe inverse fz- is analytic on a wedge
with 0 < A < -, and let h < si--9A. Suppose also that If(zo) wol < hlwol/2, and define

f(zn)-Wn+l
wn (1 h)" wo, z+ z,

f’(z,)

Then [f(zn)- Wnl < hlwn[/2 and Zn+ fz- (WA,w,,).
It should be noted that this theorem is a slight improvement of Smale’s Theorem A in

[Sma85]. His proof is valid for all angles, but is stated only for A with h , and

forA- withh 2" ForA we can take take h 4, andfrA-- 7, h- 7 is
adequate.

1.4. Branched covers, inverse functions, and all that. If f is a polynomial of degree
d, then f C --+ C is a branched covering with branch points at the critical points Oi of f. If
z is a regular point of f, that is, f’ (z) :/: 0, then there is a well-defined inverse function fz-so that f-i (f(z)) z.

In any neighborhood of a critical point of f, there cannot be a single valued inverse;
however, the behavior at such points is well understood. Let 0 be a critical point of multiplicity
k- 1. Then we have

f(z) f(O (z O)kg(z), where g(O =/= O.

One can then define k branches of the inverse that are analytic on a small slit disk about f(O).
We may, of course, choose any slit that connects f(O) to the boundary of the disk. The reader
is referred to a complex analysis text for further details (for example, see [Ah179]).

Let {j be the d roots of f, represented with multiplicity. If Cj is a simple root, denote
by f or fj- the unique branch of the inverse of f that takes 0 to Cj. On the other hand, if

Cj is a multiple root, we let f. fj- be one of the branches of the inverse that take 0 to

Cj, taking care to account for all such branches exactly once. This can be done, since if is
a root of multiplicity k > 2, it is also a critical point of multiplicity k 1, and so there are k
branches of the inverse.

We now analytically continue each of the fj- to a maximal starlike domain f2j in the

target space; that is, we attempt to extend each fj:- along open rays from 0. When doing this, it

420 MYONG-HI KIM AND SCOTT SUTHERLAND

is useful to think of the target space as consisting ofd copies of C, with a single f]-I associated
with each one. When does the analytic continuation fail? Precisely when the inverse image
of a ray encounters a critical point of f. Refer to Fig. 1.2.

FIG. 1.2. The fj in the target space (on the right), and the corresponding source space,fora degree 5polynomial
with a double root (black dot inside a white dot) and a critical point ofmultiplicity 2 (double white dot). The other
criticalpoint is marked by a single white dot, and the roots by black dots. The cuts in the g2j are represented by black
radial lines.

At this point, it may be useful to consider the Newton vector field given by. f(z)/f(z).

Let tpt(z) be the solution curve with initial condition 00(z) z. Then we have

f (qgt(z)) e-t f(z);

that is, f maps solution curves of the Newton vector field to rays in the target space. Notice
that the singularities of the vector field occur precisely at the points where f’(z) 0. The
solution curves tpt(z) which have singularities play an important role here: they divide the
source space into regions on which f is injective. Refer to [Shu83], [STW88], [Sma85] for
more details on the behavior of the solution curves. Applying the path lifting method can be
viewed as attempting to follow the solution curves to the flow ot.

When constructing the f2j, we continue fj-1 radially outward until a critical point 0 is
encountered in the source space. We then exclude the ray {rf(O) r > 1} from g2j, and
continue by moving along rays that avoid the cut. Notice that when we encounter a critical
point 0 of multiplicity k 1, we need to slit at most k of the flj starting at f(O). Also, note that
some of the fj may already be slit at f(O), since there may be another critical point whose
image lies on the same ray.

We now count the number of such cuts: f has d 1 critical points (with multiplicity),
and a critical point of multiplicity k can cause at most k cuts. This means we have at most

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 421

2(d 1) cuts, distributed through the d copies of the target space. Note that if "2j contains
some wedge W, then fj-1 is analytic on W. The following counts the number of "2j which
contain wedges of a given size.

LEMMA 1.6. Let m be an integer, and divide C into m wedges

{ 2nyr 2(n + 1)7r }Wn,m- w <argw < n-0 m-1.
m m

For each wedge Wn,m, let N(n, m) be the number of "j that contain the sector Wn,m, and let
N(m) max N(n, m). Then

O<n<m

N(m) > d-
m

Proof Since we have 2(d 1) cuts and m wedges W,,, at least one of the wedges has no
more than 2(d-l) cuts. Since there are d "jS, we have the result.

m
dCOROLLARY 1.7. N(d)- d, N(3) > -, and N(4) > .

Proof Application of the formula above gives the result for N(3) and N(4), and yields
N(d) > d 1. However, since each critical point causes at least two cuts, it is not possible
to have a wedge cut only once. Thus, the value d is not permissible for N(d), giving
N(d) d.

1.5. Families ofroot-finding methods. We now use the result ofLemma 1.6 to construct
families of root-finding algorithms. Recall that the modified Newton method described in 1.3
works when there is an f2j containing a wedge about our initial value f(z0); the larger the
wedge, the faster the method converges.

For each family, we start with md points in the source space placed around a circle that
contains all the roots. We think of this as m sets of d initial points, and choose them so that
the image of each set lies well inside each of the m sectors W,m in the target space. Then by
Lemma 1.6, one of the m sets of points will contain at least N(m) elements whose images are
each in a "good wedge," that is, they lie in some f2j. As a consequence, iterating these points
under the path lifting method will locate at least N(m) roots of the polynomial.

Particular families of interest are m d, which gives the algorithm discussed in [Kim89b],
and m 4, on which we focus our attention here. The basic idea of all of the algorithms is
this" obtain md "good" initial points and apply the path lifting method to d of them at a time.
If, after a prescribed number of iterations, we have found approximation to at least N(m) roots
(counting multiplicity), we deflate the polynomial (that is, divide out the approximated roots)
and repeat the process on the result. If not, we try again with the next set of d points. Note
that we are guaranteed success by the time we try the mth set.

The remainder of the paper consists of a detailed description and analysis of the algorithm
for m 4. Most of what follows can be readily adapted to the other families as well.

2. A root-finding algorithm.

2.1. Statement of the algorithm and main theorem. Here we present our root-finding
algorithm for the family m 4. The presentation is structured as a main routine and several
subroutines, which do most of the work.

Notation. Throughout this section, we shall denote matrices, vectors, and sets in uppercase
calligraphic type, and their elements in subscripted lowercase type. For example, xj is the jth
element of the vector R’. We shall also use the notation [xJ to denote the least integer in x,
sometimes also called f 1 oo z" (x).

422 MYONG-HI KIM AND SCOTT SUTHERLAND

The main routine merely inputs the desired polynomial and precision, rescales it so the
roots lie in the disk of radius , then repeatedly calls a subroutine to halve the number of
unknown roots (counted with multiplicity) and deflate. We do the rescaling in order to easily
bound the error introduced by the FFT deflation. The set A contains all the approximations
found by the th stage.

Note that the algorithm is given for an arbitrary monic polynomial, since only minor
changes are required to normalize the input polynomial. If it is assumed that the input poly-
nomial is already in 79d(1), we can take j(z) ck(4z)/4d and r 32/7d+3.

Main Routine

Input monic polynomial q (z) id__0 aiz and desired precision

Let j(z) ck(Kz)/Kd, with K 4 max

Let r (4/7)d+3.
Let 0 and A 13.
While #(A) < deg(40

Let (f+, Ai) get-half-roots-and-deflate(f,).
Let A A U

Increment i.

End While.

Output KA.

The function get-half-roots-and-deflate takes as input a normalized poly-
nomial f and precision r. It returns a set of points yj that approximate at least half of the
roots of f (with multiplicity) and a new polynomial f that we obtain by deflation. These
satisfy Ill(z) f(z)]-I(z yj)ll < 2r. We should point out here that we are actually finding
approximate zeros of f- , where I’1 r, which depends on . When the translation is
in the proper quadrant, this will ensure that the relevant roots of f- ? are simple, so that
we have approximate zeros in a neighborhood. This allows us to obtain the right number of
approximations to a multiple root, without worrying about winding number arguments or the
like. We emphasize again that r is chosen as a function of , and is small enough that the
approximation polynomial has negligible errors in the non-constant terms.

andThe matrix Z consists of 4 rows of d "good" initial conditions, with [zj, k[
arg f(zj,k) , 2zrij/4. We use z,j to represent the jth row.

function get-half-roots-and-deflate(f,r)

Let d deg f.
Let Z :choose-4d-good- ini tial-points(f).
For j= lto4do

Let Y iterate-PLM(f, Z], j, r).
Let f- re2zrij/4.

Let A’ select-approx-zeros(, y).
Let]W polish-roots(0, Af, r).
Let]2 weed-out-duplicates(@,
If #(V) > d/2 then

Let f deflate(, V).
Return (f, V).

End if.

End for.

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 423

Print "We have proven this statement will not be reached. Check your code."
Abort.

The function choose-4d-good-initial-points gives us our 4 sets of d initial
values on the circle of radius . The sets have the property that elements of the same set are
mapped to points with approximately the same argument, and elements of distinct sets are
mapped to points in different quadrants of the target space. There are several different ways
to accomplish this, and other methods can slightly decrease the number of operations required
in i t erat e- PLM. Please refer to the remarks in 2.2 for more details.

function choose-4d-good-initial-points(f)

Let N 676 deg f.
For k to N

e2rrik/NLet o9.

End For.
For j to 4

Let Zj be the union of the co for which arg f(co) < 27r/j and arg f(co+) > 2rr/j,
End For.
Return(Z).

From our sets of initial points ;Zj, we obtain our approximate zeros via the routine
iterate-PLM. This applies the path lifting method to f for an appropriate number of
steps. For simplicity, we present a scalar version here. However, there are well-known meth-
ods for evaluating the same polynomial f at rn different points (m > d) in O(m(log d)2)
arithmetic operations; refer to 4.5 of [BM75]. When computing the complexity in 2.7, we
assume such methods are used. Note that this algorithm can be easily implemented on either a
vector or parallel computer, so that one can iterate the d elements of Zj simultaneously. Also
note that if Smale’s mean value conjecture holds, the extra iteration to obtain is not needed;
ZN is good enough. See the remarks following Lemma 1.4.

function scalar-iterate-PLM(f, z0, j,r)

Let w0 If(zo)leji/2.
Let h 1/27.

lg2(r/lw0l) JLet N-
log2(26/27)

For n to N
Let w,, (1 h)w,,_.

f(Zn-1)--Wi
Let z,, z,,_

f’(z,,_l)
End for.

f(Zx) "rejri/2

Let zx ft(ZN)
Return().

The next routine takes the output of iterate-PLM and uses the c function (defined
in Lemma 1.3) to remove those elements that are not approximate zeros. Although the test
c < g is sufficient, it is not a necessary condition. However, if the image of the initial points

for atZj lie in a "good quadrant," we know by Lemma 2.5 below that we will have c < g
least half of them, and so we are not in danger of discarding too many points.

424 MYONG-HI KIM AND SCOTT SUTHERLAND

function select-approx-zeros(,y)

Let X 0.
For j to #(3;)

Ifc(yj) < , then let A" A" tO {yj}.
End For.
Return(A’).

Once we have found approximate zeros for at least half of the roots of f (by applying
i t erate-PLM to at most 4 sets Z]), we further refine them by "polishing" with regular
Newton’s method. As in i t erate- PI,M, fast polynomial evaluation techniques can be used,
but we present a scalar version here for simplicity.

function scalar-polish-roots(,x0,

Let M + Llog2 log (64d(7/4)a)/rJ.
For n to M

(x,_)
Let xn xn- ’(x._)"

End For.
Return(xm).

Finally, we remove from the set of approximations any points that approximate the same
root of p. We do this by taking the approximation that minimizes 17t I, and then making a
pass through the rest of them and accepting only those that approximate different roots from
the ones previously accepted.

function weed-out-dupl icates(,

Sort V so that I(w)l
Let]2 {w }.
For j 2 to #(V)

If Iwj vl > 3lp(wj)l/l’(w)l for all v 6 V, then let V "12 tO {w}.
End For.
Return(]).

At this point we have found approximations to at least half of the roots of f. We divide
them out to obtain a new polynomial f+l of smaller degree, using a standard technique
involving the finite Fourier matrix.

function deflate(r,V)

Let n deg 7t #V.
Let co e2n’i/(n+l).

#V

p(z) 1[(z- v.).Let
k=l

Let A/I- be the inverse of the n x n Fourier matrix. That is, mj,k co-Jk/n.
(o)

Let 7 be the column vector with entries pj p(coj),
j 0 n.

Let Q= ,]-1 ,.
Let q (z) --y=o qJ #"
Return(q).

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 425

We now state our main theorem, which essentially says that the algorithm just presented
works.

THEOREM 2.1. Given a monic polynomial q(z) of degree d and e > O, the algorithm
presented in this section will always terminate with d points 1 .d that satisfy

d

114(z) 1-I(z- Xj)ll < e.
j=l

For 79d(1), the worst case arithmetic complexity of this algorithm is

O(d(log d)21 log el + d2(log d)2).
COROLLARY 2.2. Let and e be as in the theorem, and denote the roots of by j,

represented with multiplicity. Then the algorithm can be used to produce the approximations
)j satisfying

with a worst-case arithmetic complexity of
O(d2(logd)21 log el + d2(log d)2).

Proof This is an immediate consequence of the fact that if f and g are in 79,(1) with

Ilf gll < (e/8d)a, then the roots of f and g are at most e apart (See [Kim89b]). [3

We prove the theorem as a series of lemmas in the following sections. There is a rough
correspondence between the sections and the routines in the algorithm. Finally, we summarize
all of these lemmas and give the proof in 2.8.

2.2. Selection of initial points. For each intermediate polynomial f, we need to select
four sets of (deg f) points at which to begin our iteration. These must be chosen so that
the elements of each set map very near the same point in the target space, and the images
of elements in successive groups are approximately -turn apart. This can be accomplished
either by evaluating f at a large number of points spaced around a circle in the source space,
and then selecting from those, or by taking a much smaller number (perhaps as few as 4d) of
points and adjusting them with either a standard or modified Newton’s method. The arithmetic
complexity of either comes out much the same; we opt for the former method because of its
conceptual simplicity.

The following lemma gives us bounds on how much the argument in the target space can

vary between points around a circle containing all the roots in the source space. Using this,
we see how many points are required to obtain our "good" points.

LEMMA 2.3. Suppose all of the roots ofa polynomial f ofdegree d lie in 1(0), and
let

Theft

2trim

co" 2R e ,,--7-.

f(COm+l) 47r
<arg

f(com) n

Proof This argument appears in [Ren87, Lem. 7.1], although in a somewhat different
form. We present an adapted version here. The idea is quite simple. Since

df(com+l)
arg

I-I/=l (COm+I ’i)
arg COm+I ’i

arg f(com l-I=l(C,. i) i= COrn i

426 MYONG-HI KIM AND SCOTT SUTHERLAND

we merely bound the angles in the source space and add them up.
Note that each root I1 < R and IOm 2R, so

arg
O)m+l ’i
O)m ’i

< 2 arctan ICOm+l COm l/2
2R cos R

< 2 arctan
2R sin &nd

rr2R(cos g)

4y’f

Refer to Fig. 2.1. Summing the d terms gives the result.

O)m+

// i in this disk

O.)m

FIG. 2.1. Calculation ofthe upper bound on the variation ofargument in the target space. This picture is in the
source space.

From Theorem 1.5, for h 7 we require that our initial points be within sin- (-) <
of the central ray, so we start with 676d points equally spaced around the circle of radius
_3 We then evaluate the polynomial at each of them, and select four sets of d points whose2"

arguments are closest to 0, -, rr, and -, respectively. For each of these, we take the initial
target point w0 to be the projection of its image onto the real or imaginary axis.

Remark. Some amount of computation can be saved if we use the same w0 for all d
elements of a given set of initial points, rather than just points with the same argument. This
would make the computation of the Wn a scalar rather than a vector operation, that is, wn
would only need to be computed once for each group of d points. However, in order to do
this, we must ensure that the images of each zj in a set have approximately the same modulus
as well as argument. This is best accomplished using some sort of Newton’s method.

If an initial Newton’s method is used, one can also choose a much smaller number of trial
points o9i. Such a method should converge well, since all the critical points of f(z) wo are
inside IR, while the roots of f(z) wo and the O) are well outside.

2.3, Iteration of the path lifting method. In this section, we analyze the behavior of
applying the path lifting method to a single well-chosen initial value z0.

We first prove the theorem as promised in 1.3, and then we show that after a specified
number of iterations, the result will be an approximate zero. Before doing this, we shall state
the relevant special case of of [Kim88, Thm. 3.2], which gives a lower bound on how far a
point moves under Newton’s method.

LEMMA 2.4. Let z--g(z)/g’(z), with r Ig(z)l/Rg(z) < 0.148, where Rg(z) is the
radius ofconvergence of g-f as a power series based at z. Then

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 427

g()
< B(r) where B(r) 2r

(1 -i- r)
(1 r)5"

Given this lemma, the proof of Theorem 1.5 is quite simple. Note that each step of the
iteration in Theorem 1.5 corresponds to Newton’s method applied to f(z) W.+l at

THEOREM 1.5. Suppose that the branch ofthe inverse fz- is analytic on a wedge VA,too,
with 0 < A < -, and let h < 9 Suppose also that If(z0)- w0l < h lwo]/2, and define

w. (1 h)nwo, Zn+l Zn
f(z)

Then If(z,)- w,I _< hlwnl/2 and Zn+l 1 (]/A,wn)
Proof We shall prove this by induction. All that is required is to establish the conclusion,

given that If(zn-1) w,-ll < hlw,-ll/2.
Note that

If(Zn-) Wnl If(z-) Wn-l + IWn-1 toni < 3hlw,-ll/2,

and that

Rf_w,,(z,_l) Rf(z,_l) >_ Iwnl sin A- hlw, I/2.

Since h < 9A we can apply Lemma 2.4 with g(z) f(z) wn and r to obtain

f(z.) w.
Wn

f(z.)- w.
f(z.-1) w.

f(Zn-) w.
w,_l(1 h)

< B(r)--
3h

2(1 -h)

Because B() < (1 h)/3, we have our conclusion. [3

Remark. The denominator of 19 in the upper bound on h can be relaxed only slightly
sin Ain this proof. If we take h < -T5’ then k(A) is a monotonically increasing function, with

zr18.3096 < k(A) < 18.895. Also, if A > -, we can take h .
We apply the path lifting method until we have an approximate zero, at which time we

can use the standard Newton iteration. Since we are interested in finding r-roots of f, we
tOostop the iteration once we have an approximate zero for f- r 0-i" Note that, as discussed in

2.1, this translation is necessary, since there are no approximate zeros in a neighborhood of a
multiple root. Having approximate zeros for the perturbed polynomial gives us the following
bound on the number of iterations required, and enables the weeding out of duplicates.

LEMMA 2.5. Let h <_ ,sT-A with Wi and Z as in Theorem .5. If

[lgz(r/Iw01)N
log2(1 h)

toothen ZN is an approximate zerofor f- r I--o1" Furthermore, if

JI,ZN) r

f’(ZN)

then we have or(Y) < .
woProof. For notational convenience, set r Iw01"

428 MYONG-HI KIM AND SCOTT SUTHERLAND

By assumption, f-I is analytic on the wedge WA,oo, and the initial point zo is close
enough to w0 that we can apply Theorem 1.5. Note that if N is as specified, we have

since IWNI (1 h)Nlwol by definition. Also, If(zN) UON] hlwNI/2. Refer to Fig. 2.2.

f(zN) in here

/ ;,,,

ths interval

FIG. 2.2. The locations of tON and f(zN) in the target space when zo is in a "good quadrant."

In order to conclude that ZN is an approximate zero, we need to show that we have
]f(zu) 1/Rf(zN) < , where Rf(zN) is the radius of convergence of fz1. Consider
f(ZN) in some circle of radius hlwl/2, where arg w arg w0, and Iwl > r. Then we have

If(zN) 1 Iwl + hlwl/2- r 2 + h r

Rf(ZN) Iwl sinA hlwl/2 2sinA h Iwl(sin A h/2)

The maximum of this quantity occurs when wl is as large as possible, which in our case is

Iwl r/(1 h). Hence

If(ZN) I 3h
< < 3/37 < 1/10.

Rf(ZN) 2 sin A h

By Lemma 1.4, ZN is an approximate zero of f(z) .
In order to ensure that c < g, we need to apply Newton’s method once. Set

f(ZN) "f’(ZN)

Then this point satisfies

If()- ?[
< B(3/37) _< 0.31271,

If(zN)- ?I
and so

[f() 1 < 0.31271 (If(zN) WNI + IWNI v) < 0.31271
3hr

2(1 -h)
sin A
39

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 429

This gives us

[f() fl r sin A/39
r sin A r sin A/39 1138.

As a consequence of Lemma 1.4, we have ot() < g. r-1

2.4. Refinement of the root approximations. The routine +/- t e:atz e- PLt outputs a
set of points y {Yl, yg. Yd} that may be approximate zeros for ap(z) f(z) . We
can use c (see Lemma 1.3) to choose those yi that are indeed approximate zeros; we discard
those Yi for which ot (z) > g. As a consequence of Lemmas 1.4 and 2.5, those Yi that started
in the "good sector" will not be discarded.

In addition, we also want to ensure that we approximate each root only once (counted with
multiplicity). Lemma 2.7 gives us conditions that allow us to weed out any duplicates; the
proof relies on a variant of the Koebe Distortion Theorem which we quote here from [Kim88,
Lem. 3.3].

LEMMA 2.6. Let g be univalent on D,(z). Thenfor any s < 1, we have

IDtR (g(z)) C g (DsR(z)) C I)uR (g(z))

where slg’(z)l/(1 + s) and u slg’(z)l/(1 s)2.
LEMMA 2.7. Suppose that yi and Y2 are approximate zeros of 7s(z), with 17x(y)l >_

IP(Y2)I, and Rt(yj) > 12(yj), where Rt(yj) is the radius ofconvergence of 1. Then Yl
and y2 approximate the same simple root of 7s ifand only if

lYl Y21 <
3O(yl)
P’(Yl)

Proof. If Yl and Y2 approximate the same simple root, then we have l -l.
Since 17s(yl) 7s(y2)l < 217s(Yl)l, we have O(y2) E]]])21O(y,)I((Yl)). Thus we can apply
Lemma 2.6 with g 7s -l, which is univalent on the disk of radius R 1217s(yl)l. Taking
s g, we have

lfir-1 (I21(y,)1 (t (yl))) contained in the disk of radius
7217s(y)l
2510’(yl)1

about yl,

so

lYl Y21 <
317s(yl)l
17x’(y)l

For the other direction, we apply the Koebe -Theorem (or Lemma 2.6 with s 1; it is the
same thing) to see that 7t (IDzl,0,)l(Tt(yi))) contains the disk of radius 31(y)I/IP’(y)I
about y. Thus, if the distance between Yl and y2 is less than this amount, we must have

lP ((Y2)) Y2, that is, Yl and Y2 approximate the same root of p.
Remark. Note that ct, (z) < is not sufficient to imply that the hypotheses of Lemma 2.7

are satisfied, since this only gives R/(z) >_ 417r(z)l/3. However, if Newton’s method is
applied to such a point at least 3 times, the value of IPl will decrease by at least -, and so the
lemma can be applied. Since we need to "polish" the approximations with Newton’s method

430 MYONG-HI KIM AND SCOTT SUTHERLAND

in order to control the error in the deflation, we do that before weeding out the duplicates. The
total number of iterations of Newton’s method required is calculated in 2.6, but it is greater
than three in all cases. In practice, one should probably perform the weeding in the routine
se]_ectz-appro-zeros, in order to avoid polishing points that will be discarded later.

2.5. Deflation of intermediate polynomials. Here we compute an explicit bound on
the error introduced by the deflation step. We start with a polynomial 7t which has roots

{j}j=l u, and a set of approximations to these roots that we denote by {v,},=l with
n < d. We then use polynomial interpolation via the discrete Fourier matrix to obtain a
polynomial q of degree d n so that

/(z) p(z)q (z), where p(z) (-I (z vk).
k=l

In this section, we estimate II (z) p(z)q (z)II, as well as the accumulated error in repeating
this process until q (z) is a constant.

Recall that the finite Fourier matrix 3/1 has as its j, kth entry the jkth power of a primitive
d + st-root of unity. That is,

mj,k cojk e2rrijk/(d+l) j,k-O d.

Then one can readily see that if f(z) -’jd=o ajzj and .A is the column vector ofthe coefficients

of f, then the product /4 will be the vector/3 whose jth entry is the value of f(coJ). Also,
given the values of f evaluated at the powers of co, we can easily compute the coefficients of

f as the product A/l-lB.
Our first lemma gives us estimates on the size of the error caused by a single deflation.

As is common with this sort of thing, the proof is neither terribly entertaining or enlightening.
u with Ijl <],factors as St(z) P(z)Q(z),LEMMA 2.8. Suppose ap(z) 1-lj=l (z j),

where des(P) n < d and deg(Q) rn d n. Let p(z) I-Ij=l(z vj), with

Ij vii < < 1/8d2, and define q(z) and r(z) by /(z) p(z)q(z) + r(z), where q isfound
by polynomial interpolation as described above. Then

liP(z) p(z)ll < 8n3 (7/4)

Q(z) q(z)ll < 8m (7/4)m

IIr(z)ll < 8d6 (7/4)u

Proof. Let co e2zri/(n+l), and let/3 be the vector with entries bj P(coJ) p(coJ), for
0 _< j _< n. Note that

bj (--I (coJ k) (-I (coJ v)
k--1 k=l

(coJ se,) --. kk=l k=l

(k=ILIl(coJ--k)) (l--kI__l (14-

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 431

Also note that

7
< [coj-,[<- and

4 4

Since 46 _< 1/2d2 < 1/2n2, we have (1 + 43)n < 8n6 + 1, and so

Ibj.I < (7/4)n((1 + 43)n 1)< 8n3 (7/4)n

Thus

liP(z)- p(z)ll--II.M-II I1II < 8n6 (7/4)".

We have a similar computation for the bound on IIQ qll" Let r/- e2zri/(m+l) and let C
be the vector with entries cj Q(oj) q (oJ), j 0 m. Then

cj p(oj p(rJ) P(oJ) -)i --Q(J) 1-
oj_ k

As in the case of P(z) p(z), we obtain

Q(z) q(z)ll II.A-Cll IlCll < 8m6 (7/4)m

Finally, for the bound on IIr(z)ll, note that r(z) P(z)Q(z) p(z)q(z). If we write
r(z) dj=0 rjzJ, P(z) J=0 PjzJ, and so on, then we have

J J J
rj E Pj-kOk E PJ-kqk Z(qk(Pj-k PJ-k) Pj-k(Ok qk)).

k=0 k=0 k=0

Since Isejl < , we have the following crude bounds on the coefficients of P and q"

IPj.-kl (7/4) and Iqjl < (7/4)m.

Combining this with the bounds on P pll and Q q II, we get

J
[rj[< (8m6 (7/4) (7/4)n + 8n6 (7/4)n (7/4)m)

k=0

<_ 8jd3 (7/4)a

_< 8d2 (7/4)a [3

Now that we have bounds on the error in one step of deflation, we can bound the error
introduced by repeated deflation. We assume that our initial polynomial f has roots in 1I)1/2 so
that we can ensure that the roots of the subsequent polynomials J remain in 1I)3/4 as required
by Lemma 2.8.

Let fo f, and defineLEMMA 2.9. Suppose f(z) I-Ijl (z- Cj), with ICj[< g.

J(z) pk+ (z)J+ (z) + rk+ (z)

for 0 < k < m 1, where pj, fj, and rj are determined by polynomial interpolation as in
Lemma 2.8, with fm (z) 1. Suppose also that deg rk+l < deg f dk, and that

432 MYONG-HI KIM AND SCOTT SUTHERLAND

Ilrll < min
4(4d)d
,#(4/7)d+3).

Then

f pp Pm < z*.

Furthermore, if we have dk < &_/2 and I < (7/16)a, we need only require that Ilrnl[<

#(4/7)d+3.
Proof Note that f p p2 Pm P pmrm-1 q- -[" P r2 + r, and so

IIf- PIP2"’" Pmll <_ IIP Pm-l[llrm-ll + + IIpllllrzll + IIrll.

First, we show that Ilp Pkll (7/4)deg PP’. We shall use induction to show that the roots
3 On the circle Izlof p p, are always in the circle of radius + T3 < " g + Td, we have

degrk d
Ij-(z)- p(z)f(z)l <_ Ilrkll Izl j < < <

j--0
(4d)‘4(2d- k)- (4d)‘4-

and so by Rouch6’s Theorem the roots of pkJ lie inside I + 4" Thus the roots of p p2"

also lie in this disk, and so the coefficients are less than (7/4)deg P’Pk.
Since deg pl P2"" P, < d (m k), we can conclude that

IIpp2"." Pkllllrk+ll _< ’(7/4)‘4-m-k) (4/7)
k=l k=l

4
< (7/4)‘4+2 (4/7)‘4+3/z

If we require that dk <_ d/2, that is, we find at least half of the roots at each step,
then we can relax the restriction on Ilr,l] somewhat. If we have Ilrkll < 1/(4. M), then we
can use Rouch6’s Theorem as before to show that the roots of pkj are in the disk of radius

k 2-2 < 3/4. Note that for]zl Ck, we haveC +

)
d/2t’-I

)d,._, >_Ij-(z)l >_ (C,- C_
2 22

> 1/4d.

Applying almost the same argument as before, we have

deg rk

Ij-(z)- p(z)f(z)l <_ Ilrkll] Iz] j _< 4-7 _<
j=0

Since Ilrkll < #(4/7)a+3 < 1/(4.4‘4), we are done.

2.6. Controlling the error. In this section, we compute the size of r that we can use to
ensure we have an -factorization of ap. The following very simple proposition shows that if
the norms of two polynomials are close, so are the norms of the rescaled versions. This gives
us the relationship between and the number # used in Lemma 2.9.

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 433

PROPOSITION 2.10. Suppose that 4) is a monic polynomial with all its roots in]]) R, so that
the roots off(z) (2R)-d(2Rz) are in]1)1/2. Then ifllf Pll < e, we have

Proof. Let f(z) ajzJ and p(z)= ,bjzj. Then b(z) ,(2R)d-Jajzj and
(2R)dP (R) Y(2R)d-JbJzj" Since max ly(2R)d-J(aj -bj)] (2R)dlaj -bjl, we have
our claim.

Our input polynomial is in Pa(1) and f is the rescaled polynomial as in the previous
proposition, so R 2. Then an e-factorization of coesponds to an e/4a-factorization of
f, so we take /M.

In order to properly approximate the roots of f, we need to ensure that the remainder rk
(as in Lemma 2.9) at the kth step satisfies Ilrkll < 2r, where r (4/7)a+3/2 32e/7a+3.

At each stage, we translate by r, and ensure that the eor introduced by the deflation
of the translated polynomial is no more than r. By Lemma 2.8, we need the root distance
between translated polynomial and the deflated polynomial to satisfy

Then we will have

IIrll IIA- pAII 5 II(A- {) pAII + II(A-)- A-II 5 r + r.

In order to achieve the root distance less than 6, we apply Newton’s method to the ap-
proximate zeros found by the routine ra-L (see Lemma 2.5). Since each point z
is an approximate zero to the root of the translated polynomial, we have by Definition 1.2

58 Iz-l.

Thus iterating Newton’s method log2 log2($) times, as is done inp2h-roz, will give
the desired result.

2.7. Arithmetic complexity. In this section we count the number ofarithmetic operations
involved in using the algorithm to obtain an -factorization of a polynomial in (1).

In the main routine, we rescale the polynomial and then call
and-de ae at most log2 d times, since at least half of the roots are found in each call.

The cost of rescaling is 2d multiplications.
Each call to e-ha-r-and-deae calls the routine
d-Ln a-pn once, and makes at most four calls to each of
L, eec-apprx-zer, ph-r, and weed-u-
dpLcae, and one call to deae. As before, we denote the degree of
the input polynomial by d and the degree of the kth intermediate polynomial by dk.

The routine che-4d-d-na-pn involves evaluation of
at 676dk points, and 676dk comparisons. Since we can evaluate at m

points with a cost of O(m (log dk)2) operations (see IBM75]), this gives a total of

O(d(log dk)) operations.
For erae-L, each iteration evaluates

f(zn) w,+
Zn-

f’(z.)

434 MYONG-HI KIM AND SCOTT SUTHERLAND

at dk points, which costs O(dk(logdk)2). This is done N times, where N <

27 log Note that since the roots of f are in 13/4 and Iz01 , we have

IWol If(zo)l < (9/4)4. Since r 32e/7d+3, we have N C1 (d 4- log
for some constant C1. This gives a total of

O((d 4-]log e])(dk(log dk)2))
operations.
For se_ee_-avpzo-ze’os, we need to evaluate c at d, points, which re-
quires evaluation of all the derivatives of f. This requires O(d(log dk)2) opera-
tions.
The routine pol +/- sh-rt: s performs M iterations of Newton’s method at
points. Since M C2(log d 4- log log el) for some constant C2, we have a total
operation count of

O((dk (log dk)2) (log d + log]log

Weed-ou_-duv_+/-ea_ requires a sort of at most dk points, which costs
O(dk log d.), and evaluation of f and f’ at dk points. Thus the total cost of this
routine is O(dk(log dk)2).
Lastly, df]_a_ costs O(dk(log dk)2) operations.

Thus the overall cost of each call to g_-ha-I f-oo, z-arid-clef]_a_ is dominated
by that of +/-e:a_-PLt, and is at most O(dk(logd,)2(d + loge])) operations. Since

dk+ _< dk/2, we have a total cost of at most

O(dZ(log d)2 4- d(log d)2[log

operations to obtain an e-factorization of the polynomial.

2.8. Summary and proof of main theorem. At this point, we have actually already
proven Theorem 2.1, but we would like to tie together the various steps involved. Just to
refresh your memory, this theorem says, in essence, that our algorithm always produces an
e-factorization with the stated complexity.

Recall that the algorithm performs the approximate factorization in stages using the routine
get-half-roots-and-deflate; at the kth step, we produce a function f, and sets of
approximations Aj so that

f(z) . f(z) H (z ,ki),
.A

where A [_,lj_< Aj. In order to prove Theorem 2.1, we need to show that the number of ap-
proximations found at the kth stage (#A) is at least (degf_)/2, and that
f(z) j (z) Hx^ (z ki)II _< e/M. Given this, the complexity calculation in the pre-

vious section will apply, and we shall have the result.
First, note that as a consequence of Lemma 1.6, there will always be a quarter-plane

in the target space on which at least d,/2 branches of f- are defined. This means that
if we start with dk points zj that are well-spaced in the source space (so that each sheet in
the target space is represented), then for at least half of them there will be a branch of the
inverse f[defined on the entire quadrant, and f7 # f]-. . For these points z, if we en-
sure that f(z;) is close enough to the center line of the quadrant, at least half of them will

POLYNOMIAL ROOT-FINDING AND BRANCHED COVERS 435

satisfy the hypothesis of Theorem 1.5 and so the routine iterate-PLM will produce ap-
proximations to each of the corresponding dk/2 roots of fk (with multiplicity). Such initial
points zj will be produced by choose-4d-good-initial-points, as was shown in

2.2. As a consequence of Lemma 2.5, the good approximations iterate-PLM are ap-
As was discussed in 2.4, application of theproximate zeros of ap fk , with c < .

routines select-approx- zeros and weed-out-duplicates will select exactly one
representative for each approximated root of p, giving at least dk/2 such approximations
This selection is necessary since some of the initial zj that did not satisfy the hypothesis of
Theorem 1.5 may still have converged.

As was shown in 2.6, the approximations produced yield an /4a-factorization, since
the each the i are made sufficiently close to the roots of /, by the routine polish-roots,
and 7"]i is sufficiently small. This completes the proof of Theorem 2.1.

REFERENCES

[Ah179] L. AHLFORS, Complex Analysis, McGraw-Hill, New York, 1979.
[BFKT88] M. BEN-OR, E. FEIG, D. KOZEN, AND P. TIWARI, A fast parallel algorithm for determining all roots of a

polynomial with real roots, SIAM J. Comput., 17 (1988), pp. 1081-1092.
[BT90] M. BEN-OR AND P. TIWARI, Simple algorithmsfor approximating all roots ofa polynomial with real roots,

J. Complexity, 6 (1990), pp. 417-442
[BM75] A. BORODIN AND I. MUNRO, The Computational Complexity ofAlgebraic and Numeric Problems, Elsevier,

New York, 1975.
[DH69] B. DEJON AND E HENRICI, eds., Constructive Aspects of the Fundamental Theorem ofAlgebra, Wiley-

Interscience, New York, 1969.
[Fri90] J. FRIEDMAN, Random polynomials and approximate zeros of Newton’s method, SIAM J. Comput., 19

(1990), pp. 1068-1099
[Hen74] E HENRICI, Applied and Computational Complex Analysis, Wiley-Interscience, New York, 1974.
[JTT0] M.A. JENKINS AND J. F. TRAUB, A three-stage variable-shift iterationforpolynomial zeros and its relation

to generalized Rayleigh iteration, Numer. Math., 14 (1970), pp. 252-263.
[Kim88] M. KIM, On approximate zeros and rootfinding algorithms for a complex polynomial, Math. Comp., 51

(1988), pp. 707-719.

[Kim89a] Error analysis and bit complexity: polynomial root finding problems I, Bellcore, Morristown,
NJ, 1989, preprint.

[Kim89b] Topological complexity ofa rootfinding algorithm, J. Complexity, 5 (1989), pp. 331-344.
[Man92] A. MANNING, How to be sure of solving a complex polynomial using Newton’s method, Bol. Soc. Brasil

Mat., 22 (1992), pp. 157-177.
[Mar66] M. MARDEN, The Geometry ofPolynomials, American Mathematical Society, Providence, RI, 1966.
[Nef90] A. NEFF, Specified precision polynomial root isolation in NC, in 31st FOCS, IEEE, Washington, DC,

1990, pp. 152-162.
[Pan87] V. PAN, Sequential and parallel complexity of approximate evaluation of polynomial zeros, Comput.

Math. Appl., 14 (1987), pp. 561-622.
[Ren87] J. RENEGAR, On the worst-case arithmetic complexity of approximating zeros ofpolynomials, J. Com-

plexity, 3 (1987), pp. 90-113.
[Sch82] A. SCHONHAGE, Thefundamental theorem ofalgebra in terms ofcomputational complexity. Tech. report,

Mathematisches Institut, Universitit Ttibingen, Germany, 1982.
[Shu83 M. SHUB, The geomet, and topology ofdynamical systems and algorithmsfor numericalproblems, Notes

from lectures given at D.D.4 Peking University, Beijing, China, 1983.

[SS85] M. SHUB AND S. SMALE, Computational complexity: on the geometry ofpolynomials and a theory ofcost
I, Ann. Sci. cole Norm. Sup., 18 (1985), pp. 107-142.

[SS86] Computational complexity: on the geometry ofpolynomials and a theory of cost II, SIAM J.
Comput., 15 (1986), pp. 145-161.

[SS93a] CmplexityfBezutstheremI:gemetricaspectsJ.Amer.Math.Sc6(993)pp.459-5.
[SS93b] Complexity of Bezout’s theorem II: volumes and probabilities, in Computational Algebraic Ge-

ometry, E Eyssette and A. Galligo, eds., Progress in Mathematical, Vol. 109, Birkhauser, 1993,

pp. 267-285.

436 MYONG-HI KIM AND SCOTT SUTHERLAND

[SS93c]

[SS93d]

[STW881

[Sma81]

[Sma85]
[Sma86]

[Sut89]

[Tis89]

M. SHU3 ,rqD S. SMALE, Complexity ofBezout’s theorem III: condition numberandpacking, J. Complexity,
9 (1993), pp. 4-14.

Complexity of Bezout’s theorem IV: probability of success, extensions. IBM research report,
1993.

M. SHtJ3, D. TISCHLER, AtqD R. WILLIAMS, The Newtonian graph ofa complexpolynomial, SIAM J. Math.
Anal., 19 (1988), pp. 246-256.

S. SMAt,E, Thefitndamental theorem ofalgebra and complexity theory, Bull. Amer. Math. Soc., 4 (1981),
pp. 1-36.

On the efficiency ofalgorithms ofanalysis, Bull. Amer. Math. Soc., 13 (1985), pp. 87-121.
Newton’s method estimatesfrom data at onepoint, in The Merging Disciplines: New Directions in

Pure, Applied, and Computational Mathematics, Springer-Verlag, Berlin, New York, 1986, pp. 185-
196.

S. StTHERtArqD, Finding roots of complex polynomials with Newton’s method, Ph.D. thesis, Boston
University, Boston, MA, 1989.

D. TIscHIE, Critical points and values ofcomplex polynomials, J. Complexity, 5 (1989), pp. 438-456.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 437-446, April 1994

() 1994 Society for Industrial and Applied Mathematics
015

COMPUTING AND VERIFYING DEPTH ORDERS*
MARK DE BERGt, MARK OVERMARSt, AND OTFRIED SCHWARZKOPFt

Abstract. A depth order on a set of line segments in 3-space is an order such that line segment a comes before
line segment a in the order when a lies below a or, in other words, when there is a vertical ray that first intersects
a’ and then intersects a. Efficient algorithms for the computation and verification of depth orders of sets of n line
segments in 3-space are presented. The algorithms run in time O(n4/3+e), for any fixed e > 0. If all line segments
are axis-parallel or, more generally, have only a constant number of different orientations, then the sorting algorithm
runs in O(n log n) time and the verification takes O(n log n) time. The algorithms can be generalized to handle
triangles and other polygons instead of line segments. They are based on a general framework for computing and
verifying linear orders extending implicitly defined binary relations.

Key words, computational geometry, depth orders, three dimensions, linear extensions of partial orders

AMS subject classification. 68Q25

1. Introduction. Hidden surface removal is an important problem in computer graphics.
In a typical setting, we are given a set of nonintersecting polyhedral objects in 3-space and a
view point and want to compute which parts of the objects can be seen from the view point.

An efficient way of solving this problem is the painter’s algorithm; see, for example,
10]. In this algorithm one tries to "paint" the objects in a back-to-front order onto the screen.
Thus the objects in the front are painted on top of the objects in the back, resulting in a correct
view of the scene. Such a back to front ordering is called a depth order of the set of objects.
Note that a depth order does not always exist, since there can be cyclic overlap among the
objects, as is the case for the three triangles shown in Fig. 1. A closely related approach uses

FIG. 1. Cyclic overlap among triangles.

a binary space partition tree to obtain a displaying order for the objects in a scene 11]. A
binary space partition (BSP) cuts the objects in such a way that there is a depth order in any
direction. Unfortunately, the number of fragments and, hence, the size of the resulting BSP
tree can be as large as f2 (n2) [20]. Hence, this approach can be very wasteful if there is no
cyclic overlap in the viewing direction.

The view of a scene consists ofa subdivision ofthe viewing plane into maximal connected
regions such that in each region either (some portion of) a single object can be seen or no

*Received by the editors December 16, 1991; accepted for publication (in revised form) April 20, 1993. This
research was supported by the ESPRIT Basic Research Action 3075 (project Algorithms and Complexity). The first
and second authors were also supported by the Dutch Organization for Scientific Research (N.W.O.).

Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands.

437

438 MARK DE BERG, MARK OVERMARS, AND OTFRIED SCHWARZKOPF

object is seen. Sometimes it is necessary to compute a combinatorial representation of this
so-called visibility map. Note that the painter’s algorithm does not give us such a combinatorial
representation. The combinatorial complexity of the visibility map of a set of objects with n
edges in total varies between O(1) and fZ(n2). Hence, it would be nice to have an output-
sensitive algorithm, that is, an algorithm whose running time is dependent on the complexity
of the visibility map. Almost all output-sensitive algorithms known to date require that a
depth order on the objects is given; see, for example, 14], 16], 19], [21]. Only the recent

algorithms of [8], [9] do not need a depth order. The implementation of the latter algorithms,
however, is much easier when a depth order is known.

It is thus important to be able to compute depth orders efficiently. This problem was
studied by Chazelle et al. [5]. When the objects are lines in 3-space, they noted that a depth
order can be obtained by a standard sorting algorithm, because any two lines can be compared
(assuming no two have parallel projections). If there is cyclic overlap, however, then the
outcome of the sorting algorithm is not a valid depth order. Verifying whether a depth order is
valid is no trivial matter though; in [5], Chazelle et al. presented an O(r/4/3+e) time algorithm
to verify a given depth order of a set of lines. When the objects are line segments in 3-space,
the problem becomes much harder, since not every pair of line segments can be compared.
For this case, the best algorithm that was known runs in time O(n log n + k), where k is the
number of intersections in the projection plane, or, in other words, the number of pairs that
can be compared directly [5], [18]. Note that k can be (R)(n 2) and, hence, that the worst-case

running time of these algorithms is (R) (n2). Even for the case of axis-parallel line segments, it
was an open problem to find a depth order in o(n 2) time [21].

In this paper we show that a depth order for a set of line segments in 3-space can be
computed in subquadratic time. More specifically, we give an algorithm that computes a
depth order in time 0(n4/3+). We also present an algorithm that verifies a given order in
O(n4/3+e) time. When the line segments are c-oriented, that is, they have only c different
orientations for some constant c, then the sorting algorithm runs in O(n log n) time and
verification takes O(n log2 n) time. Note that axis-parallel line segments are 3-oriented. The
results can be generalized to depth orders for sets of triangles, or other polygons, instead of
line segments.

The algorithms that we give are surprisingly simple. They are based on a general frame-
work for computing a linear order extending a relation (S, -<). It is easy to compute an order
in time that is linear in the number of pairs that are related; to this end one sorts the directed
graph (S, E) topologically, where (a, a’) E if and only if a -< a’. This is the approach
taken in [5], 18] to sort a set S of n line segments: first compute all pairs of line segments that
are related--this can be done in O (n log n + k) time by computing all intersections in the pro-
jection plane--and then sort the corresponding graph in O(n + k) time. Note that if (S, -<)
does not contain a cycle then the sorting will succeed, otherwise some cycle will be detected
in the graph . We show that it is not necessary to compute the full graph corresponding
to (S, -<). All that is needed is to have a data structure that answers the following question:
Given an element a 6 S, return a predecessor of a and a successor of a, if they exist. The
data structure should allow for the deletion of an element a in S in sublinear time. In cases
where the relation is given implicitly--such as for depth orders--this is often possible. Our
algorithm uses an interesting form of divide-and-conquer, where the divide-step does not need
to be balanced. In fact, the more unbalanced it is, the better the running time of the algorithm.

There is some previous work on the computation of a linear order that extends a partial
order. This work is also in the context of depth orders, in particular, depth orders in two-
dimensional space 12], 13], [23] and depth orders for spheres in 3-space [22]. Unfortunately,
the solutions given in these papers do not generalize to our setting. Of related interest is also

COMPUTING AND VERIFYING DEPTH ORDERS 439

a paper by Kenyon-Mathieu and King 5], who describe an algorithm that verifies whether a
given partial order holds on n elements from an unknown total order.

The rest of this paper is organized as follows. In 2 we present our general framework
for computing a linear order extending a relation (S, -<), and in 3 we give an algorithm to
verify a given order. In 4 we show how to use these results to compute or verify a depth order
for a set of line segments (or triangles, or polygons) in 3-space. We make some concluding
remarks in 5.

2. Computing linear extensions. Let -< be a binary relation defined on a set S of n
elements. Note that -< is not necessarily a partial order, since we do not assume transitivity.
This will be useful in our application. In this section it is shown how to compute a linear
order extending (S, -<) or to decide that (S, -<) contains a cycle. Thus we want to compute
an order a an on the elements in S such that ai -< aj implies < j. The algorithm that
we will give for this problem needs a data structure 79-< for storing a subset S’ c_ S that can
return a predecessor in S’ of a query element a 6 S. More formally, QUERY(a, 79.<) returns
an element a’ 6 S’ such that a’ -< a or NIL if there is no such element. We call such a query
a predecessor query. Similarly, we need a structure 79. for successor queries. To make our
algorithm efficient, the structures should allow for efficient deletions of elements from S’ and
the preprocessing time should not be too high.

Let us define -<, to be the transitive closure of -< and >-, to be the transitive closure of >-.
The basic strategy of the algorithm is divide and conquer: we pick a pivot element apiv G S,
partition the remaining elements into a subset S.< of elements a that must come before apiv
in the order because a -<, apiv and a subset S_ of elements that must come after apiv in the
desired order because apiv -<, a, and recursively sort these sets. Note that not every pair of
elements is comparable under -<,. Hence, except for the subsets S.< and S_, there is a third
subset S of elements that cannot be compared to apiv under -<,. This subset should be sorted
recursively as well. To find the subsets S.< and S_ efficiently, the data structures 79.< and 79,,
are used. Consider the subset S.<. By querying 79.< with element apiv, we can find an element
a such that a -< apiv. We delete a from 79.< to avoid reporting it more than once and query
once more with apiv. Continuing in this manner until the answer to the query is NIL, we can
find all elements a 6 S such that a -< apiv. However, we want to find all elements a such that
a -<. apiv. Thus we also have to query 79.< with the elements a that we have just found, query
with the new elements that we find, and so forth. Whenever we find an element, it is deleted
from 79.< and we query with it until we have found all predecessors of it (that have not been
found before). This way we can compute the set S.< with a number of queries in 79.< that is
linear in the size of S.<. Notice that when we find apiv as an answer to a query, there must be
a cycle in the relation. The subset S_ can be found in a similar way, using the data structure
79_. The subset S contains the remaining elements.

There is one major problem with this approach: we cannot ensure that the partitioning is
balanced, that is, that the sets S.<, S_, and S have about the same size. Fortunately, we can
circumvent this if we make the following two observations. First, we note that we need not
treat the subset S separately. We can put the elements of S in either S.< or S., as long as we
do it consistently, that is, as long as we put all elements in the same set. It seems that this only
makes things worse because the partitioning gets more unbalanced. But now we observe that
it is enough to find the smaller of the two subsets S.< and S.. The remaining elementsmwhich
can be elements of Smare all put into one set. It is possible to find the smaller of the two
subsets S.< and S,.mwithout computing the complete larger set as well--with a number of
queries that is linear in its size, by doing a "tandem search"" alternatingly, find an element of

S.< and an element of S. until the computation of one of the two subsets has been completed.
Thus we partition S into two subsets in time that is dependent on the size of the smaller of the

440 MARK DE BERG, MARK OVERMARS, AND OTFRIED SCHWARZKOPF

two subsets. This means that the more unbalanced the partitioning is, the faster it is performed,
leading to a good worst-case running time for the algorithm. There is one problem left that
we have not addressed so far: we cannot afford to build the data structures that we need for
the recursive call for the large set from scratch. Fortunately, we can obtain these structures
from those that we have at the end of the tandem search by reinserting and deleting certain
elements.

The algorithm for computing an ordering on (S,-<) first builds the data structures 79-<
and 79>. on the set S and then calls the procedure ORDER, with the set S and these two data
structures as arguments. Below follows a detailed description of this procedure, whose output
is a linear order extending (S, -<) if one exists, and which detects a cycle otherwise. The
algorithm maintains two queues Q-< and Q>., which store the elements of S-< (respectively,
S>.) for which we have not yet found all predecessors (respectively, successors). The procedure
ENQUEUE adds an element to a queue. Similarly, DEQUEUE deletes an element from the queue.
An element a is deleted from the data structure 79-< by calling DELETE(a, 79.<); a deletion from
79>_ is performed with a similar call. To delete all elements in a set A, we simply write
DELETE(A, 79-<).

The two main steps in the algorithm are steps 4 and 5. In step 4 of the algorithm the tandem
search is performed; step 40) computes a new element of S-<, and step 4(ii) computes a new
element of S>.. In step 5 the two sets that result from the partitioning are sorted recursively;
to this end we first construct the data structures that are needed in the recursive calls. For the
larger of the two sets the new data structures are obtained from the existing data structures,
and for the smaller set the data structures are built from scratch.

ORDER(S,’/)-<, 79>.)
1. if lSI > then perform steps 2-6 else stop (S is already sorted).
2. Make S-< -- 13 and S>. +-- 0, and initialize two empty queues Q-< and Q>..
3. Pick an arbitrary pivot element apiv 6 S; ENQUEUE(apiv, Q-<); ENQUEUE(apiv, Q>-).
4. while both Q-< and Q>- are nonempty

do (i) a +-- DEQUEUE(Q-<); a’+-- QUERY(a, 75-<).
if a’ NIL
then if a’ apiv

then Stop and report that there is a cycle.
else ENQUEUE(a, Q-<) ENQUEUE(a’, Q-<); DELETE(a’, 79-<).

S-< S-< t_J a

(ii) Compute a new element a’ S>- in a similar way, using Q>_ and 79>-.
5. if Q-< is empty (hence, S-< is the smaller set)

then Reinsert the elements of S>. into 79>..
DELETE(S-< I,,J {apiv}, 79>.); DELETE(apiv, 79-<).
Build new predecessor and successor structures 79’-< and 79’>. for the set S-<.
ORDER(S-<, 79’-<, 7)’>.).
ORDER(S- {apiv} S-<, 79-<, 79>.).

else Compute the data structures for the recursive calls as above, reversing the
roles of S-<, 79-< and S>., 79>., and sort S>. and S- S>. {apiv recursively.

6. Concatenate S-<, apiv, and S>. to form the ordered list for S.

The following lemma proves the correctness of our algorithm.
LEMMA 2.1. Procedure ORDER outputs a linear order extending (S, -<) if it exists and

detects a cycle otherwise.

Proof. It is straightforward to see that the algorithm never claims to have found a cycle
that does not exist. It remains to show that if ORDER outputs a list a an then this list is

COMPUTING AND VERIFYING DEPTH ORDERS 441

a correct ordering. Assume for a contradiction that ai >- aj for some < j. Then, at some
stage of the algorithm, ai must have been put into S., whereas aj was put into S., or ai was
put into S. and aj was the pivot element apiv, or ai was the pivot element apiv and aj was put
into S_. The second and third case both imply that there is a cycle containing apiv, and we can
easily verify that step 3 never fails to discover a cycle containing the pivot element. We thus
consider the first case" If Q. is empty after step 3 then all predecessors of ai have been found,
including aj. Hence, aj would have been put into S. instead of S_. (It may also happen that
aj is put into both sets, but in that case the algorithm would have reported a cycle containing
the pivot element.) Similarly, if Q. is empty then ai would have been put into S_.

Next we prove a bound on the running time of the algorithm. Let us for the sake of
simplicity assume that the query time of 79 and the query time of 79. are equal, and let this
time be denoted by Q(n). Similarly, let the time to build these structures on n elements be
B(n), and let D(n) denote the time for a deletion.

LEMMA 2.2. The procedure ORDER runs in 0 ([B(n) + n(Q(n) + D(n))] log n) time.
The running time reducesto 0 (B(n) + n[Q(n) + D(n)]) ifB(n)/n + Q(n)+ D(n) f2(n)
for some constant > O.

Proof. Since all other operations in the procedure can be done in constant time, the time
that we spend is dominated by the operations on the structures D. and D_. Furthermore, if the
size of the smaller of the two subsets S. and S. is m, then we perform at most 2m + 2 queries
and deletions on these structures in step 4 of the procedure. Restoring a data structure to a
situation from the past, which we do in step 5, can be done without extra asymptotic overhead
if we record all the changes. Finally, we perform m deletions in step 5, and we build new data
structures for the smaller set. This adds up to B(m) + O(1 + m)[Q(n) + D(n)] in total for
the partitioning.

Next we argue that m < n/2 if the partitioning is successful, that is, if no cycle is found
at this point. Suppose that m > n/2. Then there must be an element a 6 S. f’l S.. But
this means that apiv will be found as a predecessor or a successor (whichever happens first)
and a cycle is detected. Trivially, an unsuccessful partitioning happens at most once, giving a
one-time cost of O(n[Q(n) + D(n)]).

It follows that the total running time T (n) can be bounded by the recursion

T(n) < max {B(m)+O(l+m)[Q(n)+D(n)]+T(m)+T(n-m-1)},
O<rn <n/2

which solves to the claimed time.
Combining the two lemmas above, we obtain the following theorem.
THEOREM 2.3. The procedure ORDER runs in 0 ([B(n) + n(Q(n) + D(n))] log n) time

and outputs an ordered list if (S, -<) does not contain a cycle orfinds a cycle otherwise. The
running time reduces to 0 (B(n) + n[Q(n) + D(n)]) if B(n)/n + Q(n) + D(n) f2(n)for
some constant ot > O.

Remark. With a little extra effort, the algorithm can output a witness cycle, when (S, -<)
cannot be ordered. To this end, we keep track of the successor (predecessor) of each element
that we put into S. (S.). This extra information enables us to "walk back" when we find apiv
in step 3 of the algorithm and report the elements of the cycle.

3. Verifying linear extensions. In this section it is shown how to verify a given order for
a relation (S, -<). Notice that different orders can be valid for (S, -<), so it does not suffice to

compute a valid order and compare it to the given order. The algorithm uses a straightforward
divide-and-conquer approach. It relies on the existence of a data structure 79. for predecessor
queries. Unlike in the previous section, however, this data structure need not be dynamic. The
algorithm we describe next has a list E {a an as input. For this list we have to test

442 MARK DE BERG, MARK OVERMARS, AND OTFRIED SCHWARZKOPF

whether it corresponds to a valid order. It will report that/2 is not sorted or run quietly when
/2 is a valid ordering for (S, -<).

VERIFY(/)
if I1 >
then Let {a aLn/2j} and 2 {aLn/21+l

Build a data structure 79, for predecessor queries on 2.
for/= to Ln/21
do if QUERY(a/, 79.<)# NIL

then Stop and report that/2 is not sorted
VERIFY(/I); VERIFY(2)

The correctness of the procedure is proved as follows. If does not correspond to a
valid order, then, by definition, there are elements ai, aj such that ai -< aj and > j. Now
either > In/2/ and j _< ln/23, or i, j _< /n/23, or i, j > [n/23. The first case is tested by
querying with the elements of in the data structure 79,, and the second and third possibilities
are tested with the recursive calls for/21 and/22, respectively. The following theorem is now
straightforward. As before, B(n) denotes the time needed to build the structure D. on a set
of n elements, and Q(n) denotes the query time.

THEOREM 3.1. The procedure VERIFY verifies in O([B(n) + n Q(n)] log n) time whether
a list corresponds to an order for (S, -<). The running time of the procedure reduces to

0 (B(n) + nQ(n)) ifB(n)/n + Q(n) f2(n)for some constant et > O.
Remark. Observe that if the procedure reports that is not ordered, then it can report a

witness pair ai, aj of elements such that < j and aj -< ai. If the structure 79. is dynamic,
then the algorithm can even report all conflicting pairs. When we test an element ai E , we
just remove each element aj E /2 that conflicts with ai from D. and report the pair ai, aj,
until no more conflicting elements are found. Then we reinsert the elements of/22 into D
and test the next element of 1 in the same way.

4. Application to depth orders.

4.1. Depth orders for line segments. Let S be a set of n line segments in 3-space, and
let d be the viewing direction. (The adaptation of the algorithms to "perspective depth orders,"
that is, depth orders with respect to a point, is straightforward.) We want to find a depth order
on S for direction d. In other words, we want to find a linear order extending the relation
(S, -<), where a -< a’ when there is a ray into direction d that first intersects line segment a’
and then intersects line segment a. When a -< a’, we say that a lies behind a’ or that a’ lies
in front of a. Observe that -< is not necessarily a transitive relation. To apply Theorem 2.3,
we need dynamic data structures that store a set S’ C S of line segments and enable us to
find a line segment in S’ lying behind (respecvely, in front of) a query line segment. Define
the curtain of a line segment into direction d to be the set of points q in 3-space such that
there is a ray into direction d that first intersects a and then intersects q. If we want to find a
line segment in S’ lying in front of a query line segment a, we just have to check whether a
intersects one of the curtains hanging from the line segments in S’ and report the line segment
holding that curtain. See Fig. 2. Finding a line segment lying behind a query line segment
can be done in a similar way. Agarwal and Matou,3ek [2] have shown that intersection queries
in a set of n curtains can be answered in time O(n 1/3) with a structure that uses O(n4/3+)
space and has an amortized update time of O(nl/3+e). (Note that the fact that the update time
is amortized does not cause any difficulties for the analysis of the time bound.) If both the
line segments holding the curtains and the query line segments are c-oriented, that is, they
have only c different orientations for some constant c, then queries can be answered in time

COMPUTING AND VERIFYING DEPTH ORDERS 443

FIG. 2. Line segment a lies behind line segment a and, hence, intersects its curtain.

O(log2 n) with a structure using O(n log n) space and with O(log2 n) update time; see de
Berg [7]. Combining this with Theorem 2.3 gives us the following result.

THEOREM 4.1. Given a set S ofn line segments in 3-space and a viewing direction d, one
can compute a depth order on Sfor direction d or decide that there is cyclic overlap among
the line segments, in time O(n4/3+e), for anyfixed e > O. If the line segments are c-oriented
then the time bound improves to O(n log n).

To verify a given depth order for a set of line segments in 3-space, we use the results of

3. In the general case, we again use Agarwal and Matouek’s structure for predecessor and
successor queries. In the c-oriented case, we can use a more efficient structure than we used for
computing depth orders" because the structure need not be dynamic, we can use the structure
of de Berg and Overmars [9], which has O(log n) query time and O(n log n) preprocessing
time. We immediately obtain the following theorem.

THEOREM 4.2. It is possible_to verify a depth order on a given set S ofn line segments in
3-spacefor a viewing direction d in time 0(n4/3+), for anyfixed e > O. If the line segments
are c-oriented then the time bound improves to O(n log2 n).

4.2. Depth orders for triangles. To extend our results to triangles instead of line seg-
ments, we only need to adapt the data structures for predecessor and successor queries. Let
us discuss the structure for successor queries; to obtain a structure for predecessor queries we
only have to reverse the roles of "behind" and "in front of."

A triangle is in front of another triangle t’ if and only if at least one of the following
conditions holds" (i) an edge of is in front of an edge of t’, (ii) is in front of a vertex of t’, or
(iii) a vertex of is in front of t’. (A vertex v is in front of a triangle t’ if there is a ray into the
viewing direction that first intersects v and then intersects t’.) We already know how to find the
triangles t’ that satisfy condition (i) for a query triangle t. The triangles satisfying conditions
(ii) and (iii) can be found as follows. Consider condition (ii) and assume, to simplify the
description, that the viewing direction is the negative z-direction. Project all vertices onto the
xy-plane, and let be the projection onto the xy-plane of a query triangle t. To find a vertex in
front of we select all vertices whose projections are contained in in a small number ofgroups;
for such a group we can think of as being a plane, and the question becomes that of reporting
a point in a half-space in 3-space. The latter query can be answered in O(log n) time, using the
half-space emptiness structure ofAgarwal et al.]. This structure uses O (n +) preprocessing
and has O(n) update time. The selection can be done using a three-level partition tree: each
level filters out those vertices lying on the appropriate side of the line through one of the three
edges of . We use the partition tree of Matouek [17], which allows for queries and updates

444 MARK DE BERG, MARK OVERMARS, AND OTFRIED SCHWARZKOPF

in time O(n 1/3) (respectively, O(nl/3+e)), and which uses O(n4/3+) preprocessing time and
space. Because the preprocessing and the query times in such a multi-level partition tree
are essentially determined by the least efficient level, the preprocessing time, query time, and
update time of the total structure remain o(nn/3+e), O(nl/3), and O(nl/3+e), respectively. See
[2], [3], [6], 17] for further details on the analysis of multilevel partition trees. The structure
for condition (iii) is the same (up to some dualizations) as the structure for (ii) that we just
described. We conclude that a dynamic structure for predecessor queries in a set of triangles
exists with O(n 1/3) query and O(n 1/3+e) update time, using O(n4/3+e) preprocessing time
and space.

For the c-oriented case, where the edges of the triangles have only c different orientations
for some constant c, we can use structures from [7]. There it is shown that a vertex in front of a
c-oriented query triangle can be found in O (log n) time, with a structure that uses O (n log2 n)
space and has O(log3 n) update time. A triangle in front of a query vertex can be found in
O (log2 n log log n) time, using O (n log2 n) space and with O (log2 n log log n) update time.
Furthermore, finding a vertex in front of an axis-parallel rectangle can be done with a structure
whose query and update time are O (log2 n).

The above combined with Theorems 2.3 and 3.1 lead to the following result.
THEOREM 4.3. Given a set S of n triangs in 3-space and a viewing direction d, one

can compute a depth order on Sfor direction d or decide that there is cyclic overlap among
the triangles, in time O(n4/3+e), for any fixed e > O. If the triangles are c-oriented then the
time bound improves to O(n log4 n), and if the objects are axis-parallel rectangles then the
algorithm takes O(n log3 n log log n) time.

To verify a given depth order for an arbitrary set of triangles, we use the same structures
as for computing a depth order. In the c-oriented case, however, we can save some logarithmic
factors by using static structures instead of dynamic ones. In the algorithm of 3 we have to
test whether the triangles in a list do not lie in front of any triangle in a list/22. Testing
whether there is an edge of a triangle in E that lies in front of an edge of a triangle in/22 can
be done in O(n logn) time, as in 4.1. To test for conflicts corresponding to conditions (ii),
we build a structure on the triangles in that reports the first triangle that is hit by a query
ray starting from infinity into the viewing direction. Next, we shoot rays from infinity into the
viewing direction toward each vertex of all triangles in/2; when we know the first triangle
that is hit by the ray toward a certain vertex, we can decide if there is any triangle in front
of the vertex. There exists a structure that answers these ray shooting queries in O(log n)
time, after O(n log n) preprocessing [9]. Hence, in O(n log n) time we can decide if there is
a triangle in that is in front of some vertex of a triangle in/2. To test condition (iii) we
build a similar structure on the triangles in E2 (only this time for query rays into the opposite
viewing direction), and we query with vertices of triangles in El. This leads to the following
theorem.

THEOREM 4.4. It is possible to verify a given depth order on a set S of n triangles in
3-spacefor a direction in time O(n4/3+e), for anyfixed e > O. lfthe triangles are c-oriented
then the time bound improves to O(n log2 n).

4.3. Extension to polygons. Consider the case where we want to compute a depth order
for a set of polygons in 3-space, instead of a set of triangles. Let n be the total number of
vertices of the polygons. First, we triangulate every polygon, which can be done in O(n)
time in total [4]. Observe that one polygon is behind another polygon if and only if one
of the triangles in the triangulation of the first polygon is behind one of the triangles of the
second polygon. Hence, we can use the same data structures as before to find predecessors
and successors. However, if the polygons do not have constant complexity, then there is a

COMPUTING AND VERIFYING DEPTH ORDERS 445

slight problem; the triangles that correspond to the same polygon must stay together in the
ordering, so when we find one triangle as a predecessor or successor we have to report the
other triangles as well. This is problematic, because the number of other triangles can be large.
Suppose that during our tandem search we suddenly have to add a very large polygon to one of
the subsets; if we find out in the next step that the other subset is complete, then we have spent
a lot of time that we cannot charge to the smaller subset. An elegant solution to this problem
can be obtained if we realize that we can choose any particular pivot element we like. Hence,
we can choose the polygon with the largest complexity as pivot element. The tandem search
for the sets S. and S now proceeds as follows. We find successors and predecessors using
the data structures for triangles. However, when we find a large polygon for, say, S., we first
allow S. to catch.up. Thus we search for successors until the complexity of S_--that is, the
total number of vertices of all polygons in S.--is greater than the complexity of S.. When
this happens, we start querying for predecessors again, and so forth, until one of the subsets
is completed. This way the extra work that we have to do, caused by adding a large polygon
to what turns out to be the larger set, is bounded by the time spent on one polygon. Since the
pivot polygon is chosen to be the largest polygon in the set, we can charge this extra work
to the pivot polygon. Clearly, each polygon is charged at most once this way, because in the
recursive calls we do not consider the pivot element anymore. Thus the asymptotic running
time of the algorithm remains the same, and we have the following theorem.

THEOREM 4.5. Given a set S ofpolygons in 3-space with n vertices in total and a viewing
direction d, one can compute a depth order on Sfor direction d or decide that there is cyclic
overlap among the polygons, in time O(r/n/3+e), for any fixed e > O. If the polygons are
c-oriented then the time bound improves to O(n log4 n), and if the polygons are axis-parallel
then the algorithm takes O(n log n log log n) time.

The adaptation of the verification procedure to polygons is fairly straightforward, and we
leave it as an (easy) exercise to the reader.

THEOREM 4.6. It is possible to verify a given depth order on a set S ofpolygons in 3-space
with n vertices in total, for a viewing direction d, in time O(na/3+e), for any fixed e > O. If
the polygons are c-oriented then the time bound improves to O(n log2 n).

5. Concluding remarks. We have shown that it is possible to compute a depth order for
a set of line segments in 3-space in subquadratic time. More specifically, a depth order can be
computed in O(n4/3+e) time in the general case and in O(n log3 n) time in the c-oriented case.
It is also possible.to verify a given depth order, and the results can be extended to polygons
instead of line segments. Our algorithms are based on a general framework to compute or

verify a linear order extending an implicitly defined binary relation, which might have other
applications as well.

When a depth order is needed as input to a hidden surface removal algorithm, we are
not done if we detect a cycle: the cycles should be removed by cutting the objects into
smaller pieces. Moreover, we would like to use as few cuts as possible. As mentioned in the
introduction, binary space partitions are a way of cutting the objects to obtain a depth order,
but there is no guarantee that the number of pieces in this scheme is small [20]. We leave the
computation of the minimum (or a small) number of cuts as an open problem. See [5] for an
initial study of these problems.

REFERENCES

[1] P. K. AGARWAL, D. EPPSTEIN, AND J. MATOUgEK, Dynamic half-space reporting, geometric optimization, and
minimum spanning trees, Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science,
1992, pp. 80-89.

446 MARK DE BERG, MARK OVERMARS, AND OTFRIED SCHWARZKOPF

[2] E K. AGARWAL AND J. MATOUEK, Ray shooting and parametric search, Proc. 24th Annual ACM Symposium
Theory Comput., 1992, pp. 517-526.

[3] P. K. AGARWAL AND M. SHARIR, Applications ofa new space partitioning scheme, Discrete Comput. Geom., 9
(1993), pp. 11-38.

[4] B. CrAZELLE, Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6 (1991), pp. 485-524.
[5] B. CHAZELLE, H. EDELSBRUNNER, L. J. GU|BAS, R. POLLACK, R. SEIDEL, M. SHARIR, AND J. SNOEYINK, Counting

and cutting cycles of lines and rods" in space, Comput. Geom. Theory Appl., (1992), pp. 305-323.
[6] B. CHAZELLE, M. SHARIR, AND E. WELZL, Quasi-optimal upper bounds for simplex range searching and new

zone theorems, Proc. 6th Annual ACM Symposium Comput. Geom., 1990, pp. 23-33.
[7] M. DE BEFOG, Dynamic output-sensitive hidden surface removalfor c-orientedpolyhedra, Comput. Geom. The-

ory Appl., 2 (1992), pp. 119-140.
[8] M. DE BERG, D. HALPERIN, M. OVERMARS, J. SNOEYINK, AND M. VAN KREVELD, Efficient ray shooting and

hidden surface removal, Proc. 7th Annual ACM Symposium Comput. Geom., 1991, pp. 21-30.
[9] M. DE BEIG AND M. OVErMAnS, Hidden surface removal for c-oriented polyhedra, Comput. Geom. Theory

Appl., (1992), pp. 247-268.
[10] J. D. FOLEY, A. VAN DAM, S. K. FEINER, AND J. E HtJarES, Computer Graphics: Principles and Practice,

Addison-Wesley, Reading, MA, 1990.
[11] H. Fucrs, Z. M. KEDEM, AND B. NAYLOR, On visible surface generation by a priori tree structures, Com-

put. Graph., 14 (1980), pp. 124-133.
[12] L. Gu3AS, M. OVEMArS, AND M. SHAr, Ray shooting, implicit point location, and related queries in

arrangements of segments, Report 433, Department of Computer Science, New York University, New
York, NY, March 1989.

[13] L.J. GUIBAS AND F. E YAO, On translating a set of rectangles, Computational Geometry, E P. Preparata, ed.,
Advances in Computing Research 1, JAI Press, London, England, 1983, pp. 61-77.

[14] R. H. GrTING AND T. OTTMANN, New algorithms for special cases of the hidden line elimination problem,
Comput. Vision Graph. Image Process., 40 (1987), pp. 188-204.

[15] C. KENYON-MA’rnEU ANt) V. KNG, Verifying partial orders, Proc. 21st Annual ACM Symposium Theory
Comput., 1989, pp. 367-374.

[16] M.J. KATZ, M. H. OVErMAnS, AND M. SHAR, Efficient hidden surface removalfor objects with small union

size, Comput. Geom. Theory Appl., 2 (1992), pp. 223-234.
17] J. MAa’OUgEK, Efficient partition trees, Proc. 7th Annual ACM Symposium Comput. Geom., 1991, pp. 1-9.

[18] O. NURMI, On translating a set ofobjects in two- and three-dimensional spaces, Comput. Vision Graph. Image
Process., 36 (1986), pp. 42-52.

[19] M. OVErMAnS AND M. SnAl, Output-sensitive hidden surface removal, Proc. 30th Annual IEEE Symposium
on Foundations of Computer Science, 1989, pp. 598-603.

[20] M.S. PATERSON AND E E YAO, Efficient binary spacepartitionsfor hidden-surface removal and solid modeling,
Discrete Comput. Geom., 5 (1990), pp. 485-503.

[21] E E PREPARATA, J. S. VITTER, AND M. YVINEC, Output-sensitive generation ofthe perspective view ofisothetic
parallelepipeds, Algorithmica, 8 (1992), pp. 257-283.

[22] G. TOUSSAN’r, Some collision avoidance problems between spheres, Proc. International Conf. Systems, Man,
Cybernetics, 1985.

[23] E E YAO, On the priority approach to hidden-surface algorithms, Proc. 21st Annual IEEE Symposium on

Foundations of Computer Science, 1980, pp. 301-307.

SIAM J. COMPUT.
Vol. 23, No. 2, pp. 447-448, April 1994

() 1994 Society for Industrial and Applied Mathematics
016

ERRATUM: OPTIMAL PARALLEL RANDOMIZED ALGORITHMS FOR
THREE-DIMENSIONAL CONVEX HULLS AND RELATED PROBLEMS*

JOHN H. REIF AND SANDEEP SEN

A portion of the appendix to "Optimal Parallel Randomized Algorithms for Three-
Dimensional Convex Hulls and Related Problems," by John H. Reif and Sandeep Sen [SIAM
J. Comput., 21 (1992), pp. 466-485] was inadvertently deleted when the article was printed.
The appendix appears here in its entirety.

A. Appendix. We say a random variable X upper-bounds another random variable Y
(equivalently Y lower bounds X) if for all x suchthat0 < x < 1,Prob(X < x) < Prob(Y < x).

A Bernoulli trial is an experiment with two possible outcomes, success and failure. The
probability of success is p.

A binomial variable X with parameters (n, p) is the number of successes in n independent
Bernoulli trials, the probability of success in each trial being p. The probability massfunction
of X can be easily seen to be

Prob(X<x)=(nk)Pk(1-p)"-k.
k=0

The tail end of the binomial distribution can be bounded by Chernoffbounds. In particular
the following approximations due to Angluin and Valiant are frequently used:

Prob(X > m _< e

(2) nP)mProb(X < m) < e-np+m
rn

(3) Prob(X < (1 -)pn) < exp(-Znp/2)

(4) Prob(X > (1 +)np) < exp(-2np/3)

for all 0 < e < 1. The last two bounds actually follow from the Chernoff bounds, which (for
a discrete distribution) can be stated as

Prob[A > x] < z-XGA(z)

where GA(z) is the probability generating function.
To minimize the bound we substitute z Zo, which minimizes the right side expression.
Proof (Lemma 10): Consider the generalized Chebychev’s inequality

E(4(X))
Prob{lXI >_t}<

4(t)

Using 4(t) 2k and substituting X- E[X] for X and setting to be equal to #, we get

E[(X- E[X])2k]
Prob {IX- E[X]I > E[X]} <

E2k[X]

*Received by the editors September 10, 1993; accepted for publication September 10, 1993.
Department of Computer Science, Duke University, Durham, North Carolina, 27706.
Department of Computer Science, Duke University, Durham, North Carolina, 27706. Present address, Depart-

ment of Computer Science and Engineering, Indian University of Technology, New Delhi, 110016, India.

447

448 J.H. REIF AND S. SEN

Let us focus on the numerator. We shall show that it is O(/zk) and the lemma follows. Since
E[X] -,’]=1 E[Xi], we can write (X- E[X])2k as (y,.n=l Xi E[Xi])2k. In the multinomial
expansion, all the terms containing Xi E[Xi] (for any i) as a factor vanish because of the
2k-way independence property.

(2-1 terms that have c distinct non-unit product terms of the form (XjThere are (c)’ c-,
E[Xj])i such that > 0 and Y 2k. Also note that

E[(Xj. E[XI);I (1 p)(_p)i + p(1 p)
<pi+p

p(1 + pi-)
_<2p.

We can factor out p so that we can write the coefficient of n as pC. f(k), where f is a
function independent of n and can be absorbed in the big-O notation. From our observation
about the first-order terms (which vanish), the maximum value of c is k. The numerator can
be bound by the asymptotically dominating term O(n. pk) O(#k). Since the denominator
is/2k, the lemma follows. l

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 449-465, June 1994

() 1994 Society for Industrial and Applied Mathematics
001

TOP-BOTTOM ROUTING AROUND A RECTANGLE IS AS EASY AS
COMPUTING PREFIX MINIMA*

OMER BERKMANt, JOSEPH JAJA, SRIDHAR KRISHNAMURTHY, RAMAKRISHNA THURIMELLA
AND UZI VISHKIN

Abstract. A new parallel algorithm for the prefix minima problem is presented for inputs drawn from the range
of integers [1..s]. For an input of size n, it runs in O(log log log s) time and O(n) work (which is optimal). A faster
algorithm is presented for the special case s n; it runs in O(log* n) time with optimal work. Both algorithms
are for the Priority concurrent-read concurrent-write parallel random access machine (CRCW PRAM). A possibly
surprising outcome of this work is that, whenever the range of the input is restricted, the prefix minima problem can
be solved significantly faster than the 2 (log log n) time lower bound in a decision model of parallel computation, as
described by Valiant [SIAM J. Comput., 4 (1975), pp. 348-355].

The top-bottom routing problem, which is an important subproblem of routing wires around a rectangle in two
layers, is also considered. It is established that, for parallel (and hence for serial) computation, the problem of
top-bottom routing is no harder than the prefix minima problem with n, thus giving an O(log* n) time optimal
parallel algorithm for the top-bottom routing problem. This is one of the first nontrivial problems to be given an

optimal parallel algorithm that runs in sublogarithmic time.

Key words, parallel algorithms, VLSI routing, prefix minima, PRAM algorithms

AMS subject classifications. 68Q10, 68Q25

1. Introduction. The prefix minima problem is defined as follows. Given an array of
integers A [a l, a2 a,, drawn from the range ofintegers 1..s], find for each i, < < n,
the minimum over the prefix al, a2 ai. We give two parallel algorithms for the problem:
An O(log log log s) time algorithm using n/log log log s processors and O(ns) space, and
an O(log* n) time algorithm using an optimal number of processors and linear space when
the input is drawn from the range of integers [1..n] (i.e., s n).

We demonstrate the power of prefix minima by giving a nontrivial application--the top-
bottom routing around a rectangle in two layers. The routing problem is defined as follows.
We are given a rectangle and a set of n two-terminal nets with each net having exactly
one terminal on the top and one terminal on the bottom of 7. Find a routing around ,
in the standard two-layer model that uses the minimum number of total tracks. We give an
O(log* n) time algorithm for this routing problem using an optimal number of processors.
Our time bound compares favorably with time bounds of previous algorithms. Additionally,
the algorithm presented in this paper is quite elegant and relatively simple.

The main model of parallel computation that is used in this paper is the concurrent-
read concurrent-write (CRCW) parallel random access machine (PRAM). We assume that if
several processors attempt to write at the same memory location the processor with minimum

*Received by the editors August 6, 1991; accepted for publication (in revised form) December 7, 1992.
Department of Computer Science, King’s College London, The Strand, London WC2R 2LS, England. The

work of this author was carried out in part at the University of Maryland Institute for Advanced Computer Studies
and at Tel Aviv University, and was supported in part by National Science Foundation grant CCR-8906949.

tUniversity of Maryland Institute for Advanced Computer Studies and Department of Electrical Engineering,
College Park, Maryland 20742. The work of this author was supported in part by National Science Foundation grant
CCR-9103135 and National Science Foundation Engineering Research Center Program NSFD CDR 8803012.

Department of Electrical Engineering, University of Maryland, College Park, Maryland 20742.
Department of Mathematics and Computer Science, University of Denver, Denver, Colorado 80208. The work

of this author was carried out at the University of Maryland Institute for Advanced Computer Studies.
IIUniversity of Maryland Institute for Advanced Computer Studies and Department of Electrical Engineering,

College Park, Maryland 20742, and Tel Aviv University, Tel Aviv, Israel 69978. The work of this author was supported
in part by National Science Foundation grant CCR-8906949.

1log* n minimum{/ log(i)(n) < 1} where log(i) denotes the ith iterate of log (i.e., log(l)(n) logn and
log(i)(n) log(log(i-i)(n)) for/ > 2.)

449

450 BERKMAN ET AL.

index succeeds (the so-called PRIORITY CRCW PRAM). An optimal parallel algorithm is
an algorithm whose time-processor product matches the sequential complexity of the problem
(which in this paper is always linear in the size of the input). An ultimate theoretical goal,
that is, often unattainable, is to design constant-time optimal parallel algorithms. Seeking to
get as close as possible to accomplishing this goal is an interesting research goal.

Valiant [12] gave an f2(loglogn) time lower bound for computing the maximum of n
elements using n processors in a comparison model of parallel computation. The same lower
bound applies for a PRAM assuming the input is drawn from a large domain (see [8] and
[9]). Our result shows that this lower bound does not apply when the input range is restricted.
Computing the parity of n bits needs f2 (log n / log log n) time using a polynomial number of
processors [2]. Since parity is such a simple problem, it is interesting to demonstrate that
other interesting and nontrivial problems can be solved extremely fast. Recently, Berkman
and Vishkin [4] have shown that several interesting functions could be computed in time that is
significantly faster than the lower bound for parity, e.g., in inverse-Ackermann time. See also
the survey [13]. The results of this paper also contribute in this direction. Furthermore, the
top-bottom routing problem is one of the most involved problems for which a sublogarithmic
optimal parallel algorithm presently exists.

The previous algorithms for the prefix minima problem run in O(log log n) time using an
optimal number of processors ([3] and 11]). This upper bound cannot be improved when the
input range is unrestricted because ofthe lower-bound by Valiant. Our prefix minima algorithm
has already been used by Matias and Viskin [7] as an important subroutine in designing an
O (log* n) time algorithm for generating a random permutation.

The top-bottom routing problem is one of the important subproblems encountered by very
large scale integration (VLSI) circuit designers during the layout ofa chip. This problem and its
variations, arise in hierarchical approaches to VLSI layout. It should be emphasised, though,
that the top-bottom routing is a restricted version of the problem of routing wires around
multiple rectangles, which is the general routing problem. Indeed, the former problem can be
considered a "very" simple case of the latter problem, which is itself NP-hard. Nevertheless,
a study of the top-bottom routing problem provides new insights into the general problem
and hence an efficient parallel algorithm for this problem could conceivably be a part of the
software for computer-aided design tools.

While our algorithm is the first parallel algorithm, several authors have studied this prob-
lem in the sequential context. Baker [1], and Sarrafzadeh and Preparata [10] give a simple
linear-time algorithm for this problem. However, the layout resulting from their algorithms
is not optimal. On the other hand, the known algorithms that achieve optimality in the layout
area for this problem are unsatisfactory for other reasons. LaPaugh’s algorithm [6] is compu-
tationally expensive: it takes O(n3) time. The algorithm of Gonzalez and Lee [5], although it
runs in O (n) time, is quite involved.

2. Top-bottom routing.

2.1. Preliminaries and notation. Given a grid structure, let 7g be an x h rectangle
with sides on grid-line segments. Let Af be {N, N2 N }. Each Ni (referred to as a net)
consists of a pair of grid points (referred to as terminals) Ni {ai, ai. }, where terminal ai
(referred to as a top terminal) is on the top boundary of 7g, and terminal ai. (referred to as
a bottom terminal) is on the bottom boundary of 7g. The top-bottom routing problem is to

specify a path along grid-line segments, that connects for each Ni both its terminals. The
layout (routing) should be such that the paths (wires) are outside 7-g and should satisfy the
constraints of a given routing model. We consider the standard two-layer model, where the
horizontal segments of a wire are on one layer and the vertical segments are on the other. The
segments of two different wires in any one layer are allowed no contact with one another,

TOP-BOTTOM ROUTING AROUND A RECTANGLE 451

but wires running on different layers are allowed to cross without being connected. When a
connection is desired at a grid point between a horizontal and a vertical segment of the same
wire, it is achieved by an explicit connection (referred to as a via). The problem is to find such
a routing around 7, that uses the minimum number of horizontal grid-line segments (referred
to as tracks). There are two frequently used facts about routing we assume in this paper; the
proofs of these facts are either straightforward or in [1], [6], [5]" (1) Minimizing the total
number of horizontal tracks also minimizes the total area used by the layout, since each net
increases the width of the layout by one unit. (2) There is an optimal routing such that each
net uses exactly four bends or vias.

We elaborate on the definition of the problem. Assume the input is given as follows: two
arrays T [t, t2 t,,] and B Ibm, b2 b,,] that contain net numbers as they appear at
the top and bottom of 7 in left-to-right order. Without loss of generality (wlog), assume that
T [tl, t2 t,,] [1, 2 n] and B is a permutation of the numbers 1, 2 n. Note
that any routing solution uses at least n horizontal tracks. Figure a demonstrates a solution for
a problem with n 4. The wire that leaves top-terminal takes a vertical track upwards for
one unit-length, connects to the horizontal track layer and takes a horizontal track left-bound
for two units, and connects to the vertical track layer and takes a vertical track downwards for
h + 3 units (recall that h is the height of the rectangle). A total of h + 4 horizontal tracks are
used in the routing shown in Fig. la. It is easy to argue that in general h + n is the minimal
number of horizontal tracks possible for the routing problem. We ignore the horizontal tracks
occupied by the rectangle and say that the number of horizontal tracks used by the above
routing equals four.

A routing will be represented by two sets of edges: the top edges and the bottom.edges
between nets in the array B (observe that array T is not needed). Each net in B is an endpoint
of at most one top edge and at most one bottom edge.

A top edge (b,, b) means that nets b, and bt share the same track at the top and thus
implies directions for b, and bt" if bk < bt, the direction of the net b, is counter clockwise
(CC) and that of bt is clockwise (C); if b, > bt, the direction of b, is C and that of bt is CC.
Observe that this is the direction as we traverse the path of the net from its top terminal to its
bottom terminal.

A bottom edge (bi, bj) means that bi and bj share the same track at the bottom and
thus implies directions of bi and bj" if < j, the direction of bi is CC and that of bj is C; if
> j, the direction of bi is C and that of bj. is CC (see Fig. b).
A routing is inconsistent with respect to k, < k < n, if the direction implied by the top

edge of a net b is C (respectively, CC) and the direction implied by the bottom edge of net b,
is CC (respectively, C); otherwise it is consistent with respect to k. A routing is consistent if
it is consistent with respect to every k, < k < n.

An equivalent formulation of the consistency issue follows. Consider the complete undi-
rected graph whose vertices are the nets. A matching in this graph consists of any subset of the
edges such that no two of them share an endpoint. The set of top edges, denoted Ml, induces
a matching; similarly the set of bottom edges, M2, induces a matching. We define this pair of
matchings M1 and M2 to be consistent with respect to a net bi if, whenever (bi, bj) E MI and
(bi, bl) M2, bi < bj if and only if bi appears before bk in B (i.e., < k). (M and M2 are
also consistent with respect to bi if bi is unmatched in M or in M2.) A pair of matchings is
called consistent if it is consistent with respect to each bi. Our problem is to find a consistent
pair of matchings M and M2 on B such that IMI -+- IM2I is a maximum.

Figure b shows an example of a consistent routing. For instance, for b2 2, the top
edge leads to b3 1, implying a CC direction for net b3 and a C direction for net b2 (since
b3 < b2). The bottom edge for b2 leads to bl 3, implying a CC direction for net bl and a C
direction for net b2 (since b occurs before b2 in B).

452 BERKMAN ET AL.

3 2 1 4

(b)

FIG. 1. An example of top-bottom routing. (a) Actual routing. (b) Routing representation.

Given such a representation with k top edges and k2 bottom edges, it is straightforward
to assign tracks sequentially to the nets and thereby construct the actual routing. (Parallel
track assignment is handled later.) The total number of tracks used at the top is n k and the
total number of tracks used at the bottom is n k2. An optimal routing is thus a routing that
maximizes kl + k2.

2.2. An easy upper bound ofn + 1 tracks. The proof of the following theorem provides
an exceptionally simple algorithm. Its simplicity is particularly remarkable since the algorithm
achieves the same number of tracks as in the pair up algorithms ofBaker], and in Sarrafzadeh
and Preparata 10], which are much more involved. Our method has the additional advantage
that it can be implemented in constant time using n processors.

THEOREM 2.1. A routing ofthe nets that uses a total ofn + tracks on the top and bottom
parts of can always be constructed.

Proof. Let B Ibm, b: b,,] be the bottom array. The set of top edges is given by
(b2i, b2i+l), for l, 2 [(n 1)/2J. The set of bottom edges is (hi, max(b:, b3)),
(min(b2i, b:i+), max(b:/+:, b:i+3)) for l, 2 [_(n 3)/2.1. If n is an even integer,
add also the bottom edge (min(b,,_:, b,,_), b,). When n is an odd integer, we have (n 1)/2
top edges and (n 1)/2 bottom edges. When n is even, we have (n/2) top edges and n/2
bottom edges. In both cases, the total number of tracks is n + 1.

It can be easily verified that the resulting routing is consistent.
COROLLARY 2.2. An (n +)-track routing solution can be obtained in sequential linear

time and in 0 (1) time with n processors on an exclusive-read exclusive-write (EREW) PRAM.
Figure 2 gives examples of (n + 1)-track routing solutions.

2.3. Can we do better than n + 1? An (n + 1)-track routing solution always exists as
shown above. It is easy to see that when n is odd this solution is optimal. Therefore, for the
rest of the section assume n is even.

We describe a necessary and sufficient condition for the routing problem to have an n
track solution.

DEFINITION 1. A bottom array B {bl, b: b,} is said to be unbalanced if there
exists an odd integer i, such that the minimum over the prefix {bl, be bi is larger than
the maximum over the suffix {bi+l, bi+2 bn}. (Alternatively, since B is a permutation

of l, 2 n we can say that B is unbalanced if there exists an odd integer such that the
subarray {b, b: bi is a permutation ofthe numbers {n + 1, n -t- 2 n}.) The
array B is said to be balanced otherwise.

TOP-BOTTOM ROUTING AROUND A RECTANGLE 453

n-6 3 5 6 2

n=7 7 5 6 2

FIG. 2. (n + 1)-track routing solutions.

THEOREM 2.3. Given an array B representing a top-bottom routing probletn, an n track
routing solution exists ifand only ifarray B is balanced.

Proof (only if). The proof is by contradiction. Assume B is unbalanced and let be an
odd integer such that the subarray {b, b2 bi} is a permutation of the numbers {n +
1, n -4- 2 n}. Assume that the routing problem has an n track solution represented
by n/2 top edges and n/2 bottom edges. At least -I nets from the subarray {b, b2 bi}
must have a bottom edge with a net that lies to their right (in array B). On the other hand, at

the top there exists a subset of nets {Cl, c2 cr-l C {n -t- 1, n + 2 n such that

each cj, j 1, 2 [-], shares a track with a net b, where b, < cj. The direction implied
for each of these [] nets is C. Since is odd the direction assignments implied by these two
sets of top and bottom edges results in a conflicting direction assignment for at least one net.
This gives us the contradiction.

(if). Assume B is balanced. We construct an n track routing solution. We leave it to the
reader to verify that the routing is consistent whenever we show how to assign directions to
the nets. Denote by PMIN(i) the minimum over the prefix {b, b2 bi} and by SMAX(i)
the maximum over the suffix {bi, bi+l b,,} for < < n.

We prove, inductively, that for an odd integer 1,3 n 1, the sequence
{bl, b2 bi, SMAX(i -4- 1)} has an + track routing solution.

Basis. 1; Since B is balanced, bl < SMAX(2) and a two track routing solution is

given by the bottom edge (b, SMAX(2)) and the top edge (bl, SMAX(2)).
Inductive step. Given an (i 1)-track solution for {b, b2 bi-2, SMAX(i 1)} we

construct an (i -4- 1)-track solution for the sequence

{b, b2 bi-2, bi-1, bi, SMAX(i -F 1)}.

Case 1. SMAX(i 1) SMAX(i + 1) s. We have a bottom edge (bt, s) for some
< 2 in the inductively assumed track solution. Replace this bottom edge by the

following three edges" bottom edge (bt, max(bi_l, bi)), top edge (bi-1, bi), and bottom edge
(min(bi_l, bi), s). The resulting set of top and bottom edges gives an (i -4- 1)-track solution
for {b, b2 bi-2, bi-l, bi, s} (see Fig. 3).

Case 2. SMAX(i- 1) -SMAX(i -4- 1). This implies that either SMAX(i- 1) bi-
or SMAX(i 1) bi. Assume SMAX(i 1) bi-I (the case SMAX(i 1) bi can be
handled similarly). Let p PMIN(i). Since B is balanced, p < SMAX(i + 1).

Case 2.1. p bi. We add a bottom edge (bi, SMAX(i+ 1)) and a top edge (bi, SMAX(i-4-
1)), which gives an (i + 1)-track solution (see Fig. 4).

454 BERKMAN ET AL.

bl o ooo bt oooo s

b ooo bt oo hi-1 bi ooo s bi ooo b oo bi-1 bi ooo s

(b) (c)

FIG. 3. (a) Inductively assumed (i l)-track solution. (b) (i + l)-track solutionfor bi-I > bi. (c) (i + 1)-track
solution for bi-l(i 4- 1)-track solution for bi-I < bi.

oooo b o o o o bi-

b oooo bt oo bi-lbi oooo SMAX(i+I)

(b)

FIG. 4. (a) Inductiveb, assumed (i l)-track solution. (b) (i + l)-track solution.

Case 2.2. p # bi. Weknow thatbi_] > bi (since SMAX(i- 1) bi-l). Thus p :fi bi-l.
It follows that there exists j, < j < 2, such that bj p. We have a top edge (p, br),
for some r < in the inductively assumed track solution. We also have a bottom edge

TOP-BOTTOM ROUTING AROUND A RECTANGLE 455

(bt, br), for some < (actually < r since the direction implied by the top edge (p, b,.)
for net br is C).

Case 2.2.1. br > bi. The top edge (p, br) is replaced by the following three edges: top
edge (p, SMAX(i + 1)), bottom edge (SMAX(i + 1), hi), and top edge (hi, br). This gives
an (i + 1)-track solution (see Fig. 5).

bl oooo p ooobt ooob oooo bi-1

FiG. 5. (a) hductively assumed (i)-track solution.

ooo p oo bt oo AX(i + I)

(b)

FIG. 5. (b) (i + 1)-track solution for bi < br.

ooo AX(; +)

(c)

FIG. 5. (c)(i +)-track sohttion for bi > br.

Case 2.2.2. br < bi. We replace the top edge (p, br) and the bottom edge (br, bt) by
the following four edges: top edge (p, SMAX(i + 1)), bottom edge (SMAX(i + 1), b,.), top
edge (br, bi), and bottom edge (bi, bt). Note that this is the only case in which the direction
of any net is reversed with respect to its direction in the inductively assumed solution. This

again gives an (i + 1)-track solution (see Fig. 5).
Given a bottom array B representing an instance of a top-bottom routing problem, we

have the following theorem.
THEOREM 2.4. An optimal routing solution can be constructed in sequential linear time.

456 BERKMAN ET AL.

Proof It is straightforward to verify whether array B is balanced. If B is unbalanced,
then the optimal solution needs n + tracks and Theorem 2.1 gives the construction of such
a solution. Otherwise, the constructive proof of Theorem 2.3 gives an algorithm that finds an
n track solution in linear time.

2.4. Parallel algorithm. In this subsection we present a parallel version of the optimal
routing algorithm discussed above.

Assume that the given input array B [b, b2 bn] is balanced. To simplify the
presentation of the algorithm we define an operation SWAP on array B. Given two indices
and j in the array, SWAP(i, j) swaps the contents of locations and j in B. We show later,
as a part of the correctness proof of our algorithm, that the directions assigned for the nets for
the array after a SWAP operation can also be used for the array before the SWAP operation.
First, we do the following preprocessing.

A balanced array B [b, b2 b,,] is said to satisfy the even>odd property if
b2i > b2i+l for all i, < < n/2 in B. We use the SWAP operation, if necessary, to make
the array satisfy the above property. That is, for every _< < n/2, if b2i < b2i+l, then
SWAP(2i, 2i + 1). For convenience, we continue to refer to the swapped array as B also.

Next find all prefix minima and suffix maxima with respect to B and put them in arrays
PMIN and SMAX, respectively. For each odd integer i, if bi PMIN(i) mark location by
"P." Similarly, for each even integer i, if bi SMAX(i) mark location by "S."

As a final part of the preprocessing step we further limit the input array to satisfy the
SP-t’ree property: for each even j, 2 < j < n, either j is not marked S or j + is not
marked P. This is achieved by partitioning the input array as follows. Simultaneously, for
every even integer j, if location j is marked "S" and location j + is marked "P," then split
array B between locations j and j + 1. These simultaneous splits partition array B into several
contiguous subarrays.

CLAIM 2.5. Each subarray after the above partition is even in length and is balanced.
Furthermore, it satisfies" (i) the SP-free property, and (ii) the even > odd property.

Proof Each subarray after the partition is such that the first and last elements of the
subarray are marked P and S, respectively. It is easy to see that each subarray satisfies the
SP-free property and the even>odd property. Also, each subarray is of even length because
markings S and P occur at an even and odd positions of the array, respectively. To prove that
each subarray is balanced, we note that for each location in the subarray, its prefix minimum
(resp. suffix maximum) with respect to the subarray is equal to its prefix minimum (resp. suffix
maximum) with respect to B. Since B is balanced, it follows that the resulting subarrays are
also balanced.

Let D Ida...din] be a subarray obtained after the preprocessing. The rest of the
algorithm is devoted to solving the matching problem with respect to each such subarray
separately. We note that array D is not a permutation of the numbers m. However, the
crucial information about array D (namely, the marks "P" and "S") is already known and thus
there is no need to compute prefix-minima or suffix-maxima with respect to D. We describe
the algorithm below.

Algorithm Parallel Top-Bottom Routing.

Input: A balanced array D satisfying the even > odd property and the SP-free property. Also,
the marks P and S for the elements of D.

Output: The directions C and CC for each of the elements of D.
1. (Extract PS-pairs.) Locate all pairs (dr, dr), 3 < < r < m 2, such that d is

marked "P," dr is marked "S," and there is no element d,, < k < r, such that d, is
marked. Such a pair is called a PS-pair.

TOP-BOTTOM ROUTING AROUND A RECTANGLE 457

2. (Handle PS-pairs.) Consider first the case where there are no PS-pairs. For such a
case add the top edge (dl, din), and bottom edges (d, d2) and (d,,_, din) and proceed
to Step 3. For the rest of this step we assume that there exists at least one PS-pair.
We add the following edges:
(a) (Chain all outside neighbors of each PS-pair.) For each PS-pair (dr, dr), add

the top edge (dr-l, dr+). Further, if dt_ < dr+ then SWAP(/- 1, r + 1).
Add the bottom edges (dr-2, dr-l) and (dr+l, dr+2) (see Fig. 6a).

(b) (Chain all PS-pairs.)

(i) (Attach at the extremes.) Let (dt, dry) and (dr2, dr2) be the first and last
PS-pairs in D. Add top edges (dl, dry) and (dr2, din). Add bottom edges
(d, d2) and (dm-1, d,,,) if no such edges exist from Step 2a (see Fig. 6b).

(ii) (Attach the middle pairs.) For each two consecutive PS-pairs (d/w dry) and

(dt, dry), add a top edge (dt, dry). For each PS-pair (dr, d), add bottom
edges (dr, dr+l) and (dr-l, dr) (see Fig. 6c).

3. (Pair-up the rest of the elements, each to its neighbor, based on their position: even
to odd at the top and odd to even at the bottom.) Add the following edges:
Add top edges (d2j, d2j+), < j < (m/2) unless either d2j or d2j+ have top
edges from Step 2. Also add bottom edges (d2j_], d2j), 2 < j < (m/2) unless
either d2j-1 or d2j have bottom edges from Step 2.

dl o o o o dt-dt-ldt o oo o dr dr+l dr+

P P S

0 0 0 0 d,

dl dooo d] oooo dr] oooo dt oooo d,. ooo

P P S P S S

(b)

dpdt’t’+?N.J d,.,_ld,.ooood/t+1o o o dd.
P P S P S

0 0 0 0 dm

FG. 6. Handling ofPS-pairs.

458 BERKMAN ET AL.

Next, we argue the correctness of this algorithm. It follows from Step 3 that every element
is paired up. We divide the remaining proof into two categories. First, we show that if an
attempt is made by the algorithm to add an edge for an element of D at a particular stage, then
that element is "available" to be paired up, i.e., no edge was added to that element of D by a
step prior to the current one. The second part of the correctness argument consists of showing
that the routing resulting from the algorithm is consistent (for the array before as well as after
the SWAP operations).

2.4.1. Correctness I: no conflicts.
PROPOSITION 2.6. Following the preprocessing, the outside neighbors dt-l and dr+l of

any PS-pair (dr, dr) are unmarked (i.e., they are not marked neither "P" nor "S").
Proof Consider any PS-pair (dr, dr) and its outside neighbors dr-1 and dr+l. Since is

even, dr- cannot be marked "P." In addition since array D is SP-free, and dt is marked "P," it
implies that dt_ cannot be marked "S." Similarly we can prove that dr+l in unmarked. U

CLAIM 2.7. The top and bottom edges added in Step 2b(ii) never conflict with an edge
added in Step 2a (that is, ifa top (bottom) edge (u, v) is added in Step 2b(ii), neither u nor v
have top (bottom) edgesfrom Step 2a).

Proof. For top edges the claim follows directly from Proposition 2.6. Consider any PS-
pair (dr, dr). The bottom edges that are added in Step 2a are (dr-2, dr-l) and (dr+l, dr+2).
We prove the claim with respect to elements dr-2 and dt- (similar arguments work for dr+l
and dr+2). We use three facts. (1) Elements dt_ and dr-2 are not part of any PS-pairs. (2)
At least one of the elements corresponding to a bottom edge added in Step 2b(ii) belong to a
PS-pair. (3) All bottom edges that are added in Step 2b(ii) are of the form (d2j-1, d2j). Using
fact (3) we conclude that the only possible edge that might have been added to dr-2 or dr-1 in
Step 2b(ii) is (dr-2, dt-). However, facts (1) and (2) together imply that such an edge cannot
be added in Step 2b(ii). We are left to show why fact (1) is correct (facts 2 and 3 are obvious).
Element dt_ is unmarked (Proposition 2.6) and cannot be a part of any PS-pair. If element

dr-2 is marked, it can only be marked "P." Thus the only way in which dr-2 can be a part of a
PS-pair is if dr-1 is marked "S," which is not possible (Proposition 2.6). 1

PROPOSITION 2.8. Whenever an existing bottom edge in Step 2b and in Step 3 prevents
usfrom connecting two elements u and v by a bottom edge, then both u and v are endpoints
of existing bottom edges. Similarly in Step 3, if an existing top edge prevents us from con-

necting two elements u and v by a top edge, then both u and v are endpoints of existing top
edges.

Proof We consider the top edges and the bottom edges separately.
(i) The proposition is trivial with respect to bottom edges: All bottom edges (u, v) are of

the form (d2j-1, d2j) for some j, < j <_ m/2. Hence, in either Step 2b or Step 3, if we are
prevented from connecting two elements u and v by a bottom edge, it implies that u and v are
already connected to each other by an existing bottom edge.

(ii) All top edges (u, v) added in Step 3 are of the form (d2j, d2j+), for some j, <

j < (m/2) 1. Prior to Step 3, whenever we add a top edge matching an element at with
an element at j, where is even (i < n), and j is odd (j > 1), we also add top edges for
the elements at + 1 and j (this includes both cases < j and > j). Hence if we are
prevented from connecting two elements u and v by a top edge in Step 3, it implies that both
u and v are endpoints of existing top edges.

2.4.2. Correctness II: routing consistency. The following proposition is useful for the
later proofs.

PROPOSITION 2.9. Given any two consecutive PS-pairs (dt, dry) and (dt, dry), we have

dt < drip. In addition, dl < dr and dr,. < din. (If there are no PS-pairs then dl < din.)

TOP-BOTTOM ROUTING AROUND A RECTANGLE 459

Proof Consider the smallest index > r that is marked P. The maximal element in
the suffix [i m] is dry. The minimal element in the prefix [1 2] is dt,. (To
see these, recall the SP-free property and the definition of PS-pairs.) Since D is balanced,

dl < dry. Similarly, we can prove that dl < dr and dr2 < din.
CLAIM 2.10. The matchings corresponding to the top and bottom edges added in Step 2a

are consistent with respect to dr-1 and dr+l, for all PS-pairs (dr, dr) in D.
Proof We show that the matching is consistent with respect to dt-l. Similar arguments

work for dr+l. From Step 2a, dt- has top edge (dl-, dr+l) and bottom edge (d_2, dt_).
Since dt- > d+ (after the SWAP operation), the matchings corresponding to these edges
are consistent in the swapped array D. It remains to prove that these matchings are consistent
in array D before the SWAP of Step 2a. Consider the bottom edge (dr-2, dr-l). The elements
at locations 2 and could have changed their locations by this SWAP operation.
Notice, however that all SWAP operations performed in this step are of the form SWAP(r, s)
wherer is even, s is odd andr < s. Sincel- is even andl-2isodd, it follows that
element dr- must have been in location > and element d-2 must have been in location
_< 2 before the SWAE Thus the matching is consistent with respect to dr-1 also before the
SWAE

CLAIM 2.1 1. The matchings resultingfrom the top and bottom edges added in Step 2b are
consistent with respect to dt and d for all PS-pairs (dr, dr) in D (and also with respect to d
and din).

Proof From Proposition 2.9 it is easy to see that the matchings are consistent with

respect to the swapped array D. We show that neither dt nor dt+ are affected by the SWAP (of
Step 2a). This will imply that the matchings are consistent also with respect to array D before
the SWAE Element dt is unaffected by the SWAP operation since it is marked "E" For dt+ to
be affected d+2 must be marked "E" If + r then + 2 cannot be marked "P" because
of the SP-free property. If + < r then + 2 cannot be marked "P" since otherwise (dt, dr)
would not have been a PS-pair. Similarly, we can show that d_ and d are not affected by
the SWAP operation.

CLAIM 2.12. The matchings resulting from the edges added in Step 3 are consistent with
respect to both dzj and dzj+l for <_ j < (m/2) 1.

Proof. For array D after the SWAP of Step 2a, the claim follows from the even > odd
property. Since all SWAP operations of Step 2a are of the form SWAP(r, s) where r is even,
s is odd, and r < s, it follows that element dzj must have been in location > 2j and dzj+l
must have been in location < 2j + before the SWAP operation. Thus the matchings are
consistent also with respect to the original array D. 71

MAIN CLAIM. Steps to 5 result in a consistent pair ofmatchings M and M2for D, such
that M M21 m/2.

Proof. The Main Claim follows from Claims 2.10, 2.11, and 2.12.
THEOREM 2.13. M1 and M2 are the needed matchings on B (recall that B is the original

arrayfor which D is a subarray).
Proof From the Main Claim above, matchings M and M2 are consistent with respect to

D and hence are also consistent with respect to array B obtained after the SWAP performed
in the preprocessing step. Since our algorithm never puts a bottom edge matching the element
at bzi with the element at b2i+l, for < < n/2, matchings M1 and M2 are consistent also
with respect to the original array B.

2.4.3. Complexity and implementation.
THEOREM 2.14. The optimal routing algorithm runs in O(log* n) time using O(n) oper-

ations on the CRCW PRAM.

460 BERKMAN ET AL.

Proof. By Theorem 3.4 below we can solve the prefix-minima (or suffix-maxima) problem
in O (log* n) time and O (n) operations. Remaining nontrivial implementation details are
extracting PS-pairs (in Step 3), finding in each SP-free subarray the first and last PS-pairs
(needed for Step 2b(i)), and finding consecutive PS-pairs (in Step 2b(ii)). Given the array
D with the marks "P" and "S" it is easy to see that each of these problems can be solved
using the nearest-one algorithm of [4] in O(oe(n)) time with an optimal number of processors,
and thus also in O(log* n) time with an optimal number of processors. In fact it turns out
that the prefix-minima and suffix-maxima information suffices for solving each of these three
subproblems in O(1) time using n processors (we omit the details). All other steps of the
algorithm need O (1) time and O (n) operations.

Finally, we need to compute for each net its actual track number on the top and bottom of
the rectangle. The track numbers for each net at the top can be obtained as follows. Observe
that at the end of Step 3 of the algorithm, all top edges in D, match an element at with an
element at j where is even and j is odd and di > dj. This pair of elements is assigned track
number i/2, with the element at location j having direction CC and the element at location
having direction C. Clearly this track assignment is unique for the matchings induced by each
top edge. The track assignment at the bottom can be done in a similar manner by observing
that at the end of Step 3 of the algorithm all bottom edges are of the form (dzj-1, d2j) for all
j,l <j<m/2. V1

3. The prefix-minima problem. In this section we present a fast parallel algorithm for
the prefix-minima problem: Given an array of integers A [a, a2 an drawn from the
range of- integers [1..s], find for each i, 5 _< n the leftmost minimal element over the
prefix [a l, a2 ai].

We give two main results; both are optimal parallel algorithms. The first is a triply-
logarithmic time algorithm for an arbitrary input range size s, and the second is an algorithm
that runs in O (log* n) time when s is equal to n.

We start by reducing the prefix-minima problem to the problem offinding critical elements,
which is defined below. Later we give an algorithm for the problem of finding critical elements.

Finding critical elements. Given is an array of integers A [a, a2 an] drawn
from the range of integers ..s]. An element ai, < <_ n is critical if ai < aj, for every j,

_< j < i. The problem is to find all critical elements in A.
Thereduction. Givensomeelementai, <_ <_ n, let c(i) <_ bethemaximalindexsuch

that ac(i) is critical. Note that aci is the leftmost minimal element over the prefix a, a2 ai.
Thus, given all critical elements in A, the prefix-minima problem is equivalent to finding for
each i, _< _< n, the index c(i). This computation can be done using the nearest-one
algorithm of [4] in O(c(n)) time (where c(n) is the inverse of Ackermann’s function) using
an optimal number of processors (and thus also in O (log* n) time using an optimal number
of processors).

3.1. Overview. Our main tool is a basic algorithm for finding critical elements that
evolves in two directions giving the two main results mentioned above.

This basic algorithm runs in time O(1) using n log s processors and O(s) space for an
input of length n, drawn from the range of integers ..s].

Stages in the description of the triply-logarithmic algorithm.
(1) The basic algorithm.
(2) Reducing the space of the basic algorithm.

For any constant 0 < e < 1, the resulting algorithm runs in time O (1) using
en log s processors and O(ns) space.

(3) The optimal triply-logarithmic algorithm.

TOP-BOTTOM ROUTING AROUND A RECTANGLE 461

The algorithm runs in O (log log log s) time using n/ log log log s processors
and O(ns) space.

Stages in the description of the O (log* n) time algorithm.
(1) The basic algorithm.
(2) An O(log* s) time algorithm.

The algorithm uses s + n log* n processors and O (n + s) space for an input
of length n, drawn from the range of integers [1..s]. It is obtained by a
recursive application of the basic algorithm.

(3) The optimal O(log* n) time algorithm.
The algorithm runs in O(log* n) time using n/log* n processors and O(n)
space for an input of length n, drawn from the range of integers 1..n] (i.e.,

3.2. The basic constant-time algorithm. Assume for simplicity that s 2 for some
integer c > 0.

THEOREM 3.1. The algorithmforfinding critical elements below runs in 0(1) time using
n log s processors and O(s) space.

Stop 1. Build a complete binary tree, T, whose leaves are the integer values 1,2 s.
Let be the level of the leaves and log s + be the level of the root.

Let v be a node of T and let the interval of integers [i j] be its leaves; denote by l(v)
the minimum index k, < k < n in A such that < ak < j. Sometimes, we use the notation
l[i j] instead of l(v). No ambiguity will arise.

Example. Let A [al, a_, a3, a4] [4, 3, 1, 8]; s 8 and T is given in Fig. 7. Now
l(a) 3, l(b) l(e) l(g) 1, and l(d) l(f) 4 (l(c) is undefined).

9

1 2 3 4 5 6 7 8

/(a) 3;

l(b) l(e)- l(g) 1;

l(d) l(f) 4;

l(c) is undefined.

FIG. 7. The tree T and its l-values.

We allocate log s + processors to each element ai in A, a processor for each ancestor
of the value ai in T (note that a node of T is defined to be one of its own ancestors).

Step 2. Compute l(v) for each node v in T as follows. Each element ai tries to write
(v) for each ancestor v of the value ai in T. (If two or more elements attempt to write

at the same location, the element with minimal index in A succeeds.)
The computation in Step 3 below relies on the following two facts" (1) For every i,

< < n, ai is critical if and only if there is no j < such that aj < ai. To state the second
fact we need the following definition. An interval of integers [i j] is a canonical interval
if there is a node of T such that the integer values {i j} are all its leaves. (2) For every k,
< k < s, the interval of integers [1 k] can be represented as a (disjoint) union of log s

canonical intervals.
Stop 3. For each element ai test (in constant-time) whether it is critical, as follows.

First, check whether l(ai) i. If not (implying that there exist an element aj such that

462 BERKMAN ET AL.

aj ai and j < i) conclude that element ai is not critical. If yes, consider the interval of
integers [1, 2 ai 1] and take the < logs canonical intervals [i j], [i2 j2]
[iogs jogs], whose union represents this interval. If l[ik jk] < for some k, <

k < log s, we conclude that ai is not critical. Otherwise ai is critical.
Assignment of the log s processors of ai to the canonical intervals in Step 3 in constant

time is standard, and is therefore omitted.

3.3. The optimal triply-logarithmic algorithm.
LEMMA 3.2. There is an algorithm for finding critical elements that runs in 0(1) time

using n log s processors and O(ns) spacefor any given constant , 0 < < 1.
The algorithm that realizes the lemma above is based on adding a variant of the Radix

sort idea, where the most significant bits are handled first, to the basic algorithm above. For
details the reader is referred to the appendix.

THEOREM 3.3. There is an algorithm for finding critical elements that runs in
O(log log log s) time using an optimal number ofprocessors and O(ns) space.

The proof of the above theorem is easy. Partition the input array A into successive
subarrays of log s elements each. Within each subarray find critical elements using a doubly-
logarithmic optimal algorithm for prefix minima (see [3], for instance). This takes
O (log log log s) time using n/log log log s processors. Each of these n / log s subarrays con-
tributes its minimum to form an array B of elements. Informally, we finish by applying the
algorithm of Lemma 3.2 to B to obtain the claimed bounds.

3.4. An optimal O(log* n) time algorithm. In this subsection we consider the special
case where the elements of the array A are restricted to the range of integers [l..n]. Unfor-
tunately, we do not see a way to use the ideas introduced below to get a faster algorithm for
a general domain s. The reason is that the number of processors we use is almost as large as
the size of the domain (see, e.g., Lemma 3.5, where more than s processors are used).

THEOREM 3.4. The algorithm below finds critical elements in O(log* n) time using
n/log* n processors and linear space.

In order to prove the above theorem we first prove the following lemma concerning a
general input range [1..s].

LEMMA 3.5. There is an algorithm for finding critical elements that runs in O(log* s)
time using s + n log* n processors and O(n + s) space.

ProofofLemma 3.5. We begin with a high-level description followed by implementation
details.

Step 1. For each k, < k < s logs, we select as a representative of the range of
integers [(k 1) logs -t- 1..k logs], the leftmost element ai in A which belongs to the range
(if such an element ai exists). The number of selected representatives is at most s/log s. We
refer to a representative which is a critical element in A as a critical representative. To avoid
confusion we note here that the computation below is done with respect to the original array
A (and not with respect to any array of representatives).

Step 2. Find all critical representatives in A.
For i, < < n, let left(i) denote the maximum index such that aleft(i) is a critical

representative and left(i) < i. Similarly, let right(i) denote the minimum index such that

aright(i) is a critical representative and right(i) > i.

Step 3. For each element ai, < < n, find left(i) and right(i).
Consider some critical representative ai in A. An element ar, < r < {right(i), is critical

if and only if ar is critical in the subarray ai, ai+l aright(i)-I of A. Let k [ai/ log s]. In
Step 4 below we finish the computation of critical elements in A by finding all critical elements
in subarray ai, ai+l aright(i)-l, for every critical representative ai separately. The range

TOP-BOTTOM ROUTING AROUND A RECTANGLE 463

of the elements for each of these separate subproblems is [(k 1) log s / ..k log s] (elements
not in this range are not critical and can be given a dummy value of k log s). For convenience
we will view the range as 1.. log s].

Stop 4. Apply (recursively) Steps to 4 to solve each of the separate subproblems.
Below we show how each of Steps to 3 can be implemented in O(1) time using s +

n log* n processors and O(s + n) space. With respect to Step 4, we show how to allocate
processors and space for each of the separate subproblems within the same time, processors
and space bounds as Steps 1 to 3. After log* s iterations of Steps to 4 the size of the range
for each of the separate subproblems is constant and the critical elements for each of these
subproblems can be found in O(1) time. Hence the whole algorithm takes O(log* s) time,
using s + n log* n processors and O (s + n) space.]

Implementation details.
Stop . We use an auxiliary array B of size s log s. A processor that we allocate

to each element ai, < < n, tries to write B([ai/logs]) :-- i; The processor of ai
succeeds if and only if ai is the leftmost element in A that belongs to the range of integers
[([ai/logs-I 1) logs + 1..[ai/logs] logs].

Stop :9. We apply the basic constant-time algorithm, but only with respect to the rep-
resentatives (that is, among the elements of A we allocate processors to the representatives
only). This takes O(1) time using s/logs logs s processors and O(s) space. Allocating
log s processors to each representative as required by the basic constant-time algorithm is done
using the array B obtained in Step above.

Stop 3. We use an auxiliary array C (cl, c2 c,,) of bits that are all zeros initially.
Each critical representative ai, < < n writes ci :-- 1. The problem then is to find the
nearest ones (to the left and right) for each element in C. This can be done in O (1) time using
n log* n processors using the nearest-one algorithm of [4].

Stop 4. Consider the subproblem of finding all critical elements in the subarray
ai, ai+l aright(i)-I for some critical representative ai in A. Allocating (right(i) i) log* n
processors (though only (right(i) i) log* (right(i) i) are needed) and O (right(i) i) space
to this subproblem can be done using the output of Step 3. Allocating an additional log s

processors and O (log s) space can be done using the array B that was computed in Step 1.

Proof of Theorem 3.4. We start with n elements, each assuming an integer value in the
range [1..n]. The index of each element is an integer in the domain [1 ...n]. Step below
reduces the size of the domain (of indices) from n to n ! (log* n)2. Step 2 reduces the size of
the range (of values) from n to n/(log* n)2. Step 3 applies the algorithm of Lemma 3.5 to
find all critical elements in the reduced problem. Step 4 extends the solution of the reduced
problem for finding all critical elements with respect to A.

Step . Partition the input array A into successive subarrays of (log* tl) 2 numbers each.
Find the minimum element in each subarray and put these minima in an array A’ of size
n/(log* n)2. This step can be done in O(log* n) time using n log* n processors.

Step 2. For each k, _< k < n/(log* n)2 we select as a representative of the range of
integers [(k- l)(log* n)2+ 1..k (log* n)2], the leftmost elementa in A’ that belongs to the range.
Get A" from A’ by replacing the value of the representative of [(k- 1)(log* n)2 -t-- 1..k(log* n)2

by k; the value ofnonrepresentatives will be set by default to n/ (log* n)2, which is large enough
not to affect the computation.

Step 3. Find all critical elements in A". By Lemma 3.5 this takes O(log* x) time using
x + x log* x processors and O(x + x) space, where x n/(log* n)2, or O (log* n) time, using
n/log* n processors and at most O(n) space.

Step 4. Mark in A every critical element of A". Using the nearest-one algorithm of [4],
find for each element ai of A the nearest marked element to its left and the nearest marked

464 BERKMAN ET AL.

element to its right (denoted aleft(i) and aright(i), respectively, as before). This can be done in
O (log* n) time using an optimal number of processors.

We characterize the cases in which ai is a critical element. Let the value of alert(i) be in
the range of integers [(k 1)(log* n)2 + 1..k(log* n)2] for some k.

Case 1. ai and aright(i) do not belong to the same subarray (of size (log* n)2). Observe
that (a) ai must be at least (k 1)(log* n)2 + 1, and (b) ai is a critical element if for every j,
left(i) < j < i, ai < aj. (Checking whether condition (b) holds is called TEST 1, below.)

Case 2. ai and aright(i) belong to the same subarray. Observe that (a) If ai < (k
1)(log* n)2, then it is a critical element (with respect to A) if it is a critical element with
respect to its subarray. (Checking whether ai is a critical element with respect to its own
subarray is called TEST 2, below.) (b) If ai > (k 1)(log* n)2, then it is a critical element
(with respect to A) if the following two conditions hold: (i) ai is a critical element with respect
to its subarray (can be checked by TEST 2), and (ii) for every j, left(i) < j < i, ai < aj
(TEST 1).

To complete the description of the algorithm, we show how to perform TEST and
TEST 2.

Step 5.1. Perform a prefix minimum computation with respect to each subarray of size
(log* n). This can be done in time O(log* n) using log* n processors. This provides for
TEST 2 whenever needed.

Step 5.2. For every marked element, we will have a "bulletin board" B[1... (log* n)2]
of size (log* n)2. For every element ai, we do the following. Let the value of aleft(i) be in the

range of integers [(k 1)(log* n)2 q- 1..k(log* n)z] for some k. If ai is in this range, then
the index is written into B(ai (k 1)(log* n)2) using the convention that the smallest
among the indices attempted to be written there is actually written (B is the bulletin board of

aleft(i)). Then find critical elements with respect to each bulletin board. Finally, conclude that

ai passes TEST if B(ai (k 1)(log* n)2) and is a critical element.
Overall Step 5 takes O (log* n) time using n log* n processors and linear space.

Appendix. Implementing Radix prefix minima. The appendix connects to its reference
in 3.

High-level description. We use a variant ofthe Radix sort idea, where the most significant
bits are handled first. The binary representation of each a,, < k < n, needs log s bits. For

be the number represented by the i log s most significant bits ofeach i, 0 < < 1/ let a
a. Let A be the array (a an). We find critical elements with respect to A in 1/ stages.

Guided by Radix sort, we compute in stage i, < < 1/e, critical elements with respect
to Ai. In addition we have a flag for each element that determines whether the element is still
a candidate for becoming critical. An element aj is a candidate after stage if (1) it has not

yet been identified to be critical after stage i, and (2) its leflmost i log s bits are the same as
those of the nearest critical element to its left (implying that later stages may still find aj to be
a critical element).

Base ofthe inductive construction, a is the only critical element with respect to A. All
0 < k < n is an empty prefix ofak.)other elements are candidates. (The reason is that a,,

This is the input to stage 1.
The inductive construction. We describe stage i, where the critical elements with respect

to array Ai-I are "refined" into critical elements with respect to array A Consider an interval
[/ F] of A such that a and a, are adjacent critical elements in Ai-! (that is, for every
J, < J < F, aj is not critical in Ai-). Element aj,/3 < j < , is critical in A if the
following two conditions hold: (i) it is a candidate after stage 1; and (ii) it is critical in the
subarray [a a_]. Condition (i) can be verified from the output of stage 1. To verify

TOP-BOTTOM ROUTING AROUND A RECTANGLE 465

condition (ii) with respect to any j,/3 < j < ?,, we find all critical elements in [a,..., a_].i
For this we need only consider the th log s bits of the elements in [a, a_]. The reason
is that the first (i 1) log s bits are the same for all candidates (noncandidates can be given
a default value of s’). This is done using the basic constant-time algorithm.

The output of the last stage (stage 1/) results in finding all critical elements with respect
to A.

4. Implementation details. (1) In stage we need to find for each element in A the
nearest critical elements (with respect to Ai-I) to its left and right. This is done using the
nearest-one algorithm of[4] in O(1) time using n log* n processors, which we can assume is at
most n log s processors for the following reason. If n log* n > n log s then s < log n. In such
a case, the prefix-minima problem can be solved in constant time using n processors using a

(single) "bulletin board" of values. This bulletin board is of size log n and the prefix-minima
problem with respect to it can be solved in constant time using log2 n processors.

(2) Allocation of processors and space to each subproblem with respect to an interval

[/3 ?’] is done as follows: We allocate log s processors and s space to each entry in A.
For the subproblem associated with interval [/ ,], we use only the space allocated to

entry/3.
(3) Application of the basic constant-time algorithm to the ith log s bits of [a a_

takes O (1) time using (?’ -/3 + 1) log s processors and s space. Overall, the running time
is O(1) using n logs processors and ns space.

REFERENCES

[1] B. BAKER, A provably good algorithm for the two module routing problem, SIAM J. Comput.,- 15 (1986),
pp. 162-188.

[2] E BEAME AND J. HASTAD, Optimal bounds for decision problems on the CRCW PRAM, in Proc. of the 19th
Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1987, pp. 83-93.

[3] O. BERKMAN, B. SCHIEI3ER, AND U. VISHKIN, Optimal doubly logarithmic parallel algorithms based on finding
all nearest smaller values, J. Algorithms, 14 (1993), pp. 344-370.

[4] O. BERKMAN AND U. VlSHKIN, Recursive *-tree parallel data-structure, in Proc. of the 30th IEEE Annual

Symposium on Foundation of Computer Science, IEEE Press, Research Triangle Park, North Carolina,
1989, pp. 196-202.

[5] T. GONZALEZ AND S. LEE, A linear time algorithm for optimal routing around a rectangle, J. Assoc. Comput.
Mach., 35 (1988), pp. 810-831.

[6] A. LAPAUGr, A polynomial time algorithm for optimal routing around a rectangle, in Proc. of the 21st IEEE
Annual Symposium on Foundation of Computer Science, IEEE Press, Syracuse, New York, 1980, pp. 282-
293.

[7] Y. MATIAS AND U. VISHKIN, Converting high probability into nearly-constant time with applications to parallel
hashing, in Proc. of the 23rd Annual ACM Symposium on Theory ofComputing, ACM Press, New Orleans,
LA, 1991, pp. 307-316.

[8] E MEYERAtJtVHoNOA. WGORSON, The complexity ofparallel sorting, in Proc. of the 26th IEEE Annual

Symposium on Foundation of Computer Science, IEEE Press, Portland, Oregon, 1985, pp. 532-540.
[9] P. R,GD, Towards lower boundsfor parallel computation over moderate sized domains, manuscript, 1990.
10] M. SARRAZADEn AND E PREr’ARATA, A bottom-up layout technique based on two-rectangle routing, Integration,

the VLSI Journal, 5 (1987), pp. 231-246.
11 B. ScmR, Design and analysis ofsome parallel algorithms, Ph.D. thesis, Department of Computer Science,

Tel Aviv University, 1987.
[12] L. VAANa’, Parallelism in. comparison problems, SIAM J. Comput., 4 (1975), pp. 348-355.
[13] U. VsnN, Structural parallel algorithmics, in Proc. of the 18th International Colloquium on Automata,

Languages and Programming, Springer-Verlag, Madrid, Spain, 1991, pp. 363-380.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 466-487, June 1994

() 1994 Society for Industrial and Applied Mathematics
002

FASTER APPROXIMATION ALGORITHMS FOR THE UNIT
CAPACITY CONCURRENT FLOW PROBLEM WITH

APPLICATIONS TO ROUTING AND FINDING SPARSE CUTS*

PHILIP KLEIN, SERGE PLOTKIN, CLIFFORD STEIN AND IVA TARDOS

Abstract. This paper describes new algorithms for approximately solving the concurrent multicommodity flow
problem with uniform capacities. These algorithms are much faster than algorithms discovered previously. Besides
being an important problem in its own right, the uniform-capacity concurrent flow problem has many interesting appli-
cations. Leighton and Rao used uniform-capacity concurrent flow to find an approximately "sparsest cut" in a graph
and thereby approximately solve a wide variety of graph problems, including minimum feedback arc set, minimum cut

linear arrangement, and minimum area layout. However, their method appeared to be impractical as it required solving
a large linear program. This paper shows that their method might be practical by giving an O(m log m) expected-
time randomized algorithm for their concurrent flow problem on an m-edge graph. Raghavan and Thompson used
uniform-capacity concurrent flow to solve approximately a channel width minimization problem in very large scale
integration. An O (k3/2 (m + n log n)) expected-time randomized algorithm and an O(k min {n, k} (m +n log n) log k)
deterministic algorithm is given for this problem when the channel width is f2 (log n), where k denotes the number
of wires to be routed in an n-node, m-edge network.

Key words, multicommodity flow, approximation, concurrent flow, graph separators, VLSI routing

AMS subject classification. 68Q25, 90C08, 90C27

1. Introduction. The multicommodity flow problem involves shipping several different
commodities from their respective sources to their sinks in a single network with the total
amount of flow going through an edge limited by its capacity. The amount of each commodity
we wish to ship is called the demand for that commodity. An optimization version of this
problem is the concurrentflow problem in which the goal is to find the maximum percentage
z such that at least z percent of each demand can be shipped without violating the capacity
constraints. Here we consider the concurrent flow problem with unit capacities. Observe that
in this case, the problem is equivalent to the problem of finding a flow (disregarding capacities)
that minimizes the maximum total flow on any edge (the congestion). Let m, n, and k be,
respectively, the number of edges, nodes, and commodities for the input network.

In this paper, we give algorithms that, for any positive E, find a solution whose congestion
is no more than (1 + E) times the minimum congestion. Our algorithms significantly improve
the time required for finding such approximately optimal solutions.

One contribution of this paper is the introduction of a randomization technique useful in
iterative approximation algorithms. This technique enables each iteration to be carried out
much more quickly than by using known deterministic methods.

*Received by the editors August 10, 1992; accepted for publication November 19, 1992.
tComputer Science Department, Brown University, Providence, Rhode Island 02912. The work of this author

was supported in part by Office ofNaval Research grant N00014-88-K-0243 and Defense Advanced Research Projects
Agency grant N00039-88-C0113 while the author was at Harvard University, Cambridge, Massachusetts. Additional
support provided by National Science Foundation Research Initiation Award CCR-901-2357 and by Office of Naval
Research and Defense Advanced Research Projects Agency contract N00014-83-K-0146 and Defense Advanced
Research Projects Agency order 6320, amendment 1.

Department of Computer Science, Stanford University, Stanford, California 94305. The work of this author was
supported by National Science Foundation Research Initiation Award CCR-900-8226, United States Army Research
Office grant DAAL-03-9 I-G-0102, and Office of Naval Research contract N00014-88-K-0166.

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
The work of this author was supported by National Science Foundation PYI Award CCR-89-96272 with matching
support from United Parcel Service, Sun, and AT&T Bell Laboratories Graduate Fellowship.

School of Operations Research, Cornell University, Ithaca, New York 14853. The work of this author was
supported in part by a Packard Research Fellowship and the National Science Foundation, the Air Force Office of
Scientific Research, and the Office of Naval Research, through National Science Foundation grant DMS-8920550.

466

FASTER APPROXIMATION ALGORITHMS 467

Part of our motivation in developing algorithms for concurrent flow derives from two
important applications, finding sparsest cuts and finding a very large scale integration (VLSI)
routing that minimizes channel width.

Leighton and Rao [14] showed how to use the solution of a unit-capacity concurrent
flow problem to find an approximate "sparsest cut" of a graph. As a consequence, they and
other researchers have developed polylog-times-optimal approximation algorithms for a wide
variety of graph problems, including minimum area VLSI layout, minimum cut linear arrange-
ment, minimum feedback arc set 14], optimal linear and higher-dimensional arrangement [7],
minimum chordal fill [9], and single-processor scheduling 17].

The computational bottleneck ofthe method ofLeighton and Rao is solving a unit-capacity
concurrent flow problem with O(n) commodities, each with unit demand. They appealed to
linear programming techniques to show that the problem can be solved in polynomial time.
The new approximation algorithm greatly improves the resulting running time.

THEOREM 1.1. For anyfixed > 0, a (1 +)-factor approximation to the unit-capacity,
unit-demand concurrent flow problem can be found by a randomized algorithm in O((k +
m)m log m) expected time, where the constant depends on .

As an application of this result we substantially reduce the time required for Leighton and
Rao’s method.

THEOREM 1.2. An O(log n)-factor approximation to the sparsest cut in a graph can be

found by a randomized algorithm in expected O(m2 log m) time.

Previous to our work, the best algorithm for this problem and a running time of
O (n4"5 log n) [21 and made use of linear programming techniques and fast matrix multi-
plication.

Another application of our approximation algorithm is to VLSI routing in graphs. Ragha-
van and Thompson [16] and Raghavan [15] considered the problem of routing two-terminal
nets (essentially wires) in a graph so as to minimize approximately the channel width, i.e.,
the maximum number of nets routed through an edge. The computational bottleneck in their
algorithms is solving a unit-capacity concurrent flow problem. Their algorithms require a
better than constant e approximation to the concurrent flow problem. In fact, the algorithm
of Theorem 1.1 is a fully polynomial approximation algorithm, i.e., its running time depends
polynomially on e-I.

THEOREM 1.3. For any positive < that is at least inverse polynomial in n, a (1 +
)-factor approximation to the unit-capacity concurrent flow problem can be found by a

randomized algorithm in expected time O((-lk + -3m)(m logn + n log2 m)) and by a

deterministic algorithm in time O((k + -2m)k(m log m + n log2 m)).
An application of the algorithm of Theorem 1.3 is a significant improvement in the time

needed to solve Raghavan and Thompson’s problem.
THEOREM 1.4. If L0min denotes the minimum achievable channel width and L0min

(logm), a routing of width Wmin + O(v/Wmin log n) can be found by a randotnized al-
gorithm in expected time O(k3/Z(m + n log n)) and by a deterministic algorithm in time

O(k min {n, k} (m + n log n) log k).
Our algorithms compare favorably to previous work. The concurrent flow problem can

be formulated as a linear program in O(mk) variables and O(m + nk) constraints (see, for
example, 18]). Linear programming can be used to solve the problem optimally in polynomial
time. Kapoor and Vaidya [8] gave a method to speed up the matrix inversions involved in
Karmarkar type algorithms for multicommodity flow problems; combining their technique
with Vaidya’s new linear programming algorithm using fast matrix multiplication [21 yields
a time bound of O(k3"Sn3C-log(nD)) for the unit-capacity concurrent flow problem with

468 E KLEIN, S. PLOTKIN, C. STEIN, AND 1. TARDOS

integer demands (where D denotes the sum of the demands) and an O(/-k25n2 log(ne -1D))
bound for the approximation problem.

Shahrokhi and Matula 18] gave a combinatorial fully polynomial approximation scheme
for the unit-capacity concurrent flow problem (which they called the concurrent flow problem
with uniform capacities). Their algorithm runs in O(nm7e-5) time.

Our approach to solving concurrent flow problems is a modification of the framework
originated by Shahrokhi and Matula 18]. The idea is to use a length function on the edges to
reflect congestion and iteratively reroute flow from long (more congested) paths to short (less
congested) paths. Our approach differs from that of Shahrokhi and Matula in several ways. We
develop a framework of relaxed optimality conditions that allows us to measure the congestion
on both a local and a global level, thereby giving us more freedom in choosing which flow
paths to reroute at each iteration. We exploit this freedom by using a faster randomized
method for choosing flow paths. In addition, this framework also allows us to achieve greater
improvement as a result of each rerouting. In Table 1, we give upper bounds on the running
times for our algorithms. Our actual bounds are slightly better than those in the table and are
given in more detail in the remainder of the paper. Note that by use of various combinations
of our techniques, we can obtain slightly better bounds than those stated in Theorems 1.1 and
1.3.

TA3LE
Upper bounds on the running times ofottr algorithms. The actual bounds are slightly better.

Algorithm type Running Time

Randomized, fixed e O(m(k + m)log n)

Deterministic, fixed e O(mk(k + m)log n)

O(-3Randomized, < < m(k + m) log n)

Deterministic, < < O(-2mk(k + m)log2 n)

An earlier version of this paper has appeared in 11]. In the earlier version the case when
both the capacities and the demands are uniform was considered separately from the more
general case when only the capacities are assumed to be uniform. The earlier version presented
a fast algorithm for the first case and a factor of e-lm slower one for the more general case.
In this version we extend the algorithm for the uniform demand case to work for the more
general case with at most a logarithmic slowdown.

In subsequent work building on that described here, Leighton et al. [13] gave a fast
approximation algorithm for concurrent flow with arbitrary capacities. That algorithm is faster
than ours when the number of commodities is less than q’. It makes use of the randomized
technique introduced in this paper. Also, in subsequent work, Goldberg [4] and Grigoriadis
and Khachiyan [6] showed that by a modification of the randomized technique, one can reduce
the running time’s dependence on e for both our algorithm and that of Leighton et al.

2. Preliminaries and definitions. In this section we define the concurrent flow problem,
introduce our notation, and give some basic facts regarding the problem. Concurrent flow is
a variant of multicommodity flow, and we start by giving a formal definition of the latter.

The multicommodity flow problem is the problem of shipping several different commodi-
ties from their respective sources to their sinks in a single network, while obeying capacity
constraints. More precisely, an instance of the multicommodity flow problem consists of an
undirected graph G (V, E), a nonnegative capacity cap(vw) for every edge vw E, and
a specification of k commodities, numbered through k. The specification for commodity
consists of a source-sink pair si, ti V and a nonnegative integer demand d(i). We will

FASTER APPROXIMATION ALGORITHMS 469

denote the maximum demand by dmax, the total demand Ei d(i) by D, the number of nodes by
n, the number of edges by m, and the number of different sources by k*. Notice that k* < n.
For notational convenience we assume that rn > n and that the graph G has no parallel edges.
If there is an edge between nodes v and w, this edge is unique by assumption, and we denote
it by vw. Note that vw and wv denote the same edge.

Aflow fi in G from node si to node ti can be defined as a collection of paths from si to ti,
with associated real values. Let ’]’)i denote a collection of paths from si to ti in G, and let f (P)
be a nonnegative value for every P in Pi. The value of the flow thus defined is EpET)i fi(P),
which is the total flow delivered from si to ti. The amount of flow through an edge vw is

f (vw) f P) P Pi and vw P}.

A feasible multicornrnodity flow f in G consists of a flow f from si to ti of value d(i)
for each commodity _< _< k. We require that f(vw) <_ cap(vw) for every edge vw E,
where we use f(vw) i= f(vw) to denote the total amount of flow on the edge vw.

We consider the optimization version of the multicommodity flow problem, called the
concurrent flow problem and first defined by Shahrokhi and Matula [18]. In this problem
the objective is to compute the maximum possible value z such that there is a feasible mul-
ticommodity flow with demands z. d(i) for every _< _< k. We call z the throughput of
the multicommodity flow. An equivalent formulation of the concurrent flow problem is to
compute the maximum z such that there is a feasible flow with demands d(i) and capacities
cap(vw)/z.

In this paper we shall focus exclusively on the special case of unit capacities, in which
all edge-capacities are equal. The problem of finding a maximum throughput z can be refor-
mulated in this special case as follows" ignore capacities, and find a multicommodity flow f
that satisfies.the demands and minimizes If[maxE {f(vw)}, the maximum total flow
on any edge.

A multicommodity flow f satisfying the demands d(i) is e-optimal if If[is at most a
factor (1 + e) more than the minimum possible If[. The approximation problem associated
with the unit-capacity concurrent flow problem is to find an -optimal multicommodity flow
f. We shall assume implicitly throughout that e is at least inverse polynomial in n and at
most 1/10. These assumptions are not very restrictive as they cover practically every case of
interest. To find an e-optimal flow where e >_ 1/10, one can just find a 1/10-optimal flow.
To find an e-optimal flow when 1/e is greater than any polynomial in n, one can run our
algorithm. It will work for arbitrarily small e, however, the running time will be slower than
the time bounds given, as we will need to manipulate numbers whose size is exponential in
the input. However, if this amount of accuracy is desired, it is more sensible and efficient to
use any polynomial time linear programming algorithm to solve the problem exactly.

One can define the analogous problem for directed graphs. Our algorithms, and the
corresponding time bounds, easily extend to the directed case by replacing (undirected) edges
by (directed) arcs and paths by directed paths. Henceforth, we will concentrate only on the
undirected case.

Linear programming duality gives a characterization of the optimum solution to the con-
current flow problem. Let E -- R be a nonnegative length function. For nodes v, w V
let diste (v, w) denote the length of the shortest path from v to tv in G with respect to the length
function . For a path P we shall use (P) to denote the length of P. We shall use [1 to
denote ’we (vw), the sum of the length of the edges. The following theorem is a special
case of the linear programming duality theorem (see, for example, 18]).

THEOREM 2.1. For a multicommodity flow f satisfying the demands d(i) and a length
function .,

470 P. KLEIN, S. PLOTKIN, C. STEIN, AND . TARDOS

()

k

vwE i--1 vwE

k k

E e(P)fi(P)>_ diste(si, ti)d(i).
i=l P’P# i=1

Furthermore, a multicommodity flow f minimizes fl if and only if there exists a nonzero
length function g. for which all of the above terms are equal.

The optimality (complementary slackness) conditions given by linear programming can
be reformulated in terms of conditions on edges and paths.

THEOREM 2.2. A multicommodity flow f has minimum fl /f and only if there exists a
nonzero length function g. such that

(1) for every edge vw E either (vw) 0 or f(vw) Ifl, and
(2) for every commodity and ever), path P

diste (st, ti).
The goal of our algorithms is to solve the approximation problem, i.e., to find a multi-

commodity flow f and a length function such that the largest term, Iflll, in (1) is within
a (1 + e) factor of the smallest term, i diste(si, ti)d(i). In this case, we say that f and
are e-optimal. Note that if f and are e-optimal, then clearly f is e-optimal. In fact, a

multicommodity flow f is e-optimal if and only if there exists a length function such that f
and are e-optimal.

3. Relaxed optimality conditions. Theorems 2.1 and 2.2 give two (apparently) different
characterizations of exact optimality. Our goal is to find a flow that satisfies a relaxed version
of Theorem 2.1. In order to do so, we will introduce a relaxed version of Theorem 2.2, the
complementary slackness conditions of linear programming. We will then show that these
relaxed optimality conditions are sufficient to show that the first and last terms in (1) are
within a (1 -t- e) factor, and hence the flow f is e-optimal. Our notion of relaxed optimality
is analogous to the notion of e-optimality used by Goldberg and Tarjan in the context of the
minimum-cost flow problem [5].

Let e > 0 be an error parameter, f a multicommodity flow, and a length function.
We say that a path P 7i for aThroughout this section we shall use e’ to denote

commodity is e-good if

(P) diste(si, ti) < e’e(P)
min{D, kd(i)}

and e-bad otherwise. The intuition is that a flow path is e-good if it is short in either a relative
or an absolute sense, i.e., either it is almost as short as the shortest possible (s#, ti)-path or it is
at most a small fraction of I1. We use this notion in defining the following relaxed optimality
conditions (with respect to a flow f, a length function e, and an error parameter e):

(R1) For every edge vw E either e(vw) <

k k

i=1 i=1
P
P e-bad

The first condition says that every edge either has a length that is a small fraction of the
sum of the lengths of all edges or is almost saturated. The second condition says that the
amount of flow that is on e-bad paths, i.e., long paths, contributes a small fraction of the sum

FASTER APPROXIMATION ALGORITHMS 471

The next two lemmas show that the relaxed optimality conditions are sufficient to imply
e-optimality. We will first show that Condition (R1) implies that the first two terms in (1) are
close. Then we will show that the two conditions together imply that the first and last terms
in (1) are close. Thus we can conclude that the relaxed optimality conditions are sufficient to
imply e-optimality.

LEMMA 3.1. Suppose a multicommodity flow f and a length function satisfy relaxed
optimality condition (R1). Then

(1 e’)lfllel < (1 + e’) f(vw)e(vw).(2)

Proof We estimate If[[el Yv, Ifle(vw) in two parts. The first part is the sum of the
terms contributed by edges that satisfy Ifl _< (1 + e’)f(vw). This part of the sum is clearly
at most (1 + e’) Yvo f(vw)e(vw). If vw is an edge whose contribution is not counted in the
first part, then, by assumption, e(vw) < (e’/m)lel. Therefore, the sum of all other terms is
at most ’lfllel. Thus, Ifllel _< (1 / ’) o,o f(vw)e(vw) + ’lfllel. This implies the
lemma. q

THEOREM 3.2. Suppose f and e and e satisfy the Relaxed Optimality Conditions (R1)
and (R2). Then f is e-optimal, i.e., Ill is at most a factor (1 + e) more than the minimum
possible.

Proof We need to estimate the ratio of the terms in inequality (1) of Theorem 2.1.
Lemma 3.1 estimates the ratio of the first two terms. We shall use this in estimating the ratio
of the first and the last terms.

Consider the penultimate term in (1). We break this sum, i ZPE79i g(P)f(P), into
two parts" the sum over e-good paths and the sum over e-bad paths. Relaxed optimality
condition (R2) gives us an upper bound of e’ i ZPE79i e(P)f(P) on the sum over the e-bad
paths, and the definition of an e-good path gives us the following bound on the sum over the
e-good paths"

k

i-’l

P e-good

<(l--et)-I t (diste(si, ti)f(P)+ Ifl I1 f(P))min D, kd

Observing that (min{D, kd(i)})- < D- + (kd(i))- and ZpE79i f(P) d(i), we can
bound the sum over the e-good paths by

(t(1 e’)-’ diste(si, ti)d(i) + ’lfllel, --D-- /

472 1". KLEIN, S. PLOTKIN, C. STEIN, AND I. TARDOS

Now observe that there are exactly k commodities and ; d(i) D, so the last term sums to
exactly 2e’lfllgl. This gives that

f(P)g(P) < (1 e’)- diste(&, t)d(i) + 2e’lfllgl
i=1

P 6 T:’i
P -good

Combining the bounds on the sum over e-bad and e-good paths we get

k

PeT’i i=1

P -good

< (1 et) -2 diste(si, ti)d(i) + 2(1 e’)-2e’lfllgll.

By the middle equations in Theorem 2.1, Y.i,,r,e(P)f(P) is equal to

w f(vw)e(vw). Lemma 3.1 gives a bound on voE f(vw)e(vw) in terms on l/llel.
Combining these inequalities and rearranging terms we get

(1 et)2 2e’)7+ -7 , Ifllel, <
1-e’

diste(si, ti)d(i).

Combining the fractions and dropping low-order terms we get that

q-e’
Ifllgl- 5-e’< diste(si, ti)d(i).

The assumption that e < / 10 implies that e’ < 1/70, which in turn implies that the factor
(1 + e’)/(1 5e’) is less than (1 + 7e’) (1 +e). We combine this bound with inequality (1)
to complete the proof.

In the next two sections, we will focus on algorithms that achieve the relaxed optimality
conditions.

4. Generic rerouting. In this section, we describe the procedure REDUCE that is the core
of our approximation algorithms and prove bounds on its running time. Given a multicom-
modity flow f, procedure REDUCE modifies f until either f becomes e-optimal or fl is
reduced below a given target value. The approximation algorithms presented in the next two
sections repeatedly call procedure REDUCE to decrease fl by a factor of 2, until an e-optimal
solution is found.

The basic step in our algorithms is choosing a flow path and rerouting some flow from
this path to a "better" path. This step closely resembles the basic step in the algorithm of
Shahrokhi and Matula [18]. The main differences are in the way we choose the paths and in
the amount of flow that is rerouted at each iteration.

The key idea is to measure how good the current flow is by using the notion of e-optimality,
described in the previous section. Given a flow f and a value ot to be determined later, we
use a length function defined by g(vw) ef(vw), which reflects the congestion of the edge
vw. In other words, the length of an edge depends on the flow carried by the edge. Given
an input e, our algorithms gradually update f until f and g (defined by the above formula)
become e-optimal. Each update is done by choosing an e-bad flow path, rerouting some flow

FASTER APPROXIMATION ALGORITHMS 473

from this path to a much shorter path (with respect to e), and recomputing the length function.
We will prove below that the parameter ot in the definition of length can be selected so that
relaxed optimality condition (R 1) is always satisfied. Through iterative reroutings of flow, we
gradually enforce relaxed optimality condition (R2). When both relaxed optimality conditions
are satisfied then Theorem 3.2 can be used to infer that f is e-optimal.

For simplicity of presentation, we shall assume for now that the value of the length
function g(vw) ef(vw) at an edge vw can be computed in one step from f(vw) and
represented in a single computer word. In 4.3 we will remove this assumption and show that
it is sufficient to compute an approximation to this value and show that the time required for
computing a sufficiently good approximation does not change the asymptotic running times
of our algorithms.

Procedure REDUCE (see Fig. 1) takes as input a multicommodity flow f, a target value r,
an error parameter e, and a flow quantum cri for each commodity i. We require that each flow
path comprising f carries flow that is an integer multiple of ri. The procedure repeatedly
reroutes cri units of flow from an e-bad path of commodity to a shortest path. We will
need a technical granularity condition that O" is small enough for every to guarantee that
approximate optimality is achievable through such reroutings. In particular, we assume that
upon invocation of REDUCE, for every commodity we have

(3) O" __< e 2
102 log(7m e -l

Upon termination, the procedure outputs an improved multicommodity flow f such that
either fl is less than the target value r or f is e-optimal. (Recall that we have assumed that

_< /0.)
In the remainder of this section, we analyze the procedure REDUCE shown in Fig. 1. First,

we show that throughout REDUCE f and satisfy relaxed optimality condition (RI). Second,
we show that if the granularity condition is satisfied, the number of iterations in REDUCE
is small. Third, we give an even smaller bound on the number of iterations for the case in
which the flow f is O (e)-optimal upon invocation of REDUCE. This bound will be used in 5 to
analyze an e-scaling algorithm presented there. Fourth, we describe efficient implementations
of procedure FINDPATH.

REDUCE(f, "/’, E, O" for k)
Ot (7 -" 6)’1-15 -1 1og(7me-l).
While fl >_ r and f and are not e-optimal,

For each edge vw, (vw) +-- eafvu’).
Call FNDPAVrt(f, e, e) to find an e-bad flow path P and a short path Q
with the same endpoints as P.

Reroute cri units of flow from P to Q.
Return f.

FIG. 1. Procedure REDUCE.

4.1 Bounding the number of iterations of REDUCE.

LEMMA 4.1. If f is a multicommodityflow and ot > (7 + e)lfl-e -1 log(7me-l), then
the multicommodityflow f and the lengthfunction (vw) eaf(vw) satisfy relaxed optimality
condition (R1).

Proof Assume Ifl- f(v, w) >_ f(v, w) for an edge vw E, and let e’ denote .
Observe that lel >_ etrlfl. Hence, we have

474 P. KLEIN, S. PLOTKIN, C. STEIN, AND 1. TARDOS

eOtlfl Colfl
g.(v, w) ef(v,w) elfl(l+’)-

We can use the bound on ot in the statement of the lemma to conclude that this last term is at
7m lelleast-7-" Thus, e(,vw) <_
At the beginning of REDUCE, ot is set equal to (7 + e)r -le -! log(7me-l). As long as

fl > r, the value ofoe is sufficiently large, so by Lemma 4.1, relaxed optimality condition (R1)
is satisfied. If we are lucky and relaxed optimality condition (R2) is also satisfied, then it
follows that f and e are e-optimal. Now we show that if (R2) is not satisfied, then we can
make significant progress. Like Shahrokhi and Matula, we use lelt as a measure of progress.

LEMMA 4.2. Suppose o and r satisfy the granularity condition. Then rerouting o" units of
flowfrom an e-badpath ofcommodity to the shortest path with the same endpoints decreases
I/ll by

o.
f2 min{/ kd(i)} I1

log rn).
Proof. Let P be an e-bad path from S to ti, and let Q be a shortest (si, ti)-path. Let

,4 P Q and B Q P. The only edges whose length changes due to the rerouting are
those in A tO B. The decrease in lel is e(A) + e(B) e-,e(A) e,e(B), which can also
be written as

(1 e-’’)(g(A) g.(B)) (1 e-;)(e’r; 1)e(B).

The granularity condition, the definition of c, and the assumption that e < 1/10 imply
7+E 7- 141that 0/O" -i-0-’e 6/7 1/70. For 0 < x < we have e > + x, e < +-fa-6.t, and
139e-x < ga-Ox. Thus the decrease is at least

139 /’141)14---otcri (e(A) e(B)) (olo’i) --OlO" e(B).

Now, observe that g(A) e(B) is the same as e(P) e(Q) and that e(Q) diste(si, ti). Also
e(B) <_ e(P). This gives a lower bound of

139
140

141
otcri (g(P) diste(si, ti)) "-Ol2(1 e(P).

But P is e-bad, so this must be at least

139 Ifl
140

tcr; (e’e(P) + e’min{D, kd(i)}

141 :re(p)

139

140

139 O"
otie’e(P)

141 ce2cr/e(P) + oe’lfl lel.14--- 1 min{D, kd(i)}

7+eWe have seen that T0-fe > cri, which implies that 1396’ > 141cri, and therefore the
first term dominates the second term. Thus the third term gives a lower bound on the decrease
in lel.

Substituting the value of ot and using the fact that during execution of REDUCE we have
r < Ifl yields the claim of the lemma, l-1

The following theorem bounds the number of iterations in REDUCE.

FASTER APPROXIMATION ALGORITHMS 475

THEOREM 4.3. If, for every commodity i, r and ri satisfy the granularity condition and
fl O (r) initially, then the procedure REDUCE terminates after

min D, kd (i)
O(e- max

O"

iterations.

Proof. Theorem 3.2 implies that if f and satisfy the relaxed optimality conditions,
then they are e-optimal. By Lemma 4.1, relaxed optimality condition (R1) is maintained
throughout all iterations. The fact that f is not yet e-optimal implies that condition (R2) is
not yet satisfied. Hence there exists an e-bad path for IT’INDPATH tO find. A single rerouting
of flow from an e-bad path of commodity to a shortest path results in a reduction in Ill of
at least

(O’i
ill log(me-I)).min{/J kd(i)}

Since x < e-x, it follows that every

min D, kd (i)
0 max log-1 (m e-l)

o-

iterations reduce Jell by at least a constant factor.
Next we bound the number of times lel can be reduced by a constant factor. Let f’

denote the input multicommodity flow. For every edge vw, f’(vw) < If’l. Hence after we
first assign lengths to edges, the value of Ielt is at most melf’l. The length of every edge
remains at least 1, so Ie[l is always at least m. Therefore, Il can be reduced by a factor of
e at most clf’[times, which is O(e- log(me-)) by the assumption that f O(r) and the
value of c. This proves that REDUCE terminated in the claimed number of iterations.

THEOREM 4.4. Suppose that the inputflow f is O(e)-optimal, cr and r satisfy the gran-
ularity condition, and Ifl O(r) initially. Then the procedure REDUCE terminates after

min D kd (i) "O max
o"

iterations.

Proof. Again let f’ denote the input multicommodity flow. The assumption that f’ is
O(e)-optimal implies that]f’l _< (1 + O(e))lfl for every multicommodity flow f. Therefore,
the value of Iel is never less than e(l+O(e))-alf’l. As in Theorem 4.3, the initial value of

Iell is at most melf’l, so the number of times Iel can be reduced by a constant factor is

O(otelf’l + log m), which is O(celf’l) by the choice of ot and r. The theorem then follows
as in the proof of Theorem 4.3. 1

4.2. Implementing an iteration of REI)UC:. We have shown that REDUCE terminates
after a small number of iterations. It remains to show that each iteration can be carried
out quickly. REDUCE consists of three stepsqcomputing lengths, executing FINDPATH, and
rerouting flow. We discuss computing lengths in 4.3. In this section, we discuss the other
two steps.

We now consider the time taken by procedure FINDPATH. We will give three implemen-
tations of this procedure. First, we will give a simple deterministic implementation that runs
in O(k*(m + n log n) + n Y4(d(i)/cri)) time, then a more sophisticated implementation that

476 r,. KLEIN, S. PLOTKIN, C. STEIN, AND . TARDOS

runs in time O(k*n log n + m(log n + rain {k, k* log dmax})), and finally a randomized imple-
mentation that runs in expected O(e -1 (m + n log n)) time. All of these algorithms use the
shortest-paths algorithm of Fredman and Tarjan [3] that runs in O(m + n log n) time.

To find a bad flow path deterministically, we first compute, for every source node si, the
length of the shortest path from si to every other node v. This takes O(k*(m / n log n))
time. In the simplest implementation we then compute the length of every flow path in 79 and
compare its length to the length of the shortest path to decide if the path is e-bad. There could
be as many as _,i(d(i)/ri) flow paths, each consisting of up to n edges; hence, computing
these lengths takes O(n _,i(d(i)/ri)) time.

To decrease the time required for FINDPATH we have to find an e-bad path, if one exists,
without computing the length of so many paths. Observe that if there is an e-bad flow path
for commodity i, then the longest flow path for commodity must be e-bad. Thus, instead of
looking for an e-bad path in 79i for some commodity i, it suffices to find an e-bad path in the
directed graph obtained by taking all flow paths in 79i and treating the paths as directed away
from si. In order to see if there is an e-bad path we need to compute the length of the longest
path from si to ti in this directed graph. To facilitate this computation we shall maintain that
the directed flow graph is acyclic.

Let G denote the flow graph of commodity i. If G is acyclic, an O(m) time dynamic
programming computation suffices to compute the longest paths from si to every other node.
Suppose that in an iteration we reroute flow from an e-bad path from s; to ti, in the flow
graph G;. We must first update the flow graph G to reflect this change. Second, the update
might introduce directed cycles in G i, so we must eliminate such cycles of flow. We use an

algorithm due to Sleator and Tarjan [19] to implement this process. Sleator and Tarjan gave a

simple O(nm) algorithm and a more sophisticated O(m log n) algorithm for the problem of
converting an arbitrary flow into an acyclic flow.

Note that eliminating cycles only decreases the flows on edges, so it cannot increase Ilt.
Thus our bound on the number of iterations in REDUCE still-holds.

We compute the total time required for each iteration of REDUCE as follows. In order to

implement FINDPATH, we must compute the shortest path from si to ti in G and the longest
path from si to ti in G for every commodity i, so the time required is O(k* (m + n log n) +km).
Furthermore, after each rerouting, we must update the appropriate flow graph and eliminate
cycles. Elimination of cycles takes O(m log n) time. Combining these bounds gives an
O(k*n logn + m(k + log n)) bound on the running time of FINDPATH.

In fact, further improvement is possible if we consider the flow graphs of all commodities
with the same source and same flow quantum cri together. Let G v,, be the directed graph
obtained by taking the union of all flow paths P 6 79i for a commodity with si v and

oi or, treating each path as directed away from v. If G v,o is acyclic, an O (m) time dynamic
programming computation suffices to compute the longest paths from v to every other node
in G,,.

During our concurrent flow algorithm all commodities with the same demand will have

the same flow quantum. To limit the different flow graphs that we have to consider we want
to limit the number of different demands. By decomposing demand d(i) into at most log d(i)
demands with source si and sink ti we can assume that each demand is a power of 2. This way
the number of different flow graphs that we have to maintain is at most k* log dmax.

LEMMA 4.5. The total time required for deterministically implementing an iteration

of REDUCE (assuming that exponentiation is a single step) is O(k*n log n + m(logn +
min {k, k* log dmax})).

Next, we give a randomized implementation of FINDPATH that is much faster when e is
not too small; this implementation seems simple enough to be practical. If f and e are not e-

FASTER APPROXIMATION ALGORITHMS 477

optimal, then relaxed optimality condition (R2) is not satisfied, and thus e-bad paths contribute
at least an -fraction ofthe total sum _,i ,peT:,, e(P)fi(P). Therefore, by randomly choosing
a flow path P with probability proportional to its contribution to the above sum, we have at

chance of selecting an e-bad path Furthermore, we will show that we can select aleast an 7
candidate e-bad path according to the right probability in O(m) time. Then we can compute
a shortest path with the same endpoints in O(m + n log n) time. This enables us to determine
whether ornot P was an e-bad path. Thus we can implement FINDPATH in O(e- (m +n log n))
expected time.

The contribution of a flow path P to the above sum is just the length of P times the flow
on P, so we must choose P with probability proportional to this value. In order to avoid
examining all such flow paths explicitly, we use a two-step procedure, as described in the
following lemma.

LEMMA 4.6. Ifwe choose an edge vw with probability proportional to g(vw)f(vw) and
then select aflow path among paths through this edge vw with probability proportional to the
value of the flow carried on the path, then the probability that we have selected a given flow
path P is proportional to its contribution to the sum Yi Pe7 e(P) f(P).

Proof Let B ie7,g.(P)f(P). Select an edge vw with probability
f(vw)e(vw)/B. Once an edge vw is selected, choose a path P 6 79i through edge vw

fP) Consider a commodity and a path P 6 79i.with probability f(--ff).

(P) f(vw)e(vw) f(P)
Pr(P chosen) Pr(w chosen) x

1 f(vw) - B
x

vwe oweP f(vw)

g(wv)f(P) fl(P)g.(P)
[3

vwe B B

Choosing an edge with probability proportional to g.(vw)f(vw) can easily be done in
O (m) time. In order to choose with the right probability a flow path going through that edge,
we need a data structure to organize these flow paths. For each edge we maintain a balanced
binary tree with one leaf for each flow path through the edge, labeled with the flow value of
that flow path. Each internal node of the binary tree is labeled with the total flow value of its
descendent leaves. The number of paths is polynomial in n and e-l" therefore, using this data
structure, we can randomly choose a flow path through a given edge in O(log n) time.

In order to maintain this data structure, each time we change the flow on an edge, we must
update the binary tree for that edge, at a cost of O (log n) time. In one iteration of REDUCE the
flow only changes on O(n) edges; therefore, the time to do these updates is O(n log n) per
call to FINDPATH, which is dominated by the time to compute single-source shortest paths.

We have shown that if relaxed optimality condition (R2) is not satisfied, then, with prob-
ability of at least e/7, we can find an e-bad path in O(m -t- n log n) time. FNDPATH continues
to pick paths until either an e-bad path is found or 7/e trials are made. Observe that given
that f and are not yet e-optimal (which implies that condition (R2) is not yet satisfied), the
probability of failure to find an e-bad path in 7/e trials is bounded by 1/e. Thus, in this case,
RDUCE can terminate, claiming that f and are e-optimal with probability of at least 1/e.
Computing lengths and updating flows can each be done in O(n log n) time, thus we get the
following bound"

LEMMA 4.7. One iteration of REDUCE can be implemented randomly in time (e -1 (m -t-
n log n)) time (assuming that exponentiation is a single step).

The randomized algorithm as it stands is Monte Carlo; there is a nonzero probability that
REDUCE erroneously claims to terminate with an e-optimal f. To make the algorithm Las
Vegas (never wrong, sometimes slow), we introduce a deterministic check. If FINDPATH fails

478 P. KLEIN, S. PLOTKIN, C. STEIN, AND 1. TARDOS

to find an e-bad path, REDUCE computes the sum i distg (si, ti)d(i) to the required precision
and compares it with Ill I1 to determine whether f and are really e-optimal. If not, the loop
resumes. The time required to compute the sum is O(k* (m + n log n)), because at most k*
single-source shortest path computations are required. The probability that the check must be
done times in a single call to REDUCE is at most (e-l)t-l, so the total expected contribution
to the running time of REDUCE is at most O(k*(m + n log n)).

Recall that the bound on the number of iterations of REDUCE is greater than

minlD, kd(i)}
max

which in turn is at least k. Since in each iteration we carry out at least one shortest path
computation, the additional time spent on checking does not asymptotically increase our
bound on the running time for REDUCE.

We conclude this section with a theorem summarizing the running time of REDUCE for
some cases of particular interest. For all of these bounds the running time is computed by
multiplying the appropriate time for an iteration of REDUCE by the appropriate number of
iterations of REDUCE. These bounds depend on the assumption that exponentiation is a single
step. In 4.3 we shall show that the same bounds can be achieved without this assumption.
We shall also give a more efficient implementation for the case when e is a constant.

THEOREM 4.8. Let f O(r) and r and (7 satisfy the granularity condition. Let

H(k, d, o) max
min{D, kd(i)}

and let f min {k, k* log dmax }. Then the following table contains running timesfor various
implementations ofprocedure REDUCE (assuming that exponentiation is a single step).

Randomized Implementation Deterministic Implementation

< 6 < 0 (:-2(m .qt_ ?/logn)H(k, d, or)) 0 (e- H(k, d,poly(n)

logn + m(logn +/)l).[k*n
< < O(e-(m+nlogn)H(k,d, cr)) O(H(k dpoly(n

f is .O(e)-opt. [k*n logn + m(logn +),])

4.3. Further implementation details. In this section, we will show how to get rid of the
assumption that exponentiation can be performed in a single step. We will also give a more
efficient implementation of the procedure REDUCE for the case when e is fixed.

4.3.1. Removing the assumption that exponentiation can be performed in O (1) time.
To remove the assumption that exponentiation can be performed in O (1) time, we will need to
do two things. First we will show that it is sufficient to work with edge-lengths (vw) that are
approximations to the actual lengths (vw) eaf(vw). We then show that computing these
approximate edge-lengths does not change the asymptotic running times of our algorithms.

The first step is to note that in the proof of Lemma 4.2, we never used the fact that we
reroute flow onto a shortest path. We only need that we reroute flow onto a sufficiently short
path. More precisely, it is easy to convert the proof ofLemma 4.2 into a proof for the following
claim.

LEMMA 4.9. Suppose cri and satisfy the granularity condition, and let P be an e-badflow
path ofcommodity i. Let Q be a path connecting the endpoints of P such that the length of Q

FASTER APPROXIMATION ALGORITHMS 479

is no more than ’g(P)/2 + ’ I___!11gl/2 greater than the length ofthe shortest path connecting
the same endpoints. Then rerouting (Yi units offlowfrom path P to Q decreases lel by

O’i
lel logm))f2 min{6 kd(i)}

We will now show that in order to compute the lengths of paths up to the precision given
in this lemma, we only need to compute the lengths of edges up to a reasonably small amount
of precision.

By Lemma 4.9, the length of a path can have a rounding error of et! lel/2. Each path has

Izl /2)at most n edges, so it will suffice to ensure that each edge has a rounding error of a (’-- Igl
We will now bound this quantity. II is the maximum flow on an edge and hence must be at
least as large as the average flow on an edge, i.e., Ifl >_ ,,w f(vw)/m. Every unit of flow
contributes to the total flow on at least one edge, and hence Yow f(vw) >_ D, and combining
with the previous equation, we get that Ifl/D >_ 1/m. Ill is at least as big as the length of
the longest edge, i.e., [el > ealfl. Plugging in these bounds we see that it suffices to compute
with an error of at most (e’/nm)elfl. Each edge has a positive length of at most elfl and
can be expressed as eclflp, where 0 < p _< 1. Thus we need to compute p up to an error of
e’/nm. To do so, we need to compute O(log(e-lnm)) bits, which by the assumption that is
inverse polynomial in n is just O (log n) bits.

By using the Taylor series expansion of e, we can compute one bit of the length function
in O (1) time. Therefore, to compute the lengths of all edges at each iteration of REDUCE, we
need O(m log n) time. In the deterministic implementation of REDUCE each iteration takes
at least f2 (m log n) time (the time required for cycle cancelling)" therefore, the time spent on
computing the lengths is dominated by the running time of an iteration.

The approximation above depends on the current value of IfI, which may change after each
iteration. It was crucial that we recomputed the lengths of every edge in every iteration. The
time to do so, O(m log n), would dominate the running time ofthe randomized implementation
of REDUCE. (Recall that the randomized implementation does not do cycle cancelling.) Thus,
we need to find an approximation that does not need to be recomputed at every iteration.
We will choose one that does not depend on the current [fl and hence will only need to be
updated on the O (n) edges on which the flow actually changes. We proceed to describe such
an approximation that will depend on r rather than fl.

Throughout REDUCE all edge length are at most e() and at least one edge has length
more than e. Therefore, I11 is at least eat, and by the same argument as for the deterministic
case O(e- log n) bits of precision suffice throughout REDUCE. When we first call REDUCE,
we must spend O(e-m logn) time to compute all the edge lengths. For each subsequent
iteration, we only need to spend O(e-n logn) time updating the O(n) edges whose length
have changed. Since each iteration of REDUCE is expected to take O(e- (m -t- n log n)) time
to compute shortest paths in FINDPATH, the time for updating edges is dominated by the time
required by F]NDPATH. While it appears that the time to compute initially all the edge lengths
may dominate the time spent in one invocation of REDUCE, we shall see in 5 that whenever
any of our algorithms calls REDUCE, it will have at least f2 (log n) iterations. Each iteration is
expected to take at least f2 (e- m) time to compute the shortest paths in FINDPATH. Therefore,
the time spent on initializing lengths will be dominated by the running time of REDUCE.

Note that in describing the randomized version of FINDPATH in Lemma 4.6, we assumed
we knew the exact lengths. However, by using the approximate lengths we do not significantly
change a path’s apparent contribution to the sum Yi ’PeTi g’(P)f(P)" Hence we do not

significantly reduce the probability of selecting a bad path.

480 P. KLEIN, S. PLOTKIN, C. STEIN, AND 1. TARDOS

Thus we have shown that without any assumptions, REDUCE can be implemented deter-
ministically in the same time as is stated in Theorem 4.8. Although for the randomized version,
there is additional initialization time, for all the algorithms in this paper the initialization time
is dominated by the time spent in the iterations of REDUCE.

THEOREM 4.10. The times requiredfor the deterministic implementations ofprocedure
REDUCE stated in Theorem 4.8 hold without the assumption that exponentiation is a single
step. The time required by the randomized implementations increases by an additive term of
O(e-m log n) without this assumption.

4.3.2. Further improvements for fixed e. In this section we show how one can reduce
the time per iteration of REDUCE for the case in which e is a constant. First we show how
using approximate lengths can reduce the time required by FINDPATH; we use an approximate
shortest-paths algorithm that runs in O(m + ne-) time. Then we give improved imple-
mentation details for an iteration of REDUCE to decrease the time required by other parts of
REDUCE.

We will describe how, given the lengths and an e-bad path P from s to t, we can find a

path Q with the same endpoints such that () _< dist (s, t) / e’(P)/2 in O(m / ne-) time.
First, we discard all edges with length greater than (P), for they can never be in a path that
is shorter than P (if P is a shortest path between s and t, then P is not an e-bad path). Next,
on the remaining graph, we compute shortest paths from s using approximate edge-lengths

(v w)
e’t!(P)

[(vw)
2n

2---- e’e(P)]’

thus giving us dist/(s, t), an approximation of diste(s, t), the length of the actual shortest
(s, t)-path. There are at most n edges on any shortest path, and for each such edge, the
approximate length is at most e’g.(P)/2n more than the actual length. Thus we know that

e’g(P)
distg(s, t) < diste(s, t) + n

2n
diste(s, t) -+

2

Further, since each shortest path length is an integer multiple of e’g.(P)/2n and no more than
g(P), we can use Dial’s implementation of Dijkstra’s algorithm [2] to compute distg(s, t) in
O(m + ne-) time.

Implementing F’INDPATH with this approximate shortest path computation directly im-
proves the time required by a deterministic implementation of REDUCE. The randomized im-
plementation of FINDPATH with approximate shortest path computation requires O(e- (m +
ne-)) expected time. In order to claim that an iteration of REDUCE can be implemented in
the same amount of time, we must handle two difficulties" updating edge lengths and up-
dating each edge’s table of flow paths when flow is rerouted. Previously, these steps took
O(n log n) time, which was dominated by the time for FINDPATH. We have reduced the time

for FINDPATH, so the time for these steps now dominates. We show how to carry out these
steps in O(n) time. For the first step, we show that a table can be precomputed so that each
edge length can be updated in constant time. For the second step, we sketch a three-level data
structure that allows selection of a random flow path through an edge in O (n) time and allows
constant-time addition and deletion of flow paths.

Say that before computing the length eaf(vw), we were to round crf(vw) to the nearest

multiple of e/c, for some constant c. This will introduce an additional multiplicative error
of + O(e/c) in the length of each edge and hence an additional multiplicative error of

+ O(e/c) on each path. However, by arguments similar to the previous subsection, this will
still give us a sufficiently precise approximation.

FASTER APPROXIMATION ALGORITHMS 481

Now we will show that by rounding in this way there are a small enough number ofpossible
values for g(vw) that we can just compute them all at the beginning of an iteration of REDUCE
and then compute the length of an edge by simply looking up the value in a precomputed
table. The largest value of cf(vw) we will ever encounter is O(-1 log n). Since we are only
concerned with multiples of /c, there is a total of only O(-2 log n) values that we will ever
encounter. At the beginning of each iteration, we can compute each of these numbers to a
precision of O(log n) bits in O(-2 log2 n) time. Once we have computed all these numbers,
we can compute the length of an edge by computing otf(vw), truncating to a multiple of /c,
and then looking up the value of g.(vw) in the table. This takes O(1) time. Thus for constant, we are spending O (log2 n + m) O(m) time per iteration.

Now we address the problem of maintaining, for each edge, the flow paths going through
that edge. Henceforth we will describe the data structure associated with a single edge. First
suppose that all the flow paths carry the same amount of flow, i.e., cri is the same for each. In
this case, we keep pointers to the flow paths in an array. We maintain that the array is at most
one-quarter empty. It is then easy to select a flow path in constant expected time randomly; one
randomly chooses an index and checks whether the corresponding array entry has a pointer to
a flow path. If so, select that flow path. If not, try another index.

One can delete flow paths from the array in constant time. If one maintains a list of empty
entries, one can also insert in constant time. If the array gets too full, copy its contents into
a new array of twice the size. The time required for copying can be amortized over the time
required for the insertions that filled the array. If the array gets too empty, copy its contents
into a new array of half the size. The time required for copying can be amortized over the
time required for the deletions that emptied the array. (See, for example, [1], for a detailed
description of this data structure.)

Now we consider the more general case, in which the flow values of flow paths may
vary. In this case, we use a three-level data structure. In the top level, the paths are organized
according to their starting nodes. In the second level, the paths with a common starting node
are organized according to their ending nodes. The paths with the same starting and ending
nodes may be assumed to belong to the same commodity and hence all carry the same amount
of flow. Thus these paths can be organized using the array as described above.

The first level consists of a list; each list item specifies a starting node, the total flow of all
flow paths with that starting node, and a pointer to the second-level data structure organizing
the flow paths with the given starting node. Each second-level data structure consists of a list;
each list item specifies an ending node, the total flow of all flow paths with that ending node
and the given starting node, and a pointer to the third-level data structure, the array containing
flow paths with the given starting and ending nodes.

Now we analyze the time required to maintain this data structure. Adding and deleting
a flow path takes constant time. Choosing a random flow path with the right probability can
be accomplished in O(n) time. First we randomly choose a value between 0 and the total
flow through the edge. Then we scan the first-level list to select an appropriate item based
on the value. Next we scan the second-level list pointed to by that item and select an item in
the second-level list. Each of these two steps takes O(n) time. Finally, we select an entry in
the third-level array. In the third-level array, all the flows have the same cri; thus, this can be
accomplished in O(1) expected time by the scheme described above.

So we have shown that for constant , each of the three steps in procedure REDUCE can
be implemented in O(m) expected time, thus yielding the following theorem.

THEOREM 4.11. Let f O(r) and r and O" satisfy the granularity condition. Let

min{D, kd(i)}
H(k, d, or) max

o"

482 r’. KLEIN, S. PLOTKIN, C. STEIN, AND 1. TARDOS

and let c min {k, k* log dmax}. For any constant e > 0 the procedure REDUCE can be
implemented in randomized O(m H(k, d, r)) and in deterministic O(H(k, d, o)m (log n +/))
time.

5. Concurrent flow algorithms. In this section, we give approximation algorithms for
the concurrent flow problem with uniform capacities. We describe two algorithms" CONCUR-
RENT and SCALINGCONCURRENT. CONCURRENT is simpler and is best if e is constant. SCALING-
CONCURRENT gradually scales e to the right value and is faster for small e.

Algorithm CONCURRENT (see Fig. 2) consists of a sequence of calls to procedure REDUCE
described in the previous section. The initial flow is constructed by routing each commodity
on a single flow path from si to ti. Initially, we set ri d(i). Before each call to REDUCE

we divide the flow quantum cri by 2 for every commodity where this is needed to satisfy the
granularity condition (3). Each call to REDUCE modifies the multicommodity flow f so that
either Ill decreases by a factor of 2 or f becomes e-optimal. (The procedure REDUCE can set
a global flag to indicate whether it has concluded that f is e-optimal.) In the latter case our
algorithm can terminate and return the flow. As we will see, O(log m) calls to REDUCE will
suffice to achieve e-optimality.

CONCURReNT(G, e, {d(i), (si, ti) < k})
For each commodity i" o’i +- d(i), create a simple path from si to ti and route d(i) flow on it.
r +--Ifl/2.
While f is not e-optimal,
For every i,
Until oi and r satisfy the granularity condition,

O" 4v.- O"i/2.
Call RtttJct (J; l’, e, d).
r +- r/2.
Return f.

FIG. 2. Procedure CONCURRENT.

THEOREM 5.1. The algorithm CONCURRENT finds an e-optimal multicommodity flow
in O((e-k + e-3m)(k*n logn + re(log n + min{k, k* logdmax}))logn) or in expected time

O((ke -2 + me-a)(m + n log n) log n).
Proof. Immediately after the initialization we have Ifl _< D. To bound the number

of phases we need a lower bound on the minimum value of fl. Observe that for every
multicommodity flow f, the total amount of flow in the network is D. Every unit of flow
contributes to the total flow on at least one of the edges, and hence vwE f(vw) > D.
Therefore,

(4) Ifl > Dim.

This implies that the number of iterations of the main loop of CONCURRENT is at most

O(log m). By Theorems 4.3 and 4.8, procedure REDUCE invoked during a single iteration of
CONCURRENT first spends O(m log n) time initializing edge lengths and then executes

min D, kd(i)
O e- max

O"

iterations. Throughout the algorithm for every cri is either equal tod(i) oris (R)(e2r/log(me-)).
In the first case,

FASTER APPROXIMATION ALGORITHMS 483

min D, kd(i)
o-

min D, kd(i)

d(i)
=min d--’k <k.

In the second case

min kd(i)} D
min {D, kd(i)} e-2Z"-1 log(me -l) < e-2- log(me-l).

Thus the total number of iterations of the loop of REDUCE is at most
O(e-(k + e -2 D log(mE-7)), and the time spent on the initialization of the edge length
is dominated. The value r is halved at every iteration; therefore, the total number of calls
required for all iterations is at most O(e-lk log n) plus twice the number required for the last

Diteration of CONCURRENT. It follows from (4) that r is f2 (), and the total number of iterations
of the loop of REDUCE is at most O(e-k log n + e-3m log n).

Consider the special case when e is constant. We use the version of REDUCE imple-
mented with an approximate shortest path computation and apply the bounds ofTheorem 4.11
combined with a proof similar to that of Theorem 5.1 to get the following result:

THEOREM 5.2. For any constant e > O, an E-optimal solution for the unit-capacity
concurrentflow problem can befound in O(m(k + m) log2 n) expected time by a randomized
algorithm and in O(m(k + m)(logn + min {k,k* logdmax})logn) time by a deterministic
algorithm.

If e is less than a constant, we use the algorithm SCALINGCONCURRENT, shown in Fig. 3.
It starts with a large e and then gradually scales e down to the required value. More precisely,
algorithm SCALINGCONCURRENT starts by applying algorithm CONCURRENT with
SCALINGCONCURRENT then repeatedly divides e by a factor of 2 and calls REDUCE. After the
initial call to CONCURRENT, f is -optimal, i.e., fl is no more than twice the minimum
possible value. Therefore, Ifl cannot be decreased below r/2, and every subsequent call
to REDUCE returns an E-optimal multicommodity flow (with the current value of e). As
in CONCURRENT, each call to REDUCE uses the largest flow quantum a permitted by the
granularity condition (3).

SCA.NGCONCURRNT(G, ’, {d(i), (si, ti) < <_ k})

10"
Call CONCtJRRN’(G, , {d(i), (si, ti) < <_ k}), and let f be the resulting flow.
r +-- r/2.

While > ’,
e /2,
For every i,
Until or; and r satisfy the granularity condition,

o’; +-- o’/2.
Call Rt)tc (f, r, e, o’).

Return f.

FIG. 3. Procedure SCALING CONCURRENT.

THEOREM 5.3. The algorithm SCALINGCONCURRENTfinds an e-optimal multicommodity
flow in expected time O((ke- + me-3 log n)(m + n log n)).

Proof. As is stated in Theorem 5.2, the call to procedure CONCURRENT takes O(km log n +
m2 log m) time and returns a multicommodity flow f that is -optimal; hence, Ifl is no more

484 P. KLEIN, S. PLOTKIN, C. STEIN, AND 1. TARDOS

than twice the minimum. Therefore every subsequent call to REDUCE returns an e-optimal
multicommodity flow f.

The time required by one iteration is dominated by the call to REDUCE. The input flow f
of REDUCE is 2-optimal, so, by Theorems 4.8 and 4.10, the time required by the randomized
implementation of REDUCE is

We have seen that

O (e- (m + n log n) maxi
min{D, kd(i)})

min{D, kd(i)}
nlax

o

is at most 0 (k + -2m log m). The value of is reduced by a factor of two in every iteration.
Therefore, the total time required for all iterations is at most twice the time required by the last
iteration. The last iteration takes O((k + -2m log n)(- (m + n log n))) time, which proves
the claim.

Consider an implementation of CONCURRENT or SCALINGCONCURRENT with the deter-
ministic version of REDUCE. The time required by FINDPATH does not depend on , so we
cannot claim that the time is bounded by at most twice the time required for the last call to
REDUCE. Since there are at most log- iterations, we have the following theorem.

THEOREM 5.4. An e-optimal solution to the unit-capacity concurrent flow
problem can be found deterministically in time O(km logZn + (k log- + f-Zm log n)
(k*n logn + m(logn + min {k, k* log dmax}))).

6. o applications. In this section we describe two applications of our unit-capacity
concuent flow algorithm. The first application is to implement efficiently Leighton and Rao’s
sparsest cut approximation algorithm [14], and the second application is to minimize approx-
imately channel width in VLSI routing; the second problem was considered by Raghavan and
Thompson [16] and Raghavan [15].

We start by reviewing the result of Leighton and Rao concerning finding an approximately
sparsest cut in a graph. For any paition of the nodes of a graph G into two sets A and B, the
associated cut is the set of edges between A and B, and 8 (A, B) denotes the number of edges
in that cut. A cut is sparsest if 3(A, B)/(IAIIBI) is minimized. Leighton and Rao [14] gave
an O (log n)-approximation algorithm for finding the sparsest cut of a graph. By applying this
algorithm they obtained polylog-times-optimal approximation algorithms for a wide variety
of NP-complete graph problems, including minimum feedback arc set, minimum cut linear
arrangement, and minimum area layout.

Leighton and Rao exploited the following connection between sparsest cuts and concurrent
flow. Consider an all-pairs multicommodity flow in G, where there is a unit ofdemand between
every pair of nodes. In a feasible flow f, for any paition A U B of the nodes of G, a total
of at least AI] B] units of flow must cross the cut between A and B. Consequently, one such
edge must cay at least a [A[IB[/3(A, B) flow for the sparsest cut A U B. Leighton and Rao
prove an approximate max-flow, min-cut theorem for the all-pairs concurrent flow problem, by
showing that in fact this lower bound for fl is at most an O (log n) factor below the minimum
value. Their approximate sparsest-cut algorithm makes use of this connection. More precisely
given a nearly optimal length function (dual variables) they show how to find a partition A U B

FASTER APPROXIMATION ALGORITHMS 485

that is within a factor of O (log n) of the minimum value of fl and, hence, of the value of the
sparsest cut.

The computational bottleneck of their method is solving a unit-capacity concurrent flow
problem, in which there is a demand of between every pair of nodes. In their paper, they
appealed to the fact that concurrent flow can be formulated as a linear program and hence can
be solved in polynomial time. A much more efficient approach is to use our unit-capacity
approximation algorithm. The number of commodities required is O(n2). Leighton 12] has
discovered a technique to reduce the number of commodities required. He shows that if the
graph in which there is an edge connecting each source-sink pair is an expander graph, then
the resulting flow problem suffices for the purpose of finding an approximately sparsest cut.
(We call this graph the demand graph.) In an expander we have:

For any partition of the node set into A and B, where AI BI, the number
of commodities crossing the associated cut is 0(IAI).

Therefore, the value of Ifl for this smaller flow problem is K2(IAI/(A, B)). Since

IBI >_ n/2, it follows that nlfl is S2(IAIIBI)/6(A, B)). The smaller flow problem essen-
tially "simulates" the original all-pairs problem. Moreover, Leighton and Rao’s sparsest-cut
algorithm can start with the length function for the smaller flow problem in place of that for
the all-pairs problem. Thus Leighton’s idea allows one to find an approximate sparsest cut
after solving a much smaller concurrent flow problem. If one is willing to tolerate a small
probability of error in the approximation, one can use O(n) randomly selected source-sink
pairs for the commodities. It is well known how to select node pairs randomly so that, with
high probability, the resulting demand graph is an expander.

By Theorem 5.2, algorithm CONCURRENT takes expected time O(m2 log2 m) to find an
appropriate solution for this smaller problem.

THEOREM 6.1. An O(log n)-factor approximation to the sparsest cut in a graph can be

found by a randomized algorithm in O(m2 log2 m) time.

The second application we discuss is approximately minimizing channel width in VLSI
routing. Often a VLSI design consists of a collection of modules separated by channels; the
modules are connected by wires that are routed through the channels. For purposes ofregularity
the channels have uniform width. It is desirable to minimize that width in order to minimize the
total area of the VLSI circuit. Raghavan and Thompson 16] give an approximation algorithm
for minimizing the channel width. They model the problem as a graph problem in which
one must route wires between pairs of nodes in a graph G so as to minimize the maximum
number of wires routed through an edge. To solve the problem approximately, they first solve
a concurrent flow problem where there is a commodity with demand for each path that needs
to be routed. An optimal solution fopt fails to be a wire routing only in that it may consist
of paths of fractional flow. However, the value of foptl is certainly a lower bound on the
minimum channel width. Raghavan and Thompson give a randomized method for converting
the fractional flow fopt to an integral flow, increasing the channel width only slightly. The
resulting wire routing f achieves channel width

(5) Ifl Ifoptl + O(v/lfoptl log n),

Their algorithm also works for edge-weighted graphs; weights translate to edge capacities in the corresponding
concurrent flow problem.

486 P. KLEIN, S. PLOTKIN, C. STEIN, AND 1. TARDOS

which is at most tOmin -- O(//Wmin log n), where //)min is the minimum width. In fact, the
constant implicit in this bound is quite small. Later Raghavan 15] showed how this conversion
method can be made deterministic.

The computational bottleneck is, once again, solving a unit-capacity concurrent flow
problem. Theorems 5.3 and 5.4 are applicable and yield good algorithms. But if LOmin is
f2 (log n), we can do substantially better.2 In this case, a modified version of our algorithm
SCALINGCONCURRENT directly yields an integral f satisfying (5), although the big-Oh constant
is not as good as that of 16].

Consider the procedure SCALINGCONCURRENT. It consists of two parts. First the pro-
cedure CONCURRENT is called with to achieve 0-optimality. Next, SCALING-
CONCURRENT repeatedly calls REDUCE, reducing the error parameter e by a factor of two

every iteration, until the required accuracy is achieved. The demands are the same for every
commodity; hence, O" is independent of i, and we shall denote it by

We claim that if tOmin ’2 (log n), then or, which is initially for this application, need
never be reduced. Consequently, there remains a single path of flow per commodity, and the
randomized conversion method of Raghavan and Thompson becomes unnecessary. We show
that these paths constitute a routing with width//)min "at- O(v/tOmin log n).

First suppose the call to CONCURRENT terminates because the granularity condition be-
comes false. At this point, we have that

(6) > 2"r/(51 log(7m-l)).
We have that r > Ifl/2 and e , and therefore If[O(logn). By our assumption

Wmi ’2 (log n), and hence fl _< L0min -I" O (V/l/)min log n).
Now assume that the call to CONCURRENT terminates with a -optimal flow. We proceed

with SCALINGCONCURRENT. It terminates when the granularity condition becomes false, at
which point inequality (6) implies that e2 O((logm)/r). The flow f is e-optimal and
integral. So Ifl <_ tOmin + O(wminV/iogm)/’r). Since r If[/2 > tOmin/2, this bound on

Ifl is at most l/)min -]- O(v/1/)min logm), as required.
THEOREM 6.2. If tOmin denotes the minimum possible width and L0min ’ (log m), a

routing ofwidth 1/)min -I- O(v’///)min log n) can befound by a randomized algorithm in expected
time O(km log n log k + k3/2(m + n log n)/v/log n) and by a deterministic algorithm in time

O(k log k(k*n log n + mk* + m log n)).
Proof. We have shown that algorithm SCALINGCONCURRENT finds the required routing

if it is terminated as soon as the granularity condition becomes false with r 1. Now we

analyze the time required.
We have D k and d(i) for every i, and throughout the algorithm we have O" for

every i. The number of calls to REDUCE during CONCURRENT is O (log k) (initially fl < k,
and it never gets below with cr 1). Therefore, the number iterations of the loop of REDUCE
required during CONCURRENT is O(k log k). Next we proceed with SCALINGCONCURRENT.
The number of iterations is at most O(log k), because e is reduced by a factor of two each
iteration, starts at , and never gets below ! k. Each iteration is a call to REDUCE, which in
turn results in O (k) iterations of the loop of REDUCE.

The time required by one iteration of the loop deterministically is
O(k*n log n + m(k* + log m)), and the total time to find a good routing of wires is

O(k log k(k*n log n + mk* + m log n)).
The expected time required by the randomized implementation of REDUCE is O(m log n

k- (m + n log n)). The total expected time required by CONCURRENT is O(mk log k log n).

9-This is the case of most interest, for if tOmi is O(log n), then the error term in (5) dominates tOmi

FASTER APPROXIMATION ALGORITHMS 487

After the call to CONCURRENT decreases by a factor of two each iteration, it follows that the
total expected time required for all iterations is O (m log n log -1) plus twice the time for the
last call to REDUCE. During the last call to REDUCE, ,-1 O(v/k/log n), so the time required
for all iterations is O(km log n log k + k3/2(m + n log n)/v/’log n). This time dominates the
time required by CONCURRENT since tOmi ’2 (log n) implies k (log n). 13

Acknowledgments. We are grateful to Andrew Goldberg, Tom Leighton, Satish Rao,
David Shmoys, and Pravin Vaidya for helpful discussions.

REFERENCES

T.H. CORMEN, C. E. LElSERSON, aND R. L. RIVEST, htroduction to Algorithms, MIT Press/McGraw-Hill, 1990,
pp. 367-375.

[2] R. DIAL, Algorithm 360: Shortest path forest with topological ordering, Comm. Appl. Comput. Math., 12
(1969), pp. 632-633.

[3] M.L. FREDMAN AND R. E. TARJAN, Fibonacci heaps and their uses in improved network optimization algorithms,
J. Assoc. Comput. Mach., 34 (1987) pp. 596-615.

[4] A.V. GOLOBEG, personal communication, Jan. 1991.
[5] A. W. GOLDBERG AND R. E. TARJAN, Solving minimum-costflow problems by successive approximation, Math.

Oper. Research, 15 (1990), pp. 430-466.
[6] M.D. GRIGORIADIS AND L. G. KHACHIYAN, Fast approximation schemesfor convexprograms with many blocks

and coupling constraints, SIAM J. Optim., 4(1994), pp. 86-107.
[7] M.D. HaNSEN, Approximation algorithmsfor geometric embeddings in the plane with applications to parallel

processing problems, in Proceedings ofthe 30th Annual Symposium on Foundations ofComputer Science,
October 1989, IEEE, pp. 604-610.

[8] S. KAPOOR AND P. M. VAIDYA, Fast algorithmsfor convex quadratic programming and multicommodityflows,
in Proceedings of the 18th Annual ACM Symposium on Theory of Computing, 1986, pp. 147-159.

[9] P. KLEIN, A. AGRAWAL, R. RAVl, AND S. RAO, Approximation through multicommodityflow, in Proceedings of
the 31st Annual Symposium on Foundations of Computer Science, 1990, pp. 726-727.

10l P. KLEIN AND C. STEIN, Leighton-Rao might be practical: a faster approximation algorithm for uniform con-
currentflow, unpublished manuscript, November 1989.

[11] P. KLEIN, C. STEIN, AND !. TARDOS, Leighton-Rao might be practical: faster approximation algorithms for
concurrentflow with uniform capacities, in Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 1990, pp. 310-321.

[12] E T. LEIGHTON, personal communication, November 1989.
13] T. LEIGHTON, E MAKEDON, S. PLOTKIN, C. STEIN, l. TARDOS, AND S. TRAGOUDAS, Fast approximation algorithms

for multicommodity flow problems, in Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, 1991, pp. 101-111; J. Comput. System Sci., to appear.

14] T. LEIGHTON AND S. RAO, An approximate max-flow rain-cut theorem for uniform multicommodityflow prob-
lems with applications to approximation algorithms, in Proceedings of the 29th Annual Symposium on
Foundations of Computer Science, 1988, pp. 422-431.

15] P. RAGHAVAN, Probabilistic construction ofdeterministic algorithms: approximatingpacking integerprograms,
in Proceedings of the 27th Annual Symposium on Foundations of Computer Science, 1986, pp. 10-18.

16] P. RAGHAVAN AND C. D. THOMPSON, Provably good routing in graphs: regular arrays, in Proceedings of the
17th Annual ACM Symposium on Theory of Computing, 1985, pp. 79-87.

[17] R. RAVI, A. AGRAWAL, AND P. KLEIN, Ordering problems approximated: single-processsor scheduling and
interval graph completion, in Proceedings of the 18th International Conference on Automata, Languages,
and Programming, Lecture Notes in Comput. Sci., vol. 510, Springer-Verlag, New York, 1991.

[18] E SHAHROKHI AND D. W. MATULA, Tile maximum concurrent flow problem, J. Assoc. Comput. Mach., 37
(1990), pp. 318-334.

[19] D. D. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, J. Comput. System Sci., 26 (1983),
pp. 362-391.

[20] E. TARDOS, hnproved approximation algorithmfor concurrent multi-commodityflows, Tech. report 872, School
of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, October 1989.

[21 P. M. VAIDYA, Speeding up linear programming using fast matrix multiplication, in Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, 1989, pp. 332-337.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 488-509, June 1994

() 1994 Society for Industrial and Applied Mathematics
003

THE EXTENDED LOW HIERARCHY
IS AN INFINITE HIERARCHY*

MING-JYE SHEU ANO TIMOTHY J. LONG

Abstract. Balcfizar, Book, and Sch6ning introduced the extended low hierarchy based on the Z-levels of
the polynomial-time hierarchy as follows: for k > 1, level k of the extended low hierarchy is the set EL
{A E’(A) Et’-1(A @ SAT)}. Allender and Hemachandra and Long and Sheu introduced refinements of the
extended low hierarchy based on the A- and Q-levels, respectively, of the polynomial-time hierarchy: for k > 2,

EL.’zx --{a A(A) c_ A.__I(ASAT)}andEL’ {Z O(A) _c O’__I(At3SAT)}. This paper shows that the
P,O P,A P,Eextended low hierarchy is properly infinite by showing, for k > 2, that EL ELk+EL+I

The proofs use the circuit lower bound techniques of Hfistad and Ko. As corollaries to the constructions, for k > 2,
oracle sets B,, C,., and D,, such that PH(B,) E’(B,.) A’(B,), PH(C,) A’(C,) Off(C,), and

PH(D,.) 0P (D/,.) E’_I (D/,.) are obtained.

Key words, extended low hierarchy, circuit lower bounds, polynomial-time hierarchy, relativizations

AMS subject classifications. 68Q 15, 68Q05

1. Introduction. The low and high hierarchies in NP were introduced by Sch6ning in
order to understand the internal structure of NP [Sch83]. The low hierarchy starts at P and
grows "upward" toward the NP-complete sets, while the high hierarchy starts with the complete
sets in NP and grows "downward" toward P. More formally, set A is in level k of the low
hierarchy if E/’ (Z) E’, and A is in level k of the high hierarchy if E’+ E’ (Z). Many
interesting sets have been located in these hierarchies: <-complete sets and <N-complete
sets for NP form the first two levels of the high hierarchy, while sparse NP sets, NP sets with
small circuits, and graph isomorphism have been placed in various levels of the low hierarchy.

These hierarchies were first extended to sets outside of NP by BalcAzar, Book, and
Sch6ning [BBS86]. In particular, they defined the extended low hierarchy as follows: set
A is in level k of the extended low hierarchy if E’ (A) c_C_ E’_ (A @ SAT). Once again, many
interesting classes of sets have been located in the extended low hierarchy, such as sparse sets,
sets with small circuits, and general left cuts of real numbers. Recently, refinements of the
extended low hierarchy based on the A-classes and O-classes of the polynomial-time hierar-
chy were introduced by Allender and Hemachandra [AH92] and by Long and Sheu [LS91],
respectively. Many of the sets previously located in the extended low hierarchy were more
carefully and precisely located in new levels of the refined extended low hierarchy.

An interesting open question is whether the low hierarchy or the extended low hierarchy
consists of an infinite number of distinct levels. This question is of interest for several reasons.
If these hierarchies are properly infinite, then they provide a natural formal framework for
categorizing and comparing the relative "power and complexity" of sets: sets at higher levels
of the low hierarchy are more "complicated" than sets at lower levels. But more importantly,
for the low hierarchy, if it contains at least two distinct levels, then P - NP. We also note that
it is not even known if the low hierarchy is properly infinite under very natural assumptions,
such as the polynomial-time hierarchy consisting of an infinite number of distinct levels.

For the extended low hierarchy, the situation is somewhat different. In proving optimal
lower bounds for the extended low hierarchy, Allender and Hemachandra [AH92] constructed
a sparse set that is not in EL’’:, level two of the extended low hierarchy based on the E-levels

*Received by the editors August 26, 1991" accepted for publication (in revised form) December 21, 1992. This
work was supported in part by National Science Foundation grant CCR-8909071.

IBM Networking Software Laboratories, Research Triangle Park, North Carolina 27709.
:Department of Computer and Information Science, The Ohio State University, Columbus, Ohio 43210.

488

THE EXTENDED LOW HIERARCHY IS INFINITE 489

P,O the thirdof the polynomial-time hierarchy. Since it is known that all sparse sets are in EL
level of the extended low hierarchy based on the O-levels of the polynomial-time hierarchy,
this shows that the extended low hierarchy has at least two distinct levels up through EL’’.
However, it was not known if the extended low hierarchy has distinct levels beyond EL’’.

In this paper we show that the extended low hierarchy is in fact a properly infinite hierarchy.
Specifically, we prove that

P,(R) P,A P,EYk >_2, EL’r ELk+ c ELk+ c_ ELk+l,
P,E P,A P,(R)where ELk (ELk ELk denotes level k of the extended low hierarchy based on the

E-levels (A-levels, (R)-levels, respectively) of the polynomial-time hierarchy. This is the first
example of a low hierarchy in complexity theory that has been shown to be properly infinite.

Our proofs follow the circuit lower bound techniques from. Yao [Yao85], Hfistad [Has87],
and Ko [Ko89]. Of particular interest for us is Ko’s result that there are sets relative to which
the polynomial-time hierarchy collapses to any finite level:

’v’k >_ 1, 3A [PH(A) E’ (A) Ek_ (A)].

Note that A is in level k + of the extended low hierarchy based on E-levels of the polynomial-
time hierarchy and is not likely to be in level k of the extended low hirarchy. The condition
for A not being in level k of the extended low hierarchy is as follows"

PH(A) EP (A) E;_ (A SAT).

Thus, a direct modification of Ko’s proofs yields that every E-level of the extended low
hierarchy is distinct. In this paper we are able to extend Ko’s collapsing results to A- and
O-levels of relativized polynomial-time hierarchies.

In 3, we extend Yao and Hfistad’s separation results by showing the existence of oracle
sets A, B, and C such that for all k >_ 2, A’ (a) - E(a), O(B) :/: A (B), and E’_ (C) -O’ (C). In order to obtain our results, we introduce, for the first time, circuit models for the A-
and O-classes of relativized polynomial-time hierarchies. In 4, we combine the separation
results of 3 with encoding techniques to construct oracles Dk, Ek, and Fk such that

Yk >_ tDk [PH(Dk) E’(Dk) A’(Dk SAT)l,

Yk >_ 2 BE [PH(Ek)- A(Ek) O’(E, SAT)l,

and

SAT)].

These results show that every level of the extended low hierarchy is distinct. Immediate
corollaries are the existence of oracles G, H, and lk, for all k > 2, such that PH(Gk)

E’ (Gk) - A’ (Gk), PH(Hk) A’ (H) - (R)’ (Hk), and PH(Ik) O’ (Ik) E’_ (Ik).
These corollaries answer open questions posed by Ko [Ko89].

2. Preliminaries.

2.1. Basic definitions and notation. E denotes an arbitrary alphabet of size at least two.
For x E E*, Ixl denotes the length of x, with ,k denoting the string of length 0. For a set A
over E, A denotes its complement E* A, and for a class of sets C, co-C denotes the set of
complements of the elements of C. For arbitrary sets A and B, A B {0x x E A} t_J lx

490 MING-JYE SHEU AND TIMOTHY J. LONG

x B }. Let A denote the cardinality of a set A, and let A -<" denote the cardinality of
A<-"; that is, the cardinality of A restricted to strings of length at most n.

L(M) denotes the set accepted by Turing machine M, and L(M, A) denotes the set
accepted by an oracle Turing machine M using oracle set A. The classes P and NP have their
standard definitions. P(A) and NP(A) are the A-relativized versions of P and NP. For each
oracle set A, we define the set K(A) as follows: for a nondeterministic oracle machine Mi, a
string x, and an integer j, let (i, x, j) K(A) if and only if the nondeterministic machine
Mi, using A as the oracle, accepts x in at most j steps. It is well known that, for every set A,
K(A) is <m-complete for NP(A).

2.2. Polynomial-time hierarchy. The classes of the polynomial-time hierarchy are

{E’, l-IP, AP, (R)P k >__ 0}, where

and

Eft =FI =A=O =P, and fork>0,

E+ NP(E,P),

n’+, co-Ed+,, A,P+, P(E),

Sets in the polynomial-time hierarchy relative to A have also been characterized in terms
of polynomial bounded quantification over predicates in P(A) [Sto76], [Wra76]. We adopt
the following definitions from [Ko89]. A predicate cr of a set variable A and a string variable
x is called a polynomial-time predicate, or a P 1-predicate, if there exist an oracle machine
M and a polynomial p such that p bounds the running time of M, and for all sets A and all
strings x, MA accepts x if and only if or(A; x) is true. Thus, a set B is in P(A) if and only if
there exists a P-predicate cr such that for all x, x B cr (A; x) holds.

P,lDefine the E0 -predicates to be the P l-predicates. For each k > 1, define a E’’-
predicate to be any predicate of the form:

(:lye, lYI p(Ixl))(Vy2, ly2l < p(lxl))" "(Q,y,, ly,-I < p(lxl))r(A; (x, Yl Y,)),

where cr is a P l-predicate, p is a polynomial, and Q, is :-q if k is odd and Q, is if k is
even. Without loss of generality, we assume that p also bounds the running time of the oracle
machine M that decides cr with oracle A. The classes of the relativized polynomial-time
hierarchy (PH(A)) can be defined as follows:

and

E’(A) {L (:iE"-predicate r)[x 6 L , r(A; x)]},

n’(A) co-Ed’(A),
P (A) P(E’(A)),A,+

PO+ (A) O(E/’(A)), for k > 0.

It is known that for each level of the relativized polynomial-time hierarchy, there is a

E’ (A)-complete set. These complete sets can be defined inductively as follows" Let K (A)
K(A) and KC(A) K(K’-I(A)) for k > 1. Then for each k > and each set A, Kk(A) is
complete for E’ (A).

IThe (R) operator is defined as follows: for any class C, a set L 6 (R)(C) if and only if there are a deterministic

polynomial time oracle machine M and a set A C such that L L(M, A) and, on any input x, M makes at most

O(log Ixl) queries to A.

THE EXTENDED LOW HIERARCHY IS INFINITE 491

2.3. Circuits. A circuit is a rooted tree, where each nonleaf node is associated with a
gate. In this paper, we use four types of gates: AND, OR, MaxOdd, and XOR. For a MaxOdd
gate, let its input lines from left to right be b0, bl b,. A MaxOdd gate outputs if and
only if is odd, where bi iS the rightmost input line with input 1. A MaxOdd gate outputs 0
if all the inputs are 0. An XOR gate outputs if and only if the number of its 1-inputs is odd.
The fanins of all the gates are unlimited. Each leaf of a circuit is associated with a constant.
0, a constant 1, a variable x, or a negated variable . The size of a circuit C is defined to be
the number of gates in C. Given a circuit C with only AND and OR gates, its dual circuit
is defined inductively as follows: the dual of a constant or a variable is its negation, and the
dual of a circuit C that is an OR (AND) of n children Ci, <_ <_ n, is the AND (OR) of i,
l<i<n.

A circuit computes a function on its variables in the obvious way. Each variable is
represented by vz for some string z Z*. Let V be the set of variables in a circuit C. A
restriction p of a circuit C is a mapping from V to [0, 1, .). Let Cp denote the circuit C’
obtained from C by replacing each variable x with p(x) 0 by 0 and each y with p(y)
by 1. If a restriction p maps no variables to., we say p is a complete assignment for the
variables of C. Also, we say a restriction p completely determines C if Cp computes a
constant function 0 or 1.: For any set A c_C_ Z*, the natural assignment PA on all variables vz,
z Z* is: PA (Vz) if z A and PA (Vz) 0 if Z ’ A. For any pair of sets B, Bo, with

B Bo 0, the assignment PB,Bo on all variables vz, z E*, is PB,Bo (vz) l, if Z Bl,
PBt,Bo (l)z) O, if z 6 B0, and DBt,Bo (Vz) *, if z ’ BI I,_J B0.

Note that applying a restriction p to a circuit C and its dual circuit ’ results in another
pair of dual circuits. This can be expressed by the following proposition.

PROPOSITION 2.1. Let C be a circuit with only AND and OR gates, and let be the dual
circuit of C. Let p be a restriction of C. Then C [p is the dual circuit ofC [p.

Random restrictions of circuits were first introduced by Furst, Saxe, and Sipser [FSS81].
We use two probability spaces of restrictions Rq+,i3 and R,t from [Has87], as well as the

restriction g(p), where p Rq+,6 or R.z. Let/3 {Bj }=1 be a partition of variables in a
+ forcircuit C, and let q be a value between 0 and 1. To define a random restriction ,o in Rq,13,

each Bj, < j < r, let sj with probability q and let sj 0 with probability q. Then,
independently, for each variable x Bj, let p(x) sj with probability q and p(x) with

probability q. Next, for each p Rq+,13 define a restriction g(p) such that for all Bj with

sj -., let Vj be the set of all variables in Bj that are given value by p. g(p) selects one
variable y in Vj and gives value to y and value to all other variables in Vj. The probability
space R-6 and g (p) are defined analogously by interchanging the roles of 0 andl

CircUits can be used to describe the computation of oracle machines on input strings
[FSS81]. The following proposition is taken from Ko [Ko89].

PROPOSITION 2.2 [Ko89]. Let M be a deterministic oracle machine with runtime < p(n),
where p is a polynomial. Then, for each x, there is a depth-2 circuit C CM,x satisfying the
following properties:

(1) C is an OR ofANDs;
(2) the topfanin ofC is < 2p(Ixl) and the bottomfanin ofC is < p(Ixl); and
(3) for any set A, C[= ifand only ifMa (x) accepts.
Intuitively, each AND gate of C represents one of the accepting computation paths of M

on input x, where the variables of the AND gate represent the query strings and answers of
that path. It is not difficult to see that the above proposition also holds if we require that the
circuit C be an AND of ORs.

2Note that a restriction that is not a complete assignment may still completely determine C.
3Since M is a deterministic oracle machine, there is a determinisitc oracle machine M such that M’ behaves

exactly like M except reversing accept/reject at the end of the computation. The desired AND of ORs circuit is the
dual circuit of the circuit obtained from M by Proposition 2.2.

492 MING-JYE SHEU AND TIMOTHY J. LONG

We call a depth-(k + 1) circuit a E,-circuit if it has alternating OR and AND gates, starting
with a top OR gate. A E, (m)-circuit (Fig. 1) is a E-circuit such that

(1) the number of gates at level to level k is bounded by 2m,
and

(2) fanins at level k + are < m.
Note that there is no restriction in fanin at level k. A depth-(k + 1) circuit is a Fl-circuit
(lq (m -circuit) if its dual circuit is a E-circuit (E (m)-circuit). Now we can translate E’’-
predicates to circuits.

level

number of
gates <= 2

m

ounded fanin

fanin <= m

FIG. 1. A Ek (m)-circuit.

PROPOSITION 2.3 [Ko89]. Let k > 1. For every E’-predicate r there is a polynomial
q such that for every x, there exists a Ek(q(lxl))-circuit Cr,x, having the property that for
any set A, Cr,x[pa-- if and only if r(A; x) is true. Also, for each variable v (-f-z) in Cr,x,
Izl _< q(Ixl).

Sipser [Sip83] introduced a family of functions f’, n > 1, k > 1, computed by special
types of circuits. Hhstad later introduced a modified family of f’ functions [Has87], and
Ko, still later, introduced a further modification of the f functions in constructing oracles
that separate and collapse relativized polynomial-time hierarchies [Ko89]. We will use Ko’s
defnition of f functions as well as introducing similar functions that will be used in our

separation results in the next section. These circuits and their functions are pictured in Figs.
2, 3, and 4.

that:

and

DEFINITION 2.4 [Ko89]. For each n > and k > 1, a C. circuit is a depth-k circuit such

(1) C has alternating OR and AND gates, with a top OR gate;

(2) all the fanins ofC are exactly n, except the bottom fanins, which are exactly

(3) each leafof C. is a unique positive variable.
We let f’ denote the function computed by C.

THE EXTENDED LOW HIERARCHY IS INFINITE 493

level

level

fanin

FIG. 2. A C’k circuit.

1

fanin
1 n

n

n

FIG. 3. An H circuit.

DEFINITION 2.5. (1) For each n > and k >_ 1, an H[’ circuit is a depth-k circuit with a

top MaxOdd gate having fanin exactly n such that each subcircuit of the top MaxOdd gate is
a C7_l circuit computing an f._lfunction and that all the variables in H are unique. We let

hn denote the function computed by H
(2) For each n >_ and k > l, a D circuit is a depth-k circuit with a top XOR gate having

fanin exactly 2 such that each subcircuit of the top XOR gate is a C’_l circuit computing an

f]_l function and that all the variables in D are unique.
We let l. denote the function computed by D.
Before ending this section, we state some important lemmas, including the switching

lemma on constant-depth circuits from Hstad [Has87].
LEMMA 2.6 (Switching Lemma) [Has87]. Let G be an AND of ORs with bottom fanin

< t, and let 13 Bj be a partition of the variables in G. Then, for a random restriction p

494 MING-JYE SHEU AND TIMOTHY J. LONG

level
nCk_l

fanin

k

FIG. 4. A D circuit.

from Rq,13,+ Pr(G [pg(p) is not equivalent to a circuit ofOR ofANDs with bottom fanin < s) is
+ replaced by Rtsbounded by a where ot < 6qt. The above probability also holds with Rq,t3

or with G being an OR ofANDs circuit to be converted to an AND ofORs circuits.

The next lemma is a generalized form of the switching lemma.
LEMMA 2.7 [Has87, Ko89]. Let {Ci}i= be a collection depth-2 AND-of-OR and OR-

of-AND circuits, where the bottom fanin of each Ci is <_ t. Let V be the set of the variables
in {Ci }=, and let 13 {Bj} be a partition of the variables in V. q is a number between 0

+and and p is a random restriction from Rq,B or R.13. The probability that every Ci [,g(p),
which is an AND-of-OR or OR-of-AND, can be converted to a OR-of-AND or AND-of-OR,
respectively, with bottom fanin < s is greater than 2/3, if n <_ 1/(3eta), where ot < 6qt.

The importance of the switching lemma is that a depth-(k + 1), k >_ 2, alternating
OR-AND-gate circuit, with small bottom fanins, can be converted to an equivalent depth-k
alternating OR-AND-gate circuit, with small bottom fanins. This "shrinking" effect is done
by converting the bottom 2-level OR-of-AND (AND-of-OR) subcircuits to AND-of-OR (OR-
of-AND) subcircuits and then collapsing the AND (OR) gates at level k and k- of the circuit.
Our next lemma is a formal statement of this shrinking effect.

LEMMA 2.8. For each k > 2, let {Ci}= be a collection of Ek()/)-circuits and 1-Ik(?’)-
circuits. Let V be the set of the variables in {Ci }i, and let 13 {Bj} be a partition of the

+variables in V. Let q be a number between 0 and 1, and let p be a random restrictionfrom Rq,B
or Rts. The probability that every Ek(?,,)-circuit and every [l(),’)-circuit, after applying the
random restriction p, can be converted to an equivalent

_
(?,’)-circuit and an equivalent

[I_ (?,)-circuit is greater than 2/3, ifn < 1/(3(2c)) where ot < 6qy.
Lemmas 2.9 and 2.10 show the effects of a random restriction p Rq+,13 or Rq,13 on

the circuits that compute fff, h., and l functions. The effect of random restrictions on the
circuits computing f’ functions is due to Hgtstad [Has87]. Lemma 2.9 shows that a random
restriction p Rq+,B (or R-,13, depending on whether k is odd or even) transforms a circuit
computing f ’(hk+ 1, or l,+), to a circuit computing a function very close to f-"--1 (h., or lk).
Lemma 2.10 is a stronger form of Lemma 2.9. All proofs follow easily from the proofs in

[Ko89].
LEMMA 2.9. For each k >_ 2, there exists an integern such that thefollowing holdfor all

THE EXTENDED LOW HIERARCHY IS INFINITE 495

n > nt" Let C be a C’ circuit computing an f’.’ function (an H+l circuit computing an h"k+l
function, or a Dk’’+ circuit computing an 1’’+ function), let q n -/3, and let p be a random
restrictionfrom eq+,13 ifk is even orfrom R,,t ifk is odd. The probability that C [pgW) contains
a subcircuit computing an f!_ function (an hkn function, or an l." fitnction, respectively) is
greater than 2/3.

LEMMA 2.10. For each k > 2, let Ci }i= be Ck circuits, each computing afimction ft
with pairwise diajoint variables. Let q n -/3. If < 2a’/’ with < 1, then for sufficiently
large n, there exists a restriction p from Ru+,t3 if k is even orfrom R,t3 if k is odd, such that
evetT Ci [vg{p), < < t, contains a subcircuit that computes an f function. This is also

circuits andh" and fimctions.holds for H+ and D+ + lk+l
3. Separation results for relativized polynomial-time hierarchies. Yao and Hastad

[Yao85], [Has87] proved the existence of oracles, relative to which, the polynomial-time
hierarchy has an infinite number of distinct levels. In this section, we further separate the E-,
A-, and O-classes of relativized polynomial-time hierarchies. Our separating results show
that there is an oracle A such that for all k > 2, E’_(A) c O’(A) A’(A) c E’(A).
Although Yao and Hastad’s results imply part of our separation results, we show different
proofs here and will make use of them in the later sections.

3.1. Separating A-classes and E-classes in relativized polynomial-time hierarchies.
In this section, we show that there exists a recursive oracle A such that for all k > 2, E’ (A) :/:
AP(A). We will find, for each k > 2, a set L 6 E’(A) such that L ’ A’(A). By
dovetailing the diagonalization for each k > 0, the oracle set A izan be constructed so that
A’(A) E.P(A) for all k > 0. Note that when k 1, separation of E(A)and A’(A) was
already done in [BGS75].

In order to use the circuit lower bound techniques, we need tO define circuits for Aft (A).
Consider a deterministic polynomial-time bounded oracle machine M using oracle set B. On
any input x, we can perform computations of M on x. By Proposition 2.2, there is a two-level
OR-of-ANDs circuit C,.. such that x L(M, B) if and only if C4,. ,,- 1. Each AND gate
of Cm,.,- represents an accepting computation path of T, relative to some oracle. The fanins

(variables) ofeach AND gate are the query strings in the corresponding computation path of T.
For the convenience of discussion, we will label each AND gate with p(Ixl) bits, where p is
the polynomial bound of the running time ofM on any input x. For each label b... bp(ixl),
bi represents the answer of the th query string in the corresponding computation path: bi
if and only if the answer to the ith query string is YES. It is not difficult to see that every two
labels are distinct and that for any two labels and l’ with same prefix b... bi, < < p(Ixl),
the corresponding computation paths n’t and n’, have the same query strings q qi+l.

Now if we replace B by K’- (A), then the language accepted by M is in Aft (A). As stated
in 2, for each variable z of the form (i, y, 1J), there are a polynomial q and a E,-(q(Izl))-
circuit CKk-t,z such that z K-(A) if and only if CKk-,,Z[pA--- 1. We then replace each
positive variable Vz of CM,.,- by Cx-,,z if z is of the correct syntactic form or by 0 if z is not
of the correct syntactic form. For each negative variable Vz of CM,x, we replace it by the
dual circuit of CK-,,z if Z is of the correct syntactic form or by if z is not of the correct
syntactic form. The entire circuit consists of k + 2 levels. Now we formally define, for k > 2,
A, (m)-circuits.

DEFINITION 3.1. For k > 2, C is a Ak (m)-circuit ifand only if
(1) C has k + 2 levels; and the top gate is an OR withfanin <_ 2m;
(2) the gates on the second level are AND gates with fanins < m;
(3) each AND gate Gj at the second level has a distinct label ofm bits, b bin, and if

bi then the th subcircuitfrom the left of Gj is a

_
(m)-circuit, and if bi 0 then the

ith subcircuitfrom the left of Gj is a Flk_ (m)-circuit;

496 MING-JYE SHEU AND TIMOTHY J. LONG

(4) for any two AND gates Gj and Gn, labeled lj and ln, at the second level, if the first
r bits, r < m, of labels lj and In are the same, then the first r subcircuitsfrom the left of Gj
and Gn are the same; and

(5) for any two AND gates Gj and Gn, labeled lj and 1,, at the second level, if the first
bitfrom the left of lj and ln, where lj and In differ, is br, r < m, then the rth subcircuitsfrom
the left of Gj and G, are dual circuits.

The following lemma states that for all k > 2 and for any arbitrary set A, if L 6 Ak (A),
then there is a A,-circuit C such that x 6 L <:l> C [p,= 1.

LEMMA 3.2. Let k > 2. For every set L A(A), there is a polynomial q such that
for every input string x, there is a corresponding Ak(q([x[))-circuit Cr,x such that x L :
CL, [p= 1.

Our goal is, for every k > 2, to find a set A such that ’ (A) properly contains A (A).
First, for fixed k > 1, define the language

L-{xO" lxl-2n, (y, [yll--n)(Vy2, [y2[--n)... (Qkyk, [yk[n)Oxyly2 yk A},

where Q, is El if k is odd and Q is ’v’ if k is even. It is clear that LA }] (A).
Let M, M2 be an effective enumeration of deterministic polynomial-time bounded

oracle machines with running time bounded by polynomials p, P2 respectively. The
construction of set A is by stages Let t(n) denote the maximum length of strings in A or
A decided by stage n. Let D(n), the diagonalization area for stage n, be the set {x 6 *
(n 1) + _< Ix[< (n)}. At stage n of the construction, we will find a witness 0m, rn is a

multiple of k + 2, such that, 0m L <: 0m

_
L(M,,, Kk- (A)); that is, at each stage n > 0,

we want to satisfy the following requirement R,"

Rn (Elx om)(ElB C_C_ D(n))[0m L <: 0

_
L(Mn, K-1 (A’))],

where A’ A(n 1) t3 B and A(n 1) denotes the strings in A decided prior to stage n.
Let Co be the obvious k-level circuit for the predicate 0m 6 L. Co contains a subcircuit that

computes a fk2"/+ function. By Lemma 3.2, there exist a polynomial q and a A,(q(m))-
circuit C that corresponds to the computation of the machine M,, on input 0m with oracle
Kk-I (A). Since the length of query strings to A in the circuit C,, is bounded by q(m), we let
(n) q(m). The requirement R,, can then be rewritten as

R,’, (Elx --om)(ElB C_ D(n))[Co[,-- 0 C,[,--0],

where A’ A(n 1) O B. Now let sk(v) be the minimum r such that a Ak(r)-circuit can
compute an fk function. That requirement R,’, can be satisfied follows from the following
lower bound on Sk (v).

THEOREM 3.3. For all k > 2,for sufficiently large v, Sk(V) > 3v/5, where 1/48.
Proof The proof is by induction on k. For the base case of k 2, let C be a circuit

computing f2; that is, C is an OR of v AND’s, each having fanin r. Let C be a Az(r)-
circuit, with r < 3v/. We will show that C does not compute f2; that is, we will find a
restriction p such that C [p- C[p.

Consider C, a Az(r)-circuit. Recall that, for each AND gate gt at second level of C, g
is labeled with r bits, bl b2 b,., and if bl, 1, then the th subcircuit from the left of gt is
a]1 (r)-circuit, and if bt 0, then the ith subcircuit from the left of g is a FIl(r)-circuit.
Also, for any other AND gate gI’ at the second level with label b, bt,2.., bt, where b# b
for < j < and bt bt;, the ith subcircuits of gt and gt are dual circuits. Thus, if we find
a restriction p that makes the ith subcircuit of gt output 1, then the th subcircuit of gr will
output 0 by Proposition 2.1 Therefore, the entire subcircuit g’ at level 2 of C can be replaced

THE EXTENDED LOW HIERARCHY IS INFINITE 497

by a constant 0. By making assignments to at most r2 variables, we will be able to determine
completely the output of C while the output of C remains undetermined.

The process of finding an appropriate assignment of variables starts by fixing the leftmost
subcircuit of each second-level AND gate of C. Note that there is a single Z (r) circuit C
such that the leftmost subcircuit of each second-level AND gate of C is one of C1 or C. If C
can be forced to output by assigning at most r variables (recall that C is an OR of ANDs,
each AND with fanin at most r), then this is done. Then, all second level AND gates of C
with C as the leftmost subcircuit are modified by replacing C with 1, and all second level
AND gates of C with as the leftmost subcircuit are removed from C. On the other hand,
if C1 cannot be forced to output 1, then will always output regardless of assignments to
variables. In this case, all second-level AND gates of C with C as the leftmost subcircuit
are modified by replacing with 1, all second-level AND gates of C with C as the leftmost
subcircuit are removed from C, and no assignments are made. In either case, all second-level
AND gates that now remain in C had the same leftmost subcircuit, either C or ’, which is
now replaced by 1. This implies that there is a single Z (r) circuit C2 such that the second
subcircuit of each remaining second-level AND gate of C is one of C2 or 2. Hence, we
can repeat the same process with C2, then with some C3, etc., until some Cr. At this point,
at most r2 variables will have been assigned and the output of C is completely determined.
Since r2 _< (31)1/5)2 < for sufficiently large v, there is no bottom AND gate G ofC such
that G [p= 1. Also, since the top fanin of C is v, there is some bottom AND gate G’ of C
such that no variables of G’ have been decided in the previous process; that is, we can find a
restriction p such that

(#) C[p-. and C[p-..

Thus, C cannot compute a function fv when the size of C is less than 6v /5 This2
establishes the base case for the inductive proof of Theorem 3.3.

Our induction hypothesis is that for some fixed k’ > 2 and for sufficiently large v,
sk,(v) > 6v/5; that is, for sufficiently large v, if C is a Ak,(r)-circuit with r < 6v /5, then C
does not compute the function f{. For the induction step, consider k k’ + > 2. Consider
a C-circuit that computes an f{ function. Let q v-1/3 and let/3 {Bj }, where Bj is the
set of variables of the bottom AND gate Hj of C. By way of contradiction, assume that there
exists a circuit C, that is, a A(r)-circuit with r < 3v /5, computing the function f{. We will

+argue that after applying a random restriction p from Rq,13, if k is even, or from R,6, if k is

odd, to C, the resulting circuit CFpg(p is a A_ (r)-circuit with r < 6v /5 that computes the
function f_, which contradicts our induction hypothesis.

To apply the induction hypothesis, we need to verify that
(1) with a high probability, C [pgp) is equivalent to a/x_ (r)-circuit,

and
(2) with a high probability, C [pgp) contains a subcircuit computing the function f_ 1.

Part (1) is proved by Lemma 2.8. To apply Lemma 2.8, let us choose F 6v /5. We have
ot < 6qF 1/8. 1) -2/15. By definition, the total number of Ek(r)-circuits and Flk(r)-
circuits in a A(r)-circuit is bounded by r. 2 < 22r. Thus, we only need to show that
22r < 22’ < 1/(3(2ot)). We have

22’ 3(2ot) 3. (8c) < 3. (v-2/15) <

for sufficiently large v. This proves part (1). Part (2) was proved in Lemma 2.9. This

completes the proof of Theorem 3.3. [3

To satisfy requirement R’,, notice that C,, is a A(q(m))-circuit corresponding to the

predicate 0 L(M,,, K-(A)) and that Co, corresponding to the predicate 0m 6 LA,
f2rn/(k+2)contains a subcircuit that computes an function. Thus, we need to choose an integer

498 MING-JYE SHEU AND TIMOTHY J. LONG

rn so large such that q(m) < (1/48) 2m/5(!+2) and that Theorem 3.3 holds for Sk(2m/(k+2)).
We now have the desired theorem.

THEOREM 3.4. There exists an oracle a such thatfor all k > 1, A(a) E (a).

3,2. Separating O-classes and A-classes in relativized polynomial-time hierarchies,

In this section, we show that there exists a recursive oracle A such that for all k > 2, (R)ff (A) -A P A PA’ (A). We will find, for each k > 2, a set Lodd,k E A (A) and that Lodo, ’ (R) (A). Again,
by dovetailing the diagonalization for each k > 2, the oracle set A can be constructed so that

(R)’(a) % Aft(a)for all k > 2.
We will again use circuit lower bound techniques to prove this separation. Similarly to

finding special circuits that represent sets in A’ (A), we need special circuits that represent sets
in (R)ff (A). Consider a deterministic polynomial-time bounded oracle machine M using oracle
set B and, on any input x, the query tree T that represents all the possible computations of.M
on x. Since there are at most O (log Ix]) queries in any one computation path, the total number
of possible paths is bounded by a polynomial p(lxl). Thus, we can define (R)(m)-circuits in
a manner that is similar to the definition of Ak (m)-circuits.

DEFINITION 3.5. For k > 2, C is a (R) (m)-circuit ifand only if:
(1) C has k + 2 levels, and the top gate is an OR with fanin < m;
(2) the gates on second level are AND gates with fanins < log m;
(3) each AND gate Gj at the second level has distinct label ofn log rn bits, b b,,,

and if bi then, the ith subcircuitfrom the left of Gj is a

_
(m)-circuit, and if bi O,

then the ith subcircuitfrom the left of Gj is a I-l_ (m)-circuit;
(4)for any two AND gates Gj and G,,, labeled lj and l,,, at the second level, ifthefirst r

bits, r < log m, oflabels lj and l,, are the same, then the first r subcircuitsfrom the left of Gj
and G,, are the same; and

(5) for any two AND gates Gj and G,,, labeled lj and l,, at the second level, if the first
bit from the left of lj and l, where lj and 1,, differ is b,., r < log m, then the rth subcircuits

from the left of Gj and G,, are dual circuits.
LEMMA 3.6. Let k > 2. For every set L (R) (A), there is a polynomial q such thatfor

every input string x, there is a corresponding (R)k(q([xl))-circuit CM,x such that x L
CM,x FpA 1.

TO separate (R)’ (A) and Aft (A), for all k > 2, we define

LA {X0/no, lxl n, and max{y lYl--Ixl,xyO()n L_} has odd parity}.

ARecall that Lka_, as defined in 3.1, is a set in Eff_ (A); thus Loda, is in AP (A) using a binary
search algorithm. The setup of the diagonalization is similar to the one in 3.1 with functions

t(n) and D(n). For each stage n > 0 of the construction, we want to satisfy the following
requirement R,,"

B 0m k-Rn (:Ix om)(:IB C_ O(n))[O Lodd,, ’ L(Mn, K (A’))],

where A’ A(n 1) t_J B and A(n 1) denotes the strings in A decided prior to stage n,
and M,, is the nth (R)’ oracle machine making at most log(p,,(m)). Note that the predicate
"0 LBodd,, can be represented by a k-level circuit with a top MaxOdd gate having fanin

[-2m/tk+ 1)

2m/(k+l). Each top level subcircuit, Cy, ofMaxOdd contains a._ -subcircuit computing an

fk
2m/t’+l) Bfunction, where y corresponds to the y in the definition of Looo,. Also, the subcircuits

C., will be arranged, in lexicographic order on y, from left to right as the children of the top
MaxOdd gate. Let Co be the corresponding k-level circuit for the predicate 0m E Ln Coodd,k"

/_/2m/(TM la2m/(k+l)contains an "’k subcircuit that computes an ,.k function.
By Lemma 3.6, there exist a polynomial q and a O(q(m))-circuit C, corresponding to

the the machine M,, on input 0m, with oracle Kk-(A). We let t(n) q(m). The requirement

THE EXTENDED LOW HIERARCHY IS INFINITE 499

R,, can then be rewritten as

Rn (3x 0’n)(gB C_C_ D(n))[Co[ps--- C,, rpA,: 01,

where A’ A (n 1) t_J B.
Now let sk(v) be the minimum r for a (R)k(r)-circuit to compute an h, function. The

following lower bound on sk (v) shows that the requirement R’n can be satisfied.
THEOREM 3.7. Forall k > 2,for sufficiently large v, sk(v) > 3v 1/5, where 1/24.
Proof Again, the proof is by induction on k. For the base case of k 2, let H be

an MaxOdd of v subcircuits, each computing a function f(. Let C be a (R)2(r)-circuit, with
r < 3v l/5. We need to show that C does not compute the same function as H; that is, we
will find a restriction p such that H [p# C [p.

Consider C, the (R)2(r)-circuit. Accounting for the fact that some El- and Fll-circuits
are duals, there are at most r < 3v 1/5 many different El-circuits and Il-circuits in C. (It is

easy to see this by looking at the query tree of a (R)’ oracle machine.) During the construction
of A at stage n, we will put strings into A step by step. At each step we place some strings
into A in order to flip-flop the output of H [pa During the same step, at least one of the
El-circuits (or 1-I l-circuits) of C will be fixed to have output (or 0) by assigning variables
to A only. Since there are only r < v/5 many different E-circuits and Fll-circuits, we will
eventually fix the output of C after at most r 4- < 6v /5 flip-flops of H. We argue that, after
this process, we are still able to flip-flop the output of H as we desire. Thus, we can find the
needed restriction. Now we present this flip-flop process.

Process FF:
B the variables of the leflmost OR gate of H; B t3;
while C I-ps= H’ [p do

if there is some E-circuit Cj of C with Cj [p-- then
for all E-circuits Cj of C with Cj [p- do

Fix the output of one AND gate G of Cj to be with restriction
by assigning all negative variables of G to B

end(, for ,)
end(, if ,)
if there is some Ill-circuit C of C with C [p= 0 then

for all Ill-circuits C of C with C 1-8- 0 do
Fix the output of one OR gate G’ of C to be 0 with restriction p

by assigning all positive variables of G’ to B
end(, for ,)

end(, if ,)
Find the leftmost subcircuit Hi of H such that Hi I-p,, 0.
Let V be the set of variables in Ha that are not in B. Let B B t_J V.

end(, while ,)

We now carefully analyze Process FF. Initially, B contains the variables in the leftmost
OR gate of H and B is empty. We have H: I-oe= 0. If H Joe :/: C[o, then we are done.
Otherwise, we will try to fix the output of some of the E-circuits or Fl-circuits of C. To
make sure that we only reserve polynomial many strings in the entire process, we only consider
fixing the output of El-circuits to be and the output of Il-circuits to be 0. This process is

done in the following steps: for all the E-circuits Cj of C such that Cj [p= 1, fix the output
of one of Cj’s bottom AND gates G to be with restriction pn. If we assign all the negative
variables in G to B, then we will preserve the output of Cj in later steps. Note that the positive
variables of G are already in B since G is an AND gate and G [pe outputs 1. In later steps,
we will never reassign the variables in B or B. Also, for each E-circuit, there are at most r

500 MING-JYE SHEU AND TIMOTHY J. LONG

many variables that are assigned to B in this process. We carry out a similar process for the
FI 1-circuits C of C to obtain C [pB= 0.

The next step in Process FF is to "flip-flop" the output of H:. This is done by adding the
free variables of the leftmost subcircuit Hi ofH such that Hi [pB= 0. We will assure that there
are always some free variables in Hi that are not in B. This will flip-flop Hi’s output between
0 and 1, and the output of the other OR gates in H remains unchanged (recall that all variables
in H: are unique). As output of H: is flip-flopped, if the output of C[does not flip-flop,
we are done. Otherwise, if C [p also flip-flops its output, there must be some E-circuits
(1-I l-circuits) that output 0 (1) in the previous iteration but then change their outputs to (0).
This is because E 1-circuits outputting and 1-I 1-circuits outputting 0 are already fixed. In this
case, we repeat the same process. Note that at each iteration of the process, at least one E 1-

or I-I l-circuit is fixed.
Now we argue that the variables reserved in B will not make any Hi’s of H: permanently

output 0; that is, flip-flopping the output ofH is always possible. Observe the following two
facts.

(1) There are at most r < v/ E-circuits and Fl-circuits in C. Thus, after at most
r + iterations, the while-loop in Process FF terminates.

(2) There are v subcircuits of the top MaxOdd gate of H and each subcircuit is an OR
of inputs.

Since we assign at most r variables to B for each E 1-circuit and FI -circuit, there are, by
fact (1), at most r(r + 1) _< (v/) < variables reserved to during Process FF. Thus,
none of the Hi’s of H will permanently output 0 based on assignments to B. Finally, since
there are at most r + _< v/ iterations of the while-loop and since H can flip-flop at least
v times, we then conclude that there is a pair of finite sets B and B that

(*) C[p,_ and H:[p._-- ..
This completes the base case of k 2.

Our induction hypothesis is that for some fixed k’ >_ 2 and for sufficiently large v,
sk,(v) >_ 6v /5" that is, for sufficiently large v, if C is a (R),,(r)-circuit with r < 3v /5, then C
does not compute the function h,,. For the induction step, consider k k’ + > 2. Consider
an H{-circuit that computes an h. function. Let q v-/3 and let/3 {Bj}, where Bj is
the set of variables of the bottom AND gate Gj of Hff. By way of contradiction, assume that
there exists a circuit C, that is, a (R)k (r)-circuit with r < 6v /5, computing the function h,. We

+ ifk is odd or from R.u ifk iswill argue that after applying a random restriction from Rq,u,
even, to C, the resulting circuit C Fpg(p) is a (R)_ (r)-circuit with r < 6v 1/5 that computes the
function h which contradicts our induction hypothesisk-l’

To apply the induction hypothesis, we need to verify that
(1) with a high probability, C [pg(p) is equivalent to a Ok_ (r)-circuit,

and
(2) with a high probability, HI [,g(p) contains a subcircuit computing the function h,_

Again, part (1) is proved by the Lemma 2.8. To apply Lemma 2.8, we choose , 3v /.
We have o < 6qy 1/4.1) -2/15. The total number of E_ (r)-circuits and I-I_ (r)-circuits
of C is bounded by r.logr < 2 < 2 To apply Lemma2.8, we need to show that
2 _< 1/(3(2c)). We have

2 3(2ot) 3(4ot) < 3(o-2/15) ?’ _< 1,

for sufficiently large v. This proves part (1). Part (2) follows from Lemma 2.9. This completes
the proof of Theorem 3.7.

To satisfy requirement R,’,, we need to choose an integer m so large that Theorem 3.7
holds for sk(2m/(’+l)) and such that q(m) < (1/24) 2m/5(’+l).

THE EXTENDED LOW HIERARCHY IS INFINITE 501

THEOREM 3.8. There exists an oracle A such thatfor all k > 2, (R) (A) c A(A).

3.3. Separating E-classes and O-classes in relativized polynomial-time hierarchies.
In this section, we show that there exists a recursive oracle A such that for all k >_ 2, E’_ (A) 5/=
(R)’ (A). We will find, for each k > 2, a set LA P A

xor.k 6 (R)k (A)such that Lxor,k ’ E’_(A). Once
again, by dovetailing the diagonalization for each k > 2, the oracle set A can be constructed
so that E’_ (A) (R)’ (A) for all k >_ 2.

To separate E’_ (A) and (R)P (A), for all k > 2, we define

Lxor,kA {x0 Ixl n, and exactly one of 0"x0<k-)n or l’x0k-) is in LkA_I},
A Pwhere LkA_ is a set in E’_ (A), as defined in 3.1. Thus Lxor.k is in (R)k (A).

The setup of the diagonalization is similar to the one in 3.1. For each stage n > 0, we
want to satisfy the following requirement Rn"

B 0R,, (3x om)(qB C__ D(n))[0m Lxor,k , cr,,(A; is false],

where o-,, is the nth E’2-predicate. Note that the predicate "0 6 LB 9-
xor." can be represented

by a k-level circuit with a top XOR gate having fanin of 2. Each subcircuit of the XOR gate., 2m/(k 2,,,/(kcontains a ,_ -subcircuit computing an J_ function. Let Co be the corresponding
B 1-2m/(k+l)k-level circuit for the predicate 0 Lxor,k. Co contains a . -subcircuit that computes

12,,/(t+lan function.
By Lemma 2.3, there exist a polynomial q and a Ek_ (q(m))-circuit C,, corresponding

the predicate or,, (A; 0m). Again, let (n) q (m). The requirement R,, can then be rewritten
as

R,’, (x --om)(qB C__ D(n))[Co;,-- , ClltgA,--- 0],

where A’ A(n 1) tO B and A(n 1) is the set of strings in A decided prior to stage n.
Now let s(v) be the minimum r such that a E,_ (r)-circuit can compute an l function. The
following lower bound on s(v) shows that the requirement R,’, can be satisfied.

THEOREM 3.9. For all k > 2, for sufficiently large v, sk(v) > 3v 1/3, where 6- 1/12.
Proof Again, the proof is by induction on k. For the base case of k 2, let D be an

XOR of 2 subcircuits D and D2, each computing an f function. Let C be a E (r)-circuit,
where r < v/3. We will find a restriction p such that C[and D [-- ..

Let v be the leftmost variable of DI. Initially, let B B 13. Let p denote the
restriction that assigns 0 to all the variables, let P{o,/denote the restriction that assigns to v
and 0 to all the other variables, and let P,z*-{l denote the restriction that assigns to v and
assigns 0 to all the other variables. There are three cases:

Case 1. C [p= 1. In this case, there must be an AND gate G of C with only negative
variables. Assign all the variables in G to B. The number of variables being assigned is
bounded by r < 3v /3 < x/-{. Thus, neither D nor D2 will be forced to output a constant by
pB, and D [p,= ,, where B 0.

Case 2. C [p- 0 and C [po: 0. In this case, changing the assignment of v from 0 to
does not change the output of C [p. Thus, C [m.z._t,,= 0. D [m,z._t,,,= since the output

of D [p,z, can be set to by assigning to variable v or left at 0 by assigning 0 to v.
Case 3. C [p= 0 and C [p,,= 1. In this case, there is an AND gate G of C that outputs

by Pio, I. Since v is the only variable that is assinged by P{otl, all the other variables in
G must be negative variables. Assign all negative variables to B and assign v to B. Since
the number of negative variables is bounded by r < 3v /3 < x/ and since only one positive
variable has been assigned, it is easy to see that C [-%,= and D. [%.-- ..

502 MING-JYE SHEU AND TIMOTHY J. LONG

Our induction hypothesis is that for some fixed k’ > 2 and for sufficiently large v,
sk,(v) > 3v/3; that is, for sufficiently large v, if C is a Ek,_ (r)-circuit with r < 3v /3, then C
does not comupte the function l,. For the induction step, consider k k’ -4- > 2. Consider
a D-circuit that computes an l function. Let q v-I/3 and let/3 Bj }, where Bj is the set
of variables of the bottom AND gate Gj of D. By way of contradiction, assume that there
exists a circuit C, that is, a Ek_ (r)-circuit with r < 6v /3, computing the function l. We
will argue that after applying a random restriction from Rq+,13, if k is odd, or from R,6, if k is

even, to C, the resulting circuit C[pgp) is a E,_z(r)-circuit with r < 3v/3 that computes the
function l,_l, which contradicts our induction hypothesis.

For induction step, let C be a E_ (r)-circuit and let D be the circuit computing an l
function. To apply the induction hypothesis, we need to verify that

(1) with a high probability, Cpp.p, is equivalent to a Ek_z(r)-circuit, and
(2) with a high probability, D, [pg(p) contains a subcircuit computing the function l_.

Part (1) is proved by Lemma 2.7. To apply Lemma 2.7, we choose y 6v /3. We have
u < 6qy 1/2. The total number of depth-2 subcircuits at the bottom level of C is bounded
by its size 2 < 2’. We need to show that 2 < 1/(3 a). We have

2. 3. ot 3(2ot)v’/3 _< 1,

for sufficiently large v. Part (2) follows from Lemma 2.9. This completes the proof of
Theorem 3.9. 13

To satisfy requirement R,’,, we need to choose an integer m so large that Theorem 3.9
holds for sk(2m/k+)) and such that q(m) < (1/12) 2’’/3’+).

THEOREM 3.10. There exists an oracle A such thatfor all k > 2, EP_t (A) c (R)’ (A).
The constructions of Theorems 3.3, 3.7, and 3.9 can all be dovetailed to obtain the fol-

lowing"
THEOREM 3.11. For all k > 2, there exists an oracle A such that E_ (A) (R) (A)

c A(A) cc_ E (A).

4. The extended low hierarchy has an infinite number of distinct levels. An interest-
ing question is whether the low hierarchy or the extended low hierarchy consists of an infinite
number of distinct levels. The existence of an infinite number of distinct levels in the low
hierarchy not only implies that P NP but also provides a natural complexity categorization
of sets in NP: sets at the higher levels of the low hierarchy are more "complicated" than sets
at the lower levels. It is interesting to note that there exists an oracle set relative to which the
low hierarchy is a properly infinite hierarchy and that there also exists an oracle set relative to
which the low hierarchy has a finite number of distinct levels [Ko91].

The situation is different for the extended low hierarchy. In proving optimal lower bounds
for the extended low hierarchy, Allender and Hemachandra [AH92] constructed a sparse set
that is not in EL’r, level 2 of the extended low hierarchy based on the Z-levels of the

’, level 3 of the extendedpolynomial-time hierarchy. It is known that sparse sets are in EL3
low hierarchy based on the O-levels of the polynomial-time hierarchy. This shows that the
extended low hierarchy has at least two distinct levels.

In this section, we show that the extended low hierarchy actually consists of an infinite
number of distinct levels. Our theorems are motivated by the observation that there are hard sets
in the extended low hierarchy. As noted in [BBS86], any PSPACE complete set, for example,
is in the extended low hierarchy. Sets, like hard sets, that can collapse the polynomial-time
hierarchy to a fixed level, but no lower, are candidates for sets separating various levels of the
extended low hierarchy.

To better understand why this happens, first consider the definition of the extended low
hierarchy.

THE EXTENDED LOW HIERARCHY IS INFINITE 503

DEFINITION 4.1 [BBS86], [AH92], [LS91].(1)Foreachk > 1, ELP’r [A EP(A) c_
E’_ (a) SAT)}.

(2) For each k > 2, EL’’x {A A’(A) c_ AkP_I(A SAT)}.
e,o {AI P P(3) For each k > 2, ELk Ok (A) c_ Ok_I(A)SAT)}.

Proposition 4.2 shows the basic relationships between the levels of the extended low
hierarchy.

P,E P,(R) P,APROPOSITION 4.2 [AH92], [LS91]. (1) For each k > 1, ELk c_ ELk+ c_C ELk+ c_
P,EELk+I
(2) ELf’: EL’ EL’zx.
The following observation is very useful: for all k > and for all sets A,
(1) E’(A)

E’(A SAT)

E’+(A),

(2) A,’ (A) c_ A,’ (A SAT) _c AkP+l (A),
(3) okP+ (A) __. okP+ (A SAT)

_
okP+2(A).

Thus, if a set A is so powerful that EP+I (A) collapses to E’ (A), then A, by definition, is in
the extended low hierarchy. This also holds for A-levels and Q-levels of the polynomial-time
hierarchy as well. We express this property in the following proposition.

P,EPROPOSITION 4.3. (1)’v’k > 0,’v’A [E’+(A)

Eft(A) =: A ELk+l].
P,A(2) ’k > 1, ’v’A [AkP+l(A C_ A(A) =, A ELk+].
P,(R)(3) Yk > 1, ’v’A [okP+I(A) Off(A) = A ELk+].

The proofs of our main theorems, separating the levels of the extended low hierarchy, are
motivated by Ko’s recent result that, for each k > 1, there exists an oracle set relative to which
the polynomial-time hierarchy has exactly k levels [Ko89]"

Vk >_ l, :lA [PH(A)---- E’(A) E’_I(A)].
Note that this result strongly suggests that the Z-levels of the extended low hierarchy are all

P,E P,Edistinct. Specifically, ifPH(A) EP (A) E’_ (A SAT), then A ELk+ ELk It is
a simple matter to modify Ko’s result to show that the Z-levels of the extended low hierarchy
are all distinct. We significantly extend Ko’s work by showing that each of the levels of the
extended low hierarchy are distinct; that is,

P, P,O P, zX P,ZYk > 2, ELk c ELk+ c ELk+ C ELk+.
P,E P,A4.1. Separating EL’ and EL’x In this section, we will separate ELk and ELk

P,Efor each k >_ 2; that is, for arbitrary k >_ 2, we will construct a set A such that A ELk

and J EL’/. From Proposition 4.3, we know that if E’(A) c_ E’_(A), then J is in
P’ and E P,ZX,EL’. To separate ELk Lk we need to show that A’(A) AkP_(A SAT).

Since E’_(A) c_ A’(A), we will construct a set J such that PH(A) collapses to EkP_(A)
and E’_ (A) AkP_ (J SAT). As a result, A’ (J) AkP_! (J SAT). For the case of
k 2, it is known that there exists an oracle A such that PH(A) NP(A) # P(A) [BGS75].
A direct modification yields that PH(A) NP(A) P(A SAT). The case of k >_ 3 is
handled in the following theorem.

THEOREM 4.4. For every recursive set B, andfor each k >_ 2, there exists a recursive set

J such that PH(A) EP (J) A’ (J B).
Proof. Our proof will again use circuit lower bound techniques. For arbitrary k >_ 2, we

need to collapse PH(A) to E’(A) and at the same time separate E’(A) and A’(A B).
To collapse PH to E’ (A), we will encode the EP+ (A) complete set Kk+ (A) into a set in

E’ (A). To separate A’ (A B) and E’ (A), we will use the set L defined in the previous
section:

L’- {xOkn lxl- 2n, (3y, lyl n)(Vy2, ly2l- n)... (QkYk, lYI--n)Oxyy2... Yk A}.

504 MING-JYE SHEU AND TIMOTHY J. LONG

For each k > 1, define the predicate

rk(A; x) (3yl, lYI n)... (Qky, lyl n) lxyly2.., y:
_
A,

where Ix 2n. Thus, for each x of length 2n, the value of rk (A; x) only depends on strings
in A of length (k + 2)n + 1. Note that r(A; x) is false if Ixl is odd. It is easy to verify that
rk(A; x) is a EkP’l-predicate. Also, it is clear that, for any pair of strings x and y, whether
x 6 L and rk(A; y) are true depends on the membership in A of different strings.

The construction of A will make sure that for all strings x 6 E*, x 6 Kk+l (A) ,
r,(A; x01xl). Thus, PH(A) E’+I(A) E’(A). We will also construct A so that L ’A’ (A3 B). More specifically, A will be constructed by stages. Let MI, M2 be an effective
enumeration of deterministic polynomial time-bounded oracle machines. The setup of t(n)
and D(n) is similar to that in the previous section. Let m be a multiple of k + 2. At stage n of
the construction, we will find an assignment of strings to A and so that 0m 6 L if and only if
0 g L(M,,, Kk-I(AB)). In stagen, we also"’(A)-encode" into A strings x 6 K+I(A),
t(n- 1)+1 < (k+2).lxl+l _< t(n),suchthatx K+l(A), rk(A; x01xl). The encoding
is divided into two steps: before and after finding the witness 0 separating E’(A) and

PA’(A B). In the first step, we E (A)-encode" into A all the strings x 6 K+l (A), where
t(n 1) + < (k + 2) Ixl / < m. In the second step, we "E’(A)-encode" into A all the
strings x K+I(A), where m _< (k + 2). Ixl / < t(n).

Let Cx be the circuit corresponding to the predicate rk(A; x01xl), and let Co be the
circuit corresponding to the predicate 0 6 L. Also, by Lemma 3.2, there is a polyno-
mial q and a corresponding Ak(q(m))-circuit Cn such that C,,[Pa,t if and only if
0 L(Mn, KI-I(A B)). We let t(n) q(m). Note that Cn can be simplified to another

A(q (m)-circuit C,’, by the following replacements:
(1) all the variables v: in the leaves of C,, having the form z z’ are replaced by if

z’ 6 B and by 0 if z’ ’ B, and
(2) all the variables Vz of the form z Oz’ are replaced by vz,.
Thus, for any set A, and a fixed set B, Cn [. C’, /gA and C’n F/OA---" if and only if

O L(M, K-(A B)).
The requirement for stage n can be described as

R,, (3Bo, B1 C__ D(n))[Bo f3 B1 0, C,’, [.o *’ and for all x,
t(n 1) < (k + 2)lxl + < m, Cx[p,.e,,= , x Kk+(A(n 1) B),
and Co[pe.eo= C [,.o= *, for all x, m < (k + 2)]xl + _< t(n)],

where Phi,n0 is the restriction that v: is if z B1 and Vz is 0 if z 6 B0. Construction of A at
stage n is done by the following steps.

Step 1. For all the strings x, (n 1) < (k + 2)Ixl / < m, assign strings to A (n) and
A(n) such that r.(A; x0I1) is true if and only ifx 6 Kk+(A).

Step 2. Replace all the variables in C’, that are in A (n) by and replace those in A (n) by
0. The resulting circuit, let’s still call it C,’,, remains a Ak(q(m))-circuit.

Step 3. Find a pair of finite sets B and B0 that satisfy the requirement R,,. Assign
variables in Bl to A(n) and assign variables in B0 to A (n).

Step 4. For all the strings x, m < (k + 2)Ix[+ _< t(n), assign remaining free strings to

A(n) and A(n) such that r(A; X0Ixl) is true iff x 6 K+l (A). If there are still remaining free
strings of length between (n 1) + and t(n), assign them to A(n). Go to the next stage.

The key step is Step 3. The following lemma guarantees that the requirement R,, can be
satisfied at Step 3.

LEMMA 4.5. For all k > 2, let {Ci }i--1 be circuits, each computing a function f{,
with pairwise disjoint variables. Let C be a A(r)-circuit. lf < 2/6 and r < 6v 1/5, with

THE EXTENDED LOW HIERARCHY IS iNFINITE 505

6 1/48, then for sufficiently large v, there exists a restriction p such that C[ps/= and

Ci I-p-- * for all t.

Proof The proof is by induction on k. For the case of k 2, the proof is similar to the
proof of Theorem 3.3. Recall that in the proof of Theorem 3.3, we found a restriction p such
that C[p and CFp= *, where C is an Az(r)-circuit with r < 6v 1/5 and C computes an

f2 function. (See (#) in the proof of Theorem 3.3.) The number of strings that we added to
the oracle set was at most r2 _< (601/5)2 < /. Here, every Ci, < < t, is an OR of v
AND gates, each of fanin /-{. Therefore, the same restriction p satisfies that Ci [p= *, for all
i,l<i<t.

For the induction step, consider any k > 2. As in the proof of Theorem 3.3, proceeding
by contradiction, we need to verify that (1) with a high probability, C Fpg(p) is equivalent to a

Ak- (r)-circuit, and (2) with a high probability, Ci [pg(p) contains a subcircuit computing the
function f_ for all t. Part (1) is identical to that in the proof of Theorem 3.3.
Part (2) follows from Lemma 2.10.

t"2m
I, +-) e2 :+2)

It is easy to see that Co contains a ’k -subcircuit computing an J k function.

f2m/(k+2)Also, for all x m < (k + 2)]xl + < t(n), Cx contains a subcircuit computing k

There are at most 2q(m) many such Cx. To satisfy requirement Rn, we need to choose an

integer m so large that q(m) <_ (1/48)2m/6k+2). Thus, there exists an oracle set A such that

E’+ (a) Eft (a) and E’ (a) A’ (a B), for each k > 2. This completes the proof of
Theorem 4.4.

P,ECOROLLARY 4.6. For each k > 2, EL’x c ELk
e,x EL,E by Proposition 4.2. For k 2,Proof As a point of interest, recall that EL2

a direct modification of Baker, Gill, and Solovay’s proof [BGS75] yields the existence of
an oracle A such that PH(A) NP(A) P(A SAT). For k > 2, just let B be SAT in
Theorem 4.4.

COROLLARY4.7. Foreachk > 1,thereexistsanoraclesetAsuchthatA(A) E’(A)--
PH(A) PSPACE(A).

Proof Simply replace the complete set Kk+l (A) by a complete set for PSPACE(A), and
let B 0 in the proof of Theorem 4.4.

Ko also constructed an oracle set relative to which the polynomial-time hierarchy has a
finite number of levels and is properly contained in PSPACE [Ko89]. By combining his proof
techniques with those in Theorem 4.4, we have the following corollary:

COROLLARY 4.8. For each k > 1, there exists an oralce set A such that A. (A) E(A)
PH(A) PSPACE(A). ,, e,zx and E4.2. Separating EL’a and ELk In this section, we will separate ELk L
for each k > 3. The setup is similar to that in 4.1 for arbitrary k >_ 2, we will construct a set

P,A P,(R)A such that PH(A) AP (A) (R)’ (A SAT). As a result, A ELk+ and A ELk+
THEOREM 4.9. For every recursive set B, andfor each k > 2, there exists an oracle set

A such that PH(A)-- A’(A) (R)’(A B).
Proof To collapse PH to Aft (A), we will encode the Z’ (A) complete set K (A) into

A Pa set in AP (Z). To separate A’ (A) and (R)’ (A B), we will use the set Lo,ta.k A (Z)
defined in the previous section:

LA {x0 Ixl n and max{y lYl Ixl xyO(k-1)n Lka_} has odd parity}odd,k

Now define the set

Lodd,k"A {x max{y lYl Ixl and r.k- (A’, xy) is true has odd parity},

"Awhere rk- is the predicate from 4.1. Notice that for each x of length n, whether x 6 Loda,k
only depends on membership of strings in A of length (k + 1)n + 1.

506 MING-JYE SHEU AND TIMOTHY J. LONG

^A PIt is easy to verify that Lodd,k is in Ak (A)" just use binary search querying a set in E’_ (A).
A ^AAlso, it is clear that, for any pair of strings x and y, whether x 6 Lodd,k and y 6 Lodd,k are

true depends on the membership of different strings in A.
The rest of the proof is very similar to that in 4.1. A is constructed by stages. The setup

of m, (n), and D(n) is similar to that in 3.2. At stage n of the construction, we will find an
A 0m k-Iassignment of strings to A and A so that 0 Load, if and only if q L(M,,, K (A B)),

,A Pwhere Mn is the nth machine in an enumeration of (R)’ (A B). In stage n, we ’-’k (A)-
encode" into A any strings x Kk(A), t(n l) + < (k 4- l) Ixl 4- < t(n), such that

^Ax Kk(A) x Lodd,k-
^AAgain, let Cx be the circuit corresponding to the predicate x Load,k, and let Co be

Athe circuit corresponding to the predicate 0m Load,k. Also, by Lemma 3.6, there is a
polynomial q and a corresponding (R)k (q (m))-circuit C such that Cn [p,.= if and only if
0 L(Mn, Kk-l(A D B)). Let t(n) q(m). Simiar to 4.1, C can be simplified to a
(R)k(q(m))-circuit C’ such that C [pA.= C; [PA for arbitrary set A and a fixed set B. The
requirement of stage n can be described as

Rn (3B0, BI C_ D(n))[Bo fq Bl t3, C,’, fpR,.0 *, and for all x,
t(n- l) < (k 4- 1)Ix[4- < m, Cx[pR,.no= x Kk(A(n- 1)CI B),
and Co[p,.o- Cx[p,.Ro- ., forallx, m < (k 4- 1)lxl + < t(n)],

where PB,Bo is the restriction that vz is if z E B and vz is 0 if z E B0. Steps in construction
of A at stage n are essentially the same as that in 4.1. The following lemma ensures that the
requirement R,1 can be satisfied.

LEMMA 4.10. For all k > 2, let Ci }i= be circuits, each computing an hk function,
with pairwise disjoint variables. Let C be a (R)k(r)-circuit. If < 2a/6 and r < 6v /5, with

1/24, then for sufficiently large n, there exists a restriction p such that C[p:/= and
Ci [= *for all t.

Proof Again, the proof is by induction on k. The base case of k 2 is proved similarly
to the proof of Theorem 3.7. Recall that in Process FF, we flip-flopped the output of an

H circuit computing an h, function by adding to the oracle set the variables in the leftmost
undecided OR gate of H. We then find a restriction p such that C [-fi and H [p= (see
(.) in the proof of Theorem 3.7). Here we have many H[circuits. We can easily modify
Process FF such that at each step of flip-flop we add to the oracle set the variables of the
leftmost undecided OR gate of Ci, for all < < t. It is not difficult to see that, by a similar
argument, we can find a restriction p such that C[and Ci [= * for all _< < t.

For the induction step, consider any k > 2. As in the proof of Theorem 3.7, proceeding
by contradiction, we need to verify that (1) with a high probability, C [,g,) is equivalent to a
(R)k- (r)-circuit, and that (2) with a high probability, Ci [pgp) contains a subcircuit computing
the function h,_ for all t. Part (1) is identical to that in the proof of Theorem 3.7
and part (2) is proved by Lemma 2.10. V1

/2m/(k+)Note that Co contains an H’’/’+
subcircuit computing a function "k Also, for all

h2m/(+)x, m < (k 4- 1)Ixl 4- < (n) Cx contains a subcircuit computing k There are at most

2q(m) many such Cx. To satisfy requirement R,,, we need to choose an integer m so large that
q(m) < (1/24)2"/6k+). Thus, there exists an oracle set A such that E’(A) A’(a) and

A’ (A) (R)’ (A B), for each k >_ 2. This completes the proof of Theorem 4.9.
P,ACOROLLARY 4.11. For each k >_ 3, ELI’ ELk

Proof Simply replace B by SAT in the proof of Theorem 4.9. [3

COROLLARY 4.12. Foreach k > 2, there exists an oracle set A such that (R) A A A
PH(A) PSPACE(A).

THE EXTENDED LOW HIERARCHY IS INFINITE 507

Proof Simply replace Kk(A) by a complete set for PSPACE(A) and replace B by the
empty set in the proof of Theorem 4.9.

COROLLARY 4.1 3. For each k > 2, there exists an oracle set A such that
PH(A) c PSPACE(A).

P,E4.3. Separating EL’ and ELk_. In this section, we will find a recursive set A that
P’(R) but not in P,Zis in EL ELk_ for each k >_ 3. The setup is similar to that in 4.1 and 4.2:

for each k > 2, we construct a set A such that PH(A) (R)’ (A) E’_ (A SAT). Thus, A
P,O PEis in ELk+ and not in ELk We first prove the following theorem.

THEOREM 4.14. For every recursive set B, for each k > 2, there exists a recursive set A
such that PH(A) Off(A) E’_ (A @ B).

Proof. Recall that La {xOk"xor,k [x n, and exactly one of 0"x0(’-)’’ or l"x0(k)n

is in Lka_ }. Define the following language:

Lxor,k"A {x exactly one of "t’k_ (A; 0llx) or "k-I (A" 11lx). is true },

where r, is defined in the previous section. It is easy to see that both LA and "A
xor,k Zxor,k are in

A(R)’ (A). A will be constructed so that Lxor,k E’_ (A B) and so that for all x, x Kk(A)
"A:> x 6 Lxor.k. It will follow that PH(A) (R)’ (A) and (R)’ (A) E’_ (A B).

The setup ofthe construction of A, as well as m, (n), and D(n) are the same as in 4.1 and
4.2. At stage n ofthe construction, we will ensure that for all x, (n < (k+ 1)Ix I/ < (n),

ax 6 Kk(A) :> x 6 LZxor,k" Let Co be the circuit corresponding to the predicate 0 G Lxor,
and for all x, (n 1) < (k + 1)lxl + < (n), let Cx represent the circuit corresponding to the

"Apredicate x 6 Lxor,k. Let o.l, o2 be an enumeration of EP21-predicates. By Lemma 2.3,
there exist a polynomial q and a Ex-i (q (m))-circuit C,, corresponding to the nth predicate
o’,,. We let t(n) q(m). Using the same replacement technique as in the 4.1, C,, can be
simplified to a E_-circuit C’, such that C,, [p.,,- C’, [, for arbitrary set A and a fixed set
B. The requirement R,, of stage n of the construction is

R,, (:IBo, B
_

D(n))[Bo f3 B 0, C,’ [P,,eo-76 *’ for all x,
t(n- 1) < (k + 1)lxl + < m, CxFpt,.to-- x K(A(n- 1)U Bo),
and Co I-p,,,,,o C. I-p,./,o *’ for all x, m < (k + 1)Ixl + _< (n)],

where PB,,Bo is the restriction that vz is if z 6 B and v: is 0 if z Bo. The steps in the
construction of A at stage n are essentially the same as that in 4.1. We need the following
lemma to ensure that R,, will can be satisfied at stage n.

LEMMA 4.15. For all k > 2, let C }i= be circuits, each computing an k function,
with pairwise disjoint variables. Let C be a E_l (r)-circuit. If < 23v/6 and r < 6v /3, with
3 1/12, then for sufficiently large n, there exists a restriction p such that C[pT and
C [#-- * for all t.

Proof. The proof is by induction on k. To prove the base case of k 2, let us consider
circuits C and Ci for all t. C is an OR of AND’s with bottom fanin <_ r. Ci is
an XOR of two subcircuits, each computing an fl function. Note that all the leaves of all
Ci’s are unique positive variables. Let vi be the leflmost variable in Ci, < <_ t, and let
V-{vi <_i <_t}.

Let F denote the variables that are assigned l, and let F denote the variables that are
assigned 0. Initially, both F and F are empty. We will first present the algorithm for con-
structing F and F and then show that the restriction pF,T is the desired restriction. Recall that
po is the restriction that assigns 0 to all variables.

508 MING-JYE SHEU AND TIMOTHY J. LONG

Process F:
F=F=0.
if C [p0 then

Choose one AND gate of C with all negative variables; Assign
all the variables to F

else
if there is an S c_. V such that C [ps then

Select such an S;
Choose one AND gate D of C such that D [ps-- 1;
Assign all negative variables in D to F and assign all positive
variables in D to F

else
F=O,F= E*- V.

end(, if ,)
end(, if ,)

We now argue the correctness of Process F. Consider the first case when F 13 and
C [o0= 1. Since C is a circuit of an OR of AND gates, there must exist an AND gate D in C
such that D contains only negative variables. Put all the variables in D into F to preserve the the
output of C. We have C [or.7= 1. Note that the number of variables in D is <_ r <_ 3v 1/3 < x/,
thus Ci Ion.y= *, for all t. In this case, PF.-P is the desired restriction.

On the other hand, if C [po- 0, then we choose some j many different vi’s and put these
variables into S. Suppose, for all the different choices of S, C [m remains 0. Then we know
that for all 2 possible S, C [,s 0, and, for each Ci, Ci [ps if and only if vi S. This
implies that we can arbitrarily force any combination of Ci’s to output or 0, by choice of S,
without changing the output of C. Thus, C [p.z,_v= 0 and Ci [po,z,-v: *, for all _< _< t.

Let F 0 and F Z* V and PF,- is the desired restriction.
The last case is that there is an S such that C [ps I. In this case, fix an AND gate D of

C such that D[ps 1. We reserve the output of C by assigning the negative variables in D
to F and the positive variables in D to F. Note that each positive variable in D is in S since
D is an AND gate and D[ps-- 1. Also important is that for any restriction Ps, there is only
one positive variable in Ci that is assigned by Ps. The number of variables in F is bounded
by r < 6v 1/3 < x/. Thus, C[pry- and Ci [Pr.-- * for all < < t. In summary, there

is a pair of finite sets F and F such that F N F 0, C[p.._., and Ci[Pry-- for all i,

l<i<t.
Finally, the induction step is proved by Lemma 2.7 and Lemma 2.10. [3

12’n/(k+l)Note that Co contains a subcircuit computing an ., function. Also, for all x, m _<
2m/(k+l)(k + 1)lxl + < t(n), Cx contains a subcircuit computing an function. To satisfy

requirement R,,, we only need to choose an integer m so large that t(n) < (1/12)2m/6k+).
We then conclude that there exists an oracle set a such that Z’ (a) (R) (a) and (R)’ (a) g
’_ (A B), for each k _> 2. This completes the proof of Theorem 4.14.

P,E P,OCOROLLARY 4.16. For each k >_ 3, EL_ EL
Proof. Simply replace B by SAT in the proof of Theorem 4.14. q

COROLLARY 4.17. For each k >_ 2, there exists an oracle set A such that E’_I(A)
c (R)’ (A) PH(A) PSPACE(A).

Proof Simply replace Kk(A) by a complete set for PSPACE(A) and replace B by the
empty set in the proof of Theorem 4.14. [2

COROLLARY 4.18. For each k >_ 2, there exists an oracle set A such that E’_(A)
c (R)e(A) PH(A) PSPACE(A)q._

THE EXTENDED LOW HIERARCHY IS INFINITE 509

Acknowledgment. The authors are grateful to the anonymous referees for their com-
ments.

REFERENCES

[AH92] E. ALLENDErt ,rD L. HEMACHANDRA, Lower bounds for the low hierarchy, J. Appl. Comput. Mach., 39
(1992), pp. 234-251.

[BBS86] J. BALCAZ,r, R. BooK, AND U. SCH0rING, Sparse sets, lowness, and highness, SIAM J. Comput., 15
(1986), pp. 739-747.

[BGS75] T. B,Kr, J. GIII, Atop R. Sotowv, Relativizations ofthe P ---? NP-question, SIAM J. Comput., 4 (1975),
pp. 431-441.

[FSS81 M. FtJRSa’, J. SAxE, ANt M. Sr,srt, Parity, circuits, and the polynomial-time hierarchy, in Proc. 22th Annual
IEEE Symposium on Foundations of Computer Science, 1981, pp. 260-270.

[Has87] J.D. HASTAD, Computational Linitations for Small-depth Circuits. Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1987.

[Ko89] K. Ko, Relativized polynomial tine hierarchies having exactly k levels, SIAM J. Comput., 18 (1989), pp.
392-408.

[Ko91] ,Separatingthelowandhighhierarchiesbyoracles, Inform. andComput.,90(1991),pp. 156-177.
[LS91 T. LONG AND M. Srt, A refinement ofthe low and high hierarchies, Tech. report OSU-CISRC-2/91-TR6,

The Ohio State University, Columbus, OH, 1991.
[Sch83] U. Scni3ryG, A low and a high hierarchy within NP, J. Comput. System Sci., 27 (1983),pp. 14-28.
[Sip83] M. Sr’s, Borel sets and circuit complexity, in Proc. 15th ACM Symposium on Theory of Computing,

1983, pp. 61-69.
[Sto76] L. STOCKMYr, The polynomial-time hierarchy, Theor. Comput. Sci., 3 (1976), pp. 1-22.
[Wra76] C. WA’ratt, Complete sets and the polynomial hierarchy, Theor. Comput. Sci., 3 (1976), pp. 23-33.
[Yao85] A. YAO, Separating the polynomial-time hierarchy by oracles, in Proc. 26th IEEE Symposium on Foun-

dations of Computer Science, 1985, pp. 1-10.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 510-519, June 1994

1994 Society for Industrial and Applied Mathematics
004

COMPLEXITY OF NETWORK RELIABILITY AND OPTIMAL RESOURCE
PLACEMENT PROBLEMS*

DONALD B. JOHNSON AND LARRY RAAB

Abstract. A fundamental problem of distributed system design in an existing network where components can
fail is finding an optimal location at which to place a resource. This paper proves exactly how hard this placement
problem is under the measure of data availability. Specifically, it shows that the optimal placement problem for
availability is #P-complete, a measure of intractability at least as severe as NP-completeness. To obtain these results,
the environment in which a distributed system operates is modelled by a probabilistic graph, which is a set of fully
reliable vertices representing sites and a set of edges representing communication links, each operational with a
rational probability. Finding the optimal placement in a probabilistic graph is proved to be #P-complete by giving a
sequence of Turing reductions from #Satisfiability. This result is generalized to networks in which each site and each
link has an independent, rational operational probability and to networks in which all the sites or all the links have
fixed, uniform operational probabilities. Given the anticipated computational difficulty of finding an exact solution,
the requirements for effective, practical approximation methods are discussed.

Key words. #P complexity class, resource placement, database, simulation, networks, reliability graph

AMS subject classifications. 68Q25, 68P15, 68M 15

1. Introduction. Determining the optimal placement of a resource, be it a file, database,
or data object, is one of the most well-studied problems in computer science. Research into the
"file assignment problem," or FAP as it is now known, [3], [8], dates back to Chu in 1969 [4]
and even earlier when viewed as the single commodity warehouse problem (see, for example,
[19]).

Our interest in this placement problem is motivated by our work with database replica
control protocols [15], 17], 16]. These protocols attempt to increase the accessibility of a
data object by replicating that object throughout the network. Our work has shown that, given
the database consistency constraints, there is a nontrivial bound on the benefits of replication
over an optimally located nonreplicated data object [17]. Thus, it is natural to attempt a
complexity characterization, which we present in this paper.

The most general form of the optimal placement problem is as follows: given a set of
sites, communication links, rational reliability probabilities on both the sites and links, and a
distribution of access requests, find the optimal site. A site x is optimal if and only if placing
the resource at site x maximizes availability. Availability is defined as the probability that
an access request, when submitted according to an access request distribution, arrives at a site
that can communicate with site x. A rational reliability 9 for a site (and similarly for a link) is

MTTF wherethe steady-state probability that the site is operational. Therefore, 9 MTTF+MTTR
MTTF is the mean time to failure for a site and MTTR is the mean time to recovery for a site.

Thus, the optimal location at which to place the sole copy of a resource in a distributed
environment is a function of the network topology, the site and link reliabilities, and the
access request distribution. We show that since the underlying graph reliability problems
are #P-complete, so also is this optimal placement problem. #P-complete implies, among
other things, that an efficient (polynomial) solution to this problem can be found only if
P NP [22]. In this paper we prove that the simplified problem, where the sites are infallible,
links operate with probability/9, and the access request distribution is uniform, is #P-complete.

*Received by the editors May 26, 1992; accepted for publication (in revised form) November 30, 1992.
Department ofMathematics and Computer Science, Dartmouth College, Bradley Hall, Hanover, New Hampshire

03755 (dj ohnson@cs, dartmouth, edu).
tTransarc Corporation, The Gulf Tower, 707 Grant Street, Pittsburgh, Pennsylvania 15219

(raab@transarc. com).

510

COMPLEXITY OF OPTIMAL RESOURCE PLACEMENT 511

We call this the simplified model and call the graph representing such a network a probability
graph. Using the simple technique of restriction [10], this result generalizes to include
networks in which each site and each link has an independent, rational operational probability,
to networks with fixed, uniform site reliabilities, and to arbitrary access request distributions.

We begin by listing each of the problems that we use to prove our #P-completeness
result. Each of these problems is an interesting probability graph problem in its own right.
In 4, we prove that each of these problems are #P-complete. We also generalize the main
complexity result to include classes of networks with nonuniform link reliabilities and net-
works with uniform, fixed site reliabilities. This latter class includes such networks as radio
broadcast networks [1] and single-bus networks like Ethernet. Having proven this problem
computationally difficult, we have little hope of finding an efficient, exact solution. There-
fore, we conclude with a discussion of practical methods for approximating the optimal copy
placement.

2. Related work. As mentioned above, determining the optimal placement is one of the
most well-studied problems in computer science. Our work differs from all others of which we
are aware in that we wish to optimize the availability measure, the probability that an access
request arrives at a site that can contact the resource. In addition, we show that this problem
is #P-complete, not NP-complete as is frequently shown for other location problems, and is,
therefore, at least as "hard" as NP-complete problems and may well be "harder" 10].

In [7], Dowdy and Foster present a survey of research dealing with FA P, including a
description of fourteen models and a list of twenty-one others. More recent models with
approximate solutions are discussed in [11]. Although the models vary considerably, they all
attempt to minimize some cost measure (such as storage or communication cost) or maximize
throughput. Although some of these models include an availability constraint, they neither
maximize availability nor define it as we have here.

Related work also appears in the context of network reliability computations. In 1965
Kiryukhin investigated the optimal placement of a given number of communication links
relative to the availability measure. Having simplified the problem by considering only paths
of length less than three, Kiryukhin presented a nonlinear programming solution. See [9] and
[25] for more detailed discussions.

Rosenthal provides the first NP-hardness result for these network reliability problems
[20]. His proof reduces the Steiner Tree problem to the computation of the probability that a
specified subset of a graph is connected. N P-hardness has also been shown for determining
whether two sites are connected [24] and whether all sites are connected [13], [18]. A survey
of these results and related approximation algorithms can be found in [5].

3. Problem definitions. In this section, we define each of a sequence of combinatorial
problems that we use to prove that finding the optimal location of a single copy is #P-

complete. In [23] Valiant defined the class of problems called #P and showed #SAT to be
#P-complete using a modification of Cook’s construction for SAT [6]. In [24] Valiant showed
that CONNECTEDNESS is also #P-complete. The other three problems are shown to be
#P-complete with respect to Turing reductions in 4. In Table we define the terms and
notation we use.

We maximize availability by maximizing [v], the expected size of the group containing
a site v. [v]/n is the availability achieved on a network with n sites and a single copy located
at site v, since, in this simplified model, access requests are submitted uniformly at random,
and only requests submitted to sites within the group containing v will be granted. Therefore,
site is an optimal location if and only if [v] > [u] for all sites t.

In the problems that follow, we use the phrase "the expected group size of vertex v,"
meaning the expected number of sites in the group containing v. Also, if more than one vertex

512 DONALD B. JOHNSON AND LARRY RAAB

TABLE
Notation and Terminology

G (V, E) is a graph of vertices V and undirected edges E. G represents a
network with sites V and bidirectional communication links E.
n and m denote IVI and IEI, respectively, when G (V, E) is clear from the
context.
p p/q is the rational link reliability, where 0 < p < and gcd(p, q) 1.
A group is a maximal set ofconnected vertices. Groups comprising a probability
graph change over time due to component failures and recoveries.
8G[v] is the expected size of the group (i.e., number of vertices in the group)
containing vertex v in probability graph G. We will simply say oe[v] when G is
clear from the context.
7r(S) is the probability that the logical statement S is true.

7r(SI T) is the conditional probability that the logical statement S is true given
that the logical statement T is true.
S is the negation of the logical statement S; therefore, r(S) 7r(S).
c(u, w) is the logic statement "vertices u and w are connected." The probability
graph containing u and w will be clear from context.

has maximal expected group size, OPTLOC may return any one of these vertices.
1. #SAT (#SAT)

INSTANCE: A logical formula F in n variables.
QUESTION: How may different truth assignments that satisfy F are there to the n
variables?

2. CONNECTEDNESS (CON)
INSTANCE: A probability graph G (V, E) and vertices Vl, v2 6 V.
QUESTION: What is the probability that vertices Vl and v2 are connected?

3. EXPECTED SIZE (EXPSZ)
INSTANCE: A probability graph G (V, E) and vertex v 6 V.
QUESTION: What is the expected group size of vertex v?

4. BOUNDED EXPECTED SIZE (BEXPSZ)
INSTANCE: A probability graph G (V, E), vertex v 6 V, and a rational number
B.
QUESTION: Has v expected group size greater than or equal to B?

5. OPTIMAL LOCATION (OPTLOC)
INSTANCE: A probability graph G (V, E).
QUESTION: Which v 6 V has the largest expected group size?

4. Reductions. In this section, we either prove or cite proofs for each of the problems
defined in the previous section. The first two problems are covered elsewhere and citations are
given. The remaining three problems are shown to be #P-complete. We include a subsection
with two related lemmas that are used in 4.3. Again, see Table for an explanation of the
terms and notation.

4.1. Preliminary reductions.
THEOREM 4.1. #SAT is #P-complete.
Proof. In [6] Cook proved that SAT is NP-complete. Valiant modified Cook’s proof to

show that #SAT is #P-complete [23].
THEOREM 4.2. CON is #P-complete.
Proof A reduction from #SAT to CON is given by Valiant in [24].
THEOREM 4.3. EXPSZ is #P-complete.
Proof Let G (V, E) be a probability graph. Then it is not difficult to show that the

expected size of the group containing v V, [v], is equal to YwV Tr(c(v, w)). Thus

COMPLEXITY OF OPTIMAL RESOURCE PLACEMENT 5 3

EXPSZ is in #P since we can solve EXPSZ with [VI queries to an CON oracle, and CON is
in #P.

We show that EXPSZ is #P-hard using a Turing reduction from EXPSZ to CON. We
solve CON by calculating the expected group size of a vertex in each of two networks.

Let G (V, E) and u, v 6 V be an instance of CON.
Let G’ (V’, E’), where V’ V U {u’} and V’ V U {(u, u’)}, where u’ is a new vertex

not in V. Then

ga,[v] Tgr(c(v, w))
wEV’

79r(c(v, u’)) + T)r(c(v, to))
wEV

p 79r(c(v, u))+ T)r(c(v, w))
u,EV

p 7)r(c(v, u)) + Sa[v].

’{g Iv] ga[v]), and calculating ga[v] must beTherefore, 7)r(c(v, u)) a, #P-complete

since calculating 7)r(c(v, u)) is #P-complete.
THEOREM 4.4. BEXPSZ is #P-complete.
Proof Clearly BEXPSZ is in #P since we can solve BEXPSZ with one query to an

EXPSZ oracle, and EXPSZ is in #P.
We show that BEXPSZ is #P-hard using a Turing reduction from EXPSZ to BEXPSZ.
Let G (V, E) and vertex v 6 V be an instance of the EXPSZ problem, that is, we

wish to determine C, the expected size of the group containing vertex v. Let n VI and
m [E[. Then there are 2m possible graph states, and the probability of any one state with
k operational links, 0 _< k _< m, is pk(l p)m-’. Therefore, C, < C _< n, is a multiple
of 1/qm and is one of nqm possible values. (Recall from Table that q is an integer equal
to p. ,o.) Suppose, then, that we have an oracle that can solve BEXPSZ. Then we can use a

binary search procedure to query this oracle until we find the exact value of C. This can be
done in a < [-log(nqm)] queries. Since m < n(n 1)/2, a < [log(nq"(’-l)/2)] O(n2).

Since EXPSZ is #P-complete, and since we can solve EXPSZ with a polynomial number
of queries to a BEXPSZ oracle, it must be that BEXPSZ is #P-hard.

4.2. Related iemmas. We simplify the task of proving that OPTLOC is #P-complete
by establishing two lemmas. The first lemma states that the expected group size of vertex v
in graph G, ga[v], is at least as large as the expected group size of any other vertex u, g6[u],
times the probability the v and u are connected.

LEMMA 4.5. Let G (V, E) be a probability graph and u, v V. Then ga[v] >

(c(v, u)) ga[u].
Proof.

ga[v] wer 7)r(c(v, w))

> weV 79r(c(v, u) and c(u, w))

7)r(c(v, u)) YweV 7)r(c(u, w) c(v, u))

> 7)r(c(v, u)) Y-weV 7)r(c(u, w))

7)r(c(v, u)) g[u]. [-1

The following lemma states that, for any integer c > [V [, we can make any vertex v V
the optimal vertex by adding [(c -t- 1)/pq vertices, each adjacent to v.

514 DONALD B. JOHNSON AND LARRY RAAB

LEMMA 4.6. Let G (V, E) be a probability graph and v V. Let G’ (V’, E’),
whereV’-VO{xi <i < [(e+l)/p]}andE’--Eto{(v, xi) <i <2c+2}. For
any integer c > IV l, v is the unique optimal vertex in G’.

Proof. Let w be some vertex in V v.
g6,[v] g6[v] + p[(c + l)/p] since link reliabilities p.

> 79r(c(v, w))ga[w] + p[(c + 1)/p]

> g6[w] + Tgr(c(v, w)) p[(c + 1)/p]

since 0 < 79r(c(v, w)) < and 6[w] < pf(c + 1)/p].

g,[w] since all paths from w to any X pass though v. 1

4.3. Primary reduction. In this section, we use the previous reductions and lemmas to
prove that optimally placing a single copy is #P-complete.

THEOREM 4.7. OPTLOC is #P-complete.

Proof. Clearly OPTLOC is in #P since we can solve OPTLOC using one query to an
EXPSZ oracle for each v 6 V, and EXPSZ is in #P.

We show that OPTLOC is #P-hard using a polynomial time reduction from BEXPSZ
to OPTLOC, that is we show that we can solve the BEXPSZ problem using a machine for
solving the OPTLOC problem.

Let Gv (Vv, Ev), A, v Vv be an instance of the BEXPSZ problem, with n IVvl and
m lEvi. We will use OPTLOC to determine in polynomial time whether or not ’[v] > A.

We know that ,5"Iv] Ykm=0 dp(1 p)m-k, where each dk is the sum of the sizes of the
groups containing site v in all states with exactly k operational links. This can be rewritten
aS km=O _.7._k (m-k] m-k-jpm-j,

j ,d, (- 1) using the binomial theorem. If we subtract (since
site v is always operational), and we subtract D’p for as large an integer D’ as possible,
we are left with a positive rational number D" less than p. Thus we can rewrite g[v] as

+ D’p + zim=2 dipi, where each di is a nonnegative integer less than q (i.e., zim=2 di/o is
the base-p expansion of D").

We would like to express A in the same manner, as plus A’p plus a base p expansion
of A A’p. But this expansion may not terminate in base-p. Instead we define B, a
terminating approximation of A, such that e[v] > A if and only if ,fly] >_ B. We form B
simply by truncating A after the mth place and adding pm if B - A. Thus for some sequence
of positive integers bi each less than q,

B + B’p + Z bipi"
i=2

We give the reduction below, an explanation following the reduction, and an example in
Fig. 1.

4.3.1. Reduction.
Let G, (V,, E,) where

Vu {u} LJ {t/ill _< < B’},
E, {(u, ui)ll < < B’}.

Let G’ (Vo’, E’v) where

V Vv to {vi,j,x, I1 < < m and < j < bi and <k<i- 1},
Etv Ev tO {(v, vi,j,l)ll < < m and < j < bi}

0 {(vi,j,k, vi,j,k+)ll < < m and < j < bi and < k < 1}.

COMPLEXITY OF OPTIMAL RESOURCE PLACEMENT 515

G"
%C+2

v
Y3-- Y2-- Y w6,1,- w6,1,- v6,1,-7- w6,1,- v6,1,5

v4,,,-7- v4,,,-5- v4,,,3

G

Z

Gu
Ul U2U3 U4

U
6,1,1

U
6,1,2

U
6,1,3

U
6,1,4 U6,1-- U6,1,6

U UU --U

’///
4,1,1 4,1,2 4,1,3 4,1,4

U
"" U

X X2 X2c+2
//

FIG. 1. This figure represents the graph G given an initial graph Gv with p 1/2 and B 34. (Therefore,
B’ 4, bl b2 b3 b5 O, and b4 b6 1.) The name ofeach of the intermediate graphs is given near the
portion ofG that was introduced by that intermediate graph. (Note that vertex v is in Go, although this is not evident

from the figure.)

Let G’,, (V,, E,’,) where
VtI Vu to {lli,j,k < < rn and < j < bi and < k < i},
E’. E,, tO {(u, ui,j,1) < < rn and < j < bi}

U{(ui,j,k, ui,j,,+) < < rn and < j < bi and <k<i}.

Let c max(IVo’ I, V,).

Let G (V", E’) where
gf’ Vtv l,_J {toi <_ <_ [(c+ 1)/p]},
E’v’ E’o{(v, wi) <_ <_ [(c+l)/p]}.

Let G"-. (V,I’, E,’) where

Vtl’ VtI I..J {x < < [(c + 1)/p]},
E’,,’ E,’, U {(u, xi) < < [(c+l)p]}.

VIIILet G’= Ev where
--V(, to{Yi <i <m+l},

o--E,,tO{(Yi, Yi+) <i <m}t0{(v,y)}.

516 DONALD B. JOHNSON AND LARRY RAAB

Let C,’"-- (v",, E, where

V’/’--V’U{zi <i <m},
E,’’-- E,J {(zi, zi+) < < rn 1} t2 {(u, z)}.

LetG =(V,E) where
v
E E,’;’ {(u, v)).

g[v] > B if and only if v is the optimal vertex in G. Since the size of V is less than
2q(l/p + 1)lEo[2 + 2lEo[+ (31/p + l)[Vo[+ 51/p, the size of G is polynomial in the size
of Go. Therefore, OPTLOC is #P-hard since BEXPSZ is #P-hard.

4.3.2. Explanation and correctness. Clearly, g[v] _> B if and only if,Y[v]+d >_ B +d,
for some rational term d, which we describe later. We, therefore, build a graph G’,, with optimal
vertex u and ,Yci,[u] B + d. At the same time we form G’ by augmenting Gv such that
c,,,[v] ,,[v] + d. We then augment both G’, and G’o, forming G’,I and G, respectively,
to ensure that either u or v or both are the optimal vertices in both G’,I and G’,,’. We then
augment both G’,I and G"o, forming G’", and G’"o, respectively, to ensure that u and v do not
have the same expected size. At this point, gG,[v] > B if and only if v is the optimal vertex

in(V,, UV’" ’" "’.o ,E,, UEv U{(u,v)}).
Since the expected number of operational links from u to some ui is B’p,

eG,,[U] + B’p.

Connecting a vertex to a "chain" of k vertices increases the expected size of the group
containing that vertex by Y<_j<_k PJ" We form G’ from G by adding bk chains of length
k- for every bk > 1. Therefore,

Likewise, we form G’,, from G,, by adding bk chains of length k for every b, > 1. Adding
a chain of length k to G’, and of length k to G’ produces a net increase of bk,o in the
difference between ,,[u] and 6;,[v]. Therefore,

G:, [/g] -q’- Btlo .qt..

_
bi pJ

bi>l j=l

i-I

1.-- g’p + b,oi .+ bi]oj

bx.>l bi>l j=l

i-I

=Bq’-bipj.
bi>l j=l

Now c6,,[v] >_ B if and only if g6,[v] > ,fc:,[u]. But OPTLOC tells which vertex is
optimal in the entire graph, not which of u and v is better. Therefore, we must ensure that
either u or v is the optimal vertex. Clearly, ,Ya.[v] > and ,Ya;[t] < c for all Vo’. By
adding [-(c + 1)/p] neighbors to v, we increase the expected group size of v by p[(c + 1)/p]
and ensure, by 4.6, that v is the optimal vertex in G. Likewise for u in G’,,. Therefore,

COMPLEXITY OF OPTIMAL RESOURCE PLACEMENT 517

i-I

bi>! j=l

i-1

G::[Id] G:,[1,1] "-t- p[(C--1)/p1 B +

_
bipJ + pV(c + 1)/p1.

bi>l j=l

Now g6v[v] > B if and only if v is the optimal vertex in (V,I’ to V[’, E,’ tO E’), provided
g6,;[v] g6,,i[u]. If, however, ,_%;;Iv] g,,i[u], or equivalently E6v[v] B, we cannot
be sure which of u and v will be called optimal, since OPTLOC, is indifferent in this case.
Therefore, we introduce G"’ and G’" such that

m+l

ga:,[v] ga,[v] + ,p
y=!

i-!

Gv[LI] + EE bi[Oj "al- O[(C "at- ’)/p] "Jl- E [9’ -- pm+l,b>_ j= j=

m

gG’,i’[bl] gGli[//] + E pj
j=l

b;>l j=l j=l

Since B is a multiple of l/qm, g,G,,[v] > B if and only if v is the optimal vertex in

(v." u u
We form G by connecting G"’ and O ’’I with an edge from u to v. Clearly, "optimality" is

preserved.
Therefore, ,5’,,[v] >_ B iff v is the optimal vertex in G, and G can be achieved in time

polynomial in the size of G,. Since BEXPSZ is #P-hard, OPTLOC, is also #P-hard.

4.4. Generalizing. Since probability graphs model a subset of the networks with arbi-

trary, nonuniform link reliabilities and networks with both fallible sites and fallible links, the
#P-completeness result of the previous section applies to these more complex networks. Also,
AboE1Fotoh and Colbourn have shown the #P-completeness of the CON problem where
vertices, rather than edges, are subject to failure [1]. Using this result, the proof given in this

paper can easily be modified to include radio broadcast networks and other networks modeled
by graphs with fallible vertices and infallible edges. This also includes single, bus networks
like Ethernet, where the link reliability can be factored out of the availability equation.

5. Concluding remarks. Although #P-complete in general, the determination of the
optimal location for the resource is solvable for some systems. Since often a network for
an existing database is built incrementally around the database, the current location may be
optimal. As is shown in [2], [5], [12], [21], the single copy availability can be efficiently
determined for regular network topologies, such as ring, single-bus, fully connected, and for
series-parallel networks. Since, for these topologies, the single copy availability can be calcu-
lated in polynomial time by calculating the expected group size, [v] Y,,v 79r(c(v, u)),
for each site in V, the placement problem can be solved in polynomial time. It may also
be possible to solve efficiently the placement problem for networks with fixed, deterministic
routing algorithms, since the number of possible paths connecting two sites may not be a
function of the size of the network, or the paths may be mutually independent.

518 DONALD B. JOHNSON AND LARRY RAAB

Although calculating the expected group size is feasible in some special cases, it may be
unnecessary to do so in real systems. Instead, each site could record the actual number of
access requests submitted to sites within its group, and the site with the largest number can
be made the location of the copy. (Requiring that a site record the number of access requests,
rather than the number of sites, accommodates a nonuniform access request distribution.) This
method maximizes availability because the number of access requests "seen," that is, those
requests submitted within a site’s group, is the same as the number of access requests that
would be granted if the resource were located at that site, since communication is symmetric.

If the past network performance and the access request distribution are indicative of future
behavior, this technique will lead to optimal copy placement. This method does not require a
priori knowledge of the network topology, hardware reliability, or access request distribution,
and it adjusts automatically to unanticipated changes in any of the these system parameters.
These characteristics are precisely those necessary for any protocol that hopes to relocate an
object as an access distribution change. Preliminary simulation work with this method has
been encouraging 14].

In summary, we have analyzed a fundamental problem that seeks the optimal location for
resources. Here optimality is obtained, not by minimizing a cost metric, but by maximizing
availability, that is, the probability that an arbitrary access request is submitted to a site con-
nected to the resource. We have shown that this optimal placement problem and two related
network reliability problems are #P-complete and, therefore, likely to be computationally
tractable only in very small networks. Given the increasing importance of distributed comput-
ing environments, the development of practical and efficient on-line approximation techniques
is an important area for further research.

REFERENCES

H.M. ABOELFOTOH AND C. J. COLBOURN, Computing the two-terminal reliabilityfor radio broadcast netvorks,
IEEE Trans. on Reliability, 1991, to appear.

[2] DANIEL BARBARA AND HECTOR GARCIA-MOLINA, The reliability of voting mechanisms, IEEE Trans. on Com-
puters, C-36 (1987), pp. 197-1208.

[3] R. G. CASEY, Allocation of copies of a file in distributed systems, in Proceedings AFIPS 1972 SJCC, AFIPS
Press, 1972, pp. 617-625.

[4] W.W. CHU, Optimalfile allocation in a multi-computer information system, IEEE Trans. Comput., 18 (1969),
pp. 885-889.

[5] CHARLES J. COLBOURN, The Combinatorics ofNetwork Reliability, Oxford University Press, London, 1987.
[6] S.A. COOK, The complexity oftheorem proving procedures, in Proceedings of the Third ACM Symposium on

Theory of Computing, ACM, May 1971, pp. 151-158.
[7] LAWRENCE W. DOWDY AND DERRELL V. FOSTER, Comparative modes ofthefile assignmentproblem, Computing

Surveys, 14 (1982), pp. 287-313.
[8] K. E ESWARAN, Placement of records in a file andfile allocation in a computer network, Inform. Proces., 74

(1974).
[9] HOWARD FRANK AND IVAN T. FRISCH, Communication, Transmission, and Transportation Networks, Addison-

Wesley, Reading, MA, 1971.
[10] MCHAEL R. GAREY AND DAVID S. JOHNSON, Computers and htractability, W. H. Freeman and Company, New

York, 1979.
[11] BEZALEL GAVISH AND OLIVIA R. LIU SHENG, Dynamic file migration in distributed computer systems, Comm.

Appl. Math. Comput., 33 (1990), pp. 177-189.
[12] E.N. GILBERT, Random graphs, Ann. of Math. Statistics, 30 (1959), pp. 1141-1144.
13] M. JERRUM, On the Complexity ofEvaluating Multivariate Polynomials, Ph.D. thesis, University of Edinburgh,

1981.
[14] DONALD B. JOHNSON AND LARRY RAAB, Complexity of network reliability and optimal database placement

problems, Tech. report PCS-TR91-167, Dartmouth College, Hanover, NH, 1991.
[15] ,Effects ofreplication on data availability, Internat. J. Comput. Simulation, (1991), pp. 373-392.

COMPLEXITY OF OPTIMAL RESOURCE PLACEMENT 519

16] DONALD B. JOHNSON AND LARRY RAAB, Effects ofreplication on the duration offailure in distributed databases,
Tech. report PCS-TR91-185, Dartmouth College, Hanover, NH, 199 I.

17] ,A tight upper bound on the benefits ofreplication and consistency control protocols, in Proceedings of
the 10th Symposium on Principles of Database Systems, ACM, May 199 l, pp. 75-8 I.

18] J. S. PROVAN AND M. O. BALL, The complexity of counting cuts and ofcomputing the probability that a graph
is connected, SIAM J. Comput., 12 (1983), pp. 777-788.

[19] C.V. RAMAMOORTrY AND BENJAMIN W. WAH, The isomorphism ofsimplefile allocation, ACM Trans. Comput.
Systems, 32 (1983), pp. 221-232.

[20] ARNIE ROSENTHAL, Computing tile reliability ofcomplex networks, SIAM J. Appl. Math., 32 (1977), pp. 384-
393.

[21] A. SATYANARAYANA AND R. K. WOOD, A linear time algorithm for computing k-terminal reliability in series-

parallel networks, SIAM J. Comput., 14 (1985), pp. 818-832.
[22] SEINOSUKE TODA AND MITSUNORI OGIWARA, Counting classes are at least as hard as the polynomial-time

hierarchy, SIAM J. Comput., 21 (1992), pp. 316-328.
[23] L.G. VALIANT, The complexity ofcomputing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.
[24] The complexity ofenumeration and reliability problems, SIAM J. Comput., 8 (1979), pp. 410-42 I.
[25] ROBERT S. WILKOV, Analysis and design ofreliable computer networks, IEEE Trans. Commun., 20 (1972), pp.

660-678.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 520-552, June 1994

() 1994 Society for Industrial and Applied Mathematics
005

POLYNOMIAL ALGORITHMS FOR HAMILTONIAN CYCLE IN
COCOMPARABILITY GRAPHS*

JITENDER S. DEOGUN AND GEORGE STEINER

Abstract. Finding a Hamiltonian cycle in a graph is one of the classical NP-complete problems. Complexity
of the Hamiltonian problem in permutation graphs has been a well-known open problem. In this paper the authors
settle the complexity of the Hamiltonian problem in the more general class of cocomparability graphs. It is shown
that the Hamiltonian cycle existence problem for cocomparability graphs is in/9. A polynomial time algorithm for
constructing a Hamiltonian path and cycle is also presented. The approach is based on exploiting the relationship
between the Hamiltonian problem in a cocomparability graph and the bump number problem in a partial order
corresponding to the transitive orientation of its complementary graph.

Key words. Hamiltonian path, Hamiltonian cycle, cocomparability graphs, partial order, bump number

AMS subject classifications. 05C85, 05C45, 06A06, 68R10, 68Q20

1. Introduction. The Hamiltonian cycle problem is one of the classical NP-complete
problems [6], [13] on graphs. The Hamiltonian problem remains NP-complete even on such
special classes as planar 3-connected graphs [6], bipartite graphs [16], split graphs [7], edge
graphs [2], planar bipartite graphs 11], circle graphs [3], and grid graphs 11]. Relatively few
classes of graphs are known for which the problem has a polynomial time solution. These
include 4-connected planar graphs [8] and interval graphs [14]. The Hamiltonian cycle has
been a well-known open problem for permutation graphs for several years [12]. In this paper
we solve the Hamiltonian Path and Hamiltonian Cycle problems for a more general class of
graphs known as cocomparability graphs.

It is shown that the Hamiltonian cycle existence and construction problems for cocompa-
rability graphs have a polynomial solution. In the process we identify necessary and sufficient
conditions for the existence of a Hamiltonian path or cycle in a cocomparability graph. An
O(n3) time complexity algorithm for constructing a Hamiltonian cycle is also presented. Our
solution method is based on exploiting the strong connection between the Hamiltonian prob-
lems in a cocomparability graph and the bump number problem in a partial order corresponding
to a transitive orientation of its complementary graph. Determining whether a cocomparability
graph has a Hamiltonian cycle will be referred to as the existence problem, and the problem
of finding a Hamiltonian cycle, when it exists, is referred to as the constrttction problem.
The Hamiltonian path problem on cocomparability graphs is solved using the bump number
algorithm in [4], and the same approach is used for the Hamiltonian completion problem,
that is, the problem of finding the minimum number of edges that should be added to make a
non-Hamiltonian cocomparability graph Hamiltonian [4]. Polynomial algorithms for finding
the bump number of a partial order were recently reported [10], 17], here we use the results
from 10].

The paper is organized as follows: 2 contains the preliminary definitions and the most

important features of the bump number algorithm that are used in this paper. In 3 we show
that the bump number problem is strongly related to the Hamiltonian path problem in cocom-
parability graphs. This is followed by technical results on "critical" elements in "auxiliary"

*Received by the editors June 10, 1992; accepted for publication (in revised form) December 10, 1992. This
research was supported in part by the Office of Naval Research grant N00! 4-91-J-1693 and by the Natural Sciences
and Engineering Research Council of Canada grant A 1798.

Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-
0115.

tManagement Science and Information Systems Area, Faculty of Business, McMaster University, Hamilton,
Ontario, Canada L8S 4M4.

520

ALGORITHMS FOR HAMILTONIAN CYCLE 521

partial orders. The critical elements play a crucial role in the solution of the existence problem
for a cocomparability graph. Our main results are presented in 4, where we show that a
cocomparability graph has a Hamiltonian cycle exactly if a transitive orientation of its com-
plementary graph has no critical element. An O(n3) algorithm for solving the existence
problem in cocomparability graphs is contained in 5. This is followed by a much more
elaborate O(n 3) algorithm, which solves the Hamiltonian cycle construction problem in a
cocomparability graph.

2. Preliminary definitions and results. For the standard graph-theoretic and order-
theoretic notions not mentioned here we refer the reader to [1] and [7]. Throughout the
paper we consider only finite, simple, undirected graphs. Let G (V, E) be a graph with
vertex set V and edge set E, and let VI n. For any A

_
V, the subgraph induced by A,

G[A] is the graph with vertex set A and those edges from E that have both their endpoints
in A. For G (V, E), its complementary graph G (V, EC) has vertex set V and edge
set EC V V E. A path in a graph is a set of vertices {xl, x2, x3 x,_l, x,} such
that (xi, xi+) E, <_ <_ k 1. A cycle in a graph is defined similarly except that in a

cycle x xk. We will also view paths or cycles as the collection of their edges, when this is
more convenient. A path (cycle) is called Hamiltonian if its edges cover all the vertices in G
exactly once. It is easy to show that the following monotonicity property holds.

PROPERTY 2.1. If G (V, E) has no Hamiltonian path (cycle) and G’ (V, E’) with
E’ c_ E, then G’ has no Hamiltonian path (cycle) either.

A partial order is denoted by P (V, < o), where V is the (finite) ground set of elements
or vertices and < t, is an order relation, i.e., an irreflexive, antisymmetric and transitive binary
relation. The elements of the order relation (a, b) 6 < t, for a, b 6 V are written as a < , b
with the usual interpretation.

We say that a is covered by b (denoted a <. b) if a < , b and there is no c 6 V with
a <, c <, b. Two elements a, b 6 V are comparable in P if either a <, b or b <, a.
Otherwise they are said to be incomparable and denoted by allpb. A graph G (V, E), whose
edges are exactly the comparable pairs in a partial order P on V, is called a comparability
graph. A graph G is a cocomparability graph if its complementary graph G has a transitive
orientation, corresponding to the comparability relations in a partial order, denoted by Pc.
A cocomparability graph G has as many partial orders Pc, as is the number of transitive
orientations of G. However, a partial order P uniquely determines its comparability graph
and, thus, its cocomparability graph denoted by G(P) and GC(p), respectively.

Interval orders are the partial orders whose ground set is a family of closed intervals on
the real line, with [a, b] < [c, d] in the partial order if b < c as numbers. The cocomparability
graphs of interval orders are the interval graphs. Permutation graphs are exactly those graphs
that are both comparability and cocomparability graphs [7]. The Hamiltonian problem for
permutation graphs has been a well-known open problem [12]. In this hierarchy interval
graphs represent the largest class for which the Hamiltonian cycle problem was known to be
polynomially solvable [14] until now. In this paper, we extend the polynomial solvability
of the Hamiltonian cycle problem to the class of cocomparability graphs, which properly
includes the class of interval graphs as well as the class of permutation graphs. Thus, the class
of cocomparability graphs is a significantly larger class of graphs for which the Hamiltonian
problem can be solved. Cocomparability graphs also represent a large class over which many
domination problems are known to be polynomially solvable [15].

A set of pairwise incomparable elements in a partial order is called an antichain. For
A, B __. V, disjoint subsets of V, A <,o B means that a < t, b for all a 6 A, b 6 B. A linear
order is a partial order without incomparable elements. A linear extension of a partial order
P (V, <,) is a linear order L (V, <L) that extends P, i.e., a <e b implies a <L b

522 JITENDER S. DEOGUN AND GEORGE STEINER

for all a, b 6 V. We will write linear orders as L xx2.., xn, where the sequence from
left to right defines the order relation <L, i.e., x <: x2 <L < xn. Two consecutive
elements xi, xi+l of L are separated by a bump if xi < e xi+. The total number of bumps in
L is denoted by b(L, P). The bump number b(P) of P is the minimum number of bumps in
some linear extension, i.e.,

b(P) min{b(L, P) L is a linear extension of P}.

A linear extension L of P with b(L, P) b(P) is called (bump-)optimal. It was proved
in [5], [9] that the bump number is a comparability invariant, i.e., partial orders with the same
comparability graph have the same bump numbertoo.

The bump number algorithm 10] is of the primal-dual type. This means that it constructs
simultaneously a primal solution, a solution of the original minimization problem, and a
dual solution, a solution of an associated maximization problem the dual problem. The
optimality of both primal and dual solutions is proven by showing that their objective values
are equal. In our context a primal solution corresponds to a linear extension L of P, and its
objective value is given by b(L, P). The dual solutions correspond to special partial orders
P* contained in P (V, <). Containment is defined with respect to inclusion of the order
relations, i.e., P* (V, < p,) is contained in P (V, < p) (or, equivalently, P contains or
extends P*) if a < p. b implies a < p b for all a, b 6 V. We denote containment by P*

_
P.

It is easy to see that the bump number is nondecreasing with respect to containment, that is,

(1) P* c_ P implies b(P*) < b(P).

The special partial orders are defined as follows. For natural numbers r > and s > 0,
the class Or,.(V) consists of all partial orders P (V, <p) for which there is a partition of
V into r + sets U, A A such that

(2) JAil > 1, r" IUI s,

and

(3) a <pb iff a 6Ai,b6Aj, and/ <j.

In other words, every partial order in lPr,s(V is a parallel composition (disjoint sum) of s

isolated elements and the series composition (ordinal sum) of the antichains A Ar. The
partial orders from the classes 7t,..s(V) were called generalized weak orders in [10]. It can

easily be seen that b(P) max{0, r s} for any P 6 r,s(V).
THEOREM 2.2 ([10]). For any partial order P,

max{b(P*)lP* _c P, P* a generalized weak order}

min{b(L, P)IL a linear extension of P}.

Our algorithm for the Hamiltonian cycle problem on cocomparability graphs uses a

slightly modified version of the bump number algorithm. The modified algorithm is pre-
sented in the appendix. The reader interested in more detail is referred to [10]. Here we
describe only some salient features of the modified version of the bump number algorithm that
are essential to our treatment of the Hamiltonian problem. The bump number algorithm is a
greedy algorithm that traverses the given partial order P (V, < e) in a "layered" fashion
and avoids creating bumps as long.as possible. Originally, P is given by a directed covering
graph (Hasse diagram) with layers Ho, H Hh in which each element is on the highest
possible layer. Following this layered scheme the maximal elements are on the highest layer

ALGORITHMS FOR HAMILTONIAN CYCLE 523

Hh (where h is the height of P), and elements covered by some element in layer/-// are on
layer/-/i-i, h. The algorithm traverses the layers H0, H1 H, one after the
other in increasing order, starting with layer H0. Since each/-/,, is an antichain of P, a bump
can only occur at the transition between adjacent layers H/_ 1, H/. On leaving the current layer_, a bump is avoided if there are points a, b with

(A. 1) a /-/i-1, b Hj with j > i, a P b, and b II P P for all v H/.

In this case, b can be placed right after a in a linear extension of P. A pair (a, b) fulfilling
(A.1) is called a transition from H/_ into/-/j. If j > i, b is said to be pulled down from layer
/-/j in order to enable a non-bump transition to H/, and the element b is called a bttmp cutter.

Pulling down b from/-/j will make/-/j smaller for later steps of the algorithm. This is expressed
by updating the layers accordingly. So throughout the algorithm H H0, H;, H denote
the current layers, where H/’ c_ /4,. denotes the set of elements that are still remaining on H/,
i.e., have not been pulled down.

The algorithm looks for transitions from the current layer H/’_, while observing three
"greedy" choice rules. These rules define the layer from which b should be taken, and if there
are several possible b’s on that layer, specify which b to choose (or rather, not to choose). A
transition (a, b) H’_ x Hj is called close if/-/j is the closest layer above the current layer
H/’_ for which a transition from Hi’_ exists; if j i, then we call the transition short. Then
the choice rules are as follows:

Rule 1: Prefer close transitions (a, b) from H,.’_.
Rule 2: Among several close transitions (al, hi) (ak, bk) from H/’_ to /-/j, with

j > i, prefer (ar, br) such that b,. is not on a close transition (br, c) from the layer

Rule 3: Among several short transitions (a, b) (ak, bk) H[_ xH/’ prefer (a, b)
and (a2, b2) such that bl b2 anda anda2 are not the endpoints ofchosen transitions
to H_

Rule reflects that elements b’ from higher layers with a I1’ b’ might still be used for
transitions (a’, b’) at later stages, while Rule 2 reflects that (b,,, c) might still be used when
layer Hj is reached. Rule 3 tries to use independent pairs of short transitions, i.e., transitions
whose endpoints are all different. It may be noted that this is a modification to the original
algorithm in [10].

In going from layer Hi’_ to Hi’, the algorithm first looks fora transition (a, b) Hi’_ mi’
(thus fulfilling Rule 1). If the element b is the same in all such transitions, the algorithm chooses
an arbitrary such pair (a, b), and the element b is also called a bump cutter. Otherwise it
reserves two transitions (a, b), (a’, b’) H_ x H with b -# b’; if, in addition, a and a’ can
be chosen so that a :# a’ and one or both are not endpoints of reserved transitions to H/’_,
then they are selected this way (thus fulfilling Rule 3). The final choice between (a, b) and
(a’, b’) is made later. If no transition (a, b) H/’_ x HI exists, the algorithm looks for a
transition (a, b) H/’_ x H with j > and, if there is one, chooses one according to Rules
and 2. Finally, if there is no transition (a, b) from H/’_ to any b //, j >_ i, the algorithm

will create a bump in going from m/’_ to H;.
When the choice of the transition is definite (i.e., all transitions (a, b) H/’_ x H/’ have

the same endpoint b or there is only one transition (a, b) into levels higher than/-/i), then the
linear extension to be constructed will take H/’_ {a} in some permutation, then a followed
by b, and then H/’ {b} in some permutation. The definite choice of a will then serve as the
starting point for a backward procedure to make the final choice for the transitions between
previous layers if the choice was delayed. In that case, the choice of a being the last element

524 JITENDER S. DEOGUN AND GEORGE STEINER

of H[._ determines the delayed choice of the transition from -2 to -I One of the two
reserved transitions will not have a as second element, and this one is taken. Applying this
principle recursively backward over all delayed decisions, the linear extension is constructed.

From now on, we will use the terminology used in the Algorithm bumpno (see the
appendix), and whenever we refer to bump-optimal linear extensions, we will mean those
"layered" extensions that could be generated by Algorithm bumpno. We will always use L
to represent such a bump optimal linear extension. Define the intervals L[x, u] {Yl x
y <L u}, LI u {Yl Y <L u}, and ul L {ylu <L Y}. We will also use Glu to denote the
subgraph induced from G by the elements in L lu, for a given bump-optimal L of PG. In the
context of Hamiltonian cycles, we will use L[x, u] to also denote the set of edges (v, w) if
v <’LW and v, w E L[x, u]. The notation HC(v, w) will be used to denote a Hamiltonian
cycle that contains the edge (v, w), and if v <’L w, then v will always be the first endpoint
shown for the edge (v, w).

3. l-lamiltonian paths, cycles, and critical elements. The following result was proved
in [4], but we include it here with a short proof, because this serves as a basis for the rest of
the developments in the paper.

THEOREM 3.1. A cocomparability graph G (V, E) has a Hamiltonian path ifand only
ifb(Pc) =0.

Proof. If b(Pc) 0, then the covering pairs in any bump-optimal linear extension of
form a Hamiltonian path in G. If b(Pc) > 0, then, by Theorem 2.2, Pc contains a generalized
weak order Pr,, with b(Pc) r s. Furthermore, it can easily be seen that, since
r s > 0, GC(Pr,s) has no Hamiltonian path. Let E’ be the edge set of GC(Pr,s)" then
E c_ E’ and, by the monotonicity Property 2.1, G cannot have a Hamiltonian path.

Based on the above proof, Theorem 3.1 also implies the following duality result"
COROLLARY 3.2. A cocomparability graph G (V, E) has no Hamiltonian path if and

only ifthere exists a generalized weak order Pr, on V such that Gc(p,.,s) has no Hamiltonian
path and E is contained in E’, the edge set of GC(pr,).

Naturally, since the existence of a Hamiltonian cycle also implies the existence of a
Hamiltonian path, b(Pc) 0 is a necessary condition for a cocomparability graph G to have
a Hamiltonian cycle. This in itself is not sufficient, however, and our aim in the remainder of
this section is to identify additional, necessary, and sufficient conditions.

DEFINITION 3.3. An element x V is called critical if b(Pc x) b(Pc) + 1, where

Pc x is the subposet of Pc induced by V {x }.
LEMMA 3.4. If b(Pc) 0 and Pc has a critical element x, then G has no Hamiltonian

cycle.
Proof. Since x is critical, b(Pc x) 1. By Theorem 2.2 Pc x contains a generalized

weak order Pr, with r s 1. Let Pr,.+ be the disjoint union of Pr.s and x (i.e., adding
back x without any comparability relations). It is clear that GC(p,+) is a graph with no
Hamiltonian cycle.

However, G is contained in GC(p,.,+); therefore, by the monotonicity Property 2.1 G
has no Hamiltonian cycle.

This lemma gives the first indication that the existence or nonexistence of critical elements
plays a crucial role in determining whether a cocomparability graph has a Hamiltonian cycle.
Naturally, the elements that are not on the entry or exit transition to or from a layer can always
be removed from a layered optimal linear extension, without creating bumps, so they can never
be critical.

DEFINITION 3.5. An element x Hj is called potentially critical ifx is the entry or exit

point to orfrom I-tj in every optimal linear extension.
LEMMA 3.6. If I.HI > 2 and x t-Ij is the entry point to I-Ij in every optimal linear

extension, then x is critical.

ALGORITHMS FOR HAMILTONIAN CYCLE 525

Proof. Suppose x is not critical; then there exists a linear extension L’ of Pa x with
b(Pa x) b(L’) b(Pa). Let a, b E /-/j! be the first and second elements, respectively,
from Hj in L’. Now, we want to insert x in L’ between a and b without increasing the bump
number. However, there may exist a v E //j!-i such that v < x in Pa but incomparable with
every other element of Hj and thus could appear after b in L’. But it is easy to see that such a
v can be moved before a in L’ without adding bumps. So we can assume that every element
of Hi_ is before a in L’. Thus x can be inserted between a and b in L’. This again adds no
bumps and results in an optimal linear extension of PG in which x is not the entry point into

Hi.
The situation is somewhat more complicated if all optimal linear extensions exit a layer

Hj via the same point x, as it is indicated in Fig. 1. It is easy to see that every optimal
linear extension of the Pa in Fig. will exit H via x, but x is not critical because the linear
extension L’ badcefg of P6 x has no bumps. The point e 6 H0, which is below x but
incomparable to every other point of Hi, moved up to become the exit point from H0 to (HI x)
in L’.

X

f H2

H 1

Ho

FIG. 1.

LEMMA 3.7. Suppose that I1 > and x Hj is the only exitpointfor transitionsfrom
Hi; then either x is critical or in every optimal linear extension of PG x the exit pointfrom
I-lj_ to I-lj X is an e Hi_, such that e < x and e v for v t-Ij x in Pa.

Proof. If x is not critical, then there is a linear extension L’ of P x with b(L’)
b(Pa -x) b(Pa). If L’ exited Hi_ tO Hj-x viaad E (Hi- x), then the subposet induced
by the points in L Ix must have an optimal linear extension L,; ending in d, we could replace
its initial segment (up to d) by L,, resulting in an optimal linear extension of Pa in which Hj
does not exit via x, a contradiction. Therefore, L’ must exit/-/j_ to/-/j x via an e 6 Hi_ 1,

which moved up to the jth layer after deleting x.

If a layer H/’,]/-/:[>_ 2, has two points x, y such that every short transition from H/’_ to

HI ends in x or y and every short transition from H to H/’+l starts in x or y, then x and y are
also potentially critical, since in every optimal linear extension both x and y will have to be
an entry or exit point (with these roles possibly interchanged in different linear extensions).

If a layer HI has two points x, y that are endpoints of short transitions from H/’_ and two
points v, w that are starting points of short transitions to H/’+l with]{x, y, v, w}[> 2, then
we can always construct an optimal linear extension L in which any designated point of H
can be made a nonentry and nonexit point, e.g., second from HI in L. Thus, a layer with this
property cannot contain potentially critical points.

LEMMA 3.8. (1) If HI (0 < < h) is not the bottom layer ofa closed set, Hi’l > 2, and
it has exactly two points x, y that are the only endpoints for transitions from H[_ to H[as
well as the only starting pointsfor transitions between H and t1[+, then x and y are critical.

526 JITENDER S. DEOGUN AND GEORGE STEINER

(2) Let IH’l 2, and let x Hi be the only starting point oftransitionsfrom H. Ifthere
is no e H,:_ that could move up to this layer when x is deleted and that is also the starting
point ofa transition to some Hj (j > i), then x is critical.

Proof (1) Since I/-/,:l > 2, there exists a c 6 H/’ {x, y} and c is above every element
in H/’_ 1. So if we delete x, the only entry point for a transition into H is y. But then we
have no transition from/-/,. to H/’+; therefore, b(Pa x) > b(Pa). The proof is similar for
b(Pa y).

(2) If we delete x from P, there is no element left that could serve as the starting point
of a transition from H/to m/t._l_l therefore, b(P -x) > b(P). q

Consider a generalized weak order P,.,, with r s _> 0 and its set of isolated elements
U :/: 0. Since r s >_ 0, every element of U is used as a bump cutter in a bump-optimal
linear extension of Pr.s. Therefore, every u 6 U must be critical. This observation yields"

LEMMA 3.9. If b(Pa) 0 and Pa contains a generalized weak order Pr, such that
r s 0 and s > O, then P6 has a critical element and G has no Hamiltonian cycle.

The lemma means that the existence of a Hamiltonian cycle in G implies not only
b(Pa) 0 but also that the bump number algorithm must produce a dual order for P
that is simply an antichain on V. This can happen if either the bump number algorithm uses
the procedure close only once at the end (i.e., the dual order is built only by the successive
applications of the procedure grow) or close is used more than once but all antichains in
the dual order get eventually combined into a single antichain by the procedure collapse.
In the following we deal with these two cases separately.

4. Hamiltonian cycles.

4.1. Strictly grown orders. In the first case the dual order is strictly grown, i.e., the
bump number algorithm has always found at least two transitions into the next layer with
different endpoints.

Case la. In this subcase the starting points of the transitions are also different, i.e., we
have two independent transitions between each pair of consecutive layers, and these indepen-
dent transitions cover at least 3 points on every layer, except the top and bottom ones. In
this situation we can easily construct a Hamiltonian cycle in G using this set R of reserved
transitions. First we find two node-disjoint paths between the top and bottom layers of P6 by
the following procedure.

procedure twopaths (PG R)
i. Start by choosing one of the reserved transitions from H

to H.
2. Suppose (a,b) 6 H[x H/’+I was the last transition chosen. If

HI+ is the top layer, then the selected transitions and edges
form a path I and go to 3. If b is the starting point of a
reserved transition (b,c) to the next layer, Hi’+2, then choose

(b,c) and repeat Step 2; otherwise choose a reserved transition
(d,e) HI+ x HI+2 with the restriction that d is not the end
point of a reserved transition from HI to H/’+I. Connect (a,b)and
(d,e) adding the horizontal edge (b,d) H/’+I x H/’+I from G. Repeat
Step 2.

3. The remaining reserved transitions (after adding some
(u,v) 6 HI x H/’ type horizontal edges from G, if necessary) form
a path 2 from the top layer to H0.

The fact that this procedure will construct two node-disjoint paths between the top and
bottom layers follows from the observation that after each execution of Step 2 there will be

ALGORITHMS FOR HAMILTONIAN CYCLE 527

exactly one reserved transition left to and from each intermediate layer and none of these cover
points that are covered by transitions in zr. Furthermore, since each intermediate layer had
at least 3 points on the reserved transitions, at least one of n’l or zr2 must contain a horizontal
edge (u, v) 6 H[H/’ for each intermediate layer H/’. This means that any points w 6 H/’,
missed by both zr and 7r2, can be inserted between these u and v. Finally the Hamiltonian
cycle in G can be completed by connecting the end of 7rl to the start of zr2 in H and the end
of zr2 to the start of zr in H and by inserting any missed points from H0 or Hh by horizontal
edges in the corresponding layers.

The entire construction is illustrated in an example in Fig. 2. Suppose the transition
(1,4) 6 zrl was chosen. Since the node 4 is also the start of a transition, (4, 7) is added to
After this, (6, 9) and (8, 11) are the next available reserved transitions, but (8, 11) cannot be
chosen since 8 is the end point of the transition (3, 8); thus, (6, 9) is added to n’ with (7, 6)
joining it to the earlier built part. In the next iteration (9, 13) must be chosen since 9 is both
the end and start of a reserved transition. In the last iteration through Step 2 both transitions
(12, 17)and (16, 19)are available, so choose, say (16, 19), and join it to 7r by (13, 16). This
completes rr (1, 4, 7, 6, 9, 13, 16, 19). The remaining reserved transitions along with the
horizontal edges (12, 15), (10, 11), and (3, 5) form 7r2 (17, 12, 15, 10, 11, 8, 3, 5, 2). The
only point missed from an intermediate layer is 14. Since both Zrl and 7r2 have a horizontal
edge from the layer of 14, we insert 14, say, between 13 and 16, in zr. Finally, 7r and rr2 are
combined into the Hamiltonian cycle HC (1, 4, 7, 6, 9, 13, 14, 16, 19, 18, 20, 17, 12, 15,
10, 11, 8, 3, 5, 2, 1), after including the points 18 and 20, missed from H.

17 18 19 20

12 16

9 11

6 7 8

3 4 5

1 2

FIG. 2. PG with reserved transitions represented by dotted lines.

Remark: We note that since missed points from H or H can be inserted in any order at
the end, we can assume without loss of generality that if a, b 6 H (or H), such that at most

528 JITENDER S. DEOGUN AND GEORGE STEINER

one of them is on a reserved transition, then HC(G) will contain the edge (a, b). For example,
the HC(G) constructed in the example contains the horizontal edges (19, 18), (18, 20), and
(20, 17), but by changing the order of insertions it could be made to go through either one of
the edges (19, 20) or (18, 17). The only horizontal edge it is forced to avoid is (17, 19), the
edge connecting the endpoints of the reserved transitions. This is an important property of the
Hamiltonian cycle constructed, which will be used later.

Case lb. In this subcase there are two independent transitions between each pair of
consecutive layers, but there is an intermediate layer H’ where all transitions end and start
in the same two points x and y. Applying the procedure _wcpa.hs would still yield two
node-disjoint paths n- and n’z, the same way as in Case a. If [H/’I 2, then we can again use
the same method as before to construct a Hamiltonian cycle, but if H/’ contains a third point
c, then both n- and n-2 would miss c and neither one of them has a horizontal edge in the layer
H/’, where c could be inserted later. This situation is illustrated in Fig. 3.

i+l

Hi_l

FI6.3. A Type blocker.

LEMMA 4.1. Let G be a cocomparability graph. Suppose that b(Pc) 0 and P is strictly
grown. Let I-I,: with H[> 2 be an intermediate layer that contains two points x and y such
that there are transitions both ending and starting only in the points x and y, implying that
every other point c I-t’ is above every element in H[_ and below every element in H[+. If
P+’ denotes the restriction of Pc to H kl H t2 U H[+, then x and y are critical in P+’.

Proof. The lemma is a direct consequence of Lemma 3.8(1) applied to P+.
We will refer to a layer Hi that satisfies the conditions of Lemma 4.1 as a Type blocker.

Of course, the existence of such a blocker does not necessarily preclude the existence of a
Hamiltonian cycle in G, as it may be possible to pull down some other element, from a layer
above /-/,.+, that could play the role of a bump cutter between H/ and /4,.+ in Pc x or

Pc Y. Therefore, the elements x and y of Lemma 4.1 are potentially critical, as defined
earlier, but whether these are critical or not really depends on the rest of

Case c. In this subcase there is a layer/-/,., with [/-/,.1 > 2 and element x 6 H/’ such
that all short transitions from H’ to :+ start in x. This situation is depicted in Fig. 4. In
this case the procedure _wopa.las could not find two node-disjoint paths between H and

H. We will refer to the layer : with these properties as a Type 2 blocker. The element
x of a Type 2 blocker may or may not be critical (cf. Lemma 3.7 and Lemma 3.8(2)), as it
may be possible to pull down some other element, from a layer above/-/,.+, to act as a bump
cutter between/-/,, and/-/,.+1 in Pc x. In another situation, as shown in the second example of

ALGORITHMS FOR HAMILTONIAN CYCLE 529

Fig. 4, an element e 6 H/’_ that can move up "to act" as a bump cutter between Hi’ and H’+I
in Pc x may exist. Therefore, the element x is only potentially critical.

Hi+l

Hi x

Hi_l

a i+l

a

Hi_l

FIG. 4. Type 2 blockers.

We will use HP(u, v) to denote a Hamiltonian path between vertices u and v in a graph
to be specified. Similarly HC(u, v) is used to denote a Hamiltonian cycle that includes edge
(u, v). The following technical lemma will be used repeatedly.

LEMMA 4.2. Let G1 and G2 be two graphs having exactly two common vertices u and v.
Let G G tO G2 be the graph whose vertex set and edge set is the union of those in G1 and
G2. If HP1 (u, v) andHPz(u, v) are Hamiltonian paths in G and G2, respectively, then HC-
HP (u, v)to HP2(u, v) is a Hamiltonian cycle in G. Similarly, if HCI (u, v) andHC2(u, v) are
Hamiltonian cycles in GI and G2 respectively, then HC HCl (u, v)tO HCz(u, v) {(u, v)}
is a Hamiltonian cycle in G. Furthermore, HPI (u, v)to HCz(u, v)- {(u, v)} and HC1 (u, v)-
{(u, v)}tO HPz(u, v) are also Hamiltonian cycles in G.

Proof. Obvious. [3

THEOREM 4.3. Let G be a cocomparability graph. Suppose that b(Pa) 0 and Pc is

strictly grown. G has a Hamiltonian cycle ifand only if Pc has no critical element.

Proof In one direction the theorem follows from Lemma 3.4. For the other direction,
assume that Pc has no critical element. We use induction on the number of blockers. If Pc has
no blockers, then we have Case la and a Hamiltonian cycle can be constructed as described
earlier. In correspondence with our remark at the end of Case a, we make our inductive
hypothesis slightly stronger than what is stated in the theorem"

Inductive hypothesis. Suppose b(Pc) 0, the dual order is strictly grown, and Pc has
no critical element and at most m blockers. If c, x 6 H such that at most one of them is on a
reserved transition, then there is a Hamiltonian cycle HC(c, x) in G.

Let us consider now a Pc satisfying the assumptions of the theorem. Further assume that

Pc has no critical element and m + blockers. Let H/’ be the lowest level blocker in Pc
Case i. The lowest level blocker H/ is of Type with potentially critical elements x and

y. Without loss of generality (wlog) let L be an optimal linear extension of Pc in which x is
the last element from/-/,:. Since x is not critical, there is a linear extension L’ of Pc x such
that b(P-x) b(L’) -O. Every v H/’-{x, y} is above every element of H_1 and below
every element of H/’+, so L’ must use y as its entry point to H’. Therefore, there must exist a
u Hj (j > + 1) that acts as a bump cutter between H/’ and Hi’+ in L’, and this vertex u can
be used to bypass HI in our Hamiltonian cycle. First we note that the bypass element u must
be incomparable to every point occurring between x and u in L, i.e., v u in Pc for every
v 6 H (i < k _< j). Let c 6 H/’ {x, y} be the last element from H/’ in L’. We can assume
that x covers c in L. The subposet induced by H tO H tO... tO H/’ has no blockers and satisfies
the earlier discussed Case la, thus there is a Hamiltonian cycle HCI(c, x) in the subgraph
induced by H tO H tO... tO H’ from G. Furthermore, HC2(c, x) {(c, x), L[x, ul, (u, c)} is

530 JITENDER S. DEOGUN AND GEORGE STEINER

also a cycle and, by Lemma 4.2, HC3 HC (c, x) U HC2(c, x) {(c, x)} is a Hamiltonian
cycle in the subgraph G lu.

If Hj’ is not a blocker, then we can always rearrange L (and HC3) so that u is the second
element from/-/j in L. (We will call this a rearrangement ofType 1). If a denotes the element
covered by u in this rearranged L, then HC3 contains the edge (a, u). The subgraph induced
by /-/j. U Hj.+ to... U H satisfies the assumptions of the inductive hypothesis with fewer
than m + blockers and u is not a potentially critical element (Hi has none), so there is a
HC4(a, u) in this subgraph. By Lemma 4.2 again, HC HC3(a, u) U HC4(a, u) {(a, u)}
is a Hamiltonian cycle in G.

If//j is a Type 2 blocker and u is its potentially critical element, then we cannot have
an e 6 Hi_ (with e < u in Pc) that could move up to the jth level in Pc u to act as exit
point from this level in the sense of Lemma 3.7 because of our observation that the bypass
element u is incomparable to every point between x and itself. Therefore, since u is not
critical, there must be an a Hj u that is the starting point of a transition from Hj to some
v 6 H (k > j + 1). Ira is the only such starting point and, in addition, I/-/jl > 2, then a and
u cannot be the only endpoints for short transitions between Hj_ and Hj because this would
make them critical by Lemma 3.8(1). So irrespective of the size of Hj! (even if IHjl 2) we
can assume that L (and HC3) can be rearranged so that a is covered by u in L. (We will call
this a rearrangement of Type 2). Therefore, (a, u) will be an edge in the rearranged He3. On
the other hand, the subgraph induced by {a, u} t_) Hj+ to... to H satisfies the assumptions of
the inductive hypothesis with at most m blockers, so there is an HC4(a, u) in it. By Lemma
4.2, HC HC3(a, u)l..) HC4(a, u) {(a, u)} is a Hamiltonian cycle in G.

If Hj’ is a Type 2 blocker but u is not its potentially critical element, then let x’ be its
potentially critical element and three subcases exist. In the first subcase IHjl > 2 and there
is an a Hj x’ that acts as exit point from Hj in the bump-free linear extension L’ of
Pc x’. It may be noted that the existence of L’ is guaranteed since x is not critical. Since

IH)I > 2, if a - u, then we can assume that u is not the entry point to//j in L by Lemma
3.6 and we can rearrange L so that u covers a in L (a rearrangement of Type 2). If u is the
only possible exit point from /-/j x’ (i.e., a u) in L’, then x’ and u are the only exit
points from/-/j! and by Lemma 3.8(1) there must be an a 6//’ {x’, u} that can be the entry
point to Hj in L. Rearrange L and HC3 so that a is covered by u in L. In either case this
leads to an HC3 that contains the edge (a, u). Let B denote the set of points following u in
L. The subposet induced by {a, u} to B satisfies the assumptions of the inductive hypothesis
with at most m blockers. Therefore, there is an HC4(a, u) in its cocomparability graph. Thus
HC HC3(a, u)to HCa(a, u) {(a, u)} is a Hamiltonian cycle in G. In the second subcase

I/-/) 2 (/-/) {x’, u}) and u acts as the exit point from//) in the bump-free linear extension
L’ of Pa x’. The subposet {u, x’} tO B, where B u L, satisfies the assumptions of the
inductive hypothesis with at most m blockers, so there is an HC4(u, x’) in its cocomparability
graph. By rearranging the segment L Ix’ we can make u the last point from Hi. Using this
rearranged segment for rearranging HC3 we can make (x’, u) 6 HC3. Then HC HC3to
HCa(u, x’) {(u, x’)} is a Hamiltonian cycle in G. In the third subcase, irrespective of the
size of/-/), an e Hj_ acts as the exit point from the jth layer in the bump-free linear
extension of Pa x’, in the sense of Lemma 3.7. Since e must be incomparable to every
v 6 //j x’, we can rearrange L so that e is covered by u in L. (We call this a rearrangement

of Type 3). The resulting HC3 will have (e, u) as an edge. Let B ulL. If we delete the
comparability relation (e, x’) in the subposet {e, u} t.) B, then it will satisfy the assumptions of
the inductive hypothesis with at most m blockers, so there is an HC4 (e, u) in its comparability
graph. (It is clear that x’ and e will be the endpoints of reserved transitions used in HC4, so e
and x’ will not be neighbors in HC4). Therefore, HC HC3(e, u)t.J HCa(e, u) {(e, u)} is a
Hamiltonian cycle in G.

ALGORITHMS FOR HAMILTONIAN CYCLE 531

If Hj is a Type blocker, then we can assume wolg that u is the exit point from Hj in L.
Accordingly, HC3 is a Hamiltonian cycle on the subgraph G lu induced by H UH U... U/-/j.
Since/-/j is a Type blocker, we can repeat the argument used for bypassing H/’ since u is
not critical, there is a u’ 6 H (k > j + 1) that acts as bump cutter between/-/j and Hj+ in
a bump-free linear extension L" of PG u. If H is not a blocker or it is a Type 2 .blocker,
then we have reduced this case to one of those discussed earlier. On the other hand, if H is
a Type blocker again, then we can repeat the bypassing argument for it too. After a finite
number of repetitions we either must cover the whole graph G by the Hamiltonian cycle or
end up using a bump cutter either from a nonblocker layer or from a Type 2 blocker.

Case ii. The lowest level blocker H/ is ofType 2, with potentially critical element x. Let
L be an optimal linear extension of PG. Since x is not critical, there is a linear extension L’
of PG x with b(PG x) b(L’) 0. Let u Hj (j > + 1) be the first (the bypass)
element in L’ from above Hi’, and let c be the element covered by u in L’.

If c 6 Hi’ and HI {x, c}, then there is a HC (c, x) in the subgraph of G induced by
L Ix, since this subgraph has no blocker. If c HI and Hi’ > 2, then every d 6 H/’ {c, x}
is before c in L’, by definition, so there is a transition from H/’_ to H/’ with some endpoint
d 6 H/’ {c, x}. Using this as one of the reserved transitions in the application of .wopa.las
to the poset induced by H U H(U... U (H x) means that at most one of e and x may
lie on another reserved transition. Therefore, by our remark at the end of Case a, there is a

HC (c, x) in the subgraph Gi, induced by Llx.
If c 6 H/’_ then c is not comparable to any element in H/’ x. Since every d 6 H/’ x is

before c in L’, by definition, there is a c’ (H[_ c) and d (HI x) such that (c’, d) is a
short transition between H’_ and H’. If c and c’ are not the only endpoints of short transitions
between H/’_2 and H/’_, or Hi’_ H or H/’_ 2, then, by our remark at the end of Case
la, there is a HC0(c, c’) in the subgraph induced by H U H U... t_J H’_. If IH[_I > 2,

> 0, and every v 6 H/’_ {c, c’} is above every element of H/’_2, then one of these v
must be the starting point of a short transition into H’, since otherwise the layer H/’_ would
be a Type blocker (contradicting that H/’ is the lowest level blocker, see Fig. 5), and this v
can play the role of c’ in the previous sentence. In summary, there must exist an HC0(c, c’)
in the subgraph induced by H U H U U H/’_ l, such that c’ is the starting point of a short
transition (c’, d) to H/’ and c is not comparable to any element in H/’ x. HCo(c, c’) can be
enlarged into an HPI (c, x) of GIx by inserting d, followed by H/’ {x, d} in any order, and
finally x between c’ and c. We will refer to this sequence of operations as a rearrangement of
Type 4.

If c 6 Hi’, then it can be assumed that c is covered by x in L by Lemma 3.6 (c cannot be
the only entry point to H/’ if In’l > 2). Therefore, HC2(c, x) {(c, x)} 1.3 L[x, u] U {(u, c)}
is a cycle and HC3 HCI(C, x)tD HC2(c,x) {(c, x)} is a Hamiltonian cycle in Glu. If
c 6 H/’_, then HP2(c, x) L[x, u] {(u, c)} is a path and HC3 HP (c, x) HP2(c, x) is
a Hamiltonian cycle in G lu. In either one of the previous situations HC3 can be enlarged into
a Hamiltonian cycle in G, by a construction identical to the one used in Case i; therefore, we
do not repeat it here. [-I

We also note that we proved a bit more than the existence of a Hamiltonian cycle in G.
Because of its importance in the remainder of the paper, we state this stronger result as a

separate corollary:
COROLLARY 4.4. Suppose b(Pa) O, Pa is strictly grown, and Pa has no critical

element. Ifx H[is the exit pointfrom H[in the optimal linear extension L, c HI is not

potentially critical, and there is a transition (c, u)from H[to u Hj (j > i), then there is a

Hamiltonian cycle HC (c, x) in the subgraph ofG induced by H U H U U H[and there
is a HCz(c, x) in the subgraph ofG induced by {c, x} U H/+l U... U H.

532 JITENDER S. DEOGUN AND GEORGE STEINER

Hi-2

x, d

C C

FIG. 5.

As we have seen, even though a strictly grown partial order may contain blockers, when
the potentially critical elements in a blocker are not critical, we can include in a Hamiltonian
cycle the elements of such a blocker. We will refer to this as the blocker being bypassed and
will call the element u the bypass element for the blocker.

In Fig. 6 we show a Pc satisfying the conditions of Theorem 4.3. In this poser H2 is a
Type blocker and H4, H6, Hi0 are Type 2 blockers. Suppose tumpno has found for Pc the
bump-free linear extension L 1, 2, 3 37, 38, 39. The first blocker is H2, so applying
twopettzhs to H0 U H1 U H2 we get HCI (2, 1, 5, 6, 7, 8, 4, 3, 2). The element x 8
is not critical because we have the transition (7, 15) with U 15 as a bypass element for

H2. Using L[8, 15], we have HC2(7, 8) (7, 8, 9, 10, 11, 12, 13, 14, 15, 7). Since (7, 8) E

HC1, no rearrangement is necessary, and we get HC3 HClto HCz(7, 8) {(7, 8)} (2, 1,
5, 6, 7, 15, 14, 13, 12, 11, 10, 9, 8, 4, 3, 2). The bypass element ul 15 is the potentially
critical element of the Type 2 blocker H4. The transition (14, 19) could be used to exit from

H4 15 in Pc 15 }. Therefore, the subgraph G and subposet induced by 14, 15, 16, 17,
18 39} satisfy the conditions of Theorem 4.3 (if the original Pc satisfied them), with L

14, 15, 16, 17 38, where L1 is the same as L after 17. We should find a Hamiltonian
cycle, containing the edge (14, 15), on this subgraph. The point 15 is potentially critical in the
bottom layer {14, 15} of this subposet, but the transition (14, 19) bypasses it. This gives HC4
(14, 15)= (15, 16, 17, 18, 19, 14, 15), with bypass element ll2- 19. This u2 is the entry point
in L to the Type 2 blocker H6, but it is not the only possible entry to H6, so it does not have
to be critical. We can rearrange L so that lt2 19 becomes the second point in it from H6.
The new L 14, 15, 16, 18, 17, 20, 19, 21 38, which follows the old L after 21. The
resulting rearrangement of HC4 yields a new HC4 (14, 15) (15, 16, 18, 17, 20, 19, 14, 15),
which now contains the additional point 20. To bypass the Type 2 blocker H6, we can use the
bypass element u3 25, which is the endpoint of the transition (19, 25) between H6 {21}
and HT. The subgraph G2 and corresponding subposet induced by H6 t5 H7 to..-tO HI3 satisfy
the conditions of Theorem 4.3 if G satisfied them, with L2 20, 19, 21 38, where L2
follows the pattern in L after 21. We should find a Hamiltonian cycle, containing the edge
(20, 19), in G2. Building our cycle in G2 to the bypass element u3 25 yields HC5 (20, 19)

(19, 20, 21, 22, 23, 24, 25, 19). The bypass element u3 25 is the entry point to Hs. We
can make u3 the second point in L2 by rearranging L2 to 20, 19, 21, 22, 23, 24, 27, 25, 26,
29, 28, 30 38, where it follows the old L2 after 30, and the new HC5 (20, 19) (19, 20,

ALGORITHMS FOR HAMILTONIAN CYCLE 533

HI3
39 38

HI2 36 37

HII 35 33

H10 31 32

H9 28 30

H8

H7

H6

H5

H4 15

25

23

26

19 21

16

H2

H1

11

H0

13

FIG. 6. An example ofthe construction in strictly grown orders.

21, 22, 23, 24, 27, 25, 19). The subgraph G3 and subposet induced by Ha U H9 U... t_J HI3
satisfy the conditions of Theorem 4.3, if G2 satisfied them, with L3 27, 25, 26, 29, 28, 30,

38, where L3 follows the pattern in L2 after 30. We should find a Hamiltonian cycle,
containing the edge (25, 27), in G3. Building our cycle in G3 yields HC6 (25, 27) (25,
27, 28, 32, 31, 30, 29, 26, 25). We reached the Type 2 blocker H0, but, this time, there is
no transition starting in H0 to bypass its potentially critical point 32. On the other hand, the
element e 29 could move up to become the exit point from H10 {32}. We can rearrange
L3 so that 32 is covering e. The new L3 26, 25, 27, 28, 30, 3 l, 29, 32 with no change
after 32, and HC6 becomes HP6 (29, 32) (29, 26, 25, 27, 28, 30, 31, 32). By deleting
the comparability relationship 29 < 32, 29 moves up to H0. The subgraph G4 and subposet
induced by {29, 32} U HI1 I,.) I,_) HI3 satisfy the conditions of Theorem 4.3 if G3 satisfied
them, with L4 29, 32, 33 38, where L4 follows the pattern of L3 after 33. We should
find a Hamiltonian path from 29 to 32 in G4. Building our path in G4 yields HP7 (29, 32)
(29, 33, 34, 37, 38, 39, 36, 35, 32). All that is left is to combine the Hamiltonian cycles and
paths generated into a cycle in G. Let

534 JITENDER S. DEOGUN AND GEORGE STEINER

HC8 HP6 t_) HP7 (29, 33, 34, 37, 38, 39, 36, 35, 32,

31,30, 28, 27, 25, 26, 29);

HC9 HC8 U HC5 {(25, 27)} (29, 33, 34, 37, 38, 39, 36, 35, 32,

31,30, 28, 27, 24, 23, 22, 21, 20,

19, 25, 26, 29);

HC0 HC9 U HC4 {(20, 19)} (29, 33, 34, 37, 38, 39, 36, 35, 32,

31, 30, 28, 27, 24, 23, 22, 21, 20,

17, 18, 16, 15, 14, 19, 25, 26, 29);
HC HC0 HC3 {(15, 14)} (29, 33, 34, 37, 38, 39, 36, 35, 32,

31, 30, 28, 27, 24, 23, 22, 21, 20,

17, 18, 16, 15,7,6,5, 1,2,3,4,

8, 9, 10, 11, 12, 13, 14, 19, 25, 26, 29);

HC is a Hamiltonian cycle in G.

4.2. Collapsed dual orders. As we have seen before, certain (bypass) elements can be
used to grow a Hamiltonian cycle beyond a blocker in strictly grown orders. The situation
is quite similar for bump cutters: Suppose we have grown our Hamiltonian cycle HCI (cl, x)
to include the top layer of closed set Ak, with x being the exit point in L from Hi’, the top
layer of At.. If the bump cutter uk is not critical, then there is a bump-free linear extension
L’ of Pc u.. (In the following discussion an indexed u. always refers to the (kth) bump
cutter between A._ and A.). This L’ must use a u ux.lL as a bypass element; i.e., if u
is the first element from uklL in L’, then tt must be the endpoint of a transition (c, tt) for
some c 6 H/’, where c is the exit point from Hi’ in L’. If we can rearrange L and HC (cl, x)
so that c moves into the position immediately before x, i.e., we get HC (c, x), then HC,
HC(c, x) U L[x, tt] {(u, c)} {(c, x)} is a Hamiltonian cycle in Glu, that is, HC was
enlarged to include u- and points beyond u-.

The next lemma states some important properties for bypass elements.
LEMMA 4.5. Suppose 1-I is either a blocker or the top layer ofa closed set Ak and x is

the exit pointfrom H[in L. If u is the bypass elementfor the blocker H[or the bump cutter

uk, then:
(a) If u is used to bypass the bttmp cutter uk, then tt is incomparable to every point

that is between ttk and itself in L" if t is used to bypass the blocker H[, then u is
incomparable to ever), point that is between x and itself in L.

(b) If u Hi, then njI >_ 2 and H) is not the bottom layer ofa closed set.

(c) If u Hi, then t-I) cannot be a Type blocker if there is a v H)_ with v < u in

Pe.
Proof Part (a) follows from the fact that u is the endpoint of a transition between HI and

A layer H) can have one point only if it is the bottom layer of a closed set (otherwise the
burnpnc algorithm would have made its single element a bump cutter). If Hj’ were the bottom
layer of a closed set, then for every to /-/) and v Hj’_ we have v < to in Pc. Since
j > i, by (a) this shows that the bypass element tt could not have come from a bottom

layer/-/j!.
Suppose Hj is a Type blocker and there is a v 6 Hj_ with v < u in Pc. This is in

contradiction with (a) again, proving (c).
The next two lemmas discuss rearrangements that involve the bypass element.

ALGORITHMS FOR HAMILTONIAN CYCLE 535

LEMMA 4.6. Suppose we have constructed an HCI (cl, x) on GIx, where x is the exitpoint
in L from a layer H[that was either a blocker or the top layer ofa closed set Ak; HCI (el, x)
was enlarged into an HC,, HCl(cl,x) IO HCz(Cl,X) {(el,x)}, where HCz(cl,x)
{(cl, x), L[x, u], (u, Cl)} witha bump cutteru uj U (j > k) the bypass element orthe
blocker H; or the bump cutter uk). Let Ht’ (t > i) be the top layer ofthe closed set Aj, and let
d be the point covered by uj in L and c be the entry point to H; in L. Then L and HC,, can be
rearranged so that e is the exitfrom H; in L, u covers c in L and (c, u) is an edge in HCu.

Proof By Lemma 4.5, u must be incomparable to every point in H;, in particular, to c.
From the bump number algorithm we know that L can be rearranged, so that c becomes its
exit point from H,’, without affecting its optimality. How does this rearrangement affect HC,, ?
If H; is also the bottom layer of the closed set Aj, then the bump cutter llj-I is incomparable
to every element of Hi’, so we can simply exchange c and d in L and HC,. Otherwise, if Ht’
was entered via the short transition (el, c), with e Ht’_ then making c the exit point from
H; forces us to use a different entry point, but there must exist another short transition (ez, vl)
between Ht’_ and H; to a Vl H;-c, since Ht’ was reached by a gz-ow step by Lemma 4.5(b).
If e3 -7/: e2 was the entry point to H;_ in L, then we can easily make e2 the exit point from
Ht’_ and rearrange L and HC,, between e3 and u in the following order: e3, H;_ {e3, e2}
in any order, followed by e2, Vl, Ht’ {Vl, c} in any order, and followed by c. If e2 was the
entry point to H;_ in L, then making it the exit from Ht’_ forces us to use a different entry
point. However, following an argument similar to the one above, there is a v2 6 Hi’_ e2
such that there is a transition (e3, v2) between O;_2 and Hi’_ l, and so on. Inductively carrying
on with this, we either reach a layer where we are not forced to make further changes or
reach the blocker layer Hi’ for which u was used as the bypass element. (If we reach H/’ by
these forcings, then all layers between H/’ and Ht’ must either be Type blockers or be of size
2.) If H/’ was a Type 2 blocker, with x its potentially critical (exit) element, then the forced
changing of the entry point to H/’+I to a, say, er H;+, does not force further changes since
x must be the starting point for the transition ending in e,.. Suppose now that Hi’ was a Type
blocker itself, with potentially critical elements x and y, with x being the exit from H/’ in L.
If HCI (c, x) reached x as a bypass element, then, by Lemma 4.5(c), x must be incomparable
(in Pc) to every v 6 Hi’_ therefore, H/_I cannot be a blocker; ifHC (c, x) reaches x by an
application of the algorithm twopat.hs, then Hi’_ cannot be a blocker because, to bypass
it, HCI would have had to reach at least u. Let er, er+l - n[_l(er er+l) be the starting
points of the transitions (er, y) and (e,.+l, x). Forcing y to be the exit point from H/’ forces us
to change L, to make it use (er+l, x) instead of (er, y) between Hi’_ and Hi’. This, however,
forces no further changes, since either H/’_ is the bottom layer of Aj or by ru-I es and 2 of
bumpno L must have used a transition (a, b) from H/’_2 to H/’_ with b H/’_ {er, er+ }.
In any case the set of reserved transitions used by twopaths does not change, we only have
to change HC (c, x) into an HCI (Cl, y) by moving c to become a neighbor of y instead
of a neighbor of x (by the proper selection of horizontal edges in Hi’). This HCI (cl, y) can
be continued by combining it with a new HC2(cl, y) {(Cl, y), L[y, u], (u, c)}, using the
rearranged L. In this L the point c in the statement of the lemma is the exit point from H;,
and (c, u) is an edge as required.

LEMMA 4.7. Suppose we have constructed an HC1 (cl x) on G[x, where x is the exitpoint
in L from a layer H; that was either a blocker or the top layer ofa closed set A.; HCI (c, x)
was enlarged into an HC, HC (c, x) tl HC2(Cl, x) {(Cl, x)}, where HC2(Cl, x)
{(c, x), L[x, u], (u, el)} with u t-Ij the bypass element or the blocker H; or the bump
cutter uk). If Hj is a Type 2 blocker and u is not its potentially critical (exit) point, then
[H;[> 2, and L and HC,, can be rearranged so that u becomes the second point from
HJin L.

536 JITENDER S. DEOGUN AND GEORGE STEINER

Proof. Suppose that, contrary to the lemma,//j {x’, u} with x’ its potentially critical
(exit) element. If/-/j was entered in L via a transition (el, u) from some el 6 Hj_, then
el < x’ in Pc, since otherwise we should have el 6/-/j by the definition of the layers. On the
other hand, there is an e2 6 /-/j-t with (e2, x’) a transition, since Hj was reached by a c3a:ow
step by Lemma 4.5(b). If x <L e2, then (e2, u) is also a transition, by Lemma 4.5(b), which
would make e2 Hi. If x L e2, then j 1, and H/I cannot be the top layer of a closed set
or a Type blocker, it can be only a Type 2 blocker. In this case, however, (x, x’) and (x, u)
would be transitions from Hj_ to Hj’, contradicting that x 6 /-/j-l" So I/-/jl > 2 and x’- u
is its exit point. If u is not the entry point to Hj in L, then u can be freely moved to be second
from Hj in L. If u was the entry point, then, by Lemma 3.6, there must be an alternative
optimal linear extension in which u is not the entry point to Hi. This means that there is a
d 6 Hj {x’, u} and c 6 /-/:-t with (c, d) a transition. We can rearrange L so that it uses
d for entry to//j and u follows d in L. This may force backward changes in the transitions
used earlier, but it can be proved, by using essentially the same argument as in the proof of the
previous lemma, that the ’chain’ of forcings would have to end at or before reaching Hi’. This
means that these changes could affect only the HC2 of the lemma but not HC. Accordingly,
the rearrangement of L can easily be incorporated into HC,,. [q

In this section we deal with orders that were not strictly grown, but we state our main
theorem so that it includes the strictly grown case too:

THEOREM 4.8. Let G be a cocomparability graph. Then G has a Hamiltonian cycle if
and only ifb(Pc) 0 and Pc has no critical element.

Proof. Theorem 3.1 and Lemma 3.4 prove that both conditions are necessary. To prove
that they are also sufficient we use induction on the number of closed sets created by the bump
number algorithm. If m (i.e., dual order is strictly grown), then Theorem 4.3 proves
sufficiency.

Inductive hypothesis: If b(Pc) 0, Pc has no critical element, and its dual order has at
most rn closed sets, then G has a Hamiltonian cycle. Furthermore, if c, x 6 H0 are not both
potentially critical, then G has a Hamiltonian cycle that contains the edge (c, x).

Consider now a Pc that satisfies the conditions of the theorem and whose dual order has
m + closed sets, A, A2 Am+l with bump cutters u, u2 Um between them.

Case 1. There is a blocker in At that cannot be bypassed by using an element from A i,

i.e., the blocker contains an element that is critical in the subposet induced by A. (Note that
a blocker can never be the top layer of a closed set, by definition.) Let H c_C_ A be the one
of these blockers that is on the lowest level, and let x 6 Hi’ be the last element from H/’ in
an optimal linear extension L of Pc. Since x is not critical, there is a linear extension L’ of

Pc x such that b(L’) 0. Let c be the last element in L’ from HI_ t2 H/’ and u be the

(bypass) element immediately following it. If u 6 A were true, then this u could be used to

bypass the blocker H/’ within At, so u 6 V A, i.e., there is no transition from Hi’ x to

any layer of A above Hi’.
Case a. H[is a Type blocker.
By Corollary 4.4 there is a HC (c, x) in the subgraph induced by HtoH...to H/’_ Hi’.

On the other hand, HC2(c, x) {(c, x), L[x, ll], (u, c)} is a cycle too, so HC,, HC (c, x)t3
HC2(c, x) {(c, x)} is a Hamiltonian cycle in Glu, bypassing the blocker Hi’.

Case lb. H/’ is a Type 2 blocker.
If c 6 H/’, then by Corollary 4.4 there is a HC (c, x) in the subgraph induced by H to

H tO... tO H/’. HC (c, x) can be enlarged into a Hamiltonian cycle HC, of Glu the same way
as in Case la.

If c 6 Hi’_ then c is not comparable to any element in Hi’ x. Since every v 6 Hi’ x
is before c in L’, by definition, there is a c’ 6 (Hi’_ c) and d 6 (H/’ x) such that (c’, d)

ALGORITHMS FOR HAMILTONIAN CYCLE 537

is a short transition between H/’_ and Hi’. If c and c’ are not the only endpoints of short
transitions from H/’_2 to Hi’_ , or H’_ H0, or I/-/,:_ 2, then, by Corollary 4.4, there is
a HC0(c’, c) in the subgraph induced by H tO H tO... tO Hi’_ . If I//,:_1 > 2, > 0,
and every v E H/’_ {c, c’} is above every element of//,:-2, then one of these v must be the
starting point of a short transition into/-/,:, since otherwise the layer H/’_ would be a Type
blocker that could not be bypassed within A, contradicting the assumption that/-/,: is on the
lowest level of these blockers. So one of the v E H/’_ {c, c’} could play the role of c’ above.
In summary, there is a HC0(c’, c) in the subgraph induced by H tO H tO... tO H’_ such that
c’ is the starting point of a short transition (c’, d) to H’ and c is not comparable to any element
in/-/,: -x. HC0(c’, c) can be enlarged into a HP(c,x) of Glx by inserting d, H/’ {x, d},
and x between c’ and c. HP (c, x) can be enlarged into a Hamiltonian cycle HC,, of Glu the
same way as in Case la.

Case 2. There is no blocker that cannot be bypassed within A . Let H/’ be the top layer
of A and x 6 H the last element from H in an optimal linear extension L of Pc. Since u,
the bump cutter between A and A2, is not critical, there is a linear extension L’ of Pc zt
with b(L’) 0. Let c 6 H/’ be the last element in L’ from H and u 6 V {A tO Ul} be the
element immediately following it.

Case 2a. If x -J= c, then, by Corollary 4.4, there is a HC (c, x) in the subgraph induced
by Al. HC2(c, x) {(c,x)} tO L[x, u] tO {(u, c)} is also a cycle, so HC, HC(c, x) tO
HC2(c, x) {(c, x)} is a Hamiltonian cycle in the subgraph Glu.

Case 2b. If x and c cannot be made different, i.e., for all possible choices of L and L’
they always exit H/’ through the same x c, then by Lemma 3.7 there must be an e 6 H/’_,,
which would move up to become the exit point from H,:_ to H/’ x if x was deleted from

Pc. It also follows that there is a, possibly new, bypass element u E V A, with (e, u) a
transition and u immediately following e in an optimal linear extension L" of Pc x. We
show that e cannot be potentially critical: Since e is the exit point from Hi’_ tO H/’ x in
L", e is incomparable to every v 6 H/’ x and there must be at least one transition from

H’_, e to H/’ x, say (f, f’). So/-/it_ cannot be a Type 2 blocker. Suppose H/_I is a Type
blocker with potentially critical elements e and f. By Lemma 3.8(1) e and f would have to

be critical in the poset induced by A, contradicting the assumption that every blocker within

A can be bypassed within A1. So e is not a potentially critical element (and H,.’_ is not a

blocker), and therefore, there is an optimal linear extension L of Pc in which e is the second
last element from H/’_ with a g 6 H/’_ the exit point. By Corollary 4.4 there is a HCI (e, g)
in the subgraph induced by H tO H tO...tO Hi’_ 1. HCz(e, g) {(e, g), L[g, u], (e, u)} is also
a cycle, and HC,, HC (e, g)to HCz(e, g) {e, g} is a Hamiltonian cycle in the subgraph

Combining all the above cases, we have shown the existence of a Hamiltonian cycle HC,
in the subgraph G lu. We also note that the bypass element u was always chosen by the linear
extension L’, and therefore, it must be the closest (lowest level) bypass element available. In
the remainder of the proof we show how to enlarge this HC,, into a Hamiltonian cycle of G
using the inductive hypothesis. Let B denote the set of elements following u in L.

Case i. The element u in HC,, is one of the bump cutters, say, u uj.
Let H’ be the top layer in Aj and y 6 H; be the element immediately preceding uj in L.

Since llj is not critical, there is a linear extension L’ of Pc uj with b(L’) 0. Let c 6 Ht’
be the last element in L’ from Aj

If uj u (this can happen only if HC, was constructed earlier under Case of the proof),
then there must be a transition from a v E A toa(lowestlevel) w 6 A,(k > 1), since otherwise
the dual order of Pc could not have been collapsed. Since (v, w) is not a short transition,
there must also exist a transition from the top layer of A to to (otherwise transitivity would

538 JITENDER S. DEOGUN AND GEORGE STEINER

preclude (v, w) being a transition), so we assume, without the loss of generality, that v 6 Ht’.
Furthermore, since uj u was the bypass element for a blocker, u must be incomparable
to every element of Ht’, in particular, to v. We can assume, without the loss of generality,
that the optimal linear extension L, which we used to construct HC,, had v as its last element
from ’. Therefore, (v, u) was an edge in HC,,. HC2(v, Ul) {(v, ul), L[u, w], (w, v)}
is a cycle, and HCo HC,,tO HCz(v, Ul) {(v, Ul)} is a Hamiltonian cycle in the subgraph
G lw. If w uj for some j, then we have j > 1. If w 6 /-/j for some j, then we have a cycle
that reached into a layer above HI and this situation will be dealt with under Case ii.

So if our HC, goes to a bump cutter u uj, we can now assume that j > 1. If y c, then
the subposet induced by (y, uj) tO B has no critical element, bump number 0, and fewer than
rn + closed sets, so by the inductive hypothesis there is a HC(y, ltj) in the subgraph induced
by these elements. By Lemma 4.2 HC HC,,t3 HC(y, u]) {(y, uj)} is a Hamiltonian cycle
in G.

If y - c and c was the entry point to/4,’ in L, then, by Lemma 4.6, L and HC, can be
rearranged so that c becomes the exit point from Ht’ in L and we have the previous case again.
If y - c and c was not the entry point to/4’ in L, then c can be freely moved in L so that c
becomes the exit point from H,’ in L (u u is not comparable to any element of H; since u
was a bypass element for something below the layer Hi’, so c II uj in Pc). Thus, we have the
case of the previous paragraph again.

Case ii. The bypass element u is not one of {u, St2 ttm} and u Hi.
By Lemma 4.5(b) Hjl > 2 and we can repeat the argument used to continue the cycle

HC3 in Case of the proof of Theorem 4.3. The only change needed is replacing the inductive
hypothesis with the current one and using the argument to continue the current HC, instead
of HC3 of the proof of Theorem 4.3. Therefore, we omit the details.

Since there are very few known necessary and sufficient conditions for a graph to have a
Hamiltonian cycle, we feel it is important to relate Theorem 4.8 in graph-theoretic terms:

COROLLARY 4.9. A cocomparability graph G (V, E) has a Hamiltonian cycle if and
only if

(1) G has a Hamiltonian path;
(2) For every v V the subgraph G v induced by V {v} has a Hamiltonian path.

Proof. The corollary is a direct consequence of Theorems 3.1 and 4.8.

5. The algorithms. Theorem 4.8 means that we can easily state an algorithm for the
Hamiltonian Cycle Decision problem on cocomparability graphs.

ALGORITHM 5.1.
procedure hamiltonian_cycle (G)

Input- A cocomparability graph G.
Output- YES if G has a Hamiltonian cycle, NO otherwise.
Step i. Find a transitive orientation of Gc and

call it PG.
Step 2. Call bumpno(PG)

If b(PG)> 0 or (b(PG):0 but the dual order is not

collapsed into a single antichain) then output
’’NO’’ and STOP.

Step 3. For each potentially critical element x PG do;

Call bumpno(PG-X)
If b(PG-x)> 0 then output ’’NO’’ and STOP.

end;

Step 4. Output ’’YES’’ and STOP.

ALGORITHMS FOR HAMILTONIAN CYCLE 539

THEOREM 5.2. Algorithm 5.1 solves the. Hamiltonian Cycle Decision problem for a

cocomparability graph G in O(hn2) time and O(n2) space, where n is the number ofvertices
in G and h is the height of PG, that is, the size ofa largest independent set of G.

Proof The correctness of the algorithm is a direct consequence of Theorem 3.1, Lemma
3.4, and Theorem 4.8.

The claimed complexity follows from the following observations: Gc and a transitive
orientation for it can be found in O(n2) time and space [18]. The bumpno algorithm for P
requires at most O(n2) time and space [10]. It is clear that PG has at most h blockers or bump
cutters, so it can have at most O(h) potentially critical elements. Calling bumpno for all

P6 x, where x is potentially critical, will require O(hn2) time and O(n2) space. [3

Algorithm 5.1 solves the Hamiltonian Cycle Decision problem but does not find such a

cycle in case the answer is YE. In the remainder of this section we present an algorithm that
also constructs a Hamiltonian cycle, if it exists.

Algorithm 5.3 starts with preprocessing steps, which identify certain cases when G cannot
have a Hamiltonian cycle. After this the algorithm calls the main procedure hami i tonian,
which takes its detailed (layered) input from bumpno and starts the construction of a Hamil-
tonian cycle layer by layer, by the previously defined procedure twopaths. The procedure
twopaths builds two parallel paths through the layers in G until it either reaches the top layer

H or a blocker layer H/" or the bump cutter u . In the first case the two independent paths can
easily be joined into a Hamiltonian cycle in G. In the second case the two independent paths
are joined into a Hamiltonian cycle covering the subgraph induced by H to H; tO... tO H/’ and
the procedure bypass1 or bypass2 is called depending on whether H/’ is a Type or Type
2 blocker. In the third case the two independent paths are joined into a Hamiltonian cycle of
the subgraph induced by the first closed set A and the procedure bypass3 is called.

The procedure bypass1 (/-/,:; x, y, HC(c, x)) looks for a bypass element u that can
be used to grow the current cycle HC beyond the layer Hi’. If such u does not exist, then
the potentially critical elements x, y in H/’ are critical and G has no Hamiltonian cycle. If a

bypass element is found, then HC is enlarged into an HC,,, covering all the points in G[u.
The procedure bypass2 (Hi’; x, HCl (c, x)) looks for a bypass element u that can be

used to grow the current cycle HC beyond the Type 2 blocker Hi’. If no u is found, then
the potentially critical (exit) point x from H/’ is critical and G has no Hamiltonian cycle. If a
bypass element is found, then HC is enlarged into an HC,,, covering G[u.

The procedure bypass3 (Hi’; x, u, HC(c, x)) looks for a bypass element u that
can be used to grow the current cycle beyond the closed set Ak (i.e., bypass the bump cutter

u,). If such u does not exist, then the bump cutter u. is critical and G has no Hamiltonian
cycle. If a bypass element is found, then HC is enlarged into an HC,, covering Glu.

All three bypass procedures return the control to the main procedure, hamiltonian,
which either completes the cycle if the top layer/-/’, has been reached or calls the procedure
cont nuel (if the bypass element u was a bump cutter itself) or the procedure cont_. +/-nue2

(if the bypass element u came from a layer/-/j).
The procedure cont +/-nuel (HC (c, uj), H[) tries to grow the cycle beyond the bypass

element u uj. This is done by either directly finding a new bypass element u for uj or by
recursively calling the procedure ham+/- 1toni_an to find a Hamiltonian cycle on the subgraph
induced by {c I, u} tO B, where B is the set of elements not covered by HC. In the first case,
if the cycle can be directly grown beyond u, this is done and control is returned to the calling
program hami Itonian). If the cycle cannot be grown directly, then ham+/- Itonian is
called on the subgraph induced by {c, uj} tO B and it will either find a critical element in this
subgraph (which will be a critical element in G) or it will return a Hamiltonian cycle on this

subgraph, which also contains the edge (c, uj) and, so, can be combined with our original
HC (c, uj) into a Hamiltonian cycle of G.

540 JITENDER S. DEOGUN AND GEORGE STEINER

The procedure cont inue2 (HC (c, u),/-/] tries to grow the cycle beyond the bypass
element u and its layer/-/:. It tries to grow the cycle directly, as above, or by calling bypass 1
or bypass 2 or it recursively calls the procedure hami i tonian on the appropriately defined
subgraph. The procedure hamiltonian then either returns some critical element in the
subgraph, which is also critical in Pa, or a Hamiltonian cycle of the subgraph, which can be
combined with the original HC (Cl, u) into a Hamiltonian cycle of G.

ALGORITHM 5.3.
procedure hamiltonian_cycle_construct (G)

Input A cocomparability graph G.
Output: A Hamiltonian cycle in G or ’’b(PG) > 0’’ or some

critical elements which show that G has no
Hamiltonian cycle.

(Steps 1-3 are preprocessing steps.)

Step I.
Step 2.

Step 3.

Step 4.

Find a transitive orientation of Gc and call it PG.
Call bumpno(PG).
If b(PG)> 0 or (b(PG):0 but the dual order is not

collapsed into a single antichain then output
’G has no Hamiltonian cycle’’ output

’’b(Pa) > 0’’ or any bump cutter as critical
and STOP.

(b(P) 0 and the dual order was collapsed into a single antichain.
Suppose that procedure bumpno has created m + closed
sets A, A2 .rim+ and m bump cutters u, u.2 Um during
its execution. Recapture all the closed sets created by bumpno,
before collapsing.

For i 0 to m do;
m -iPut Am+l-i Am+l-i k..;j:l (Aj t] Uj).

Call procedure hamiltonian (V)

PROCEDURE5.4.
procedure hamiltonian (V; v,w)

Input A partial order Po (of a cocomparability graph G)
on the set g. The decomposition of Po into
closed sets Al, A2 Am+l and bump cutters
U {Ill,U2 Um}, a bump-optimal linear
extension of PG, the modified layers

H, HI H. i set R of pairs of reserved
independent transitions between every
pair of consecutive layers, up to the first
blocker layer, in the lowest closed set HI.
The blocker layers with their potentially
critical elements identified. Optional input
is v,w 6Hd. When they are included,
this signals that we want a Hamiltonian
cycle containing edge (v,m).)

ALGORITHMS FOR HAMILTONIAN CYCLE 541

Output

Step i.

A Hamiltonian cycle in G or some critical
elements in Po, precluding the existence
of such cycle.

If AI----H then go to Step 6.
If AI contains no blockers then let be the

index of its top layer H:, otherwise let i be
the index of its lowest level blocker H/’.

Call twopaths (HUHU...UH/’R)
Connect the endpoints of the paths and 2 in

H and H/’ to form HC. Insert all the
points missed, by both I and 2,

in a horizontal edge in their layer
(HC must contain a horizontal edge in every layer.)

If the optional v,w E H were specified then
modify HCI so that (v,w) is an edge in HCI.

There are 4 cases treated in Steps 2-5.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

(H’ is a Type blocker with potentially critical elements x and y)
Call bypassl (H:;x,y, HC(c,x))
Go to Step 7.

(H/’ is a Type 2 blocker with potentially critical element x)
Call bypass2 (H/’; x, HC(c,x))
Go to Step 7.

(H’ is the top layer of a closed set and Po is not strictly grown)
Let x be the last element from H’ in L and uj its
cover in L.
Call bypass3 (H;x, uj, HCl(Cl,X))
Go to Step 7.
(Pc is strictly grown)
Go to Step 9.

(I----H) Let x be the last element from H in L.
If IHI > and Cl is the point covered by x in L

then find a Hamiltonian cycle HCl(Cl,X) in the
(complete) graph induced by H.
Call bypass3 (H;X, Ul,HCl(Cl,X))

else (x is the only point in H) put HCI :--
Call bypass3 (H;x,u,HCI)

(The point u is the last (bypass) element reached by our cycle)
If u E H then go to Step 8.
If u:u] U then call continuel (HCl(Cl,U),Ht’)

(H; is the top layer of A])
e 1 s e (u /-/] for some j < h)

call continue2 (HCI(cI,U),Hj)
Repeat Step 7.
(We have reached the top layer H)
If u is the last point in L then go to Step 9.

(At this stage u cannot be the only entry point to H, as this would

542 JITENDER S. DEOGUN AND GEORGE STEINER

Step 9.

END;

mean v < to for every v e H_ and to e H, u, contradicting
that the dual order of Pc was collapsed into a single antichain
in our preprocessing. Since we always try to make the bypass
element u the second one from its layer in L, this must be
the case here too.)

Insert the remaining elements from H--{cl,u} in
HCI(Cl,U) between cl and u.

If HC! contains all layers then output HCI as a
Hamiltonian cycle in G and STOP, otherwise
return HCI to the calling procedure.

PROCEDURE 5.5.
procedure bypassl (H/’; x,y, HCl(Cl,X))
(H/’ is a Type blocker with critical elements x and y, (cl, x) is a horizontal edge

in HC
Step i. Let B xlL. Find a highest level u B with (cl,u)

a transition. If no such u exists then go to

Step 2, otherwise go to Step 3.
Step 2. Find a highest level u 6 B with (a,) a transition

for some a 6 H/’-{x,y}. If no such u exists then

output’’x and y are critical’’ and STOP.
Rearrange L and HCI(Cl,X) so that (a,x) becomes an

edge in both (i.e., move a between c and x by a
rearrangement of Type 2).
Put 1 :-- a.

Step 3. If u U (i.e., u 6 HI’ for some j >_ i+ I) then modify
(if possible) so that is the second point

from H in .
(If this rearrangement of Type is not possible then

H must be a blocker itself and it will be determined
later --in the procedure continue2 whether this
blocker can be bypassed too. This comment also
applies in the remaining procedures where this type
of rearrangement is attempted unsucessfully.)

Step 4. Let a be the element covered by u in L.
Put HC2(Cl, x) := {(Cl, x), L[x, u], (u, ci)};

HCl(a, u) := HCl(Cl, x) tO HC2(Cl, x {(!, x)}; 1 := a.
END;

PROCEDURE 5.6.
procedure bypass2 (H/’; x, HCl(cl, x))
(H/’ is a Type 2 blocker with potentially critical (exit) element x.)

Step i. Let B xlL. Find a highest level u 6 B with (Cl,b/)
a transition. If no such u exists go to

Step 2, otherwise go to Step 8.
Step 2. Find a highest level u B with (a,u) a transition

for some a H-{X, Cl,y}, where y is the entry
point to H/’ in . If no such u exists go to
Step 3, otherwise go to Step 7.

ALGORITHMS FOR HAMILTONIAN CYCLE 543

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

END;

Find a highest level u e B with (y,u) a transition.
If no such u exists then go to Step 4,
otherwise go to Step 6.

Find a highest level u E B with ((e,u) a transition
to u, e E H/’_ I, e < x in PG and e is incomparable
to every other v H/’). If no such u exists
then output ’’x is critical’’ and STOP.

Rearrange and HCl(Cl,X) by moving e immediately
before x and performing the implied changes
both in and HCI in the sense of a
rearrangement of Type 4. This results in
a HPI(e, x).

If U U (i.e., u Hj for some j > i) then make
u the second point in from Hj, if possible.
Let a be the element covered by u in and

HP2(x, e) :-- L[x, u] tJ {(u, e)}.
Put HC(a,u) :=HPl(e,x) lOHPz(x,e),c :=a and go to END.
Find a d H[-{x,y} with (c,d) a transition for some

c 6 H[_ I. If no such d exists then output
’’x is critical’’ and STOP,
(we do not need to consider Step 4 here because the
nonexistence of d implies the nonexistence of e in Step 4),
otherwise rearrange L and HC! by moving y
immediately before x in L, making d the
entry point to H/’ in L and all the implied
changes like in a rearrangement of
Type 2.

Put oi :=y and go to Step 8.
Move a between Cl and x in both and HC and put

C1 := a.
If u U (i e u E H! for some j > i) then make u

j

the second element from H in , if possible.
Let a be the element covered by u in .

Let HC2(Cl, x) :: {(Cl, X), L[x, u], (u, Cl)}.
Put HC(a, u) := HC!(c!,x) tJ HC2(cl, x) {(el,x)}; Cl :: a.

PROCEDURE 5.7.
procedure bypass3 (//,:; x, uk, HC (c!, x))
(H,.’ is the top layer in the closed set A., x is its last element in L, x covers c! in L and

u is the bump cutter between A. and A+.
Step I. If A! H/’ {x} then find a highest level

u 6 V-{x,u!} with (x,u) a transition

(u must exist since the dual order was collapsed),
otherwise go to Step 4.
If u {u2, u3 u,n} go to Step 3,
otherwise go to Step 2.

Step 2. (u 6 H for some j > i). Modify L (if possible)
so that u is the second point from H in

(rearrangement of Type 1).

544 JITENDER S. DEOGUN AND GEORGE STEINER

Step 3. Let a be the element immediately preceding u in L.
Put HCl(a,u):--{L[x,u],(u,x)}, Cl ::a and go to END.

Step 4. (HC] has reached H,: but not beyond.)
Find a highest level

u 6_ Ak+] U Uk+l U At+2 U lk+2 U U Am+l
with (Ol,U) a transition from H/. If no such u
exists then go to Step 5. If E Hj for some j
then modify (if possible) to make u the
second point from Hj in L (rearrangement of Type 1).

Put HCl(a, it) := HCl(Cl,X) U L[x, tt]U{(U, Cl)}- {(Cl,X)}
and I ":a, where a is the point immediately
before u in . Go to END.

Step 5. Find a highest level u E Ak+l UUk+l U...OAm+I with
(c,u) a transition for some c H[-{x,y}, where
y is the entry point to H[in L. If no such
u exists then go to Step 6. If u 6 Hj for some

j then modify L (if possible) to make u the
second point from Hj in L (rearrangement of Type I).

Move c between C and x both in L and HCl(Cl,X)
Put HC(a, u) := HC(c,x) U L[x,u]U{(u,c)}- {(c,x)}

and c "=a, where a is the point immediately
preceding u in L. Go to END.

Step 6. Find a u 6 A+I UUt+l U...UAm+I with (y,u) a transition.
If no such u exists then go to Step 7.
If IH/’I > 2 then modify L and HCl(Cl,X), so that
a d 6 H/’-{x,y} is used as entry point to H/’
in and HCI and move y immediately before
x in both L and HC (like in a rearrangement of Type 2),
otherwise if no such d exists then output
’’x and y are critical’’ (by kemma3.8(1))
and STOP.

Put Cl "--y. If u E Hj for some j then modify L
(if possible) to make u the second point from

Hj: in L (rearrangement of Type 1).
Put HC(a, u) := HC(c, x) U L[x, u] U {(u, c)} {(Cl, x)}

and Cl ":a, where a is the point immediately
preceding u in L. Go to END.

Step 7. (x is the only exit point from H/’):
Find a highest level u Ak+IU Uk+l U...U Am+ with

(e,u) a transition for some e HI_ with the

properties e <x and e incomparable to every
point between e and x in L. If no such e

and u exist then output ’’x is critical’’

(by kemma 3.7) and STOP. Otherwise modify L
so that e moves up to become the immediate
predecessor of x in L and correspondingly,
HCl(C, x) is replaced by HP(e, x) (rearrangement of
Type4). If u e Hj for some j then modify L

ALGORITHMS FOR HAMILTONIAN CYCLE 545

(if possible) to make u the second point from

Hj’ in (rearrangement of Type l).
Put HC(a, u) := HP(e, x) L] L[x, u] tJ {(u, e)} and Cl :-- a,

where a is the point covered by u in L.
END;

PROCEDURE 5.8.
procedure continuel (HC(c, uj),
(Our cycle has reached the bump cutter u], using it as a bypass element. /-/,’ is
the top layer of A, c H,’ is the point covered by ,. in L.

Step i. Let B =uj[L. Find a highest level u E B with (Cl,U)
a transition. If no such u exists then go to
Step 3. If u U then rearrange so that tt is
the second point from its layer in
(if possible)

Step 2. Put HC(cl, uj) := L[c, u] L] {(u, cl)}, HC(a, u) := HC(Cl, uj)t
HC2(Cl,//j) {(Cl, ltj)}, C :-- a, where a <’L U.

Go to END.
Step 3. If Ht’: {cl} then output ’’u] is critical’’ (thole is

no transition from H; up if we delete b/j) and STOP.
Find a highest level u B and c Ht’ {c} with (c, u)

a transition. If no such u exists then output

’’u] is critical’’ and STOP.
If u U then rearrange L so that u is the second

point from its layer in (if possible).
If c is not the entry point to Ht’ in then
go to Step 4.

Rearrange L and HCI(cI,u]) to make c the exit
point from Ht’ in in the sense of Lemma 4.6.
(The resulting HCI will have (c,u]) as edge.)

Go to Step 5.
Step 4. Rearrange and HCl(Cl,U]) to make c the exit point

from H; in L and (C, blj) HCI.
Step 5. Put HC2(c,j):--HCI.

Call hamiltonian ({c, u]} t] B) (the [etu[fleO HCI will
contain (c, u/)).

Put HC := HC1 tJ HC2(c, ttj) {(c, uj)}.
Output HC as a Hamiltonian cycle for G and STOP.

END;

PROCEDURE 5.9.
procedure continue2 (HCI(Cl, u), Hi)
(Our cycle HC (c, u) HC, has reached u e//j as a bypass element, I1 >_ 2

must hold.)
Step I. Let B :uIL. Find a highest level w B with (c,w)

a transition.
If no such w exists then go to Step 2. If w U

try to make it the second point in L from
its layer, (if possible) Let

546 JITENDER S. DEOGUN AND GEORGE STEINER

Step 2.

Step 3.

Step 4.

Step 5.

HC2(c, u) "= L[c, w] U {(w, c)},
HCl(a, w) := HCl(cl, u) t] HC2(ci, u) {(cl, u)}, cl := a,
where a is the element covered by w in L.
Go to END.

If u is the second point in from HI’ then go to
Step 3. (u could not be made the second point from/-/j in L,

so u must be the entry or exit for ! and Hj must be a blocker.)
If u is the potentially critical exit element from
the Type 2 blocker HI! then

call bypass2 (Hi; u, HCl(Cl,tt)).
Go to END.

If Hj is a Type 1 blocker and u is incomparable to
every v E Hj_ in PG then rearrange L and HCI
so that tt becomes the exit point from H_l
in .
Call bypassl(Hj; u,y, HCl(Cl,U)), where y is the

other possible exit from Hi.
Go to END.

(u is the entry point to ! in L, I/-/]1 > 2 by kemma 4.7 and u
could not be made second from in L.)
Output ’u is critical’ (by Lemma 3.6) and STOP.

If Hj is a Type 2 blocker and IHjl > 2 then go to

Step 4.
Call hamiltonian (HjLJB;c],u)(ItreturnsanHC(c,u).)
Put HC :: HC, UHC(c, u)- {(c, u)}, output HC for G

and STOP.

(/-/j is a Type 2 blocker and u is neither the entry point to it
nor the exit from it in L.)

Let x’ be the (only) exit from H in L. Find a

highest level w E B with (a,w) a transition for
some a 6 H]-{u,x’}. If no such w exists then

go to Step 5. Rearrange and HC, so that u
covers a in L and (a,u) HC, (Type 2 rearrangement).

Call hamiltonian {a, u} O B; a, (HC (a,) is the cycle
returned.)

Put HC := HC,, U HC(a, it) {(a, u)}, output HC for

G and STOP.

Find a highest level w e B with (e,w) a transition
between the]th and (j+l)st layer in Po--x’
(i.e., e < x’, e (H]_, and e incomparable to every point in

HI- {x’}). if no such to and e exist then output
’’x’ is critical’’ and STOP.

Rearrange L and HC,, so that e is covered by u
in (make e the exit from Hj:_I and u the

entry to HI in), and (e,u) becomes an edge
in HC,, (Type 3 rearrangement).
Put B "--ulL, using the rearranged L.

ALGORITHMS FOR HAMILTONIAN CYCLE 547

Call hamiltonian ({e, u} U B; e, u) (HC(e, u) is returned.)
Put HC "= HC,,(e, u) tO HC(e, u) {(e, u)}, output HC for G

and STOP.
END;

Let us consider the application of Algorithm 5.3 to the example shown in Fig. 7. Although
the bumpno algorithm creates, during its execution, the closed sets A, A2 A6 and bump
cutters ut, u2 us, eventually all these get collapsed into a single antichain. (The transition
(4,13) collapses A tO A2 tO u tO u2 t3 H tO H into a single antichain A3, which is grown to
include H. Following this, the transition (26, 31) collapses A6tOustO A5 into a single antichain
As, which has the endpoint of the transition (14, 30) between ,43 and A6, causing the whole
dual order to collapse into a single antichain A {1, 2 33}.) In Step 3 Algorithm 5.3
recaptures the original A, A2 A6, which are shown in Fig. 7. Suppose the optimal linear
extension created by the algorithm bumpno is L 1,2, 3,5, 4, 8, 7, 6, 9, 10, 11, 13, 12, 14, 15,
16, 19, 18, 17, 20, 21, 22, 24, 23, 27, 26, 25, 30, 29, 28, 31, 32, 33. The algorithm bumpno
would also identify the Type blocker H (with potentially critical elements 20 and 22) and
the Type 2 blockers Hi and H with potentially critical elements 6 and 12, respectively.

31 33Hll 32

H 10 30

H 9 25 27

H 8 23

H 7

H 6

H 5 16

H 4 11

H 3 8 10

H 2

H

H0

4 5

A
5

A
4

H
11 31

A6
H10

-’"’"::* u 30

H
25 26

..:a u 27..................
2.3.. 24

a7222

ni ’17 u 19

A H’ ...
::: u 8

1......................
A HI1

1 3

FIG. 7. An examplefor the application ofAlgorithm 2.

548 JITENDER S. DEOGUN AND GEORGE STEINER

Applying hamiltonian to PG starts by calling twopaths (H(t.) H; R), where
the reserved transitions are R {(1,4), (3, 5)}. This returns HCt (1, 2, 3, 5, 4, 1). Since

H is not a blocker, it calls bypass3 (H; 4, 8, HCI(5, 4)) to bypass the bump cutter

u 8. This finds u 13 as the highest level bypass element with the transition (5, 13) and
enlarges HCl into HC (11, 13) (1, 2, 3, 5, 13, 11, 10, 9, 6, 7, 8, 4, 1). After returning to
hami 1 tonian, since the bypass element u is not a bump cutter, it calls cont inue2 (HC
(11, 13), H). This identifiesB 131L={12, 14, 15 33}. No transition exists
from c 11 to B, H, is a Type 2 blocker with potentially critical x’ 12, and no transition
exists from H-{11,12} {13} to B. The element e 10 is identified as the start of the
transition (10, 14) to to 14 6 B. By a Type 3 rearrangement of L we make e 10 the exit
from H and u 13 the entry to H,. This results in L 1, 2, 3, 5, 4, 8, 7, 6, 9, 10, 13, 11,
12 with no change after 12, and HC (1, 2, 3, 5, 13, 10, 9, 6, 7, 8, 4, 1). The element
11 gets added to B. After this hamiltonian ({10, 13} t] B; 10, 13) is called, with L
10, 13, 11, 12 continued as L after 12. This calls twopaths (H to H; R), where
the reserved transitions are R {(10, 11), (10, 13)}. This returns HC2 (10, 11, 12, 13,
10). After this bypass2 (H; 12, HC2(11, 12)) is called, which identifies the transition
(10,14) to bypass x 12, with u 14 the bypass element and e 10 moving up to replace
x in Pc x. By a rearrangement of Type 4, e 10 is moved immediately before x 12
in L and HC2, "taking" also 13 with it (to keep the edge (10, 13)), resulting in L 11, 13,
10, 12 and HP2(10, 12) (10, 13, 11, 12). (Note that (10, 12) is a bump in Ll, and
correspondingly (10, 12) is not an edge in G.) The bypass element u 14 is not the second
point from H in L 1, so L is rearranged (by a Type rearrangement) into L 11, 13, 10, 12,
15, 14, 16, 19 HP3(12, 10) L[12, 14] to (14, 10) (12, 15, 14, 10) is constructed
and is combined into HC2(15, 14) HP2(10, 12) tO HP3(12, 10) (10, 13, 11, 12, 15, 14,
10). Returning to hamiltonian, continue2 (HC2(15, 14), H) iscalled. B issetto
B 16, 19, 17, 18, 20, 21 33}. The bypass element u 14 is second from H in L 1, so
hamiltonian (H to B; 14, 15) is called with L2 15, 14, 16, 19 This constructs

HC3 =(14, 15, 16, 14)andcallsbypass3 (H; 16, 19, HC3(14, 15)). This finds the highest
level bypass element u u5 30 with the transition (14, 30). Using this u, we enlarge our
cycle into HC3 (14, 15) (14, 15, 16, 19, 18, 17, 20, 21, 22, 24, 23, 27, 26, 25, 30, 14) and
return to hamiltonian, which calls continuel (HC3(25, 30), H). (Note that 27 was
also available to bypass tl3 19, but 30 being from a higher layer, choosing 30 speeds
up the algorithm. We also bypassed the Type blocker H7 in the process). B is set to
B {29, 28, 31, 32, 33 }. The bypass element u 31 with the transition (26, 31) is identified.

L2 is rearranged into L2 15, 14, 16, 19, 18, 17, 20, 21, 22, 24, 23, 27, 26, 25, 30, 28, 29,
32, 31, 33 to make u 31 the second point from H{l in L2. As c 26 is the entry point
to H in L2, we rearrange L2, in the sense of Lemma 4.6, into L2 15, 14, 16, 19, 18, 17,
20, 21, 22, 24, 23, 27, 25, 26, 30, 28, 29, 32, 31, 33 to make 26 the exit point from H. This
rearrangement results in HC3(26, 30) (14, 15, 16, 19, 18, 17, 20, 21, 22, 24, 23, 27, 25, 26,
30, 14). hamiltonian {26, 30} to B) is called with L3 26, 30, 28, 29, 32, 31, 33, which,
after a call to bypass3 ({26}; 26, 30, 4), returns HC4(26, 30) (26, 30, 28, 29, 32, 33, 31,
26). All is left is to combine the cycles constructed:

HC5 HC3 (26, 30) t] HC4(26, 30) {(26, 30)}
(14, 15, 16, 19, 18, 17, 20, 21, 22, 24, 23,

27, 25, 26, 31,33, 32, 29, 28, 30, 14)

HC6 HC2(14, 15) t] HC5 {(14, 15)}
(10, 13, 11, 12, 15, 16, 19, 18, 17, 20,

21, 22, 24, 23, 27, 25, 26, 31, 33,

32, 29, 28, 30, 14, 10)

ALGORITHMS FOR HAMILTONIAN CYCLE 549

HC HCI(10, 13)U HC6- {(10, 13)}
(1, 2, 3, 5, 13, 11, 12, 15, 16, 19, 18, 17,

20, 21, 22, 24, 23, 27, 25, 26, 31, 33,

32, 29, 28, 30, 14, 10, 9, 6, 7, 8, 4, 1)

THEOREM 5.10. Algorithm 5.3 solves the Hamiltonian Cycle Construction problemfor a
cocomparability graph G in O(hn2) time and O(n2) space, where n is the number ofvertices
in G and h is the size ofa largest independent set in G.

Proof The correctness of the algorithm follows from Lemmas 3.4 to 3.9, 4.5 to 4.7 and
Theorem 4.8. The only change in the algorithm, from the development of the previous results,
is that instead of using the bumpno algorithm on Pc x to find a bypass element u for the
potentially critical element x, we look for a highest level bypass element u directly. This means
that the bypass element we find may not be the same as what bumpno would have found. The
reason for looking for a highest level bypass element is that this way our Hamiltonian cycle
is grown faster, by possibly reaching higher levels in fewer iterations. Once we have grown
the Hamiltonian cycle into an HC, covering G lu, for any bypass element u, by Lemma 3.4,
it follows that the subposet L lu cannot have critical elements, even though we may not have
directly tested all its potentially critical elements.

For the space complexity of the algorithm we note that all the information needed and
generated by bumpno can be clearly stored in O(n2) space.

To prove the claimed time complexity we make the following observations: Gc and the
transitive orientation Po can be found in O(n2) time [18]. The bumpno algorithm for Pc
needs at most O(n2) time 10]. It is clear that Pc has at most O (h) blockers or bump cutters,
so the procedures bypassl, bypass2, bypass3, continuel and continue2 can be
called at most O(h) times. A single execution of any of these can clearly be done in O(n2)
time. i-]

We note that a careful implementation of the algorithm could result in a version with
O(n2) time complexity, by exploiting the fact that each transition present in Pc would have
to be looked at at most two times (once when searching for an appropriate transition, and
possibly the second time when rearrangements are performed). We omitted this from the
statement of the theorem, because proving it would require a much more detailed statement of
the algorithm. Finally, we also note that the Hamiltonian cycle constructed by the algorithm
is "layered" in a certain sense: it enters each layer H’ at most twice.

6. Appendix.

ALGORITHM 6.1.
algorithm bumpno(P)

Step i- (Initialization)-
Let H0 H be the initial layers of P. Put

H/"-/-/i(i=O h),l’-l,k’-O, open(A), put k’- 1.
Step 2- (Termination condition).

If k--h, close(At, a) with any maximal a e At and
terminate. Then the concatenation L IUI2...
UI_IL is an optimal linear extension and

A AI and U define the contained
generalized weak order P*.

Step 3- (Search for transitions from H_I).
Search for transitions (a,_l,uk_) from H_I to

H) with j >_k according to RULE i, RULE 2, and
RULE 3. There are 4 cases that are treated in
Steps 4- 7.

550 JITENDER S. DEOGUN AND GEORGE STEINER

Step 4

Step 5

Step 6:

Step 7

(There are two or more transitions into/-/ with
different endpoints) Then row (A_). I _here

l-!is a transition (a, b) from some a E Ui:I Ai to
some 6 6 H (which can only happen if > |),

then co|lapse(At) and put :=t (a value returned
by collapse) Put k:=k+ and go to Step 2.

(All transitions into H. have the same endpoint)
Let (a,_,u_) be such a transition. Then
close(At, ak-1) put H := H- {Uk-1}, UI :- {b/k-1 }, :--l --[- 1,
and open (At) Then open returns At H. If
there is a transition (a,b) from some a 6 Uti-ll Ai
to some b 6 H then collapse (At) and put ::
(a value returned by collapse) Put k::k+
and go to Step 2.

(There are only transitions into higher layers Hi, j > k)
Choose such a transition (ak-l,U.-1) with

uk-I 6 H] according to RULE 1 and RULE 2.
Then close (AI, ak-1 put Hj "= Hj {uk-1},
Ut :={uk-l}, open(At+l), put l:=l+l,k:=k+l
and go to Step 2.

(There is no transition at all): Then close (At, a)
with any maximal a 6 At put U! ::q (this means
that a bump is created) open(At+l) put :l+ I,
k:=k+ I, and go to Step 2.

The change in bumpno, in comparison to the original algorithm in 10], is the addition of
RULE 3 for breaking ties between short transitions. Clearly this does not affect its correctness
or complexity. The procedure open initializes the new antichain and creates data structures
necessary for storing the information.

PROCEDURE 6.2.

procedure open (At)
2Put A} ":,At2":Hk (where Uo:), and At ::A) UA

Create a list list(A/2) for transitions to be stored,
create a list list(A]) for storing a linear exten-
sion L of A (forthe case that A] becomes nonempty).

The procedure grow At is rather simple and just keeps track of the information needed
to construct the linear extension of At upon closing. Note that grow is the only step in the
algorithm where A is enlarged.

PROCEDURE 6.3.

procedure grow (At)
Put the two transitions (ak_l,Uk_l),(a’k_l,Uk_ l)
with Uk-1 :/: Zl’k_ on list(A) Put

ALGORITHMS FOR HAMILTONIAN CYCLE 551

The procedure close constructs a linear extension of At according to the information
stored in list(A]) and list(A).

PROCEDURE 6.4.

procedure close (At, a)
Construct a linear extension Lt of At without
bumps with last element a.
Put the set At on list closedsets. If k < h then put
the bump cutter ut on list bumpcutters.
(These lists are constructed because they are needed
to reconstruct collapsed closed sets.)

The procedure collapse is applied when the layer H that is to be added to At or At+I
is not above some previous antichain Ai. This can only occur if H contains endpoints of tran-

sitions from previous layers contained in previous antichains. Loosely speaking, co i lapse

joins as many antichains Ai and associated sets Ui below At to the A part of Al as nec-
essary to ensure that A1 < A2 < < At holds at all the time and updates the associated
linear extension L] of A] Note that col lapse is the only part in the algorithm where A]
is enlarged.

In looking for the range over which the collapsing has to take place, a certain closure
operation is used. First, all transitions (a, b) to all b 6 H are considered and ira Ai, < l,
then Ai U Ui is added to At. Then the same is done for transitions (a, b) with b Uj for all
added Uj, iterating in this fashion through l, 2 until we find the first (largest) for

which there is no transition from [,.J.-l Aj to Aew AId U UI-1 kJ At-! U... U Ut U At.
PROCEDURE 6.5.

procedure collapse (At)
Find, in the order 1--1,/--2 the first index

l-1
such that,ilf (a,b) is a transition with b e Hk

I,-J (Ui= Ui)
A Ut//t-!(Aithen a . Uj- Aj. Enlarge A] by putting A] .= tk.i:t

L.JUi) and update the linear extension L] by letting

LtUtLt+IUt+l...Lt-iUt-i precede the old L].
Store the new L] in list(L]) Finally, return t.

It was shown in I10] that can be characterized as the largest index fulfilling [,.J)- Aj < p

L_J=t (Aj U Uj). For more detail and examples we refer the reader to 10].

REFERENCES

[1] C. BERGE, Graphs, North-Holland, Amsterdam, 1985.
[2] A. A. BERTOSSi, The edge Hamiltonian path problem is NP-complete, Inform. Process. Lett., 13 (1981), pp.

157-159.
[3] P. DAMASCHKE, The Hamiltonian circuit problemfor circle graphs is NP-complete, Inform. Process. Lett., 32

(1989), pp. 1-2.
[4] P. DAMASCHKE, J. S. DEOGUN, D. KRATSCH, AND G. STEINER, Finding Hamiltonian paths in cocomparability

graphs using the bump number algorithm, Order, 8 (1992) pp. 383-391, 1992.

552 JITENDER S. DEOGUN AND GEORGE STEINER

[5] U. FAIGLE AND R. SCHRADER,A combinatorial bijection between linear extensions ofequivalent orders, Discrete
Math., 58 (1986) pp. 295-301.

[6] M. R. GAREY, D. S. JOHNSON, AND R. E. TARJAN, The planar Hamiltonian circuit problem is NP-complete,
SIAM J. Comput., 5 (1976), pp. 704-714.

[7] M.C. GOLUMBIC, Algorithmic Graph Theot3, and Perfect Graphs, Academic Press, New York, 1980.
[8] D. GOUYOtJ-BEAUCHAMPS, The Hamiltonian circuit problem is polynomial for 4-connected planar graphs,

SIAM J. of Comput., 11 (1982), pp. 529-539.
[9] M. HABm, Comparability invariants, Ann. Discrete Math., 23 (1984), pp. 371-386.
10] M. HABIB, R. H. MOHRING, AND G. STEINER, Computing the bump number is easy, Order, 5 (1988), pp. 107-129.
11 A. ITAI, C. H. PAPADIMITRIOU, AND J. L. SZWARCFITER, Hamiltonian paths in grid graphs, SIAM J. of Comput.,

(1982), pp. 676-686, 1982.
[12] D. S. JOHNSON, The NP-completeness column: An ongoing guide, J. Algorithms, 6 (1985), pp. 434-45 I.
13] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computer Communi-

cations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.
[14] M. KEIL, Finding Hamiltonian circuits in interval graphs, Inform. Process. Lett., 20 (1985), pp. 201-206.
15] D. KRATSCH AND L. STEWART, Domination on cocomparability graphs, SIAM J. Discrete Math., to appear.
16] M.S. KRISHNAMOORTHY, An NP-hardproblem in bipartite graphs, SIGACT News, 7 (1976), p. 26.
[17] A.A. SCH,FFER AND B. B. SIMONS, Computing the bump number with techniquesfrom two-processor schedul-

ing, Order, 5 (1988), pp. 131-141.
[18] J. SPINRAD, Transitive orientation in O(n2) time, in 15th STOC Proceedings, 1983, pp. 457-466.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 553-562, June 1994

() 1994 Society for Industrial and Applied Mathematics
006

PACKET TRANSMISSION IN A NOISY-CHANNEL RING NETWORK*
VICTOR PESTIENt, S. RAMAKRISHNAN, AND DILIP SARKAR

Abstract. Assume that n stations, each with a buffer to hold only one packet at a time, are connected as a ring
and that data packets are transmitted counterclockwise. A station will attempt to transmit a packet to the next station

only if (i) it has a packet to send and (ii) the next station’s buffer is empty. The communication channels connecting
the stations are noisy, and there is a fixed probability p (0 < p < 1) of error-free transmission of a packet from one
station to the next in one attempt.

An exact expression for the long-run average time for a packet to go around the ring is derived. (A special case
of this answers a question raised by Berman and Simon in [Proc. 20th ACM Symp. on Theory of Computing, ACM
Press, 1988, pp. 66-77].) For fixed n and p, the throughput of the system is maximum when the number of packets
is an integer closest to n/2.

Key words, ring network, packet communication, equilibrium distribution, Markov chain

AMS subject classifications, primary: 68M 10; secondary: 60J 10, 94A05

1. Introduction. Local area networks are a subject of increasing importance for efficient
data communication. A ring network is a particularly attractive local area network, since its
architecture uses simple control software and interfaces. In a unidirectional ring network, the
host computers are connected to the network via ring interface hardware. Each interface is
called a station in the ring. A station transmits its message to the next station in the ring, and
the message circulates around the network until it reaches the destination station where it is
forwarded to the host computer. The interface hardware can identify messages intended for its
host. A host may transmit its packet by passing it to its attached station using one of several
standard protocols (see Tanenbaum [6]).

In this paper, we study the asymptotic average rate of transmission of packets of messages
in a ring network. We assume that a station can store only one packet of a message at a time
in its buffer. Thus, a station can transmit a packet to the next station if the next station has an
empty buffer. During transmission, a packet can become corrupted in the channel. In other
words, the transmission channel is not noise-free. Assume that there is a probability p of
error-free transmission in one attempt. If a packet is corrupted during transmission, it must
be retransmitted. Also assume that all the stations synchronously attempt to transmit packets.

We assume that there is a fixed interval of time between consecutive transmission at-

tempts. Within this interval, each station will determine the status of the buffer of the next

station, attempt transmission, and receive acknowledgment. We further assume that the trans-
mission of the acknowledgment is error-free. This assumption is harmless since the size of
the acknowledgment packet is very small compared to the size of a packet of information, and
hence it can be encoded using some error-correcting code.

This paper illustrates how the theory of Markov chains could be naturally used to model
and analyze a computing problem. In 2 the system is formalized as a Markov chain and
its equilibrium distribution is obtained. This distribution is then used in 3 to calculate the
asymptotic average cycle time of a packet. In 4, the condition for maximizing throughput
is established. Throughput of the system is the expected number of packets successfully
transmitted from one station to the next in one unit of time. Section 5 gives some concluding
remarks and discusses connections with the work of Berman and Simon [1].

2. Stationary probability distribution. Consider n stations arranged in a circle. We
assume that the stations are numbered 0, n 1. Also, for any integer j, by station j, we

*Received by the editors July 12, 1989; accepted for publication (in revised form) January 19, 1993.
Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida 33124-4250.

553

554 V. PESTIEN, S. RAMAKRISHNAN, AND D. SARKAR

shall mean the station j mod n. Suppose there are k packets (k < n) that are to be transmitted
counterclockwise around the circle under the following conditions:

(i) packets can move only at discrete times 1, 2
(ii) at every time instant t, each packet is at some station and there is at most one packet

at each station;
(iii) at every time instant and for every integer j, a packet located at station j can move

only if station (j + 1) does not have a packet; if it can move, it will move, independently of
other packets that can move, with probability p (0 < p < 1) to station (j + 1), and it will
stay at station j with probability (1 p).

We want to calculate the long-run average speed with which a packet goes around the cir-
cle. We shall formalize this stochastic process as a discrete-time Markov chain with stationary
transition probabilities. (All the definitions and results from the theory of Markov chains that
we shall need can be found in Chung [2] or Feller [3].)

Given a time instant, we say that the local state of a station is

0

if it has a packet at that instant,

if it does not.

The state space S of our Markov chain consists of n-tuples s (so s,,_), where sj
is the local state of station j. Formally,

S {s 6 {0, }" exactly k coordinates of s are }.
For s 6 S and for any integer j, by sj we shall mean the (j mod n)th coordinate of s. For

s 6 S and any integer j, we say that j is an opportunity station of state s if sjsj+l 10; and
we say that j is a post-opportunity station of state s if sjsj+l 01. An opportunity station j
is one that has a packet that can move in a one-step transition to station j + since there is no
packet at station j + 1, while a post-opportunity station is one from which a packet may have
just moved to station j + 1. Let

OPP(s) {j 0 < j < n and j is an opportunity station of state s

and

POSTOPP(s) {j 0 < j < n and j is a post-opportunity station of state s }.

The states that can result from a state s after a one-step transition are in one-to-one
correspondence with subsets of OPP(s), the subset identifying the stations from which a
packet actually moves. If A

OPP(s), the state sA that will result from s when A is the set

of stations from which packets have just moved is described formally as follows:
(i) for j A, sjA+I 01"

(ii) if s; is not specified by (i), then s; sj.
The entries of the transition matrix P of our Markov chain are defined by

(2.1) P(s, sA) plAl(1 p)IOPP(s)I-IAI,

for s 6 S and A c_ OPP(s). (l" denotes cardinality.) All other entries of the transition matrix
are zero.

Thus for each s S, P(s, s’) is nonzero for exactly 2IPP(s)l states s’. However, given
states s, s’ 6 S, it can easily be verified that in 2n one-step transitions, s can be transformed

PACKET TRANSMISSION IN A RING NETWORK 555

into s’ with positive probability. Thus the Markov chain with transition matrix P is irreducible.
It is also positive recurrent, because the set S is finite. Therefore, as is well known, there is a
unique stationary probability distribution for P, i.e., there is a unique vector zr on S such that

(2.2) zr(s)] n’(s’)P(s’, s) for all s 6 S,
s’ ES

(2.3) zr(s) > 0 for all s 6 S,

and

(2.4) Z 7r(s) 1.
sES

The stationary probability distribution of P can thus be obtained by first getting a vector
that satisfies (2.3) and (2.2) and then normalizing it.

Let ?, be the vector on S defined by

(2.5) ,(s) (1 p)-IoPP(s)l.

THEOREM 2.1. The vector , defined by (2.5) satisfies (2.3) and (2.2)for the matrix P
defined by (2.1).

Proof. Plainly, since 0 < p < 1, , satisfies (2.3). To verify (2.2), given s 6 S, by the
definition of P, the summation on the right side of (2.2) need be taken only over those s’ S
such that for some A OPP(s), s (s’) A. In such a case, A POSTOPP(s). Moreover,
given s 6 S and A _c POSTOPP(s), there is a unique state s’ satisfying (s’) A s. We shall
denote this state by s-A. With this notation (2.2) can be rewritten as follows"

(2.6) ?,(s) ’(s-A)p(s-A, S) for all s 6 S.
A _POSTOPP(s)

The proof of (2.6) will use the following two lemmas.
LEMMA 2.2. Ifs S, then

IoPP(s)I--IPOSTOPP(s)I.

Proof For j 60PP(s), let j’ be the largest integer such that S 0 for j < < j’
and let j" j’ mod n. it is easy to see that the pairing of j and j" gives a one-to-one

correspondence between OPP(s) and POSTOPP(s).
LEMMA 2.3. If s S and A POSTOPP(s), then

)/(s-A) P(s-A, s)=

Proof Since (s-A) A S by definition, we have

),’(s -A) P(s-A, s) (1 p) -IPr’’-A)l plAI (1 p) IOPP(s-A)I-IAI

i p [3

We now finish the proof of Theorem 2.1 by verifying (2.6). Note that

556 V. PESTIEN, S. RAMAKRISHNAN, AND D. SARKAR

? P(s-A, s)
Ac_POSTOPP(s)

--p
p

[by Lemma 2.3]
Ac_POSTOPP(s)

e=0
g p

+ i 0 [by the binomial theorem]

(1 p)-IPOSTOPP(s)I
(1 p)-IOP(l [by Lemma 2.21.

The proof of Theorem 2.1 is thus complete.
COROLLARY 2.4. If rc is defined by

g(s)
(2.7) zr(s) s,es ,(s’)’

where), satisfies (2.5), then rr is the unique stationary probability distribution ofthe Markov
chain with transition probability matrix P.

3. Average cycle time. A natural measure of the progress of the system is the number
of packet movements. In a one-step transition from state s to state s’, this is the number of
opportunity stations of s that successfully transmit a packet and hence are post-opportunity
stations of s’ i.e.

IOPP(s) POSTOPP(s’)I.

Of course, such a transition would have positive probability only when s’ sA for some
A

OPP(s)" and in such a case IOPP(s) O POSTOPP(s’)I IAI. If s, s s

denote the sequence of states generated by our Markov chain (s is the state at time instant t),
the long-run average time per unit progress is

(3.1) lim
t ’’]l=l]OPP(si-1) f3 POSTOPP(si)I"

Using the strong law of large numbers for Markov chains, one can show (see below) that with
probability one,

(3.2) lim
t _ti_ IOpp(si-l) 7) POSTOPP(si)[Psrr(s)lOPP(s)l

Since the long-run average cycle time for a packet, to be denoted by TIME(n, k, p), can be
defined to be equal to the long-run average time for nk units progress of the system, we have

nk
(3.3) TIME(n, k, p) pE(IOPPI)’

where E(IOPPI) ’--]ss IOPP(s)lrr(s), the expected number of opportunities under
To see how the strong law is used to calculate the limit in (3.1), it helps to consider the

associated Markov chain, with state space S S, which generates the sequence of states

(S0, SI), (S S2) (St-I st),

PACKET TRANSMISSION IN A RING NETWORK 557

It is easily verified that this Markov chain has stationary distribution 7r* defined by

zr* (s, s’) zr(s) P(s, s’),

where 7r and P are defined by (2.7) and (2.1), respectively. By an application of the strong
law (Chung [2, Theorem 2, I. 15]), the limit (3,1) can now be seen to equal, with probability
one,

-(s,,’)ess IOPP(s) fq POSTOPP(s’)Izr*(s, s’)

This is the same as

-sS AC_OPP(s) IAlr(s) P(s, s")
1

’PP(s)lg.(lPp(s)l)pe(l_p)lOPp(s)l-e2ss r(s) 2t=

.es r(s) plOPP(s)

P" ,es zr(s)lOPP(s)l

where the second-to-last equality holds because the inner sum is a binomial expectation. The
verification of (3.2) is now complete.

The following proposition calculates E(IOPPI) explicitly in terms of n, k, and p.
PROPOSITION 3.1.

(3.4) E(IOPPI)
e=l

Proof. Since k < n, for every s 6 S there must exist j such that SjSj+ 10. Hence
IOPP(s)l > 1. Moreover,

OPP(s) c_ {j’0 < j _< n and sj 1},

so IOPP(s)I < k. Further,

{j+l" j6OPP(s)}C_{i" <i <n and si-O},

so IOPP(s)I < n k. We have thus shown that

_< IOPP(s)l < min(k, n- k)

for eachs 6 S. For each integere such that < < min(k,n-k),letSt {s S"
IOPP(s)I g}. By Corollary 2.4, we have

E(IOPPI)
,es IOPP(s) I’(s)

2,s (s)

m,n(.,-) lSel(1 p)-e

558 V. PESTIEN, S. RAMAKRISHNAN, AND D. SARKAR

The proof will be complete if we can show that

(3.5) I&l
e-1

for < e

min(k, n -k).

Note that every s 6 S is the concatenation of an alternating sequence of nonempty blocks
of O’s and nonempty blocks of l’s, so s Se if and only if it has one of the following four
possible forms:

(i) s is the concatenation of an alternating sequence of e nonempty blocks of l’s and e
nonempty blocks of O’s (where s starts with a block of l’s);

(ii) s is the concatenation of an alternating sequence of e + nonempty blocks of l’s and
nonempty blocks of O’s (where s starts with a block of l’s);

(iii) s is the concatenation of an alternating sequence of e nonempty blocks of O’s and
nonempty blocks of l’s (where s starts with a block of O’s);

(iv) s is the concatenation of an alternating sequence of e + nonempty blocks of O’s and
nonempty blocks of l’s (where s starts with a block of 0’s).

Since any string of length a can be partitioned into b nonempty blocks in a-1(b-l) ways and
since each s 6 S has k l’s and (n k) 0’s, we have

(Similar counting arguments are discussed in detail in Johnson and Kotz [4], for example.)

THEOREM 3.2.

(3.6)
nk Z"e=l e" e-1

TIME(n, k, p)
P z-.,e’=v’m’n(""-’) (k-) ("--)(1 P)-e’lg’ ’

Proof. This is an immediate consequence of (3.3) and Proposition 3.1. [3

4. Optimum throughput. Given a station j, if P(TRANS at j) denotes the probability,
under the stationary distribution zr, that a packet gets transmitted to station (j + 1), then

P(TRANS at j) p. zr{s 6 S" j 60PP(s)}.

Since 7r{s 6 S" j 60PP(s)} is independent of j, so is P(TRANS at j), and we can denote
it simply by P(TRANS). It now follows that

n-1

n. P(TRANS) p 7r{s 6 S" j 60PP(s)}.
j=O

PACKET TRANSMISSION IN A RING NETWORK 559

Therefore,

(4.1) n. P(TRANS) p. E(IOPPI).

The last equality is seen by expressing IOPPI as a sum of n 0-1 valued random variables.
Either of the equivalent expressions in (4.1) can be taken as the definition of the "throughput"
of the system.

We now solve the following optimization problem. For fixed n and p we determine the
value of k that maximizes P(TRANS). Hence, we determine the value of k that maximizes
throughput.

THEOREM 4.1. Let n, a positive integer, and p, a real number such that 0 < p < 1, be

fixed. Then as afunction ofk, P(TRANS) is maximized at ko, where

(4.2) ko-- / ifniseven,

/ n+ ifn is odd.- or --The proof of Theorem 4.1 relies on a lemma.
LEMMA 4.2. Let #1 and #2 be functions defined on {1 L}, where L is a positive

integer such that
(i) #i () _> 0 for all andfor 1, 2;
(ii) #i () 0 implies #i (’) 0 for all ’ >_ andfor 1, 2;
(iii) Y’]e= #i () 1, for 1, 2; and
(iv)/z1(+ 1)/#() >_ #2(e " 1)/#2(/) forallg, suchthat#() > Oand#2() > O.
Let q9 be a nondecreasingfunction on {1 L }. Then

L L

g=l =1

[Remark. This elementary lemma is a special case of a well-known result in the monotone
likelihood ratio theory in statistics (see Lehmann [5, 3.3]). However, for completeness, we
include a proof.]

Proof. Let go be the least integer in L} such that/z (eo) > /2(o). Such an
integer must exist because of hypothesis (iii). Now hypotheses (iv), (ii), and (i) imply that

(4.3) #1 (e) >_ #2(e) for all

If eo 1, then by (iii) and (4.3), #1 () #2() for all e and the assertion of the lemma is
true. If o > 2,

L

qg(e)[#l (e) #2(e)]
e=l

go-1 L

e0-1 L

[since p is nondecreasing]
L

R 0 [by (4.3)].

560 V. PESTIEN, S. RAMAKRISHNAN, AND D. SARKAR

Proofof Theorem 4.1. Because of (4.1) and (3.4), maximizing P(TRANS) is equivalent
to minimizing

min,.,k)(k,n- e-1

,=1 ’ Z..,,’=l-min(k’n-k’ (k-’) (n-k-I)(l--P)g’-I

For each positive integer k < n, define

(4.4) Uk(e)

(k-I) (n-k-1)(l_p)-e’e’ .e’ e’

if e min(k, n k) and define .(e) 0 if min(k, n k) < e min(k0, n k0).
Since k0 satisfies (4.2), it follows that for k < n the functions k0 andk satisfy hypotheses

(i), (ii), and (iii) of Lemma 4.2. Also,

k(e + 1) k(n k) en + g2

#k(g) k- ,-k-
(l p)-e

for e < min(k, n -k). Therefore,

/zx. (e + l) /xk (g + l)

for all k < n and for all t satisfying < < min(k, n k). Thus hypothesis (iv) of Lemma
4.2 is also satisfied. So by applying Lemma 4.2 to the nondecreasing function 0 defined by
qg(t) -, we obtain

min(k.n-k)min(k0)

e=l

for all k < n.

This completes the proof of the theorem.

5. Concluding remarks.

5.1. A bound for TIME(2N,N,I/2). In Berman and Simon], the question of obtaining
an exact expression for TIME(2N, N, 1/2) was raised. Of course, Theorem 3.2 gives the
answer. Although the expression (3.6) in Theorem 3.2 is complicated, here is an easy argument
to show that

(,) 4
TIME 2N, N, < N.

If/Zp denotes the function defined by the right side of (4.4) when k N and n 2N and
/z0 denotes this function when, in addition, p 0, then Lemma 4.2 can be applied routinely
to show that

PACKET TRANSMISSION IN A RING NETWORK 561

Hence

TIME(2N, N, p)

N e’ e’

(2N N-e

N e’ e’

2N N-

N-1

4

5.2. Asymptotics. The expression for TIME(n, k, p) given by (3.6) is hard to evaluate
if k and n k are large. We tried approximating it by the technique of moment-generating
functions as follows"

Rewrite (3.6) as

(5.1) TIME(n, k, p)

-"min(k’n-k) (k) (n-k-1)(1 _p)-e
nk /__,e-1

k-e

()()p -,min(k,n-k) e’ k k- (1 p)-e’z..,e,=
k-e’ e’-

Consider now an urn with k red balls and (n k 1) black balls Let X denote the
number of black balls drawn when (k 1) balls are drawn from the urn, one by one, without
replacement If (1 p)-, we may now write (5.1) as

nk E(tx+)
TIME(n, k, p) [where E denotes expectation]

p E((X + 1)tx+)
nk E(tx+)
p t. [E(tX+)]

This last expression can be approximated by regarding the hypergeometric random vari-
able X to be approximately normally distributed. In particular, this technique yields for
TIME(2N, N, p) the approximation

N
p -ff + ln(1 p)

While this approximation seems to work reasonably well for p < 0.5 as compared to
simulated values, it is very poor for values of p close to 1.

562 V. PESTIEN, S. RAMAKRISHNAN, AND D. SARKAR

It would be desirable to derive a closed-form expression for the limit of

TIME(n, k, p)

k approaches ot where 0 < ot < In the particularas n approaches cx, k approaches cxz, and
case where c 1/2, Berman and a referee have conjectured that this limit equals /1 p.

Acknowledgments. Shortly after we obtained our results, L. A. Shepp obtained (3.6)
independently. A referee provided a number of detailed comments that led to a substantial
change in style as well as shortening of an earlier version.

REFERENCES

R BERMAN AND J. SIMON, hwestigations offault-tolerant networks of computers (preliminary version), in
Proceedings 20th ACM Symposium on Theory of Computing, Chicago, ACM Press, May 1988, pp.
66-77.

[2] K. L. CrUNG, Markov Chains with Stationar3, Transition Probabilities, second ed., Springer-Verlag, Berlin
1967.

[3] W. FELt.ER, An htroduction to Probabilio, Theory and its Applications, Vol. I, Third ed., Wiley & Sons, New
York, 1968.

[4] N. JOHNSON AND S. KOTZ, Urn Models and Their Application, Wiley and Sons, New York, 1977.
[5] E. LEMANN, Testing Statistical Hypotheses, Wiley and Sons, New York, 1959.
[6] A. TANENAtJM, Computer Networks, Prentice-Hall, Englewood Cliffs, NJ, 1981.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 563-572, June 1994

1994 Society for Industrial and Applied Mathematics
007

SUBQUADRATIC SIMULATIONS OF BALANCED FORMULAE
BY BRANCHING PROGRAMS *

JIN-YI CAIt Ant) RICHARD J. LIPTON

Abstract. This paper considers Boolean formulae and their simulations by bounded width branching programs.
It is shown that every balanced Boolean formula of size s can be simulated by a constant width (width 5) branching
program of length s 1.81 l.... A lower bound for the translational cost from formulae to permutation branching programs
is also presented.

Key words, branching programs, Boolean formulae, Boolean circuits, group theory

AMS subject classifications. 68Q 15, 68Q25

1. Introduction. In a beautiful paper, Barrington [B] showed that the class of languages
recognized by (nonuniform) NC circuits (fan-in 2, depth O(log n) on n inputs) is identical
to the class recognized by bounded width branching program with polynomial length. His
main motivation was to resolve a conjecture that had been made by Borodin et al. [BDFP].
They had conjectured the opposite is true, namely, that bounded width computations requires
exponential length to simulate NC; in particular, the majority function requires exponential
length.

Barrington showed that any balanced Boolean formula of depth d can be recognized by a
branching program of width 5 and length (2a)2. Thus, if an NC function is represented by a
balanced tree of depth d (so the size s of the tree is roughly 2a), then the length ofthe branching
program will be s2, quadratic in the size of the tree. (For simplicity, we assume our balanced
trees are fully balanced binary trees, as in Barrington’s paper. Although our construction works
for trees not fully balanced, the estimate of the length is more complicated.) Barrington’s work
has been generalized by Ben-Or and Cleve [BC] to algebraic formulae. Their simulation, which
uses a construction similar to Barrington’s, also has a quadratic increase in the length.

The first set of results in this paper is to improve on the upper bound established by
Barrington. We show that, for width 5 branching programs, the exponent 2 in Barrington’s
construction can be improved to 1.811 Then in 5 we present a lower bound on the
translational cost from formulae to branching programs over any finite groups.

Our primary motivation for this work is to study branching programs and the important
class NC [Pi][Co]. If we can shed further light on the relationship between branching
programs and the class NC in the attempt to lower the exponent of the cost of simulating
NC by branching programs, the study will have proved to be worthwhile.

Specifically, we would like to sharpen the estimate of the translational cost from Boolean
formulae to branching programs. The class of balanced Boolean formulae of polynomial size
is the same as NC; thus, this also provides improved simulation of NC by branching pro-
grams, although in general, another polynomial factor will appear [Sp], just as in Barrington’s
simulation. For the class of balanced Boolean formulae, one referee points out that, in fact,
people have thought that the quadratic bound of Barrington was optimal, before the current

paper. Also, understanding how to encode information into simple groups may help shed light

*Received by the editors May 7, 1990; accepted for publication (in revised form) March 3, 1993. A preliminary
version of this paper appeared in the Annual Symposium on Foundations of Computer Science 1989.

tDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544 (jyc@cs.
princeton, edu). The work of this author was supported by National Science Foundation grants CGR-8709818
and CCR-9057986.

;Department of Computer Science, Princeton University, Princeton, New Jersey 08544 (rjl@cs.
princeton, edu). The work of this author was supported by Defense Advanced Research Projects Agency and
Office of Naval Research grants N00014-85-C-0456 and N00014-95-K-0465.

563

564 JIN-YI CAI AND RICHARD J. LIPTON

onto why no construction seems possible in solvable groups. These questions are intimately
related to constant depth circuits with modulo p gates for a fixed finite set of primes p.

Unlike Barrington’s construction, our branching programs in this paper use subprograms
that are not restricted to have only two output values for intermediate steps, although the final
output is still Boolean. The question of this so-called "weak" versus "strong" representation,
namely, whether the less restrictive weak representation (with possibly more than two output
values in intermediate steps) is more powerful than strong representation (with exactly two

outputs), has been of interest in other upper/lower bound proofs. The present paper provides
quantitative evidence that, for branching programs, indeed the less restrictive representation
is more powerful.

There already has been some extension of our work since a preliminary version [CL] of
this paper appeared in FOCS ’89. Cleve [C1] has proved one of our original conjectures: that
indeed the exponent can be reduced to + at the cost of increased (depending on but still
constant) width for the simulating branching program. The width achieved is rather large, and
the theoretical question of whether the increase is necessary is still open.

Our lower bound takes a first step toward this direction. Using a Ramsey-type argument,
we show that over any finite group there must be a superlinear increase in the length in general.
We establish the first superlinear lower bound for a class of branching programs that compute
functions with linear formula size.

2. Preliminaries. The branching program model is a generalization of the binary de-
cision tree model. We consider a branching program as given by a leveled directed acyclic
graph. It has a "start" node. All links point from nodes of one level to the next, and all nodes of
the last level are terminal nodes, labeled accept or reject. Each nonterminal node is labeled by
a Boolean variable and has two links labeled true orfalse. A setting of the Boolean variables
determines a unique path from the start node to a terminal node. The complexity, measures
are its width and length (see [B] for details).

We assume our NC circuits are given by balanced binary trees of depth O(log n). In
this paper, we speak of "size" as the tree size, or formula size, and circuits as balanced
Boolean formulae. In case the tree is not balanced, one can always balance the tree (at the
cost of a polynomial blow up of the circuit size). It is also well known that any NC circuit
can be simulated by a Boolean formula of polynomial size. Note that the quadratic cost of
Barrington’s simulation is also measured in terms of the balanced binary tree size of the circuit.
To compare the cost of our simulation with that of Barrington’s, we just consider balanced
Boolean formulae.

We use some elementary notions and results of group theory; they can be found in any
standard textbook in that subject (e.g., [H]).

3. A subquadratic simulation. We first review Barrington’s construction [B]. Suppose
an AND gate, f/’, g, is given. Let’s represent the truth values of f and g (true or false)
by some elements of a finite simple group in such a way that the AND gate f/ g can be
represented likewise. This can be accomplished as follows. Represent "f true" by some

5-cycle a A5 and "f false" by the identity ,45, where A,, is the alternating group
on n letters. Represent g by some b 6 A5 and likewise. Call the representation ot and/3,
respectively. Consider the commutator [or,], namely, the representation c/ot-/-, where
say, c- a-1 or depending on "f true" or "f false," respectively. Because the
identity commutes with any element of the group, we see immediately that the commutator
evaluates to if f/ g is false. The commutator construction is completed by choosing a and
b carefully so that the commutator [a, b] is yet another 5-cycle. The case with an OR gate
is dual. It should be clear how this can be translated to a statement about width 5 branching
programs.

SUBQUADRATIC SIMULATIONS 565

We note that by using a commutator at every level of a Boolean formula, the overhead
is quadratic, that is, for a Boolean formula of size s, the length of the simulating branching
program using this construction has length s2.

We shall first give some intuitive ideas leading toward a subquadratic simulation of a
Boolean formula. Without loss of generality, we assume our Boolean formulae are given by
binary trees of depth O (log n) and the AND and OR gates alternate at every level. We indicate
the modifications needed when the Boolean formulae do not conform to the requirements of
strict alternation.

Again, assume we are given f/x g. It is apparent that if we solely depend on commutators,
we necessarily end up with a quadratic blowup. On the other hand, with any simulation (without
global reconfiguration), the best one can hope for is linear (or close to) linear overhead. If
we simply concatenate the branching programs representing f and g, in other words, if we
multiply the respective representations instead offorming their commutator, we get the optimal
linear overhead. However, over a group, this necessarily will produce multiple representations
for f/x g for (at least) one of the truth values. This cannot be continued indefinitely, as the
sets of representatives for true and false must be kept disjoint. Thus, it appears that certain
"cleanup" steps must be taken.

We show that by carefully combining multiplication with commutators, one can simulate
a Boolean formula more efficiently, that is, with a simulation of subquadratic length.

Any balanced Boolean formula of depth d can be expressed as u/x (v x/(x/x y)), u v
(v v (x/x y)), u v (v/x x/x y), or u v (v v x v y) or their duals, where u is of depth d 1, v
is of depth d 2, and x and y are of depth d 3, respectively.

LetF=u/x(vv(x/xy)). Leta (14235),b= (12345),c= (14352),and
d (15243). The following relations can be easily verified:

[a,b]=aba-b-1 =(14235)(12345)(53241)(54321)=(12534)--c-l,

[a, b2] ab2a-b-2 (14235)(13524)(53241)(42531) (132),

[a, b2][a, b] -1 [a, b2]c (132)(14352) (15243) d,

[c, d1=(14352)(15243)(25341)(34251)=(12453).

These identities have the following implications. If we represent the truth value of x and
y by (if it is true) and b (if it is false) and if we multiply the representations, we get if
x/x y is true and b or b2 otherwise. Now let’s represent the truth value of v by (if it is
true) and a (if it is false) and form the commutator of the representations of v and of x/x y
and then form the product of this commutator with [a, b]- c (1435 2). We call this
last multiplication a shift. As a result, we get c if v v (x/x y) is true and or d otherwise.
Finally, if we represent u by d (if it is true) and (if it is false) and form the commutator of the
representations of v v (x/x y) and u, we end up with a nice clean form: [c, d] (12453)
if F u/x (v v (x/x y)) is true and otherwise.

It should be clear that the shift step does not cost anything in the branching program
length, as [a, b] (12534) is a constant and can be absorbed in the previous transition step
in the branching program involving a variable.

By recursively applying the construction, we can get the following estimate. Suppose x,
y, v, and u respectively represent circuits of depth k, k, k + 1, and k + 2 and of size 2k, 2k,
2+, and 2k+2, and let i be the respective lengths of the branching programs. Then we have

gk+3 2(gk+2 + 2(ek+ + (g + gk))).

566 JIN-YI CAI AND RICHARD J. LIPTON

Let e 2 eli then

ek+ ek+2 -Jr- ek+ -I- ek.
We have the characteristic equation

By Cardan’s formula [J], we can solve this equation exactly, with the only real root

,k (1 + (19 + 3/-) 1/3 + (19 3v/-) 1/3) -. 1.839

Thus, the construction here achieves a subquadratic blowup of O(s +lg-) O(s1879").
We also remark that had the function F been u v (v v (x/ y)), we would not have to carry

out the shift step in the above construction. Notice that if we simply form the commutator of
the representations of v and of x/ y, we get if v v (x/ y) is true and [a, b] (1 2 5 3 4)
or [a, b2] (1 3 2) otherwise. We represent u by or (13 2)-1(1 25 3 4) (15 3 2 4) (in
case it is true or false) and form the commutator of the representations of u and of v /(x/ y),
and we have if F is true and

[(15 3 2 4), (1 2 5 3 4)] [(1 5 3 2 4), (1 3 2)] (1 2 3 4 5)

if F is false.
Moreover, given F u /(x/x (y/ z)) or F’ u /(x /(y /z)), we have the following

construction that performs even better. (These 4 cases are exhaustive, using duality.)
Let

a=(13425), a’ (1 4235), b=(14523),

b’-- (1 24 5 3), c=(12534), c’ (1 3 42 5),

and

y aa’ bb’ cc’ aba’b’ aca’c’ bcb’c’ (15 4 3 2),

3 abca’b’c’ (1 3 4 25).

If we consider a.byczaxbycz, where ax if x is true and a a if x is false, similarly
for the others, we have:

ifx=y--z-- 1,

axOyCzaxOyC 3 (1 3 4 2 5) if x y z 0,

?’--(15432) otherwise.

For F u /(x/ y/x z), we represent u by or ?’-13 (1 5 3 2 4) (true or false,
respectively), and we have

[?,, ,,-13] [3, ?,-13] (12 45 3).

For F’ u /(x v y v z), we represent u by 1 or , (true or false, respectively), and we
have

[?’, 31 (1 4 2 3 5).

SUBQUADRATIC SIMULATIONS 567

(This is even slightly better in complexity with a growth of S 1"842"’’. We omit the details.
For simplicity we do not consider the strict requirements on alternation and multiple fan-in
in the remainder of this paper to avoid tedious case analysis. Thus, we assume our tree is
balanced and alternate at each level.)

4. Iterated simulation. In this section we indicate an improvement of the construction
given in the last section. Again let us look at F u/ (v v (x/ y)). The simple observation
is that in the above construction when we have represented v v (x/ y) by c if it is true and
or d if it is false, we can relax somewhat on the representation of u. More specifically, if we
have u u v u2, we may represent both u and u2 by d (true) and (false) and then simply
form the multiplication of the representation. This gives us the representation for u as d or d2

when u is true and otherwise. Now because all powers of d commute, we still get if F is
false. However, if F is true we get either

[c,d]=(12453) or [c,d2]--(234).

We note that the situation is exactly the same as what we have before in v v (x/ y).
More exactly, after a conjugation, we have the exact dual case as in the representation for
v v (x/ y) just before the shift. (We recall that a shift is free.) Specifically, the pairs a, b and
c, d are conjugate to each other by the same conjugation. Let ot (1 4 2). Conjugation by
otgivesca =ot-cot=(42351)=aandd =(45123)=bandthus[c,d] =[a,b]
and [c, d2] [a, b2]. (Just like a shift, a conjugation is merely a renaming of the states of
the branching program, and thus it is free. But unlike a shift, a conjugation is a simultaneous
renaming of the input as well as the output states, and thus in the actual construction of the
branching program, the conjugation does not even need to be carried out. We include them in
the exposition only to show that inductively the construction can be carried out.)

Of course, now it is natural to iterate on this. Let hi and h be circuits of depth k 4- and
gi+l hi o hi, where o --/ if is even and v if is odd, and 0 < __< rn 2 for some rn > 2.
Let ji be a circuit of depth k 4- and f+2 f+ o gi+l, where o v if is even and/ if

is odd. Finally, let Fm+ fm o gin, where gm is a circuit of depth k 4- m and o =/ if rn
is even and v if m is odd. Our simulation will carry multiple values as we move up the tree.
But in the last step we bring it back to the form of single-valued representation in both cases,
true or false.

We have the following recurrence relation where i denotes the length of a branching
program simulating a circuit of depth and size 2;.

k+m+l 2(ek+m 4- 2(2k+m-2 4-’" 4- 2(2,+ + 2(2, + ek+))...)),

or

m+l

21 2k+m+l .k+m 4- .k+m+l-i 4- 2mk+l
i=3

Simplifying a bit, let i 2i i, we have

m+l

k+m+l ’k+m 4- k+m+l-i 4- k+l,
i=3

which has a characteristic equation

Xrn+l() ,.m+l Am 4- m+l-i 4- "--O.
i=3

568 JIN-YI CAI AND RICHARD J. LIPTON

LEMMA 4.1. Each Xi has a unique positive root Ai, > 3. Furthermore, the set {Ai}
forms a monotonic decreasing sequence with limit

A,= - 2+ + r6-- + v/-6 1.7549

This implies the following theorem.
THEOREM 4.2. Every balanced Boolean formula ofsize s can be simulated by a width 5

permutation branching program oflength O(sl+lg-z*+()) , O(s181’). Thus, exponent of
the simulation is at most 1.811

Proof of the lemma. It is easy to verify that x3(A) A3 A2 A has a unique real
root at A3 3(1 + (19 + 3/-) 1/3 -k- (19 3q/)1/3) , 1.839... by Cardan’s formula.

22Furthermore, X3 has a unique local maximum at -3 of X3 (-3) -5 and a unique local
minimum at of X3(1) -2; thus, x3(A) < 0 for A < A3 and monotonic increasing for
A>I.

Let

(253+ -- ,,/6 1.7549...

be the unique real root of x,(A) (. 1)2. (Cardan’s formulas). Inductively, we assume
that Xm has a unique positive real root Am, A, < Am < < A3, and, moreover, Xm is
monotonic increasing for A > A,, and Xm (A) < 0 for 0 < A < Am.

Let

(1) Am(A Xm+I(A) Xm(A) Am-2((A- 1)2A- 1) Am-2X,(A).

It follows, by the definition of A,, that Am (A) > 0 for A > A, and A (A) < 0 for 0 < A < A,.
Furthermore, it can be verified directly that A’m (A) > 0 for A > A,.

Thus, Xm+I(A) Xm(A) + Am(A) < 0 for 0 < A < A, and monotonic increasing for
A > A,; therefore, Xm+l (A) has a unique positive real root Am+, A, < Am+ < Am < < A3.
Moreover, Xm+l (A) < 0 for 0 < A < Am+. The induction is completed.

It follows that lim Am exists. Let A* limAm. We claim A* A,. Suppose not; thus,
A, < A*. By (1), Xm(A,) is some negative constant -c independent of m.

It is easy to show, by directly taking and estimating the derivative on Xm+, that for all
A>A,,

(A) > A m
Xm+l "q- mXm(A) > A, mc,

which tends to infinity as m -- o.
However, by the intermediate value theorem, for all m, there exists)m A,, such that

the value of Xm (A) at ’m is bounded above:

C(L.) X,,,(m) Xm(.)
<

Am A, A* A,

This contradiction shows that lim Am A,. 1-]

5. A superlinear lower bound. We turn our attention to lower bounds in this section. In
particular, we ask what is the minimum length of a branching program for functions with linear

SUBQUADRATIC SIMULATIONS 569

formula size. In this section we present a lower bound of 2 (n log log n) for the translational
cost from NC circuits to permutation branching programs over any finite group. This bound
is the first known lower bound for the translational cost.

Several super linear lower bounds are known for branching programs. Chandra, Furst,
and Lipton [CFL] showed that the function i xi n/2 requires 2(nw(n)) in the length
of any bounded-width branching program, where w(n) is the inverse function of the van
der Waerden numbers. Pudlik [Pu] proved an f2 (n log log n / log log log n) lower bound for
threshold functions. A lower bound of f2 (n log n) for symmetric Boolean functions was
achieved by Ajtal et al [Aj]. However, it is not known whether any lower bound applies to
functions with linear circuit size. See also [B2] and [BT] for lower bounds for branching
programs over specific groups such as $3 and some solvable groups. Our bound is the first
over an arbitrary finite group.

Our lower bound applies only to permutation branching programs and not to (unrestricted)
branching programs in general. In fact, we establish the f2 (n log log n) lower bound for the
AND function/7+1 xi, which has a trivial width two branching program of length n. Our
proof is Ramseyian; a similar method has been used in [AM].

THEOREM 5.1. Anypermutation branchingprogram computing thefunction AND AT--1 xi
requires length (n log log n).

Let a permutation branching program over a finite group G be given that computes the
logical AND function of n Boolean variables x l, x2 x,,.

We assume the branching program has the following normal form

B P(Xl, X2 x,,) gl (xi)g2(xi2) gL (XiL).

(See [B2].) Thus, for each step, the transition depends on one Boolean variable x. Furthermore,
if x is true, then the transition is identity gk(1) 1, and if x is false, then the transition is
some element of the group G, gk (0) g. 6 G. Without loss of generality, every permutation
branching program can be brought to this form without any increase of length.

We prove a lower bound on the length L of the branching program. Let n, denote the num-
ber of variables that occur exactly k times in the branching program, then yk> nk n and
,,> kn L. If k>(log31og3n)/znk >_ n/2, then we are done: L > (n log log n)/4. We as-
sume k<(log3og3n)/2 nk > n/2, andthusthereexistsk < (log log3 n)/2, nk > n/log3 log3 n.
Set all other variables to true, we get a branching program on nk variables, each variable appears
exactly k times, where k < (log log n)/2. Denote N nk.

Let .ij be the location of the jth appearance of the ith variable xi. By renaming variables
if necessary, we assume that the first appearances are in order, that is,

ell < 21 < < N1.

Consider the second appearances of these variables. We select a subset of the variables of
cardinality > N1/3, such that the second appearances of these variables are nicely correlated
to the first appearances of the same variables. More precisely, we show that there exists a
subsequence i < i2 < < im of 1, 2 N, where m > N1/3, such that one of the
following three alternatives hold:

(1) i12 > i22 >’’" > im2, or
(2) it2 < i22 <’’" < gi,,,2 and il2 > i,,,1, or

(3) iil < il2 < i21 < i22 <’’" < i,,,1 < i,,,2"
For any sequence of integers, it is well known that we can first obtain either a monotonic

decreasing subsequence of length m’ > N1/3 or a monotonic increasing subsequence of length

570 JIN-YI CAI AND RICHARD J. LIPTON

m’ > N2/3 of the sequence g12, 22 N2. If the subsequence is monotonic decreasing,
then the first altenative holds.

Suppose it is monotonic increasing. By setting all the other variables to true and by
renaming the variables, we may assume the subsequence is gl2 < 22 < < m’2. For
< < m’, let p(i) max{pl/i2 > p}, that is, the relative place of i2 in the first

sequence. Clearly, p(i) > for all i, and < p(1) < <_ p(m’)= m’. Now we ask the
key question: Is there an i, < _< m’, such that p(i) > ? If so, then we choose the
subset as those with indices between and p(i)"

i2 < 1i+12 < < p(i)2,

and i2 > p(i)l. Thus, the second alternative holds.
Now suppose the answer is no, that is, for all i, p(i) < -7. Then we are going to

select our subsequence greedily as follows" Let q(i) p(i) + 1, and

/j- q-l)(1), _< j _< /--7,

where f) denotes the kth iterate of a function f. That all ij, < j < /-’, are no greater
than m’, and thus well defined, is a consequence of our hypothesis for all i, p(i) < /’.
This implies the third alternative and completes the proof of our claim.

Now one can iterate this process. Suppose s iterations are done, and N’ > N/3s variables
remain. Inductively, every successive sequence (consisting of the rth occurrence, < r < s,
of the remaining variables) is related to its previous sequences similarly as in that between
the first and the second sequence just shown. In fact, we can group together those successive
sequences related as in alternative 3, namely

’ilr < ’ilr+l < < .ilr’ < i2r < i2r+l < < i2r’ < < i,,,r < ’imr+l < < ’imr’,

or its reverse,

ir > .ir+l > > ’itr’ > ’izr >" izr+l > > ’izr’ >" > .i,,,r > i,,,r+l > >" ’imr"

Call any maximal such internal {jlr < j < r’} a block.
We focus on the last block, say starting from + to s. By renaming the variables, we

assume inductively x, x2 XN, are remaining, and

l,t+l < l,t+2 < < ls < 2,t+l < 2,t+2" < 2s < < .N’,t+l < .N’,t+2 < < .N’s,

and, if > 0, the tth and + 1st sequence are related as in alternative (1) or (2). (The other
alternative of reversing all < to > in the above e-sequence is symmetric.)

We will select a subsequence of els+l N’s+l, indexed by il < i2 < < in,, where
m > N’/3, such that one of the following three alternatives is true:

(1) .ilS+l > .i2sq-I >"" > .i,,,s+l, or

(2) gils+l < gi2s+l <"" < eims+l and eis+ > ei,,,s, or
(3) eit+ < eit+2 <... < .is < eis+l < ei2t+l < ei2t+2 < < ei2s < gi2s+l <
< eimt+l < .i,,,t+2 <"" < ei,,,s < gims+l"
The proof is identical to the base case, and we will not repeat it here.
Because k < (log log n)/2 < log log N, the process can be iterated k times. We

end up with k sequences each of which has n’ > N/3" variables, and the branching program
computes the AND function of these variables (all others are set to true). Moreover, all
adjacent blocks of sequences are related in one of three ways as above. Clearly, any block can

SUBQUADRATIC SIMULATIONS 571

be collapsed to just one sequence. After the collapse (and renaming the variables) we have
k’ _< k sequences, and the branching program looks like

SS2...&,,

where each Sj is either

glj(Xl)g2j(x2) gn’j(Xn’),

or

g,,;(x,,)g,,_;(x,,_) g;(x).

Consider the map F from < < n’ to G’’’
(sl (i), s2(i) s.,(i)),

where

sj(i) gljgzj gij,

in the first case of Sj, or

sj(i) gijgi-l,j.., gj,

in the second case of Sj. (Recall that gj gj(O) G.)
n it follows easily that n’ > N1/3’ >Because k < (log log n)/2 and N > og3-og3,’

IGIk’; thus, F(i) F(i’) for some < i’ by the pigeonhole principle. Therefore, for all j,
gi+l j gi’j G, or gi’j gi+ j G, which ever the case may be. This implies
that the original branching program evaluates to when all variables (after renaming) between
xi+ and xi, are set to false and others set to true. Hence it does not compute the AND function.
This completes the proof of our lower bound.

The method we used here to prove our f2 (n log log n) lower bound has been used by
Barrington and Straubing to obtain several other lower bounds [BS].

6. Open problems. There are many unanswered questions raised here. We mentioned
in the beginning of the paper that Cleve [C1] has proved the following theorem, which was the
first conjecture in the preliminary version of this paper.

THEOREM 6.1 (Cleve). For any > O, an NC circuit of size s can be simulated by a
width 22/’ (permutation) branching program of length O(s+E).

In view of this, it is natural to define Barrington’s constants 13, for each width k, that
is,/3 is the infimum of/3 such that any NC circuit of size s can be simulated by a width
k (permutation) branching program of length O(st). We conjecture that these Barrington’s
constants are greater than one (and hence nontrivial).

1Let c IGI, a constant. Because k < (log log n)/2, 3 < n. As N > log3]g3 n,

log log

Thus, N/3" > c

N-log310g3n >n

1,/3 log log

> c + log log log n

> c > c’, for large n.

log log
.3 log log n.

572 JIN-YI CAI AND RICHARD J. LIPTON

CONJECTURE 6.2. Width k (permutation) branchingprograms simulating any NC circuit

ofsize s requires length f2(s+), for some ek > O.
Our lower bound in 5 can be viewed as the first step toward settling this conjecture. If

this conjecture is true, one may further inquire the exact order of growth of these Barrington’s
constants 13. The best known bound for/35 is 1.811 It is not clear what to expect in
general. A tight simulation of circuits by branching programs could offer the possibility
of proving lower bounds for circuits size, whereas a reasonable width could be valuable in
hardware design pertaining reconfigurable chips.

Acknowledgments. We thank Sandeep Bhatt, Walter Feit, Mike Fischer, Merrick Furst,
Roger Howe, Herb Scarf, and George Seligman for helpful conversations. We thank the two
anonymous referees for many comments.

[AM]

[B]

[B2]

[BS]

[BT]

[BC]

[BDFPI

[CL]

[CFL]

[Cl]

[Co]

[HI
[J]
[Pil

[Pu]

[Sp]

REFERENCES

M. AJTAL, L. BABAI, P. HAJNAL, J. KOMLOS, P. PUDLAK, V. RODL, E. SZEMERIDI, AND G. TURAN, Two
lower boundsfor branching programs, in Proc. 18th ACM STOC, Berkeley, CA, 1986, pp. 30-38.

N. ALON AND W. MAASS, Meanders and their applications in lower bounds arguments, JCSS, 38 (1988),
pp. 118-129.

D. BARRINGTON, Bounded-width polynomial-size branching programs recognizes exactly those lan-
guages in NC JCSS, 38 (1990) pp. 150--324.
, Width-3 permutation branching programs, Tech. memorandum TM-291, MIT Laboratory for

Computer Science, Cambridge, MA, 1985.
D. BARRINGTON AND H. STRAUBING, Superlinear lower boundsfor bounded-width branching programs,

in Proc. 6th Structure in Complexity Theory Conference, IEEE Computer Society Press, Alamitos,
CA, 199 l, pp. 305-313.

D. BARRINGTON AND O. THIRIEN, Non-uniform automata over groups, Lecture Notes in Comp. Sci.,

Springer-Verlag, 267, 1987, pp. 163-173.
M. BEN-OR AND R. CLEVE, Computing algebraicformulas using a constant number ofregisters, in Proc.

20th ACM STOC, Chicago, Illinois, 1988, pp. 254-257.
A. BORODIN, D. DOLEV, F. E. FICH, AND W. PAUL, Bounds for width-2 branching programs, SIAM J.

Comput., 15 (1986), pp. 549-560.
J. CAI AND R. LIPTON, Subquadratic simulations ofcircuits by branching programs, in Proc. 30th IEEE

FOCS IEEE Computer Society Press, Alamitos, CA, 1989, pp. 568-573.
A. CHANDRA, M. FURST, AND R. J. LIPTON, Multiparty protocols, in Proc. 15th ACM STOC, the ACM

Inc., West 42rid Street, New York, 1983, pp. 94-99.
R. CLEVE, Towards optimal simulations offormulas by bounded-width programs, in Proc. STOC, 22

(1990), Baltimore, MD, pp. 271-277.
S. CooK, The taxonomy ofproblems with fast parallel algorithms, Inform. and Control (Shenyang), 64

(1985), pp. 2-22.
M. HALL, The Theory ofGroups, MacMillan, New York, 1959.
N. JACOBSON, Basic Algebra, Vol 1, W. H. Freeman and Company, New York, 1985.
N. PIPPENGER, On simultaneous resource bounds (preliminary version), in Proc. 20th IEEE FOCS, IEEE

Computer Society Press, Alamitos, CA, 1979, pp. 307-311.
P. PUDLAK, A lower bound on complexity ofbranching programs, 11 th MFCS, Lecture Notes in Comput.

Sci., Springer-Verlag, vol. 176, pp. 480-489.
P. SPIRA, On time-hardware complexity tradeoffsfor Booleanfimctions, in Proc. 4th Hawaii Symposium

on System Sciences, North Hollywood, CA, Western Periodicals Co., 1971, pp. 525-527.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 573-597, June 1994

() 1994 Society for Industrial and Applied Mathematics
008

LINEAR TIME ALGORITHMS AND NP-COMPLETE PROBLEMS*
ETIENNE GRANDJEAN

Abstract. This paper defines and studies a computational model (a random access machine with powerful
input/output instructions), and shows that the classes DLINEAR and NLINEAR of problems computable in de-
terministic (respectively, nondeterministic) linear time in this model of computation are robust and powerful. In
particular, DLINEAR includes most of the concrete problems commonly regarded as computable in linear time (such
as graph problems, topological sorting, strong connectivity, etc.). Most combinatorial NP-complete problems are in
NLINEAR. The interest of NLINEAR class is enhanced by the fact that some natural NP-complete problems, for
example, "reduction of incompletely specified automata" (RISA), are NLINEAR-complete (consequently, NLINEAR
DLINEAR if and only if RISA ’ DLINEAR). This notion strengthens NP-completeness, as this paper argues that

propositional satisfiability is not NLINEAR complete.

Key words, linear time, model of computation, random access machine, input/output process, uniform cost
measure, Turing machine, simulation, algorithms on graphs, sorting, reduction, NP-completeness, determinism,
nondeterminism

AMS subject classifications. 68Q, 68P, 68R, 03D, 05C

1. Introduction and discussion. It is usually admitted that the most efficient algorithms
run in linear time. However, as far as we know, there is no robust and canonical definition
of linear time in literature. (On the contrary, polynomial time is a very robust notion: it
is sensitive neither to machine model nor to presentation of the input, provided they are
"reasonable.") Papers and books (e.g., [AHU], [AHU2], [FGS], [Kn], [Me], [Se]) concerning
algorithms explicitly or, more often, implicitly use a variant of random access machine (RAM
of Cook and Reckhow [CoRe]) but do not precisely explain or do not justify what "the good
model" should be: what kind of elementary instructions must be taken (addition, subtraction,
multiplication)?, what is the input/output device? (A notable exception is paper [AnVa] that
describes and justifies the random access computer (RAC) model; however, their study is
partial.) One generally adopts the uniform time criterion: each instruction requires one time
unit, but it is not clear what an elementary instruction should be.

An algorithm runs in linear time if it performs O(n) instructions on each input of "length"
(or "size") n. Because the notion of instruction depends on the chosen machine, the notion
of input length depends on the nature of the input. The length of a word w E " in a finite
alphabet is n. The size of a graph (represented by its list of edges or by the successor lists
of its vertices) is m + p, where m (respectively, p) is the number of vertices (respectively,
edges). For example, [Ta] and [AHUl] compute the strongly connected components of a
directed graph in "linear time" O(m + p). The length of a propositional formula is often
(but not always) the number n of its symbols: occurrences of connectives, parentheses, and
variables (e.g., the length of formula (p0 /-p)/ P0 is 8). [DoGa], [ItMal], [IrMa2], and
[Mi] describe some decision algorithms for satisfiability ofHorn propositional formulas whose
runtime is linear O (n).

Gurevich and Shelah [GuSh] and Graedel [Gl] gave two "robust closures" of linear time.
Previously, Schnorr [St] had similarly defined "quasi-linear time"(i.e., time O(n(log n)))
for some Turing machine) and proved that many NP-complete problems belong to nondeter-
ministic quasi-linear time class and are complete for this class. Those authors define extensions
of linear time because, as [GuSh] explains, "It is possible that there is no universal notion of
linear time and different versions of linear time are appropriate to different applications."

*Received by the editors December 9, 1991; accepted for publication (in revised form) March 8, 1993.
tUniversit6 de Caen, Laboratoire d’Algorithmique et d’Intelligence Artificielle de Caen, 14032 Caen Cedex,

France (grandjean@univ-caen.fr).

573

574 ETIENNE GRANDJEAN

The present paper adopts the opposite point of view. We define and justify a unified,
robust, and powerful notion of linear time both in deterministic and nondeterministic cases.
In a former paper [Gr3], we define a complexity class, named LINEAR, by using a variant of
classical RAM of [CoRe] under logarithmic cost criterion (time of each instruction is the total
number of bits it manipulates, i.e., the sum of lengths of the integers it involves). Our RAM
extends the classical model in some points and restricts it in some other ones. (Our purpose is
to get a more realistic and more robust machine.) Let us describe informally the differences.

The input process of classical RAM is very restrictive: it can only read one bit at a time.
(The output instruction of [CoRe] is more powerful" the RAM writes the whole contents of a
register onto the output tape.) Schoenhage [Sc2] has proved that this RAM cannot compute
the very simple function w ww (repetition of the input word w!) in linear time under
logarithmic cost. We allow our RAM to read its input in blocks by an instruction, denoted
READy (u), which stores in register u a subword of the input as long as the contents of register
v. Note that our input and output instructions are symmetrical to each other (in some manner).

In the classical model, the RAM memory can be used in a very scattered way because
addresses and register contents are unbounded. OurRAM is similar to the RAC of Angluin and
Valiant [AnVa], [GuSh]: a computation is allowed to use only integers polynomially bounded
in the input length n (i.e., their length is O (log n)).

The only available operations of the RAM of [CoRe] are addition (+) and subtraction
(-); our RAM can perform any operation computable in linear time on a Turing machine (i.e.,
intuitively, "easy" operation)" +, -, and concatenation but neither multiplication nor division.
(Invariance properties of RAMs with compact memory and linear time Turing computable
operations have been stated in [GrRo].)

Let LINEAR be the class of functions computable in linear time on the RAM described
above. More precisely, a function f * * is in LINEAR if and only if there is
such a RAM that computes (for each input w 6 *) the value f(w) in time O(length(w))
under logarithmic cost. In [Gr3] we have shown that LINEAR is a robust complexity class.
However, we are unable to prove that it is closed under composition (i.e., if f, g 6 LINEAR,
then fog LINEAR) unless RAMs can use files (to contain intermediate results).

In this paper we still study the RAM as defined above but which uses the uniform cost

criterion. This does not change the invariance properties of the machine model but we prove
that the class, denoted DLINEAR, of functions computable by RAMs withoutfiles within time
O(n/log n) (under uniform cost: n is the length of the input) is closed under composition.
Note that DLINEAR

_
LINEAR. The O(n/log n) time bound ofDLINEAR seems to be very

restrictive but is justified by the following facts"
(i) Katajainen et al. [KvLP] have proved that any function f computable in linear time

O(n) on a Turing machine can be computed in time O(n log log n) on the classical RAM
of [CoRe] (under logarithmic cost), and they have mentioned that "with better input/output
pattern the simulation could perhaps be sped up further." We can prove (cf. 3 below) that
function f is in DLINEAR (i.e., is computable by our RAM in time O(n / log n) under uniform
cost).

(ii) Many (most?) concrete problems commonly regarded as computable in linear time be-
long to DLINEAR; that contrasts with the (abovementioned) lower bound result of Sch6nhage
and shows the power of our input pattern.

The rest of the present paper is dedicated to the nondeterministic version of linear time.
As mentioned above, Schnorr [Sr] has proved that many NP-complete problems are com-

plete in nondeterministic quasi-linear time class (via deterministic quasi-linear time reduc-
tion). His computational model was Turing machine. We improve his results as follows.
Let NLINEAR denote the nondeterministic version of the DLINEAR class; the RAM has a

LINEAR TIME AND NP-COMPLETE PROBLEMS 575

nondeterministic instruction because it can "guess" an integer. Note the inclusions NTIME
(n)

NLINEAR _c NTIME(n log n).

We show that many combinatorial NP-complete problems (20 among the 21 problems
listed by Karp [Ka]) belong to NLINEAR. Moreover, we prove that some NP-complete prob-
lems (e.g., reduction of incompletely specified automata or RISA) are complete in NLINEAR
via DLINEAR reductions (more strongly, reductions are computable in linear time on Turing
machines). That improves the results of [Grl], [Gr2], [Ral], IRa2], which state that each
problem in NTIME(n) is reducible to RISA (and to some other NP-complete problems) in
deterministic linear time. The proof of the strengthened result is similar to the original proof.
That entails the following equivalence

RISA DLINEAR iffDLINEAR - NLINEAR,

which can be compared with the well-known equivalence

SAT PiffP - NP.

Let us mention some related results. To our knowledge, Dewdney [De] was the first author
who defined and exhibited linear time reductions. In particular, he proved that several NP-
complete problems, including 3-SAT (i.e., satisfiability for clauses with three literals) and
3-COLORABILITY are mutually reducible via linear time reductions (on Turing machines).
He assumes that inputs are previously normalized, for example, the set of variables that
occur in a propositional formula must be exactly {Pl, P2 Pm }. More recently, Hunt and
Stearns [HuSt] proved that a number of problems, including SAT, are mutually reducible
via some comparable but weaker reduction (linear length bounded and computable in quasi-
linear time). Note that if two problems are reducible to each other in linear time (e.g., two
NLINEAR-complete problems), then they have the same time complexity.

After our machine model is defined in 2, the deterministic and nondeterministic linear
time classes defined (DLINEAR and NLINEAR) are shown to be very robust (3). In 4 we
exhibit many problems in DLINEAR that are useful in the proof that most concrete problems
usually regarded as computable in linear time belong to DLINEAR. Section 5 states properties
of linear time reductions. In 6 we show that most combinatorial NP problems belong to
NLINEAR. In 7 we prove that several NP-complete problems (e.g., RISA) are NLINEAR-
complete, but we argue that propositional satisfiability must not be NLINEAR-complete. We
also state other characterizations of the NLINEAR class. Section 8 gives conclusions and
open problems.

2. Preliminaries" definitions of our machine model and of linear time complexity.
Let log n denote the logarithm of n in base 2.

Let 1-’ {1, 2 d} be a fixed alphabet, with d > 2. For convenience we identify a
word w wow Wn-1 6 F with the integer it represents in d-adic notation, that is,

Wi di
i<n

(In particular, the empty word is identified with zero.) Let length(w) n; in particular,
length(0) 0.

Let c, d be some integers and let F, be alphabets such that F {1, 2 d} and
c_ . (y will be called the input/output alphabet. Sometimes we will use more usual

alphabets, including, for example, parentheses.) Our machine model, named DRAM, is the
deterministic random access machine of [CoRe] (its sequence of registers are denoted R(0),
R(I), R(2) with the following changes.

576 ETIENNE GRANDJEAN

(i) An input (respectively, output) is a word w 6 n (respectively, v 6 Em) that is
contained (respectively, that will be written) in a special one-way read-only (respectively,
write-only) tape called the input (respectively, output) tape.

(ii) The contents of each register R(i) is a nonnegative integer (which is initially 0) whose
length, in d-adic notation, is at most c log n (similar to the memory condition of the RAC
in [AnVa]); consequently, the total number of registers used by a DRAM is polynomially
bounded in n.

(iii) A DRAM uses a fixed set of operations. All of them have to be computable in linear
time on a deterministic Turing machine (e.g., +, -, concatenation, shift, length), denoted
"linear time Turing computable" (LTTC).

(iv) The input/output instructions of a DRAM are the following: WRITE(R(/)) writes
the contents of register R(i) onto the output tape. READRi)(R(j)) stores in register R(j) a
portion of the input of length L, where L is the length of the integer that register R(i) contains
at this moment (a special case occurs: if the nonread part of the input has length less than L,
then the whole remainder is stored in R(j)).

An NRAM is the nondeterministic version of the previous DRAM. It works similarly
but has the additional ability of guessing an integer by the nondeterministic instruction
GUESS(R(/)) that stores any integer of length at most c log n in register R(i).

We are now ready to define our time complexity classes.
DEFINITION. Let T(n) > n/log n be any time function. A function f * --+ *(respectively, a language A y*) belongs to class DRAM (T(n)) is f is computable

(respectively, A is recognizable) by a DRAM that executes O(T(n)) instructions (uniform
time criterion), where n denotes the length ofthe inpttt w (w). The class oflanguages
NRAM T(n is defined similarly.

Convention. In this paper, when we write that a word w of length n is accepted by
a nondeterministic machine within some resource (time O(T(n)), space O(S(n))), we
mean that there is an accepting computation of the machine (on that input w) that respects that
resource (time O(T(n))).

Notation. DLINEAR DRAM(n / log n); NLINEAR NRAM(n / log n).
Remark. These notations arejustified by the fact that the time required by aDRAM(n ! log n)

(respectively, NRAM(n/log n)) computation is linear (i.e., O(n)) under logarithmic cost.
Comments. The definition of the DLINEAR class has two features that at first seem

counterintuitive.
(1) The seeming combination ofTuring machine features (LTTC operations) with random

access. Proposition 3.1 (vi) below shows that such a machine can be simulated in linear time
by a classical RAM (of [CoRe]) using addition and subtraction (and no other LTTC operation)
and shows the robustness of our computational model. Notice that allowing LTTC operations
is useful to prove that concrete problems (e.g., NORMALIZE and HORN-SAT; see 4) are in
DLINEAR.

(2) The use of the strange time bound O(n/logn) rather than O(n). This is justified by
the following arguments.

(a) It is reasonable to require the available memory to be polynomial, implying that the
maximal available address is of the form N (R)(na), for a fixed d.

(b) In a real computer, addressing a big address register seems to require the same time
as addressing a low address one; that explains why the uniform cost criterion is chosen.

(c) For an input of length n in afixedfinite alphabet, it is not reasonable to define a linear
time computation as a sequence of O (n) instructions because one instruction does not involve
a fixed number of bits. We believe that linear time must be at most O(n) under logarithmic
cost measure. As argued above, any instruction is charged (R)(log N) (R)(log n) for that

LINEAR TIME AND NP-COMPLETE PROBLEMS 577

measure; that entails choosing the uniform time bound O(n/log n).
Conventions. In the sequel, in each case when the time cost criterion is not mentioned,

we shall implicitly assume that the RAM uses uniform cost criterion. Letter n will always
denote the length of the input.

3. Classes DLINEAR and NLINEAR are robust. On one hand, Katajainen et al.
[KvLP] have shown that any function computable in linear time O(n) on a Turing machine
can be computed in time O(n log log n) on an ordinary RAM (of [CoRe]) under logarithmic
cost. (Recall that in one instruction, such a RAM can read at most one bit of the input.) On the
other hand, Schoenhage [Sc2] has proved that time bound O(n log log n) cannot be replaced
by O(n). In this section we show that the impossibility comes from the weakness of the
input/output process of usual RAM and we state several robustness properties of the DRAM
(respectively, NRAM).

For technical reasons, it is useful to define a variant of DRAM without input/output
instructions. Instead, the input is divided and stored in a standard way at the beginning of a
computation. (That can be compared with the start condition of RACs in [AnVa]; however,
that paper does not state precisely how the input is stored in memory.)

Notation. Let k > be a fixed integer. Let bk (n) r- / k log(n + 1)-.
DEFINITION. Let k > be a fixed integer A DRAM is like a DRAM except for in-

put
(i) Each input word w n oflength n is divided into nonempty words w, w2 Wq

initially stored in respective registers R(I), R(2) R(q):

w w w2... Wq(Concatenation),

where length (wi) bk(n) for < q and 0 < length (Wq) < bk(n) (the other registers
R(q + 1) initially contain zero). Wl, w2 Wq are called the bk(n)-blocks of w.

(ii) An outputword v (ifany) is similarly divided into nonempty b,(n)-blocks v v2 Vs
(the last block vs may be shorter), respectively, stored in registers R(I), R(2) R(s) at

the end ofa computation (with R (s + 1) 0). Note that n is not the length of the output but
is still the length of the input. We define an NRAMk in the same manner.

DEFINITION. Afunction (respectively, a language) belongs to DRAMk(n/log n) (respec-
tively, NRAMk (n / log n)) ifit is computed (respectively, recognized) by a DRAMk (respective-
ly, NRAM.) in time 0 (n / log n) under uniform cost.

Remark. The important things about the block length bk(n) is the fact that it is easy
to compute and that b.(n) t0(log n) for n > and then the number q (respectively, s)
of blocks of the input (respectively, output) is O(n/log n). We shall also use the fact that

limk-+ bk(n) 0. The following proposition shows how robust the classes DLINEAR
DRAM(n / log n) and NLINEAR NRAM(n / log n) are.

PROPOSITION 3.1. Let f" Y’* * be a function.
(i) For all integers k, k’, f DRAMk (n / log n) ifand only if f DRAMk, (n / log n).
(ii) f DRAM(n/logn) ifand only if f DRAM.(n/logn)for some k.
(iii) If f is computable in linear time O(n) by a deterministic Turing machine, then

f 6 DRAM(n/ log n).
(iv) Assertions (i)-(iii) holdfor languages (instead offunctions) and the nondeterministic

classes NRAM(n / log n) and NRAM/ (n / log n).
(v) Let f, g * * be two functions such that f, g DRAM(n/logn); then

g o f 6 DRAM(n/ log n).
(vi) Let f DRAM(n/ log n) and e > 0 any real number, then there is an integer K such

thatfor each k > K, there are a DRAMk and a DRAM that compute f in time 0 (n/log n)
and use exclusively the operation + (respectively, concatentation) and integers O(n+).

578 ETIENNE GRANDJEAN

(vii) Let A NRAM(n/logn), then there is an integer K such that for each k > K,
there are an NRAM. and an NRAM that recognize A in time O(n/ log n) and use exclusively
the successor operation (i.e.,function x - x + or concatentation and integers O(n / log n).

Sketch of proof (i) and (ii) are roughly proved as follows: the simulating machine
reorganizes blocks of the input (respectively, output) by using new LTTC operations (e.g., the
length function).

To prove (i), it is sufficient to demonstrate

(i’) f DRAMk(n/logn) iff f DRAMk+(n/logn).

To prove (i’) notethatbk+(n) < b.(n) < 2bk+(n) (since 1/(k+ 1) < . < 2/(k+ 1), and
thus an input organized in b.+ (n)-blocks is reorganized into b. (n)-blocks by concatenating
fragments of two consecutive b.+l (n)-blocks to obtain each b/, (n)-block. Note that values n,
b, (n), and b,+ (n) have to be initially computed.

To prove (ii), use the fact that (by definition) a DRAM performs only O(n/log n) read
(respectively, write) instructions on integers of length O(log n); for example, a read instruction
is simulated on a DRAM, by the concatenation of O(1) (fragments of) b, (n)-blocks. This
proves the implication f 6 DRAM(n/log n) implies f 6 DRAM, (n/log n). Let us prove
the converse. The simulating DRAM first reads the input by blocks by the following subroutine
(it stores into registers R (1), R (2) R (m) the respective subwords w, w2 wm of the
input word w in such a way that w w w2 w,,,, where length(w/) length(i) for
< m and 0 < length(win) < length(m))"

begin
R(0) +--

while the input is not entirely stored do
begin

READR0) (R (R(0)))
R (0) +-- R (0) +

end
end"

We easily check that m (R)(n/log n). Then the simulating machine reorganizes the stored
input into b, (n)-blocks as above. This proves (ii).

(iii) easily follows from (ii) and the classical techniques of blocks (see for example [HPV]
and [KvLP]) represent each block of bk(n) consecutive cells of a tape (of the Turing machine)
by one register of a DRAMk.

(iv) is proved exactly as (i)-(iii).
To prove (v), use (ii) and distinguish two cases according to the length, denoted L, of the

intermediate value f(w).
(1) n 1/2 <_ L O(n), where n length(w)). It is easy to convert the b, (n)-blocks

of f(w) into bk (L)-blocks and to convert the b,(L)-blocks of g o f(w) into bk (n)-blocks
(because log L (R) (log n)).

(2) L < n 1/2. Block conversion of words f(w) and g o f(w) is easy because they have
only O(n 1/2) blocks of length O(log n).

If we use (ii), assertion (vi) is essentially the same as Corollary 3.3 in [Gr3] with uniform
time cost instead of logarithmic time cost; moreover, the proof can be simplified (because
we no longer need to distinguish "little addresses"). It essentially combines two techniques:
division of registers into "small registers" of length bk(n), and hashing techniques (and pairing
functions) to encode big addresses with "small addresses" O(n+’). More precisely, a big
address u is first divided into b-blocks (i.e., blocks of length b b(n))" u urn.., uuo

LINEAR TIME AND NP-COMPLETE PROBLEMS 579

(concatenation). Then we successively construct the numbers pl PAIR(u0, u l), P2
PAIR(pl, u2) Pm PAIR(pm_, Urn). The big address u is roughly "simulated" by
which is O (n). (PAIR is a dynamical pairing function whose values are O (n). It can be stored
in a two-dimensional array whose first index is O (n) and whose second index is a b-block, and
then is O(2b) O(ne/2). It can be simulated by a one-dimensional array of indices O(n+).
For more details, see [Gr3] or see below the proof of Proposition 4.1 where these techniques
are reused.) Note that several LTTC operations on small operands are used. These operations
can be initially precomputed (for all possible small operands) and stored in several arrays by
only using addition (respectively, concatenation). This proves (vi) for a DRAM,. The same
result (vi) is obtained for a DRAM by using the following trick: for a fixed (sufficiently large)
k, compute successively all the k-tuples u, t2 tk of integers such that ui _< u, j for
all < k, for successive integers j 1, 2, 3 and for each produced k-tuple, read a part
of the input of length equal to length(u,). (Note: this process generalizes the one presented
above to prove (ii).) It is easy but tedious to show that length (u,) is always less than about
1/k length(n) and that the input is entirely read in time O(n/log n).

(vii) is proved by variants of the above techniques (simplified): registers are divided into
"little registers" of length bk (n) and addressing is simulated by an essential use of nondeter-
minism as described below. Let a < a2... < an, denote the list of distinct addresses (in
increasing order) used by the simulated NRAMk denoted M. First, the simulating NRAM,
M’ guesses that list. Note that i<_m length (ai) < n and then m O(n/logn). The
main idea of the simulation is to represent the address ai register (of M) by a register (of
M’) of address i. M’ has two one-dimensional arrays, denoted ADDRESS(1 m) and
CONTENTS(1 m), such that at each moment of the simulation ADDRESS(i) ai
(1 < _< m) and CONTENTS(i) contents of register with address ai (in M). (M’ is a
"multimemory" NRAM,.) An access (by M) to some register of address oe is simulated by M’
as follows" guess an integer 6 {1,2 m}; check if ADDRESS(i) (that isai) is equal toc
(otherwise reject)" and use CONTENTS(i). Note that our multimemory NRAM, M’ can be
simulated in linear time by an ordinary NRAM, (interleave the arrays; see [CoRe] for details)
and that we exclusively use addresses O(m) O(n/logn). Notice that a NRAM using
only the successor operation can simulate this NRAM.: it initially guesses n and computes
b b(n) and a block of length b.

Remark. The exact function bk (n) we choose (for block length) is not essential. Proposi-
tion 3.1 and its proof still hold for other "easily computable" functions (R) (log n); for example,
L1/klogn (with n > 2) or r-1/k length(n) n.

Equality DLINEAR DRAM, (n / log n) is essential in our proof that DLINEAR class is
closed under composition. That characterization (respectively, the similar one for NLINEAR)
will be useful in proofs that concrete problems belong to DLINEAR (respectively, NLINEAR).

4. Many problems computable in linear time. In this section we prove that most prob-
lems usually regarded as computable in linear time belong to DLINEAR. In the proofs we
need several standard DLINEAR subroutines, for example, a normalization algorithm.

Remark. For convenience, our DRAMs (or DRAMk) will sometimes use multidimen-
sional arrays. It is not an essential extension of our machine model because a DRAM using
a multidimensional array, for example, A (i, j), can be simulated (in linear time) by a usual
DRAM. Register A(i, j) is represented by register R(p), where p Pair(i, j) and Pair is an
LTTC pairing function. That is (for example), p Pair(i, j) 12 rep(j) (concatena-
tion), where rep(j) is obtained by repeating twice each digit of j (see [Gr3] or [GrRo], [Ro
for more details).

4.1. A normalization algorithm. In most of "linear time-bounded algorithms" on con-
crete data structures, such as graphs, formulas, and so on (cf. [AHU], [AHU2], [FGS], [Kn],

580 ETIENNE GRANDJEAN

[Me], [Se]), one implicitly assumes that input structures are initially normalized; for example,
the set of vertices of a graph is the interval of integers 1, 2 m and Dowling and Gallier
[DoGa] and Minoux [Mi] assume that their satisfiability algorithm works on propositional
Horn formulas whose variables are exactly p, P2 Pro.

However, it is not obvious how to transform an input, for example, a propositional formula
into such a normalized one. Of course, we can list all the occurrences of variables Pi and
then renumber them by sorting, but no linear time algorithm is known for the sorting problem.
(Note that Itai and Makowsky [ItMa also mentioned the necessity of replacing large indices
by small ones.)

We formalize the normalization problem as follows (assume we have fixed a finitc alphabet
1,2 d} that does not include symbols [] and :).

PROBLEM NORMALIZE.
Input. A string S of the form I--1AI[BA2... []Am, where each Ai E _,*. Let n denote the

length of S (n m + Zi<m length (Ai)).
Output. A string S’ ofthe form []AI aC3A2 a2 []Am am, where
(i) for all i, j, ai aj if and only if Ai Aj;
(ii) The ai are integers such that {al, a2 a,,, 1,2 M}

(a consequence of (i)-(ii) is ai O(n/logn) for each i);
(iii) length (S’) O (n).

Remark. For each fixed alphabet Y, the problem NORMALIZE is not unique. Our
purpose is only to construct a DLINEAR algorithm that computes a string S’ that satisfies
(i-iii).

PROPOSITION 4.1. Problem NORMALIZE belongs to DLINEAR.
Proof It is sufficient to prove that NORMALIZE belongs to DRAMk(n / log n) for suffi-

ciently large k (we shall take k > 2 log(d + 1)). Input S is initially divided into bk (n)-blocks
(in short, b-blocks with b bk(n)). Our DLINEAR algorithm will consist of two parts: first,
lexical analysis of S and second, computation of the ai (by hashing techniques).

Lexical analysis of S. In the sequel, a subword []Ai of S that includes at least the first
symbol of a b-block in S will be called a "milestone." Lexical analysis consists in determining
the milestones in S and dividing S as follows"

S []AI(1)BII-IAII(2)B2... I--IAh(q)Bq,

where DAh), I-1Ah(2) []Ah(q) are the successive milestones (notice that h(l) 1) and
subwords Bi (f’ LI{[]})* are the "remainders." For example, BI is the string of symbols
(maybe empty) that lie between the first and second milestones A and A/(2). We easily
see that length(B/) < b (otherwise, Bi would contain the first symbol of a b-block and
then it would include a milestone) and q < (number of b-blocks) rn/b O(n/logn).
It is easy to compute and store the list of milestones 3Al) I-IA(q) (respectively, the
list B, B2 Bq) in a two-dimensional (respectively, one-dimensional) array where each
element has length < b (R)(log n). Notice that the total number of b-blocks in all the Al,i
is O(n/b) O(n/ log n).

Clearly a DRAMk can perform the above computation in time O(n/log n). The lexical

analysis of S is not complete because it does not separate the Ai contained in the Bj.
Computation of the ai. We now use some techniques of [Gr3, paragraph III.3] (cf. [Wi2]

for some comparable techniques). That requires some definitions: a subword Ai in S is "big"
if length (Ai) > b; otherwise, it is "small." Note that each subword Ai of some B is small and
that a word mh(j) (in a milestone []Ah(j)) may be big or small. We do not separately encode

LINEAR TIME AND NP-COMPLETE PROBLEMS 581

each occurrence of a small Ai (it would require too many steps in case too many small Ai
occur in S) but precompute them as follows.

In a first phase, recapitulate the small A that occur in S (use a boolean array, called
PRESENT, indexed by words of* of length less than b) and then encode them with an array
denoted CODE (we take ai CODE(A/)). The subroutine of this first phase is the following:

begin

end;

for each w 6 * such that length(w) < b do
PRESENT(w) := false {initialization}

fori:=ltoqdo
if length(Ahi)) < b, then PRESENT(AI,i)) := true

fori:= ltoqdo
if Bi is "new" (i.e., Bi :/: Bj for each j < i)
then for each Aj that occurs in Bi

do PRESENT(Aj) := true
{note: we check if Bi is "new" by means of another boolean array indexed by
words of length less than b}
{we now encode "small" Ai (that occur in S) with consecutive integers}
a:=l
for each to Y-* such that length(w) < b do
if PRESENT(to) then

begin
CODE(to) := a{meaning: if to Ai, then a CODE(A/) ai}
a:=a+l

end

Note that at each moment the global variable a represents the least integer that is not an
encoding (it will be used in the third phase below).

In a second phase, encode all Bi (, U{[]})* in S as follows. IfBi t3Otl vqot2... []Ors,
where each ofj G E*’ then take CODE(B/) := [-lOll CODE(oel)... t:lOes CODE(ors)
(these encodings can be stored in the above CODE arrays, indexed by words of(U{rn})* of
length < b).

The reader should be convinced that first and second phases above require only O (n / log n)
steps for sufficiently small b b, (n), i.e., for sufficiently large k. In particular, the analysis
of the Aj included in the "new" Bi requires time O(b.(d + 1)t’) O((logn)n"), where
u (l/k) log(d + 1) that is O(nl/2.1ogn) if k > 21og(d + 1). We can now compute the
parts of the output S’ that concern the subwords Bi and the milestones I--1Ah(i) for small Ah(i).
The third phase consists in encoding big milestones rqAj (i.e., for which length (Aj) > b) by
techniques of [Gr3, paragraph III.3]. Let us describe it to have a self-contained proof.

Examine and encode successively the big words Aj by using two global variables denoted
Nextp and Nexta and two "dynamic pairing functions" denoted PAIR and ENCODE (here
we define a "pairing function" as an injective partial function N x ll --+ 1N {0}). These
functions are stored in two-dimensional arrays, also denoted PAIR and ENCODE, and each
one is completed if necessary, i.e., when it is undefined on some useful arguments. At each
moment, values of function PAIR (respectively, ENCODE) have to form an initial segment
1, Nextp (respectively, a segment [a, Nexta], where a is the least positive integer that
does not encode a little A i; see first phase) and value Nextp (respectively, Nexta) is kept in a
special register.

Let us explain how functions PAIR andENCODE are computed and used. Let u 1, u2 Ur

582 ETIENNE GRANDJEAN

denote the successive b-blocks of a big word Aj (length (Aj) > b) we want to encode.
More precisely, u Ul u2... ur with r >_ 1, length(u/) b for each < r and
0 < length(u,) _< b. Compute successively p2 PAIR(p, u2) where Pl u, P3
PAIR(p2, u3) Pr PAIR(pr_I, Ur) and e ENCODE(pr, r) in respecting the fol-
lowing rule" each time we need to use a pair of arguments (x, y) for which function PAIR is
undefined (i.e., register PAIR(x, y) has never been visited and contains zero for that reason),
execute the following assignments (and similarly for ENCODE):

PAIR(x, y) "= Nextp Nextp "= Nextp + 1.

At the beginning of the third phase, initialize variables by

Nextp := 1; Nexta "= a.

Obviously, a nonzero integer is never contained in two distinct locations of the array PAIR
(respectively, ENCODE); hence, PAIR and ENCODE are pairing functions. Let us define
function PAIR N -- N by recurrence. PAIR (x, x2 xi) is equal (if it is defined) to

Xl if/ 1,

PAIR(PAIRi-(xl xi-), xi) if > 2.

PAIR Ni N is clearly an injective partial function. In particular, we have considered
(above) the following values associated with some big word Aj u u2... u,.;
P2 PAIRZ(u, u2), P3 PAIR3(u, u2, u3) Pr PAIRr(u, u2 u) and e
ENCODE (PAIR (u,..., u,.), r).

We take aj e. Condition (i) of problem NORMALIZE is clearly respected. Notice
that the last value of variable Nexta is M + 1, where M is the integer involved in Condition
(ii).

We have now achieved the construction of output S’. One easily can be convinced that the
third phase is performed within O(n/log n) steps (each b-block is manipulated O(1) times)
and only involves words of length O(log n). 12

4.2. Other problems computable in linear time. In proofs that concrete problems be-
long to DLINEAR or NLINEAR we will often need the above NORMALIZE algorithm but
also algorithms for the following problems.

PROBLEM LIST-COMPRESS.
Input. A string S F1AIF1A2... []Am, where each Ai E ,* and [] .
Output. The string S’ []A’ []A []Ap such that:

(i) {A A2 Am} {A’ A’ A’ }"2’’’’’ p
(ii) there is no repetition in S’, i.e., A’ :/: Aj if :/: j;
(iii)A’i occurs before A in S’ (i.e., < j) iff the first occurrence of A’ in S precedes

the first occurrence of Aj.
PROBLEM MULTISET-COMPRESS.
Input. A string S []AII--IA2... l’lAm, where each Ai _,* and symbols [] and do

not belong to]’.
Output. A string S’ of the form []AI n[]A’2 n2... []Ap np such that

’};(i) {A, A2 Am} {Atl A Ap
(ii) A’ A if/ - j;
(iii) for each <_ p, ni is the number of indices j such that Aj A

LINEAR TIME AND NP-COMPLETE PROBLEMS 583

PROBLEM ELEMENT-DISTINCTNESS.
hput. A string F-1AI[]A2... []A,, where each Ai E _,* and [] .
Question. Are the elements Ai all distinct?
Remark. The computational complexity of ELEMENT-DISTINCTNESS has been stud-

ied in some recent papers" for example, Yao [Ya] proves a near optimal time-space tradeoff
for it.

PROBLEM PERMUTATION.
Input. A string V1A [] A 2 V?Am AA’l rq A’2 Cq A’ where A A’ are words of

Question. Is there a permutation 7r of 1,2 m such that A’ Ar(i) for each < m ?

PROBLEM SET-INCLUSION (respectively, SET-EQUALITY).
Input. Two lists of words A A2 Am and A’ A’ A’2’’’’’ p"

Question. Does the inclusion {A Am}

_
{Atl Ap} (respectively, equality

{A1 Am} {A’ Ap}) hold?
Remark. The input is presented above in a natural structured manner but formally the

input of a DRAM is a string; the exact input of SET-INCLUSION has to be, for example, of
the form AII-IA2... t3AmAA’3A’2... I-lAp (with new symbols [] and A). For convenience,
in the sequel our problems will be presented in a structured manner.

PROBLEM CHECK-SORT.
Input. Two lists of integers (or words) A, A2, An, and A] A’2 Am’ such that

A <A’ <...<
2 Am"

Question. Is the second list the sorted version of the first list, i.e., is there a permutation
n" of {1 2, rn such that A’ Arc(i) for each < rn 9

PROBLEM PARTITION.
Input. Alist P of "sets" S1, $2 Sin, whereeach Si isofthe form" Si {e, e2 ep}.
Question. Is P a "set partition," i.e., are the sets S mutually disjoint?

PROBLEM SET-INTERSECT (respectively, SET-DIFFERENCE).
Input. A set S and a list L of sets S, $2 Sm.
Output. The list L’ of intersection sets Sl S Sm C3 S (respectively, difference sets

S S Sm S).

PROBLEM ADDITION.
Input. A list of integers A , A2 Am.
Output. The integer A + A2 +... + Am.
PROBLEM FUNCTION-DEF.
Input. A list of arrows x --+ y, x2 --+ Y2 Xm -- Ym, where the xi, Yi are words.
Question. Does that list define a function, i.e., does the implication xi xj :: yi yj

hold for all i, j?

PROBLEM FUNCTION-APPLY (Assume that c is a fixed integer).
Input. A "finite" partial function F on integers, i.e., a list of arrows x --> y, x2 --->

y2 Xm Ym, where words xi are all distinct and length(y/) < c length(x/) and a string
of the form Zl I--IZ2... IS]Zp.

[] ’, where F(zi) if F(zi) is defined (i.e., zi is someOutput. The string z’ []z2.. Zp z

xj and F(zi) yj) and z zi otherwise.

PROPOSITION 4.2. Problems LIST-COMPRESS, MULTISET-COMPRESS, ELEMENT-
DISTINCTNESS, PERMUTATION, SET-INCLUSION, and set-equality all belong to

584 ETIENNE GRANDJEAN

DLINEAR.
Proof We only mention the differences with the proof of Proposition 4.1. After the

lexical analysis of string S that produces (for instances of LIST-COMPRESS, MULTISET-
COMPRESS, and ELEMENT-DISTINCTNESS) the decomposition

S rqA,(1)Bl... VIAh(q)Bq

(as above), the output of LIST-COMPRESS is computed by the following loop:

Fori:-- ltoqdo
begin

if Ah(i)is "new" {i.e., that is the first occurrence of A,(i) in S}
then write VIAh(i)

if Bi is "new" {i.e., Bi :/: Bj for each j < i}
then for each Aj that occurs in Bi do

if Aj is "new" then write [Aj
end;

Note that we check if a small Aj is new with the boolean array PRESENT (of the proof
of Proposition 4.1) indexed by words w, such that length(w) < b, and that a big Aj is new iff
register ENCODE(PAIR (ul ur), r) contains zero at that moment.

For MULTISET-COMPRESS, we compute the part of output S’ concerning the big Ai
by acceding to its encoding ai (computed as usual) and to a counter COUNT(a/) indexed
by ai. To produce the part of S’ concerning the small Ai, we first compute for each word
w 6 (t0{[]})* of length less than b, the number, denoted NUMBER(w), of indexes such
that Bi w. Then for each word w of length less than b and of the form rqol [ol2... []ols
with olj 6 Y-.*, its contribution to the numbers of small Ai is counted by the loop

for j := to s do COUNTER(Olj):= COUNTER(Olj)+ NUMBER(w).

Finally, count the small A,(i) by the loop

fori:----- ltoqdo
if length (Ah(i)) < b then COUNTER(Ah(i) := COUNTER(A,()) + 1.

This proves the proposition for MULTISET-COMPRESS.
Problem ELEMENT-DISTINCTNESS is obviously decided by MULTISET-COMPRESS

algorithm. The PERMUTATION algorithm is similar to the previous one. The main differ-
ence is that the Ai and the Aj are counted separately. At the end we check if the corre-
sponding counters are equal. Problems SET-INCLUSION and SET-EQUALITY have similar
algorithms.

PROPOSITION 4.3. Problem ADDITION belongs to DLINEAR.
Proof. Without loss of generality, assume that the input is []ALIA2... []Am. First, that

input is transformed (as follows) in such a way that the number m of summands Ai becomes
O(n/logn). After the lexical analysis that gives []Ah()B[]Ah(2B2... [Ah(q)Bq (cf. proof
of Proposition 4.1), each string Bi is replaced by the sum of the integers that it contains; that is,
more precisely, if Bi []-lOll VlOl2... []Ols, then Bi is replaced by string Vi A, where A is the
result of the sum Oil + Ol2 "+-’" "[- Ols. That can be done efficiently by computing previously for
each w of the form w [Ol [Olz... []Ols (where the Oli are integers), such that length(w) < b,
the integer Ol + Ol2 "[- " Ols, and storing it in a table SUM(w).

Second, add the m O(n/logn) integers Ai by the usual classroom algorithm on b-
blocks, that is, with integers in base db (recall that integers are originally written in d-adic

LINEAR TIME AND NP-COMPLETE PROBLEMS 585

notation). The reader should be easily convinced that it requires only O(n/log n) steps and
involves integers of length O (log n) (because b (R) (log n)).

PROPOSITION 4.4. Problems PARTITION, SET-INTERSECT, and SET-DIFFERENCE
belong to DLINEAR.

Proof Let us consider PARTITION. Without loss of generality, assume that m
O(n/logn). (For that purpose, apply ELEMENT-DISTINCTNESS algorithm to the list P,
where each Si is regarded as a string, i.e., an ordered list. Reject if two lists Si, Sj are equal.)
A sufficiently large k is chosen to get a sufficiently small block length b bk(n) (that will be
precisely stated below).

Then use a deterministic Turing machine that separates the list P into two lists, P’ and
P", such that P’ (S’, S S’m), P" (Sf, S’ S), and each S {e 6 Si
length(e) > b} and each S’ {e 6 Si :length(e) < b}.

Clearly, P is a partition if and only if both P’ and P" are partitions. The Turing machine
runs in linear time O(n) and can be simulated by a DRAM within time O(n/log n) (by
Proposition 3.1 (iii)).

It is easy to check if P’ is a partition by the above hashing techniques. Therefore, without
loss of generality, assume that in P (S1, $2 Sm), each Si is a list of elements e such
that length(e) < b. Then divide each string Si into b-blocks, that is, into substrings Si
Bi BZi... Bip’ (concatenation) where each block B/is a sublist of S of the form el, e2 es
(each ez, is an "elementary element") such that length (B/) _< b. This can be done in such a

way that the total number of blocks Bi
j (for all < m and j < pi) is O(n/logn) (because

m O(n/logn)).
Then for each block B/j, store (in an array denoted SET) the index SET(B/) of the

set Si where BiJ is included; reject in case there is a collision, that is, B/-- B{’, for - i’ (that
means that Si and Si, have common elements). Finally, for each possible pair of blocks B, B’
that contain at least one common element e and such that SET(B) 0 and SET(B’) - 0 (i.e.,
both B and B’ occur in P), check if SET(B) SET(B’). That can be done in time o(n/log n)
for sufficiently small block length b.

This proves that PARTITION belongs to DLINEAR. The algorithms and proofs for SET-
INTERSECT and SET-DIFFERENCE are similar and then are left to the reader. [3

PROPOSITION 4.5. Problems CHECK-SORT, FUNCTION-DEE and FUNCTION-APPLY
are in DLINEAR.

Proof. Problem CHECK-SORT is a restriction of the DLINEAR problem PERMUTA-
TION.

Let us consider FUNCTION-DEE Apply successively to its input the LIST-COMPRESS
algorithm (to avoid repetitions of arrows) and the NORMALIZE algorithm. This gives a

string ofthe form a -+ b,a2 b2 ap -+ bp, where p--O(n/logn)andeachai, bi
is O(n/logn). Now by storing the arrows in an array F by assignments F(ai) :-- bi, check
if there is no collision.

The construction of an algorithm for FUNCTION-APPLY is left to the reader.
From the NORMALIZE algorithm, we deduce the following "thesis?’

ASSERTION 4.6 (Linear Time Thesis). "Concrete algorithms" usually regarded as "com-
putable in linear time" and concerning (weighted, directed, nondirected) graphs given by
their lists of edges or propositionalformulas in clausalform are in DLINEAR.

Remark. This statement is called an assertion or thesis because it seems to be vague. It
can be proved only for specific problems, for example:

PROBLEM HORN-SAT [DoGa], [ItMal], [ItMa2], [Mi].
Input. A set S of propositional Horn clauses {C, C2 Cm}.

586 ETIENNE GRANDJEAN

Question. Is S satisfiable?

PROBLEM SCC ("strongly connected components" [Ta], [AHU]).
Input. A directed graph G (V, E) given by its list of vertices v v,,, and its list of

arcs el ep (ei E I/’2).
Output. The set of strongly connected components of graph G.

Proof of Assertion 4.6 for SCC. First normalize the input. Apply LIST-COMPRESS
algorithm to remove repetitions in the list of vertices and the list of arcs; so, we can assume
that m 4- p O(n/log n). Apply NORMALIZE algorithm to these lists so that the set of
vertices becomes V 1, 2 rn }. Then implement the usual algorithm of [Ta] (see also
[AHU1], [AHU2]) on the DRAM model; it runs in time O(m + p) O(n/logn).

ProofofAssertion 4.6for HORN-SAT. The algorithms of [DoGa], [ItMal], [ItMa2], [Mi]
can be trivially implemented on a DRAM in time O (n/log n) if in the list of clauses S

(i) each propositional variable has length O(log n), and
(ii) the total number of occurrences of variables is O (n/log n).

For that reason it is sufficient to exhibit a DRAM(n/ log n) algorithm that computes from each
input S a new set of Horn clauses S’ for which (i)-(ii) hold and which is satisfiable if and only
if S is satisfiable.

We can assume that each clause of S has one of the two following forms:

(U1 Us ---> VO) pure Horn clause;

(vl Vs --> FALSE) negative clause,

where each vi is any propositional variable. The list of variables 1) l) is called the
hypothesis list of the clause. Let C1, C2 Cm denote the list of clauses of S. By the
LIST-COMPRESS algorithm, we can assume that there is no repeated clause so that m
O(n / log n).

Let us fix a sufficiently large integer k. We now separate in each hypothesis list the "big
hypotheses," that is, variables vi such that length(v/) >_ b bk(n), and the "small hypotheses,"
that is, the vi such that length(v/) < b. A linear time-bounded Turing machine can transform
each clause into the form (vl l)r, vr+l vs --+ u), where u is either a variable or the
FALSE value and for < r (respectively, > r), vi is a big (respectively, small) hypothesis.

Then for each clause Ci (i <_ m), divide its list of small hypotheses.L/- v,.+l v,. into
"blocks": Z Bli B2i... Bqi (concatenation), where each "block" B/J is a sublist of Li such

that length(B/) < b. This can be performed in such a way that the total number of sublists

B/(for _< rn and j <_ qi) is O(n/logn) (because m O(n/logn)).
The next idea is to replace each B/(in each clause Ci) by a new propositional variable,

denoted v/that will be interpreted as the conjunction of the variables of B/. We store the new

variable v/in an array VARIABLE(B/)so that if B/ B/’, then v/j and vJi denote the same
variable. Let C denote the clause Ci so transformed, that is,

Let S’ be the set of clauses

S’ Ctl Ct;,} U B/ ---> 1)/ i<m, j<qi

where repetitions among the clauses are removed. Note that there are as many distinct clauses

B/ vJi as distinct blocks B/, that is, less then db (where d is the cardinality of the alphabet
of clauses), which is O(n I/2) for sufficiently small b bk(n).

LINEAR TIME AND NP-COMPLETE PROBLEMS 587

It remains to prove the two following claims.
Claim 1. The number of occurrences of propositional variables in S’ is O(n/log n).
Claim 2. S is satisfiable if and only if S’ is satisfiable.
Claim follows from the following three facts:
m O(n/logn);
there are O(n/b) occurrences of hypotheses in C’1 Cm;
there are O(d’) O(b) O(n 1/2 logn) occurrences of variables in all the clauses of

the form B/ --+ v/.
Claim 2 follows from the following two facts:

S’ implies S by transitivity of implication;
conversely, if an interpretation satisfies S, then S’ is trivially satisfied by the extended

interpretation where each v/ is interpreted by the conjunction of the variables of B/(i.e., vii
is true if and only if each variable of B/is true). 1

5. Linear time bounded reductions. In 6 and 7, we will state that many NP-complete
problems belong to NLINEAR or are complete in this class. In the proofs we use the following
notions.

DEFINITIONS AND NOTATIONS. Let T (n) >_ n be a timefunction. Afunction on words (or a
language) is in DTIME(T (n)) (respectively, NTIME(T (n))) ifit is computable (respectively,
recognizable) by a deterministic (respectively, nondeterministic) Turing machine in time
0(T (n)), where n is the length of the input word.

Let A, B c * be two languages. We write B E NTIMEA(n) (respectively, B
NRAMA(n/ logn)) or B <_NTM A (respectively, B <NRAM A) if there is a nondeterministic
Turing machine (respectively, a NRAM) M such thatfor each word to yn each compu-
tation ofM on input to runs within time O(n) (respectively, time O(n/ log n)) and to belongs
to B iffsome computation ofM on w computes a word of A.

In the special case when machine M is deterministic, we write B DTIMEA(n)
(respectively, B DRAMA(n/logn)) or B <_rT A (respectively, B <rRA A) and
thefunction computed by M is called a reduction of B to A.

PROPOSITION 5.1. (i) DTIME(n) c_ DRAM(n/logn)" in consequence, ifA < B,
then A <IA B.

(ii) For each language A, NTIMEA (n) _c NRAMA (n / log n).
(iii) lfA, B are languages such that A NTIME(n) (respectively, A NRAM(n / log n))

and B NTIMEA(n) (respectively, B NRAMA(n/logn)), then B NTIME(n)
(respectively, B NRAM(n/ logn)).

(iv) Relations <r)xM, <OA, <, and <YnA are transitive.
(v) Let X {D, N} be a letter for "determinism" or "nondeterminism" and T(n) >

n (respectively, T(n) > n/logn) be a nondecreasingfunction. If A <xr B and B
XTIME(T(n)) (respectively, A <It<AM B and B XRAM(T(n))), then there is a constant

c such that A XTIME(T(cn)) (respectively, A XRAM(T(cn))).
Proof Assertions (i)-(v) either are classical results concerning Turing machines (see for

example [HoU1], [Mo]) or are restatements or easy generalizations of assertions of Proposi-
tion 3.1. The proofs are similar. [

6. Most combinatorial NP problems belong to NLINEAR. We believe that the 21 NP-
complete problems listed by Karp [Ka] are "combinatorial problems" (a possible exception is
problem 19, called "job sequencing" in [Ka] and "sequencing to minimize tardy task weight"
in [GaJo]; it seems to be more algebraic). The notion of combinatorial problem is as intuitive
and at least as difficult to formulate as the notions of "computability" (captured by Turing
computability) or "feasible computability" (captured by class P of polynomial time Turing

588 ETIENNE GRANDJEAN

computable problems). In the present section, we prove that many NP problems and, in
particular, the 20 NP-complete problems 1-18 and 20 and 21 of [Ka] belong to NLINEAR.
This justifies our conviction that combinatorial NP problems are NLINEAR problems. We
choose to give explicit proofs for the following six significant problems.

SUBSET-SUM (Problem 18 in [Ka]).
Input. Integer B and list of integers A, A2 Am.
Question. Is there a subset I of 1,2 m such that fiI Ai B?

EXACT-COVER (Problem 14 in [Ka]).
Input. List of sets S, $2 Sm and set S.
Question. Is there a subset I of 1,2 m such that the family (Si)i1 is a partition

of S?

HITTING-SET (Problem 15 in [Ka]; a variant numbered [SP8] appears in [GaJo]).
Input. List of sets S1, $2 Sm.
Question. Is there a set S such that for each < m, S Si has exactly one element?

FEEDBACK-ARC-SET (Problem 8 in [Ka]).
Input. Integer K and directed graph G (V, A).
Question. Is there a subset A’ c__ A of cardinality at most K such that A’ contains at least

one arc from every directed cycle in G?

TRAVELING-SALESMAN (Problem [ND22] in [GaJo]).
hlput. Integer K and weighted nondirected graph G (V, E) given by its list of weighted

edges e, e ep, where ei (ai, bi, 11)i), ai, bi V, and L0 is a positive integer.
Question. Has G a Hamilton circuit of weight not greater than K?

Pfleeger [Pf] has proved the NP completeness of the following problem.

PROBLEM RISA ([AL7] in [GaJo]).
Input. An integer K and an incompletely specified deterministic finite state automaton

4 (Q, , , q0, F), where Q is the set of states, ’ is the input alphabet, q0 6 Q is the
initial state, F c_ Q is the set of final states, and 6 is a partial function: Q Y Q.

Question. Can 6 be extended to a total function Q --+ Q in such a way that the
minimal automaton ofthe resulting completely specified automaton has no more than K states?

Remark (RISA characterization). It is easy to see that the question above is equivalent
to the following one (where Q’ denotes the set of states reachable from q0). Is there a map
h Q’ -- {1, 2 K} that respects the following conditions?

(i) For all q, q’ 6 Q’ such that h (q) h (q’), we have q 6 F if and only if q’ 6 F (i.e., h
respects the distinction "final/nonfinal states").

(ii) For all q, q’ Q’, cr 6 y such that h(q) and h(q’) are equal and 3(q, or) and 3(q’,
are both defined, we have h(3(q, r)) h(3(q’, or)) (i.e., h respects the deterministic nature
of the automaton).

THEOREM 6.1. Twenty among the 21 NP-complete problems given by [Ka] that are

problems 1-18 and 20 and 21 and problems TRAVELING-SALESMAN and RISA belong to

NLINEAR.
Remark. When an input involves a (weighted, directed, nondirected) graph, we assume

that it is represented by its list of arcs.

ProofofTheorem 6.1. We prove the theorem for the six problems explicitly given above.
The reader is invited to adapt the proofs to the other ones.

LINEAR TIME AND NP-COMPLETE PROBLEMS 589

TRAVELING-SALESMAN. Apply the FUNCTION-DEF algorithm (to check if no
edge has two distinct weights) and the LIST-COMPRESS one (to suppress edge repetitions).
By the NORMALIZE algorithm, we can assume that the set of vertices is V 1, 2 m

’, where is a weighted edge" checkwithm O(n/log n). Then guess a cycle e e2 em e
if the cycle is included in the list of edges of G and includes each vertex (by two applications
of SET-INCLUSION algorithm); check that no vertex is repeated in the cycle (by ELEMENT-
DISTINCTNESS algorithm); and check if the weight of the cycle does not exceed K (by
ADDITION algorithm).

RISA. By successive applications of FUNCTION-DEF, LIST-COMPRESS, and NOR-
MALIZE algorithms, normalize the input as above. In particular, we can assume that Y
1,2 r} and Q 1, 2 s} with r + s O (n/log n) and that the number of tran-

sitions of 6 is O(n/logn). By a classical algorithm, a DRAM can compute the set Q’ of
reachable states within time O(t) O(n/logn) and suppress the nonreachable states and
the transitions that involve them. We now use the RISA characterization given in the remark
above.

Guess for each reachable state q < s a value h (q) < K < s with which q is identified
(function h can be stored in an array). Transform each transition 6(q, or) q’ into transition
3’(h(q), r) h(q’) and check if the resulting automaton (with set of states included in
1, 2 K} and transition function 3’) is deterministic (with FUNCTION-DEF algorithm)
and has a well-defined set F’ of final states: h (q) F’ if and only if q F.

SUBSET-SUM. A linear time-bounded nondeterministic Turing machine (simulated by
a NRAM in time O(n/logn)) can guess a sublist (Ai)iI. Then check if i6I Ai B (by
ADDITION algorithm).

EXACT-COVER. Guess the sublist (Si)ii as above and then check if it is a partition
(by PARTITION algorithm) and if S is equal to the union set [,.JiltS (by SET-EQUALITY
algorithm).

HITTING-SET. Guess a set S (of course, length(S) < n) and then check if for each
< m, set Si S has exactly one element (by SET-INTERSECT algorithm).

FEEDBACK-ARC-SET. The question is equivalent to the following one. Is there a
subset A’ _c A of cardinality at most K such that the directed graph G’ (V, A A’) is
acyclic? The recognizability of acyclicity of directed graphs belongs to DLINEAR (use some
classical algorithm).

The reader is invited to prove similarly that many other combinatorial NP problems (sub-
graph isomorphism, graph isomorphism, partition into cliques, and so on) are in NLINEAR.

7. Some NP-complete problems are NLINEAR complete. As seen in 6, the class
NLINEAR NRAM(n/ log n) that refines the NP class includes many natural NP-complete
problems. The following notion is comparable with NP completeness.

DEFINITION. A problem A is NLINEAR complete if
(i) A NLINEAR and
(ii) A is NLINEAR hard, that is, for each problem B in NLINEAR, B <DTM A.
Remark. It is obvious that a NLINEAR-complete problem is also NP complete. Recall

that B <Da’M A implies B <tRAI A. The following proposition is an immediate consequence
of the definition above.

PROPOSITION 7.1. Let A be a NLINEAR-complete problem. Thefollowing assertions are

equivalent:
(i) NLINEAR DLINEAR;
(ii) A DLINEAR.
Remark. We do not know whether NLINEAR - DLINEAR. However, Paul et al. [PPST]

have proved a similar assertion for Turing machines, that is, NTIME(n) - DTIME(n). It

590 ETIENNE GRANDJEAN

implies that no DTIME(n) algorithm exists for any NLINEAR-hard problem.
The following proposition means that any efficient algorithm for a NLINEAR-complete

problem can be used to solve any other NLINEAR problem without loss of efficiency.
PROPOSITION 7.2. Let T(n) > n (respectively, r(n) >_ n/logn) be any nondecreasing

function. Ifany NLINEAR-complete (or NLINEAR-hard) problem belongs to DTIME(T(n))
(respectively, DRAM(T (n))), then NLINEAR c_ Uc DTIME(T(cn)) (respectively, NLINEAR
c_ t3 DRAM(T(cn))).

Proof. Immediate.
COROLLARY 7.3. Let A, B be two NLINEAR-complete problems and T(n) > n and

T’(n) > n/logn be two nondecreasingfunctions. Then
(i) A 6 Uc DTIME(T(cn)) ifand only if B tOc DTIME(T(cn));
(ii) A U, DRAM(T’(cn)) ifand only if B kJc DRAM(T’(cn)).
It is well known that the problem SAT of Cook ("satisfiability of propositional formulas

in clausal form") is a "generic" NP-complete problem [Co], [Co2], [HoU1]. Similarly, we are
going to use the following problem, denoted CONTRACT ("contraction of partial functional
structures"), as a tool to prove NLINEAR completeness of other problems.

PROBLEM CONTRACT IRa 1], IRa2].
Input. Set C of "constants," set X of "variables," set .7-" of unary function symbols (ele-

ments of sets C, X, U are assumed to be presented in lexicographical order) and conjunction
F of equalities of the form f(u) v, where f 6 f’, u, v 6 C t.) X and such that terms f(u)
are all distinct in I" and occur in lexicographical order.

Question. Is conjunction F satisfiable on set C, that is, is there a function VAL CtOX --+ C
that is the identity on C and, for each f 5c, an interpretation f’, that is, a partial function

f’ C C such that if f(u) v is an equality in F, then f’ (VAL(u)) VAL(v) holds?

The following logical notion (a variant of a concept introduced by Scholz [Sz] and gener-
alized by Fagin [Fa]) will be an essential tool in our proof that CONTRACT is a NLINEAR-
complete problem.

DEFINITION. Let qo be afirst-order sentence (with equality) with type 7" {fl, f2 fp,
gl g2 gq where the fi gj are unaryfunction symbols, respectively, called specified and
unspecifiedfunction symbols. The generalized spectrum of q), denoted GenSPECTRUM(qg),
is the set of structures (m, fl, f2 fp) (where rn is a positive integer identified with set

{0, rn 1}) that have an expanded structure (m, f, f2 fp, gl, g2 gq) that

satisfies
Remark. It is convenient that an interpretation of a function symbol f, gj will be denoted

f, gj (i.e., without any change).
Fagin, in his well-known seminal paper [Fa], proved that the class of generalized first-

order spectra (in other words, the existential second-order logic) exactly captures the class NE
The following proposition refines Fagin’s result in some manner: it shows that the subclass
NLINEAR can be similarly captured by the existential second-order logic with only one

(first-order) variable.
PROPOSITION 7.4. If A NLINEAR, then there is a first-order sentence p of unary type

27 as above, such that
(i) A _<r GenSPECTRUM(q));
(ii) o is of the form gxP(x), where (x) has only one variable and is a conjunction

/i i(x) ri(x) ofequalities of theform

G, G2GI(X) Hs H2HI(X),

where r > l, s _>_ 0 and each Gi, Hj T, and such that

LINEAR TIME AND NP-COMPLETE PROBLEMS 591

(ii. 1) no term or subterm oftheform fi (x) (where fi is a specifiedfunction symbol) occurs
in and

(ii.2) no first member cri(x) is a subterm ofanotherfirst member crj(x) (for :/: j) or of
a second member rj(x) (here "subterm" means "proper subterm or equal term").

Sketch ofproof. The proof is rather long and technical. It is essentially given in [Gr2],
[Ral], [Ra2] where the result is stated in a slightly weaker form. In those papers Lan-
guage A is assumed to be in NTIME(n) (because the authors focus on Turing machines),
but as a matter of fact, they prove the stronger result A <DrM GenSPECTRUM(cp) for
all A NRAMk(n/logn) (for sufficiently large k) and use the inclusion NTIME(n)

_
NRAM,(n/log n). Let us roughly recall the stages of the proof (for details, the reader is
invited to read the complete proof in [Gr2], [Ral], IRa2]).

First, construct a prenex first-order sentence 99 that describes the computation of the
NRAM. (which recognizes A in time O(n/log n)). q9 has to be interpreted on domain m
{0, m where 0, m intuitively represent the m successive instants of the
computation (in particular, m O(n/log n)). Moreover, the prenex sentence q9 has only one
universally quantified variable and its only nonlogical symbols are --, < (equality and natural
order on m) and unary function symbols.

Second, transform formula 09 in such a way that it satisfies condition (ii) above. In partic-
ular, natural order <, negations, and disjunctions are removed by some techniques comparable
with Skolemization. New specified or unspecified function symbols are introduced for that
purpose.]

Remark. We can assume that an output of the reduction A _<DVM GenSPECTRUM
(in Proposition 7.4), which is a structure S (m, f, f2 fp) with length(S) O(n),
is presented in the following manner: each function j) is given in increasing order of its
arguments, that is, by a list of the form 0 --+ f.(0), J(1) m --+ f.(m 1)
(recall that m O(n/logn) and the number p of functions does not depend on input w).

LEMMA 7.5. Let p be the sentence Vxq (x) ofProposition 7.4. We have

GenSPECTRUM(qg) <Dr CONTRACT,

where each input structure S (m, fl fp) is assumed to be presented in increasing
order (of remark above).

Pro The main idea of the DTIME(n) reduction is the following one: unroll the sentence

99 Yxq(x) on its domain m; that is, replace q9 by conjunction Ae<m q/(e) where q(e) is
obtained by substituting constant e for each occurrence ofx in . From the definition of gener-
alized spectrum, it is obvious that a structure S (on domain m) belongs to GenSPECTRUM
if and only if the following conjunction of equalities, denoted ,, is satisfiable on domain m:

A q (e)/x A Diagram (J))
e<m j<p

where Diagram(fj) denotes the conjunction of equalities/e<m fj(e) ej (sorted by increas-
ing order of argument e) and ej denotes the value of the term fj (e) in ,9.

The conjunction , is almost an instance ofproblem CONTRACT (with constants 0,
m 1).We now have to "cut" the compositions of functions in each conjunct tp (e) (q (e) is of
the form i cri(e) ri(e)). For that purpose introduce for each (sub)term O(e) in)/(except
for constants e < m) a "variable" denoted C0(e) (underlined). The instance of problem
CONTRACT corresponding to ,9 will be the following one:

oC--m ={0,1 m-l};
X {O(e) O(e) is a (sub)term in ,, distinct from e};
’--{fl fp, gl gq};

592 ETIENNE GRANDJEAN

conjunction F is obtained by unrolling each (sub)term in ?’; for example, if F contains
the equality j] g3 (2) gl (2), we replace that equality by the following conjunction: gl (2)
gt (2)/ g3(2) g3(2)/ fl (g3(2)) g (2).

We easily see that conjunction F is satisfiable on m iff P is satisfiable on m. Hence,
the correspondence ,5 (C, X, .T’, 1-’) is a reduction of GenSPECTRUM(0) to problem
CONTRACT. That reduction is computable in linear time by a deterministic Turing
machine, i-1

COROLLARY 7.6. Problem CONTRACT is NLINEAR hard.
PROPOSITION 7.7. CONTRACT <DTMRISA.
Proof. An instance C (C, X, ’, F) of problem CONTRACT (without loss of general-

ity, we assume C {0, m }) is reduced to the following instance (.,4, K) of problem
RISA:

.A (Q, ’, 3, q0, F)

where
.Q=CU{m}UX;

.T" U {Succ} (intuitively, Succ is the successor function on integers);
partial transition function 3 Q x --+ Q is defined by 3(u, f) v for each conjunct

f(u) v in F (note that 3(u, f) is not defined twice because term f(u) occurs at most once
in F) and 3(u, Succ) u + for each u 6 C {0, m (3(m,Succ) is undefined);
q0 0; F {m}; and K m + (K is the cardinality of set C U {m}).

It is easy to see that each state q 6 Q is reachable from q0 0 and that a deterministic
Turing machine can compute the instance (.A, K) in linear time O(n). It remains to prove the
following equivalence: C 6 CONTRACT if and only if (.A, K) 6 RISA. From a solution h,
for instance, C (i.e., a "contraction" of C), we easily deduce a K-reduction of the incomplete
automaton .A; that is, the contraction h of C on C that is extended by setting h(m) m.
The backward direction of the proposition, that is, (.,4, K) RISA implies C 6 CON-
TRACT, is an easy consequence of the following lemma. This concludes the proof of Proposi-
tion 7.7.

LEMMA 7.8. Let 4’ Q, Y, 3’, qo, F) be a completely specifiedfinite atttomaton that
completes the above fit, that is, whose transition function 3’ extends 3. In

(i) all the states are reachable rom q0);
(ii) the equivalence class ofstate m is {m };
(iii) if4’ is K-reducible (recall K m + 1), then its K equivalence classes are exactly

the class ofO, the class of the class ofm 1, and {m}.
Proof. (i) holds for .A and then for 4’. (ii) follows from the fact that m is the only final

state. Let us prove (iii): we have 3 (j, Succm-j) m 6 F and 3(i, Succm-j) m j+ F
for all < j < m; hence, states i, j are not equivalent.

COROLLARY 7.9. Problems CONTRACT and RISA are NLINEAR complete.
Proof It follows from the fact that for each A in NLINEAR, A <DTM CONTRACT

RISA and RISA NLINEAR.
Remark. Ranaivoson [Ral], [Ra2] has strengthened Corollary 7.9. Problem RISA (re-

spectively, CONTRACT) remains NLINEAR complete when it is restricted to a binary alpha-
bet Y {0, (respectively, to type 7" {j, ji with only two function symbols). He also
shows that RISA is in P when }. Moreover, he exhibits several NLINEAR-complete
problems concerning acyclic directed graphs. Note that [Ral], [Ra2] shows the NLINEAR
completeness of each above problem A by proving CONTRACT <I)T A, but the reduc-
tion itself and the proof of its correctness are much longer and more technical than ours for

LINEAR TIME AND NP-COMPLETE PROBLEMS 593

A RISA. Our student, Creignou [Cr], has recently proved the NLINEAR completeness of
problems of directed or nondirected graphs by a simpler method.

Proposition 7.4 will be useful in the proof of the following characterization of class
NLINEAR.

PROPOSITION 7.10. NLINEAR NTIMEA(n) for all A {FUNCTION-DEE CHECK-
SORT, PERMUTATION, SET-EQUALITY, SET-INCLUSION}.

Proof We have seen that each problem A above belongs to DLINEAR. Hence,
NTIMEA (n) c_ NLINEAR. To get the converse inclusion for A FUNCTION-DEF, it suf-
fices to prove that for each first-order sentence q) Yxq (x) described in Proposition 7.4, we
have GenSPECTRUM(qg) <ra’r FUNCTION-DEE We show it by a variant of the proof of
Lemma 7.5 (that states GenSPECTRUM(qg) <oa’M CONTRACT). Let us describe only the
differences with that proof. Instead of unrolling the conjunction V (associated with structure
S) by the introduction of "variables" for terms and subterms in ?’, we now guess the interme-
diate values (less than m), that is, values of concerned (sub)terms. For example, if m 5 and
if contains the equality Jig3(2) g (2), this equality may be replaced by the following
conjunction

gl (2) 4 A g3 (2) QA Ji (0) 4

(convention: underlined 4 and 0 are "guessed"; the other occurrences 2, 0, and 4 are only
"copied"). Let I" denote the conjunction ?, so transformed (there are as many possible F
as possible guessed assignments). ?, is satisfiable on m iff some associated 1-" is satisfiable.
1-" is almost an instance of FUNCTION-DEF, but it concerns not one but several functions

fl fp, g gq. For that reason, each equality f (u) v (respectively, gj(tt) v) in F
is replaced by arrow u’ v, where u’ is the integer (p+q)u+i (respectively, (p+q)u+p+j)
and u’ encodes the term fi(u) (respectively, gj(u)). Let F’ denote the resulting instance of
FUNCTION-DEE Clearly, 1-’ is satisfiable if and only if F’ 6 FUNCTION-DEE

A nondeterministic Turing machine with input ,9 can be constructed such that , F, and
F’ are successively computed within linear time. That proves GenSPECTRUM(99) <y’rM

FUNCTION-DEF.
To obtain the same results for any of the other four problems A, it suffices to show

FUNCTION-DEF <rr A. For any instance L --(Xl --+ yl,x2 Y2 Xs -+ y.)of
FUNCTION-DEE guess some list L (x’ --+ Y’l x --+ YS), where for each < s:
either x < xi+’ or x xi+’ and y y+ (intuitively, L’ defines a function and is sorted).
Clearly, L 6 FUNCTION-DEF if there is some list L’ such that (L, L’) 6 CHECK-SORT (L’
is the sorted version of list L). Moreover, a nondeterministic Turing machine can guess L’ in
linear time. Hence, FUNCTION-DEF <rqaWl CHECK-SORT.

The same result is easily proved for problems PERMUTATION, SET-EQUALITY, and
SET-INCLUSION with the same reduction.

Remark. Proposition 7.10 holds for many other problems A. The abovementioned prob-
lems are the simplest ones we have found. In our opinion FUNCTION-DEF is the most

significant. It indicates what computational power a nondeterministic linear time-bounded

Turing machine lacks to capture NLINEAR.
COROLLARY 7.11. NTIME(n) NLINEAR c__ NTIME(n log n).
Proof The first inclusion has been proved above. The second one results from the

following facts" NLINEAR <Na’ CHECK-SORT and CHECK-SORT 6 DTIME(n log n)
(by the usual merge-sort algorithm). I-1

We have seen that several NP-complete problems (RISA, CONTRACT) are NLINEAR
complete. The reader may ask whether most of natural NP-complete problems in NLINEAR
are NLINEAR complete. We suggest a partial answer by studying problem SAT (i.e., satisfi-

594 ETIENNE GRANDJEAN

ability of propositional formulas in clausal form). We need the following mixed complexity
class.

DEFINITION. Let A be a language and T (n), T’(n) be time functions. We write

A 6 NDRAM(T(n), T’(n))

if A is recognized by an NRAM in such a way that for any input w A of length n there
is an accepting computation of the NRAM with only O(T(n)) GUESS instructions (i.e.,
nondeterministic steps) and O(T’(n)) other instructions (i.e., deterministic steps).

PROPOSITION 7.12. Problem SAT is in NDRAM(n/(log n)2, n/log n).
Proof By running the NORMALIZE algorithm, we can assume that the set of propo-

sitional variables is {p, P2 Pr}, where r O(n/logn). Guess a truth assignment
o/ (Oil, O2 Otr) {1, 2} for the r variables (convention: TRUE, 2 FALSE)
by blocks of length b r-c log(n + 1)- (for a constant integer c). More precisely, a string
ot B1B2... Bs, where each Bi 6 1, 2}*, length(B/) b for < s, and 0 < length(Bs) < b
(s rr/bq) is guessed and stored by s instructions GUESS(R(/)) (Bi is stored in register
R(i)).

The stored assignment ot is analyzed by O(r) O(n/logn) deterministic instructions
that compute the list of pairs (Pl, c), (P2, or2) (p,., cr).

Then run FUNCTION-APPLY algorithm to substitute for each variable Pi in each clause
its truth value ci. Finally, a finite automaton can evaluate all the clauses. Note that the number
of nondeterministic instructions is s rr/b O(n/(logn)2). q

COROLLARY 7.13. The NLINEAR completeness ofproblem SATwould imply thefollowing
inclusion: NRAM(n/logn) c__ NDRAM(n/(logn)2, n log n).

That inclusion is very unlikely: it would mean that any nondeterministic algorithm could
be simulated by performing fewer nondeterministic steps and the same number (up to a multi-
plicative constant) of deterministic steps. We conjecture that that inclusion implies P NP.
(Indeed it seems stronger than P NP.) Notice that Theorem 5 in [BuGo] presents a result
(relative to an oracle) that, informally, shows that large amounts of nondeterminism can be
useful even if small amounts are not.

Remark. Proposition 7.12 holds not only for SAT but also for many other NP-complete
problems; in particular, it can be proved for five among the six problems studied in Theo-
rem 6.1: TRAVELING-SALESMAN, SUBSET-SUM, EXACT-COVER, HITTING-SET, and
FEEDBACK-ARC-SET (the proof is not trivial forTRAVELING-SALESMAN and SUBSET-
SUM). The reader is encouraged to prove that and to discover other such problems.

Notice that Schnorr [Sr] and Cook [Co2] (respectively, Robson [Ro2]) have proved that any
problem in NTIME(n) (respectively, computable by some nondeterministic RAM in linear time
under logarithmic cost) is reducible to problem SAT in time O(n(log n)2) on a deterministic
Turing machine.

8. Conclusions and open problems. We have defined and studied two robust complexity
classes: DLINEAR and NLINEAR. We believe that these classes satisfyingly capture the
intuitive notions of deterministic and nondeterministic linear time.

Each DLINEAR algorithm runs within linear time under logarithmic cost (hence, DLIN-
EAR is included in the complexity class LINEAR defined in [Gr3]) and, similarly, for NLIN-
EAR.

DLINEAR contains most (all?) classical linear time-bounded algorithms (problems
of graphs represented by their list of arcs, propositional Horn satisfiability, etc.) and several
other ones (CHECK-SORT, LIST-COMPRESS, and so on).

NLINEAR includes most of (all?) combinatorial NP-complete problems.

LINEAR TIME AND NP-COMPLETE PROBLEMS 595

The concepts we have introduced are natural and fruitful because there are natural
NLINEAR-complete problems (the notion of NLINEAR completeness strengthens that of
NP completeness) and then most combinatorial NP-complete problems are reducible to these
problems in deterministic linear time.

The fact that many concrete algorithms run in linear time can be formalized in a uniform
manner (i.e., independently of the nature of the inputs: graphs, lists, words, formulas) by using
the DLINEAR concept. Similarly, we are convinced that our study of the class NLINEAR
contributes to a better understanding of the theory of NP completeness of natural problems.
In particular, it is interesting to notice that most of combinatorial NP-complete problems are
in NLINEAR, which is a low (nondeterministic) complexity class.

We conclude this paper by describing some open problems and conjectures.
Problem CHECK-SORT is in DLINEAR, but we have not been able to prove the same

result for the sorting problem (our hashing techniques do not respect the natural order of
integers).

We strongly conjecture that DLINEAR includes the classical linear time-bounded al-
gorithms when each graph is represented by its list of successors (respectively, predecessors),
that is, by (Vl, L 1) (Vm, Lm) where Li denotes the list of successors of vertex vi. The
difficult point is the fact that if such a representation has length n, then the number of distinct
arcs of the graph is not necessarily O (n / log n) but may be S2 (n / log log n). We get over that
difficulty by using the following remarks: it seems that each natural linear time algorithm
on graphs is controlled either by depth-first search, by breadth-first search, or by topological
sorting and it is very likely that the techniques of grouping "little vertices" into blocks can be
naturally applied to these three searches in such a way that they work in time O (n / log n) on
a DRAM.

JOB-SEQUENCING is the only problem among the 21 NP-complete problems pre-
sented by Karp [Ka] for which we have not succeeded in proving that it belongs to NLINEAR.
However, we strongly conjecture that it does (it seems to be more complicated and more
algebraic than the 20 other ones. For example, partial sums occur in its statement).

Class DLINEAR (respectively, NLINEAR) is contained in the class of problems com-
putable in deterministic (respectively, nondeterministic) linear time under logarithmic cost.
We conjecture that these classes are equal. Wiedermann [Wi2] has proved the following
weaker result: a RAM that runs in time T(n) under logarithmic cost can be simulated by a
RAM that runs within time O(T (n)/ log log T (n)) under uniform cost.

We have proved that it can be required that NLINEAR (respectively, DLINEAR) com-

putations involve only integers O(n/logn) (respectively, O(nl+)); therefore, in the deter-
ministic case, the DRAM may use somewhat "scattered" addresses O(n 1+). It would be of
great interest to show that the memory of a DRAM can be used in the most "compact" manner,
that is, to require a DLINEAR computation to only involve addresses O (n/log n) like in the
nondeterministic case.

We have exhibited natural NLINEAR-complete problems. Similarly, the discovery of a
natural DLINEAR-complete problem (i.e., a problem A such that DLINEAR DTIMEA (n))
would be a nice breakthrough; it would mean that one algorithm (the DLINEAR algorithm
of A) would be the "pattern" of all the other DLINEAR algorithms (and they are numerous).
We believe that such a result would follow from a logical characterization of class DLINEAR
exactly as the NLINEAR completeness of problems CONTRACT and RISA has been deduced
from our characterization of class NLINEAR by generalized spectra of first-order sentences.

All the NLINEAR-complete problems we know concern contractions of structures (can
a given structure be transformed by identification of some elements in such a way that the
resulting structure respects some given constraint?) or satisfiability of formulas (cf. [Grl]).

596 ETIENNE GRANDJEAN

In fact, contraction problems can be regarded as satisfiability problems, and vice versa. Are
there some NLINEAR-complete problems of some very different nature (e.g., subgraph iso-
morphism)?

We conjecture that a careful analysis of the <_DTM reductions presented in 7 (to show
that CONTRACT, RISA, and so on are, NLINEAR hard) would prove that they are reset-
loglin. This very strong reduction has been introduced by Compton and Henson [CoHe]. It
strengthens the notion of logarithmic space linear time-bounded reduction. Moreover, the
class of reset-loglin reductions is closed under composition.

Does the NLINEAR completeness of problem SAT imply P NP?

Acknowledgments. Thanks to Yuri Gurevich for stimulating discussions. Many thanks
to Sylvie Hunout-D6roff for her help with the manuscript.

Note added in proof. Two abovementioned conjectures have been recently positively
solved.

1. Grandjean (Sorting, linear time, and the satisfiability problem, to appear in a special
issue of Annals of Math. and Artificial Intelligence) proved that the classical problem of
SORTING is in DLINEAR and even belongs to the smaller class DLIN (DLIN is defined like
DLINEAR but each RAM must only use integers O (n / log n) for any input of length n).

2. We recently noticed that JOB-SEQUENCING problem belongs to NLINEAR. This
shows that all the NP-complete problems presented by Karp [Ka] are in NLINEAR.

REFERENCES

[AHU1]

[AHU2]
[AnVa]

[BMSl

[BuGo]

[CoHe]

[Col]

[Co2]

[CoRe]

[Cr]
[Cr2l

[De]

[DoGa]

[Fa]

[FGS]

[GaJo]

[GI]

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, 1974.

Data Structures and Algorithms, Addison-Wesley, Reading, 1983.
D. ANGLUIN AND L. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J.

Comput. System Sci., 18 (1979), pp. 155-193.
A. BERTONI, G. MAURI, AND N. SABADINI, Simulations among classes of random access machines and

equivalence among numbers succinctly represented, Ann. Discrete Math., 25 (1985), pp. 65-90.
J. F. Buss AND J. GOLDSMITH, Nondeterminism within P, STACS ’91, Lecture Notes in Comput. Sci., 480

1991), pp. 348-359.
K. J. COMPTON AND C. W. HENSON, A uniform methodfor proving lower bounds on the computational

complexity of logical theories, Ann. Pure Appl. Logic, 48 (1990), pp. 1-79.
S. A. COOK, The complexi, of theorem proving procedures, Proc. 3rd Ann. ACM Syrup. on Theory of

Computing (1971), pp. 151-158.
Short propositional formulas represent nondeterministic computations, Inform. Process. Lett.,

26 (1988), pp. 269-270.
S. A. COOK AND R. A. RECKHOW, Time-bounded random access machines, J. Comput. System Sci., 7

(1973), pp. 354-375.
N. CREGNOU, Temps linaire et problkmes NP-complets, Ph.D. thesis, Universit6 de Caen, France, 1993.

Problems linearly equivalent to satisfiabili, or a uniform method to prove NP-completeness,
CSL’92, Lecture Notes in Comput. Sci., 702 (1993), pp. 115-133.

A. K. DEWDNEY, Linear time transformations between combinatorial problems, lnternat. J. Comput.
Math., 11 (1982), pp. 91-110.

W. E DOWLING AND J. H. GALLIER, Linear-time algorithms for testing the satisfiability ofpropositional
Horn formldas, J. Logic Programming, 3 (1984), pp. 267-284.

R. FAGIN, Generalizedfirst-order spectra andpolynomial-time recognizable sets, in Complexity of Com-
putations, R. Karp, ed., American Mathematical Society, Providence, RI, SIAM-AMS Proc. Vol.
VII, 1974, pp. 43-73.

C. FRODEVAUX, M. C. GAUDEL, AND M. SORIA, Types de donnes et algorithmes, McGraw-Hill, New
York, Paris, 1990.

M. R. GAREY AND D. S. JOHNSON, Computers and intractability: A guide to the theol, ofNP-completeness,
Freeman, San Francisco, 1979.

E. GRAEDEL, On the notion oflinear time computability, Internat. J. Foundations Comput. Sci., (1990),
pp. 295-307.

LINEAR TIME AND NP-COMPLETE PROBLEMS 597

[Grl]

[Gr2]

[Gr3]
[GrRol

[GuSh]
[HaSi]

[HPV]

[HoUI]

[HuSt]

[ItMa

[ItMa2]

[Ka]

[KvLP]

[Kn]
[Me]
[Mi]

[Mo]

[PPST]

[Pf]

[Ral]

[Ra2]

[Roll

[Ro2]

[Sr]

[Scl]
[Sc2]

[Sz]
[Se]
[SIvEB]

[Ta]
[WaWe]
[Will

[Wi2]

[Ya]

E. GRANDJEAN, A natural NP-complete problem with a nontrivial lower bound, SIAM J. Comput., 17
(1988), pp. 786-809.
,A nontrivial lower bound for an NP problem on automata, SIAM J. Comput., 19 (1990), pp.

438-451.
,hvariance properties ofRAMs and linear time, Comput. Complexity, to appear.
E. GRANDJEAN AND J. M. ROBSON, RAM with compact memory: A realistic and robust model ofcompu-

tation, CSL 90, Lecture Notes in Comput. Sci., 533 (1991), pp. 195-233.
Y. GUREVICH AND S. SHELAH, Nearly linear time, Lecture Notes in Comput. Sci., 363 (1989), pp. 108-118.
J. HARTMANIS AND J. SIMON, On the power of multiplication in random access machines, in Proc. 15th

IEEE Symposium on Switching and Automata Theory, 1974, pp. 13-23.
J. E. HOPCROFT, W. PAUL, AND L. VALIANT, On time versus space and relatedproblems, J. Assoc. Comput.

Mach., 24 (1977), pp. 332-337.
J. E. HOPCROFTAND J. D. ULLMAN, htroduction to automata theory, languages and computation, Addison-

Wesley, Reading, 1969.
H. B. HUNT AND R. E. STEARNS, The complexit), ofvery simple booleanformulas with applications, SIAM

J. Comput., 19 (1990), pp. 44-70.
A. ITAI AND J. A. MAKOWSKY, On the complexi, ofHerbrand’s Theorem, Computer Science Dpt, Technion,

Haifa, Israel, Tech. rep. 243, May 1982.

Unification as a complexity measure for logic programming, J. Logic Programming, 4 (1987),
pp. 105-117.

R. M. KARP, Reducibility among combinatorial problems, IBM Symp. 1972, in Complexity of Computer
Computations, Plenum Press, New York, 1972.

J. KATAJAINEN, J. VAN LEUWEN, AND M. PENTTONEN, Fast simulation ofTuring machines by random access
machines, SIAM J. Comput., 17 (1988), pp. 77-88.

D. E. KNUTH, The art ofprogramming, Vols. 1-3, Addison-Wesley, Reading, 1968, 1969, 1973.
K. MELHORN, Data structures and algorithms, Vol. 3, Springer-Verlag, New York, 1984.
M. MINOUX, LTUR: A simplified linear-time resolution algorithm for Horn formulae and computer im-

plementation, Inform. Process. Lett., 29 (1988), pp. 1-12.
B. MONIEN, About the derivation languages ofgrammars and machines, 4th ICALP 1977, Lecture Notes

in Comput. Sci., 52 (1977), pp. 337-351.
W. PAUL, N. PIPPENGER, E. SZEMEREDI, AND W. W. TROTTER, On determinism versus non-determinism and

related problems, in Proc. 24th IEEE Symp. Found. of Comput. Sci., 1983, pp. 429-438.
C. P. PFLEEGER, State reduction in incompletely specifiedfinite-state machines, IEEE Trans. Comput., 22

(1973), pp. 1099-1102.
S. RANAIVOSON, Bornes inferieres non triviales powr des problemes naturels en theorie des graphes et

des automates, Ph.D. thesis, Universit6 de Caen, France, 1990.
Nontrivial lower boundsfor some NP-complete problems on directed graphs, CSL 90, Lecture

Notes in Comput. Sci., 533 (1991), pp. 318-339.
J. M. ROBSON, Random access machines and multi-dimensional memories, Inform. Process. Lett., 34

(1990), pp. 265-266.
An O(T log T) reduction from RAM computations to satisfiability, Theoret. Comput. Sci., 82

(1991), pp. 141-149.
C. P. SCHNORR, Satisfiability is quasilinear complete in NQL, J. Assoc. Comput. Mach., 25 (1978), pp.

136-145.
A. SCHOENHAGE, Storage modifications machines, SIAM J. Comput., 9 (1980), pp. 490-508.

A nonlinear lower boundfor random access machines under logarithmic cost, J. Assoc. Comput.
Mach., 35 (1988), pp. 748-754.

H. SCHOLZ, Fin ungel6stes Problem in der Symbolischen Logik, J. Symbolic Logic, 17 (1952), p. 160.
R. SEDGEW1CK, Algorithms in C++, Addison-Wesley, Reading, MA, 1992.
C. SLOT AND P. VAN EMDE BOAS, The problem ofspace invariancefor sequential machines, Inform. and

Comput., 77 (1988), pp. 93-122.
R. E. TARJAN, Depth-first search and linear time algorithms, SIAM J. Comput., (1972), pp. 146-160.
K. WAGNER AND G. WECHSUNG, Computational complexity, Reidel, Berlin, 1986.
J. WIEDERMANN, Deterministic and nondeterministic simulation of the RAM by the Turing machine, in

Proc. IFIP Congress 83, R.E.A. Mason, ed., North Holland, Amsterdam, 1983, pp. 163-168.
Normalizing andaccelerating RAMcomputations and theproblem ofreasonable space measures,

Lecture Notes in Comput. Sci., 443 (1990), pp. 125-138.
A. C. YAO, Near optimal time-space tradeofffor element distinctness, in Proc. 29th IEEE Ann. Symp.

Found. of Comput. Sci. 1988, pp. 91-97.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 598-616, June 1994

() 1994 Society for Industrial and Applied Mathematics
009

DIGITAL SEARCH TREES AGAIN REVISITED:
THE INTERNAL PATH LENGTH PERSPECTIVE*

PETER KIRSCHENHOFER, HELMUT PRODINGER, ANO WOJCIECH SZPANKOWSKI

Abstract. This paper studies the asymptotics of the variance for the internal path length in a symmetric digital
search tree under the Bernoulli model. This problem has been open until now. It is proved that the variance is
asymptotically equal to N. 0.26600 + N. (log N), where N is the number of stored records and (x) is a periodic
function of mean zero and a very small amplitude. This result completes a series of studies devoted to the asymptotic
analysis of the variances of digital tree parameters in the symmetric case. In order to prove the previous result a
number of nontrivial problems concerning analytic continuations and some others of a numerical nature had to be
solved. In fact, some of these techniques are motivated by the methodology introduced in an influential paper by
Flajolet and Sedgewick.

Key words, digital search trees, algorithm analysis

AMS subject classifications. 68Q25, 05C80

1. Introduction. Digital trees [2], [9], [17] are experiencing a new wave of interest
due to a number of novel applications in computer science and telecommunications. For
example, recent developments in the context of large external files and ideas derived from the
dynamic hashing (virtual hashing, dynamic hashing, extendible hashing) led to the analysis
of digital trees [8], [10], [12], [14], [15], [25], [29], [30], [31]. In telecommunications,
recent developments in conflict resolution algorithms [22] and data compression [19] have
also brought a new interest in digital trees. Some other applications are radix exchange sort,
polynomial factorizations, simulation, Huffman’s algorithm, and so on [2], [9], [17].

The three primary digital tree search methods are digital search trees (DST), radix search
tries (shortly, tries), and Patricia tries [2], [7], [9], [17], [28], [31]. In the context of search
costs one is led to investigate the depth of a node (search time) and the (external or internal)
path length in digital trees. The average depth of a node for digital trees has been studied in
[8], [17], [29], [30], [31], the variance in [12], [29], [30], [31], and limiting distributions in
[10], [24], [25], [20]. The average value of the (external or internal) path length is closely
related to the average depth of a node but not the variance. In 14], 15] the authors obtained
the asymptotics of the variance for symmetric regular tries and Patricia tries, respectively (for
asymmetric extensions of these results see [10]).

In this paper, we propose to evaluate the variance for the digital search trees, which has
been an open problem until now. It has to be stressed that the variance of the internal path length
in a digital search tree is the most difficult to estimate. This was already seen in the paper
by Flajolet and Sedgewick [8], who establish an analytical methodology to analyze digital
search trees (e.g., the average depth of a node). In this paper in the process of establishing the
asymptotics of the internal path length we had to obtain some new analytic continuations of
functions, which are mainly based on the famous Euler product identities. As in 12] and 13],

*Received by the editors June 25, 1990; accepted for publication (in revised form) March 10, 1993.
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10,

A-1040 Vienna, Austria. This research was supported by Fonds zur F6rderung der Wissenschaftlichen Forschung
Projekt No. P7497-TEC.

Department ofComputer Science, Purdue University, West Lafayette, Indiana 47907. This author’s research was
supported by the National Science Foundation grants CCR-8900305 and its extension, CCR-9201078; International
grant 8912631 and Networking and Communication Research grant 9206315; Air Force Office of Scientific Research
grant 90-0107; North Atlantic Treaty Organization collaborative grant 0057/89; and National Library of Medicine
grant R01 LM05118. This paper was revised while the author was visiting Institut de Recherche d’Informatique
et d’Automatique, Rocquencourt, France, and the research supported by Institute de Recherche d’Informatique et

d’Automatique (projects ALGO, MEVAL, and REFLECS).

598

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 599

to derive the final results, namely, to show the cancellation of the higher order asymptotics, we
had to appeal to the theory of modular functions (cf. 3). In addition, this problem possesses
nontrivial numerical challenge. A very preliminary version of our results was presented at the
1989 IFIP Congress 16].

This paper is organized as follows. In the next section, we define our model, establish
the general methodology to attack the problem, and present our main results. In particular,
we show that the variance of the internal path length for the binary symmetric digital search
tree under the Bernoulli model is asymptotic to N 0.26600 + N 3(log2 N), where N is
the number of records and 3(x) is a periodic function with a very small amplitude. Section 3
contains proofs of our main results, followed by a few concluding remarks in 4.

2. Main results. Let DN be the family of digital search trees built from N records with
keys from a random stream ofbits. Under the Bernoulli model, a key consists of 0’s and l’s with
independent and equal probability of appearance. Let LN denote the random variable "internal
path length"of trees in DN and FN (z) the corresponding probability generating functions, i.e.,
the coefficient [zk]FN(z) of z’ in FN(Z) is the probability that a tree in DN has internal path
length equal to k. Then the following recursion, which is a direct consequence ofthe definition,
holds:

Z
N2-N(2.1) FN+ F.(z)FN_k(z), Fo(z)-- 1.

k=0

The expectation lx is given by lx F] (1) and fulfills for N >_ 0

(2.2) lN+ N + 2-N lk, lo O.
k=0

This recursion may be solved explicitly by using exponential generating functions. With
L(z) YN>_O INzN/N!, (2.2) translates into the functional differential equation

L (z) ze + 2ez/2L (z/2).

By the substitution/ (z) e L (-z) we have the easier equation

/ (z) -/’ (z) -z + 2(z/2).

With (z) X>_O UZN/N! we find for N > 2

’N ON-Z, ’0 1 0

with the finite product

(2.3)

so that finaliy

(2.4) IN (-- 1)/ Qk-2.
k=2

The reader should note that an asymptotic evaluation of (2.4) is nonelementary due to the fact
that terms ofalmost-equal magnitude occur with alternating signs. For this reason sophisticated

600 P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

methods from complex analysis are needed to find the correct order of growth. An essential
step is the application of the following lemma from the calculus of finite differences.

LEMMA (cf. [17, p. 38], [23]). Let C be a path surrounding the points j, j + N
and f(z) be analytic inside C. and continuous on C. Then

(2.5) (-1)’f(k) [N; z]f(z) dz
k>j

with

[N; z]
(--1)N-IN!

z(z 1)... (z N)

In our application f(z) is a meromorphic function that continues a sequence f(k), e.g.,
j 2 and f(k) Qk-2 in (2.4). Moving the contour of integration, one can obtain the
asymptotic expansion of the alternating sum by Cauchy’s residue theorem, that is, for any real
c (2.5) becomes Y’k>_j () (-1)k/(k) Yz7. Res([N; zi]f(zi)) +O(NC), where the sum
is taken over the set of poles Pc different from j, j + N with real part larger than c.

We note that the function f(k) Qk-2 possesses the analytic continuation Qz
Q/Q(2-z) where Q(t) 1--Ii>_1(1 -t/2i) [8]. Then, applying a refinement of the technique
of Flajolet and Sedgewick, we can easily prove the following theorem (cf. 3).

THEOREM 2. The expectation lN of the internal path length of digital search trees built

from N records fulfills

o=Nlog).N+N
log2 +-a+(lgN) +logan

(2.6)
2?,- 5

2 log 2
I- ot + 62(log2 N) -k- O(log N/N)

with ?, 0.57721 (Euler’s constant) and ot ’’,>_1 1/(2" 1) 1.60669 where

31 (x) and 32(x) are continuous periodicfunctions ofperiod 1, mean O, and very small ampli-
tude (< 10-6). For later use we mention the Fourier expansion of 31 (x)

0F(-1 2krri) 2krix(2.7) 31(x)
log 2 log 2

e

where F (x) is the gammafunction].
We mention in passing that the O(l)-term in (2.6) is slightly incorrect in 17].
Now we turn to the analysis of the variance, which is given by Var L N SN -Jl- IN 12N

with SN F(1). From (2.1) we get the recurrence relation (for N > 0; so 0)

(2.8)

N22-N _,SN+l 1 + N(N- 1)
k=0

+21-N lklx-k - 21-O
k=0 k=0

In order to find an explicit solution to this recurrence, we split it into three parts: SN

UN + VN + WN, where

(2.9a) UN+l 2N(lN+l N) + 21-0 u, N > O, uo O,
k=0

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 601

(2.9b) UN+ N(N 1) + 21-N vk, N > 0, v0 0,
k=0

(2.9c) WN+I 2- llN_ + 2- wt, N > O, wo O.
k=0 k=0

All of the above recurrences, as well as that for the average internal path length (2.2),
fall into the following general recurrence studied in [30]. Let (xn) be a sequence of numbers
satisfying

(2.10) xn+l --an+l+2’-n(nk)x, n >2,
k=0

where (a,,) is any sequence of numbers. The solution of (2.10) depends on the so-called
binomial inverse relations that are defined as

k=0 k=0

The second equation justifies the name binomial inverse relations. For more details, see
Riordan [26]. A similar treatment as in the case of (2.2) leads to the following explicit
solution (for details see [30]).

LEMMA 3. Let xo Xl O. Then the recurrence (2.10) possesses the solution

(2.11a)

where

(2.1 lb)
n+l

n On [li i+1- al]/Oi-1
i=1

and Q,, is defined in (2.3).
Using Lemma 3 we immediately solve our recurrences (2.9a)--(2.9c). In particular, one

proves

k-2 k-2 j 2k]k--2Q-2 4+j2J-l.= j2J-l.= 2k-2-1

(2.12a) for k > 3, 0 fi =/2 0;

(2.12b) 3 -4Qk_2 for k > 3, 30 1 2 0;

and

tlc -Qk-2 j=4 Qj-1
Qi-2 Qj-i-2

602 P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

(2.12c) fork > 5, tb0 t4 "--0.

Of course, the "unhatted" solutions b/N, ON, and tON follow from the binomial relations, as
shown in (2.1 la). It is also worth mentioning that the recurrence for VN is easy, and after
simple algebra one proves

(2.12d) UN-’-4(/) 4/N,

SO the treatment of UN and tON remains to be done.
In principle, UN and tON may be analyzed by making use of Lemmas and 3. However,

it turns out to be a highly nontrivial problem to find an analytical continuation of tbk. After
lengthy and difficult computations the residue calculus leads us to the following main result
of this paper, which is proved in the next section.

THEOREM 4. The variance ofthe internal path length ofdigital search trees builtfrom N
records becomes

VarLN N. {C + 8(log2 N)} + O(log2 N/N)

where C is a constant that can be expressed as

(2.13)

28 39 2or zr 2 2

3L 4 2fl + -- + - L2
2 (- 1)k+ (k 5)
L (k + l)k(k-1)(2k-l)

2 (L(1 2-r+1)/2-+- br+l
\ 1-2

(-1)+)k(k 1)(2r+ 1)k>2

+- (3) 2[12]0 --[31210

with L log2, ot Y,_>I 1/(2" 1), fll Y,_>1 n2n/(2" 1)2, and br+ (-1)r2-(r)-’).
Thefluctuatingfunction 3(x) is continuous with period 1, mean zero, and 16(x)l < 10-6, and
1[2]01 < 10-1, and 113162]01 _< 10-l. Finally, tb(z)is a function defined as

(2.14) (z+l)__2Qz+(z+2) (z+3) j>z((z+j+2)_(j+2))Qz-1 2 Qz + 2z+lQz+l + 2z+j Qz+j 2J Qj

with Qz Qo/Q(2-z), where Q(t) I-Ii>_(1 t/2i), Q Q(1), and

(2.15)

br+l Q
(z+ l)=

Qr Q(23-z-r)r>O

ol2z 2

I 21-z-r 22-z-r 2r+k-k>2

Numerical evaluation ofthe constant C reveals that C 0.26600... and allfive digits after
the decimal point are significant.

We should point out that in order to achieve the same accuracy in C one needs to run the
recurrence equations (2.9a)-(2.9c) for N 106.

In the following lemma we present an explicit formula for tb’(3) that is convenient for
numerical evaluations.

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 603

LEMMA 5. Thefollowing identity holds:

(2.16)

21b’(3)

2r+k

2r+k-1

where

br+l 2 ("+’(2.17) ar+l (_1) 2)/Qr
Qr

and

(2.18) se(J + 2)
j+l

k=2
k

QI-2Qj-a.-1

with Q, defined in Theorem 4.
Before we proceed to the proof of our results, we first offer some remarks and extensions.
Theorem 4 and our previous results in [12] and [30] provide asymptotics for the average

-(i)covariance between two different nodes in a digital search tree (DST). Let 19N be the length
of the path from the root to the th node, i.e., the node corresponding to the th key of the N

--.(i) depends on forkeys. Observe that the distribution of the random variable defined by DN
DST, since, in contrast to tries and Patricia tries, the order of insertion of the keys is relevant

.--(i)in this instance. Note that the internal path length LN is expressed in terms of oN as

(2.19)
N

i=1

In [12] it has been shown that, besides a small fluctuation,

(2.20) E(D(j,2)(1N)2AN "i=1 " yi=I EDg) 2.844

(The quantity NAN was erroneously identified with the variance of the path length.) It is
easily checked that

(2.21) O (/10))2 ()2Var NAN - U UOg
i=1 "= i=1

604 E KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

The expectations ED EDff (for N > i) may now be computed in a straightforward
manner. Indeed,

(2.22)
k=l

and we find

(2.23) ED(NN)=logzN+-+-ot+r(log2N)+69

with a small fluctuation (x). Altogether we get, besides the fluctuating term,

(2.24)
N N.-(i) NAVar /AN N "’----i=1

and therefore, the average variance of the depth becomes

(2.25)
N

D- E Var 0.763
i=1

(Compare also [27].) Now

N

Var LN Var /AN -+- 2 Cov /-AN ’N
i=i iCj

Using Theorem 4 and the above we find that the average value of

Cov{D ’N is -0.50.../N.

-(i) and r(J)The last statement says that, on the average,/AN ’N are negatively correlated. Note that
the equivalent quantity for regular tries is approximately equal to +0.84.../N 14] and for
Patricia -0.63.../N [15].

In order to select the best digital tree one needs to compare different characteristics of
digital trees, namely regular tries, Patricia tries, and Digital Search Trees (DST). Table
contains four important parameters that are often used to predict a random shape of these trees

(cf. [8], [12], [14], [151, [17], [18], [29], [30], [31]).

TABLE

VarLN

N(log2 N + 0.33)

"average"
r(i)Vary,NELn

DST N(log2 N 1.71) N. 0.26 0.763 -0.50/N
TRIES N(log2 N + 1.33) N. 4.35 3.507 +0.84/N
PATRICIA N. 0.37 1.000

"average"
--(i) D))COV(/AN

-0.63/N

It can be seen from the table that the average external (internal) path length is approxi-
mately the same for all three digital trees. However, the variance of the depths and internal

(external) path lengths differ significantly. We also notice that the variance of the internal path

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 605

length for DST as well as the variance of the depth are smaller than the respective quantities
for Patricia.

We point out that from Theorem 4 it follows that LN/ELN tends to one almost surely
(i.e., with probability one) as N -+ cx. This immediately follows from Theorem 4 and the
Borel-Cantelli lemma. (Compare, e.g., [21 for this standard argument.)

Finally, Theorem 4 provides the missing coefficient in the variance of the numbers of
phrases in the Lempel-Ziv parsing algorithm [3], [19] (cf. also [11]). More precisely, the
Lempel-Ziv parsing algorithm partitions a single string into variable phrases (blocks) such
that a new block is the shortest substring not seen in the past as a phrase. For example,
the string 110010100010001000 is parsed into (1) (10) (0) (101) (00) (01 (000) (100). Let MN
be the number of phrases produced by the algorithm for a string of length N. Aldous and
Shields [3] proved that for the symmetric alphabet (MN EMN)/Var MN converges weakly
to the standard normal distribution, where EMN N/log2 N and Var MN O(N/1og32 N),
however, the authors of [3] were not able to provide the coefficient at N! log N. It turns out
that this coefficient is the same as the coefficient at N in the variance of the internal path length
LN, that is, Var MN (C + (log2 N))N/log3z N. The details of the proof can be found in
11]. The main idea is that the number of phrases MN can be expressed as

r}(k) < NMu=max M" LM -’M
k=l

But this equation is known in the literature as the renewal equation. Billingsley (compare
[6], Chapter 17, Theorem 17.3) proved that (for any dependent positive random variables) if
(L ELN)//Var LN converges weakly to the standard normal distribution A/’(0, 1), then

MN- N/(ELN/N)
/Va? LN ELN/N)-3/2 -- At(o,).

Hence, by the standard uniform integrability arguments and by Theorem 4, we conclude that
the variance of MN becomes

Var MN Var LN/10g32 N (C + 6(log2 N))N/10g32 N.

3. Analysis. As we already pointed out in 2, it is a nontrivial problem to find appropriate
analytic continuations for the sequences of values f(k) that occur in alternating sums (2.5).
In order to illustrate our approach, we start with the easiest case, namely, the evaluation of the
expectation IN. From (2.4) we know

lu (-- 1)k Qk-2.
k=2

As in [8] we may rewrite f(k) Qk-2 as

Q(22-k)
where

xFI (’-
i>l

Q Q(1).

Therefore, we have the analytic continuation

(3.2) f(z) Q(22-z)"

606 P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

The main contribution to IN is given by Res([N; z]f(z); z 1). We have with u z- --+ 0

[N; z] __N (1 + U(HN-1 1))

and

Q(2z-z) Lu

(remember L log 2), since

(3.3) a
Q(x) x=l

Therefore,

Res([W; z]f(z)" z 1) HN-I + L -ot

Using the well-known asymptotics for the harmonic numbers HN- we get the contribution
(from z 1)

(3.4) N log2 N + N (’)L L +-ot -+O
Besides z we have with the same real part the simple poles z. + 2, k 6 Z, k - 0,
with

Res([N; z]f(z); z z,) [N; zx.].

so we get the contribution

Na
F(-zk)

(zk 1)z.Na-lF(-zk)
+ O(NZ._2)"(3.5)

L 2L

The reader should take notice of the fact that the first term in (3.5) gives the Fourier coefficients
of 6 (x) in Theorem 1.

The next relevant pole is z 0 and yields a contribution of

y 5
(3.6) log2 N + - -[- -u.

The poles z zk yield a periodic contribution of order No and so on.
Collecting all contributions gives the expansion (2.6) in Theorem 2.
Next we focus our attention on the asymptotics of UN. In order to find an appropriate

analytic continuation of fik we rewrite the sums appearing in (2.12a) as follows:

k-2

j=l 2J--1
t- j>l 2k-2+J- 1’

-2 j j k-2+j
-2j_ 1-j>l 2j_ j.>l 2k-2+j_j--1

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 607

Thus we may continue 6k via the function

(3.7)

a(z)
Q(22-z)

2z 12z-2-

Now the main contribution to UN in Lemma originates from a second-order pole of [N; z](z)
in z 2. Further contributions that are necessary for the evaluation of the variance come from
first-order poles in z 2 + 2___2/, k - 0, a third-order pole in z 1, as well as second-order
poles in z + 2___2/, k 0. Collecting all the above-mentioned contributions we get the
following expansion of uX (in all the following formulas i (X) stands for a continuous periodic
function of period and mean zero).

LEMMA 6.

4N2 log2 N + N2 (4(?,-l)-6-4or + 63(1og2/AN
L

-Nlg N + 2Nlgz N (2 +8+e+34(lgzN))
(?’2 47’ 127’ 2c?’ rr2 4 10 2c)+N - + U + -Z- +

133)-or2 +/3 lot 21 + + 5(log2 N) + O(log2 N)

with/ k_> 1/(2’ 1)2, L, c, and fll as in Theorem 4.
As already mentioned in 2,

VN= 4(N2)-41N,
so the asymptotics of ON are given by

VN 2N2 4N log2 N

(3.8)
+4N -l+ot--+-6(log2N) +(.9(logN).

The most challenging task is to find an appropriate analytic continuation of b(z).
From (2.12c) we have

(3.9)
k

tk+l -Q,-
se(j + 1)

2J-IQj_

with

(j + 1) i Qi-2 Qj-2-i.

For the following the reader should note that " (j + 1) Qz2J. We start by rewriting (3.9)
in the following manner:

608 E KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

With 0 (J + 1) (j + 1) Q22j we have

j>k+l

Therefore,

Since all involved series are now absolutely convergent, we may add them term-by-term and
get

tbk+ Qk_ [-2Qok + se(k + 2) (k + 3) j>z((k+j+2)_(j+2))]2 Q, + 2’+ Q-+ + 2k+J Qk+j 2J Qj

From this, the representation for tb(z + 1) as in (2.14) is immediate, provided we have an
appropriate interpretation for (z + 1). This will be our next goal. The following well-known
partition identities of Euler are our basic tool:

(3.12)
Q(t) (1 t2-") 2" Q,,

and

(3.13)

with

O(t)= H 1-- a+lt
n>l n>O

an+l (-1)"2-(")/Q,,.

Using (3.2) and (3.12) we have

(N + 1)=
Q(22_k Q(22+k_Nk=2

2i+J (Nk)a E Oi Qj
(2-i)k(2-J)N-k

i,j>_O k=2

where the innermost sum is now

(2-i + 2-J)N 2-iN 2-JN N2-i(N-I)-J N2-i-j(N-I)

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 609

The last expression for (N + 1) is symmetric in and j. However, it turns out that for the
purpose of finding an analytic continuation i,j>_o should be rewritten as j=i +2 j>i>0.
Writing j + h in the second sum we get

(3.14)

(N + 1) -(2N 2- 2N) /2
2i(2-N)

i,h>O

Q2 2i(2-N)2h(1-N)--2 aiQi+’-----
i,h>O

-2N
OiOi+hi,h>O

2i(2-N)2h(2-N)

In expression (3.14) N can be replaced by z, yielding a meromorphic function, since all series
converge uniformly. However, we are able to simplify (z+ 1) in the following way. Consider,
for example, the last term in (3.14):

2z
Qi Qi+hi,h>O

2(i+h)(2-z) 2z
QQ(2-i-h)

2(i+h)(2-z)

i,h>O Qi

which is by Euler’s identity (3.13)

i>o
Q -r+2-z)i2z a,.+, -Q-7i(2 (2-r+2-z)h

r>0 "_ h>_O

and by Euler’s identity (3.12)

Q
2z 2_, ar+l tqro3-z-r’ 22-z-rr>O

Rewriting the other terms from (3.14) in a similar way, especially using

(1 + 2-)z z2- ()2-ak

k>2

for the second term, we finally get (2.15).
Our next task is to investigate the poles of [N; z]tb(z) different from z 5, 6

N.
From (3.11) we see that tb(4) tb(3) 0 (observe that (4) 0), so that the first poles

occur with real part 2. In order to determine the residues of [N; z]tb(z) in z 2 (respectively,
z 1) we need the local behavior of tb(z). Because of (2.14) this behavior will depend on
the behavior of cr (z) := (z)/2z-2 Qz-2 near z 2, 3 From (2.15) we see that (z) has
second-order poles for z 2 and z 3 and is analytic for z 4, 5 Since [N; z] Qz-2 has
already a second-order pole for z 1, it will be necessary to expand r (z) near z 2, 3
up to the linear terms. In particular, the reader should note that all the derivatives r’(z) for
z 4, 5 will occur in Res([N; z]tb(z); z 1). This is the main reason that the constant
C in the final result is rather a complicated one.

610 P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

We start with the expansion of or(z) about z 3. Let u z 3; then we find from (2.15)
after laborious computations"

or(3 + u)

br+lC2_2C3+2
1-2-"L r>2

where

(-1)
/2 2

(k + 1)k(k- 1)(2k- 1)’k>2

C 2hi(1 + 2-h)2 log(1 + 2-h) -2-t’],
h>0

C2 2h (1 + 2-h)2 log2 (1 + 2-),
h>_0

2[1 + +
h>0

Dr, 2h(1-r)[(1 -k- 2-h)2 log(1 + 2-h) 2-hi.
h>0

The constant in the//-term can be simplified according to the remarkable identity

(3.16)
b,.+ (1 2)j>= 2J

r>__ 2 2 (2J 1)2
c +/.

For the proof of (3.16) we observe that the left-hand side equals

Qr--I

Using (3.12) and (3.13) this expression becomes

Q(2-i) (Q(2-i) 1) 2 Q(2-i) (Q(2-i-’) 1)
i>_o i,k>O

t(Q(2-i) -1) -’](2j + 1)(0(2-j) -1)
j>_o

-E 2E2 El,

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 611

where

ar+l 2
E

r>l
2

and E2
r>_l

ar+ (1 2-r)2"

Now we observe

and

t2 Q(t) t/2 Q(t) t--1

,--,2 Q(t) (1 t/2)2 -- Q(t) ,=,-
and get the right-hand side of (3.1 6).

The expansion of cr (z) about z 2 reads with u z 2"

cr (2 + u)
L2U2

1- --U - "JI-"

+uO(163 L6 L2 (C4 + C6) + 2E3)
C5 C7

’-ll
L 55

3C4 -I- C6--
6 6 - L

br+l
(3.17) +2

(1 2-r)(1 2-r)r>2

Dr,2 + 2L + L
2

i=1
21-r

r-2

+L
(1 2-")2 2 .= 2

)/t2-r 2

where

C4 2h [(1 + 2-h) log(1 + 2-h) 2-h],
h>0

C5 ’ 2 (1 + 2-h) log2 (1 + 2-h),
h>0

C6 Z [(1 -1-- Z-h) log(1 + 2-h) 2-h],
h>_0

C7 (l --1-- 2-h) log2 + 2-h),
h>0

Dr.2 2h-r) [(1 + 2-h) log(1 + Z-h) Z-h],
h>0

E 1-
r_2 (1 21-r)(1 2-r) 2-r

2

(1 21-r)2

612 P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

For later simplifications we note that

2 3 2fl2(3.18)
L

(C4 + C6) -8 -t
L L

and

(3.19) E3 2 c -/3,

where (3.18) follows from the expansion of the logarithm and (3.19) by partial fraction de-
composition and rearrangements of the sums.

We finally note that

(3.20) C5 + C7 C2.

Next we discuss r (z) for z close to j 4, 5

(3.21) cr(j + u) o(j) +
’3J-2

t(j) L(j) + L(j)
2J-2

k>_l

From (3.2

(3.22a)

(cr(j + u)- o’(j))
j>4

’ (j) L(j)
u

2J-2 Qj-2 Z 2J-2 0,_2 2k+j-2+ L
j>4

From (2.14) we find that the last expression equals

(3.22b) u(2tb’(3) + 2Q),
where tb’(3) may be computed from (2.15) to get the constant from Lemma 5.

Regarding (3.15), (3.17), and (3.22a) we find that IN; z]tb(z) has third-order poles in
z 2 and z and second-order poles in zk 2 + 2____,, k 6 Z, z g= 0, as well as in zk 1.

Our local expansions allow (after some lengthy but straightforward computations) to find
the following asymptotic behavior of WN:

LEMMA 7.

1.0N N2 log N + N2 log2 N. (-3 2 2y
2or + 6(log2 N))

2c 3?’-+-N2 q-O2 q-- 3Or + L L L L

2 2 ?’2 7r2 2?’)-+- q-- - -+- - q
6L2 L2

k-7(log2 N)

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 613

7
3 6

10y)+3N log N + N log2 N. - - + 88(log2 N)

41 f12 3y 7),, 7c 6c,+N -22- - + -- L-5 + 2ot -/3 + -- + 3c2

L

27/.2 6 2>3 (--1)k+l (k 5)
+ br+l+-5 -t

L2 L (k + 1)k(k- 1)(2k- 1) r>l

2 k(1)(2r+k 1)

-I--- (3) + 9(log2N) + (.9
lo N

32

L2

with L, c,/3, br+l as in Theorem 4 (respectively, Lemma 6) and fl2 from (3.15).
It remains to combine the previous results to get an asymptotic expansion for

(3.23) Var L N tiN 31 UN 31- LON "31- IN lZu
We start with an important observation concerning leading terms formed by periodic

fluctuations of mean zero.
Let us assume that, at any stage, we are able to prove

(3.24) Var L N 610(log2 N) Nu loft N + RN,

where 60(x) is continuous and periodic with period and mean zero and RN o(Nu log N).
We claim that 30(x) must vanish identically under these conditions:

Let us assume 30(x) - 0. Then, since 30(x) is continuous with mean 0, there esists
an > 0 and an interval, say [a, b]

_
[0, 1], such that 30(x) < - for x 6 [a, b]. Since

log2 N is dense modulo 1, Var LN would be negative for an infinity of values, an obvious
contradiction.

In other words: From (3.24) we may deduce that

(3.25) Var LN RN, N --+ cx,

so, in order to prove that Var LN O(N) we need not collect explicitly the fluctuating
contributions of mean zero.

Observing these comments we easily find that all terms of order N2 log2 N, N2 log N,
N log2 N, and N log N in Vat L U cancel. The coefficient of N2 is of a more delicate nature.
The reader should note that the coefficient of N2 in lv will contain the square 2 of the periodic
fluctuation 3l from Theorem 2 and that the mean [2]0 of 2 will not be zero. Therefore, we
have to extract this term to end up with a fluctuation of mean zero and get for the coefficient
of N2 in Var LU the expression

+
2 j2 47

ti’l’&*’0(3.26)
L2 6L2 L L 12 + 311 (log2 N).

The following lemma is crucial now.

614 P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

LEMMA 8.

(2krri) 12 rr 2 /32 47
F -1

log2
q

6L2 L L 12

Sketch ofProof The proof heavily relies on the following two series transformation results
due to Ramanujan (compare [5]). The first is

(3.27)

-N (2N + 1) +
e2ak

(__/)-N .(2N + 1) + E e2/k
k>l

N+I
_22N (_1)k Bzk Bzu+z-Zk otX+l_kfl k

,=0 (2k)! (2N + 2- 2k)!

Here and in the next identity, c and/3 have to be positive numbers with o03 7r 2, " (s) is the
Riemann C-function; N has to be a positive integer, and B,, indicates the nth Bernoulli number
defined by

Z Z
)/3,

e n!n>O

The second identity used in the proof is

log ot + log fl +(3.28) E k(e2k 1) k> k(e2pk 1) 4 12
kl

In fact, (3.28) is equivalent to a transformation result on Dedekind’s 0-function (compare [4])

(3.29) 0(r) errir/12 H (1 e2rrinr) (’g) > O,
n>_l

namely,

(3.30) 0 (--iz’) 1/2. r/(z’), G(’r) > 0.

(This is a special instance of Dedekind’s famous result on the behavior of rt under a transfor-
mation of the modular group.) lq

The consequences of Lemma 8 are twofold. On the one hand, we find from (3.26) that
the N2-term in Var LN cancels, so that Var LN O(N). On the other hand we may use the
identity to express/3z by the other terms occurring in Lemma 8, including [32]0, which yields
the final form of the constant C in Theorem 2. [332]0 is the mean of 3 (x)32(x), originating
from lv, which has to be extracted to get a fluctuation 3(x) of mean zero.

4. Concluding remarks. We would like to point out some final remarks concerning our
analysis.

(i) The occurrence of the finite products Q/, gives rise to use results from the theory of
partitions, especially the Euler product identities (3.12) and (3.13).

full proof of Lemma 8 is long and difficult and included in 13].

INTERNAL PATH LENGTH IN DIGITAL SEARCH TREES 615

(ii) A periodic fluctuation 3(x) that has mean zero and very small amplitude may be
safely neglected for practical purposes as long as we are only interested in the expectation.
In order to establish the correct order of the variance it is of vital importance to study the
behavior of 3 (x), especially the mean of 312(x).

(iii) The predicted value 0.26600.... N matches perfectly with the values obtained by
computer simulations.

(iv) As we mentioned in the introduction, with this paper we achieved our goal of obtaining
second-order properties for the three digital tree search structures, namely, Tries, Patricia Tries,
and Digital Search Trees in the symmetric case. In particular, we are now able to compare
the variances of the path lengths in such trees. Furthermore, we note that the analysis of the
variances is a key step toward getting the respective limiting distributions (compare [3] or
[10]).

(v) Our methodology does not easily extend to the asymmetric Bernoulli model. The
difficulty lies in the analytical continutation of WN. We conjecture that in the asymmetric case
the variance is of order n log n, but it might be difficult to obtain the coefficient at n log n.

Acknowledgment. The authors would like to thank R. F. Tichy for some helpful remarks.

REFERENCES

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook ofMathematical Functions, Dover, New York, 1970.
[2] A. AHO, J. HOPCROFT, AND J. ULLMAN, Data Structures and Algorithms, Addison Wesley, Reading, MA, 1983.
[3] D. ALDOUS AND E SHIELDS, A diffusion limitfor a class ofrandom-growing binary trees, Probab. Theory Related

Fields, 79 (1988), pp. 509-542.
[4] T. M. APOSTOL, Modular Functions and Dirichlet Series in Number Theory, Springer, New York, 1976.
[5] B.C. BERNDT, Ramanujan’s Notebooks Part II, Springer, New York, 1989.
[6] P. BR.t.NGSY, Convergence ofProbability Measures, John Wiley and Sons, New York, 1968.
[7] E. G. COFFMAN, JR. AND J. EVE, File structures using hashing fimctions, Comm. Appl. Comput. Mach., 13

(1970), pp. 427-436.
[8] P. FLAJOLET AND R. SEDGFWlCK, Digital search trees revisited, SIAM J. Comput., 15 (1986), pp. 748-767.
[9] G. GONNET, Handbook ofAigorithms and Data Structures, Addison-Wesley, Reading, MA, 1983.

[10] E JACQUET AND M. REGNIER, Normal Limiting Distributionsfor the Size and the External Path Length of Tries,

INRIA Tech. report, 827, 1988.
11 E JACQUET AND W. SZPANKOWSKI, Oil the Lempel-Ziv Parsing Algorithm and Its Digital Tree Representation,

INRIA Tech. report, 1833, 1992.
12] E KIRSCHENHOFER AND H. PRODINGER, Further results on digital search trees, Theoret. Comput. Sci., 58 (1988),

pp. 143-154.
13 ,On some applications offormulae ofRamanujan in the analysis ofalgorithms, Mathematika, 38 1991),

pp. 14-33.
[14] P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI, 011 the variance of the external path length in a

symmetric digital tree, Discrete Appl. Math., 25 (1989), pp. 129-143.
[15] On the balance property of Patricia trees: External path length viewpoint, Theoret. Comput. Sci., 68

(1989), pp. 1-17.
16] Digital search treesfurther resldtS on a fimdamental data structure, Proceedings of IFIP 89, G. X.

Ritter, ed. (1989), pp. 443-447.
17] D.E. KNUTH, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.

[18] A.G. KONHEM AND D. J. NEWMAN, A note on growing binary trees, Discrete Mathematics, 4 (1973), pp. 57-63.
19] A. LEMPEL AND J. Zv, On the complexity offinite sequences, IEEE Trans. Inform. Theory, 22 (1976), pp. 75-81.

[20] G. LOUCHARD, Exact and asymptotic distributions in digital and binary search trees, RAIRO Theoret. Inform.
Appl., 21 (1987), pp. 479-495.

[21] H. MAHMOUD, Evolution ofRandom Search Trees, John Wiley and Sons, New York, 1992.
[22] P. MATHYS AND P. FLAJOLET, Q-ary collision resolution algorithms in random-access systems with free and

blocked channel access, IEEE Trans. Inform. Theory, 31 (1985), pp. 217-243.
[23] N.E. NORt,UND, Vorlesungen iiber Differenzenrechnung, Chelsea, New York, 1954.
[24] B. PITTEL, Paths in a random digital tree: limiting distributions, Adv. Appl. Probab., 18 (1986), pp. 139-155.

616 P. KIRSCHENHOFER, H. PRODINGER, AND W. SZPANKOWSKI

[25] M. RiGNIER AND P. JACQUET, New results on the size of tries, IEEE Trans. Inform. Theory, 35 (1989), pp.
203-205.

[26] J. RIORDAN, Combinatorial Identities, John Wiley and Sons, New York, 1968.
[27] W. SCHACHINGER, Modulfunktionen und Analyse yon Datenstrukmren, Diplomarbeit, TU Vienna, 1990.
[28] R. SEDGEWICK, Algorithms, Second ed., Addison-Wesley, Reading, MA, 1988.
[29] W. SZPANKOWSKI, Some results on V-ary asymmetric trees, J. Algorithms, 9 (1988), pp. 224-244.
[30] A characterization of digital search trees from the successftd search viewpoint, Theor. Comput. Sci.,

85 (1991), pp. 117-134.
[31] ,Patricia trees again revisited, J. Assoc. Comput. Mach., 37 (1990), pp. 691-711.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 617-632, June 1994

() 1994 Society for Industrial and Applied Mathematics
010

IMPROVED APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING
PROBLEMS*

DAVID B. SHMOYS, CLIFFORD STEIN, ,Nt) JOEL WEIN
Abstract. In thejob shop scheduling problem, there are m machines and n jobs. A job consists of a sequence of

operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly
as possible. This problem is strongly A/P-hard even for very restrictive special cases. The authors give the first
randomized and deterministic polynomial-time algorithms that yield polylogarithmic approximations to the optimal
length schedule. These algorithms also extend to the more general case where a job is given not by a linear ordering
of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be
obtained when there are m’ types of machines, a specified number of machines of each type, and each operation must
be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel
machines subject to chain precedence constraints.

Key words, scheduling, approximation algorithms

AMS subject classifications. 68A10, 68Q25, 90B35, 68R99

1. Introduction. In the job shop scheduling problem we are given rn machines and n
jobs. Ajob consists ofa sequence ofoperations, each ofwhich must be processed on a specified
machine; a job may have more than one operation on a given machine. The operations of a
job must be processed in the order specified by the sequence, subject to the constraint that on
each machine at most onejob is scheduled at any point in time. We wish to produce a schedule
ofjobs on machines that minimizes Cmax, the time when all jobs have completed processing.
This problem is strongly A/’79-hard; furthermore, except for the cases when there are two jobs
or when there are two machines and eachjob has at most two operations, essentially all special
cases of this problem are .N’P-hard, and typically strongly A/’79-hard [6], [7]. For example, it
is A/’79-hard even if there are three machines, three jobs, and each operation is of unit length;
note that in this case we can think of the input length as z, the maximum number of operations
in a job. In addition to these theoretical results, the job shop problem is also one of the most
notoriously difficult A/’79-hard optimization problems in terms of practical computation, with
even very small instances being difficult to solve exactly. A classic single instance of this
problem involving only 10 jobs, 10 machines, and 100 operations, which was published in
1963, remained unsolved for 23 years despite repeated attempts to find an optimal solution
[7]. Furthermore, several benchmark instances with 15 jobs, 15 machines, and 225 operations
are too hard to be solved by known methods and were posed as open problems by Applegate
and Cook].

In this paper we will focus on obtaining approximation algorithms for the job shop prob-
lem, and will evaluate these algorithms in terms of their performance guarantee, or in other
words, their worst-case relative error. Let Cax be the maximum completion time of a job in

*Received by the editors February 17, 1992; accepted for publication (in revised form) March 11, 1993. This
research was partially supported by National Science Foundation Presidential Young Investigator award CCR-89-
96272 with matching support from UPS and Sun; by the National Science Foundation, the Air Force Office of
Scientific Research, and the Office of Naval Research, through National Science Foundation grant DMS89-20550,
and by Defense Advanced Research Projects Agency contract N00014-89-J- 1988. A preliminary version of this paper
appeared in the Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, January 1991.

School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853
(shmoy @cs.cornell.edu).

tDepartment of Mathematics and Computer Science, 6211 Sudilcoff Laboratory, Dartmouth College, Hanover,
New Hampshire 03755-3551 (cliff@bondcliff.dartmouth.edu). Additional support provided by an AT&T graduate
fellowship.

Department of Computer Science, Polytechnic University, Five MetroTech Center, Brooklyn, New York 1120
(wein@mem.poly.edu). Additional support provided by an Army Research Office graduate fellowship.

617

618 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

the optimal solution. If a polynomial-time algorithm always delivers a solution of maximum
completion time of at most PCnax, then we shall call it a p-approximation algorithm. The main
result of this paper is the first randomized polynomial-time polylogarithmic approximation
algorithm for the job shop scheduling problem.

THEOREM 1.1. There exists a polynomial-time randomized algorithm for the job shop
scheduling problem, that, with high probability, yields a schedule that is of length

(lg2(m#))O
log log(m#) Cna’

We formally define the job shop problem as follows. We are given a set .A//
{M1, M2 mm} of machines, a set 3" {J Jn} of jobs, and a set O
Oij[i #j, j n} of operations, where tci) indexes the machine which must

process operation Oi). Thus m is the number of machines, n is the number of jobs,/zj is the
number of operations ofjob Jj, and maxj #j. Operation Oij is the th operation of Jj.; it
requires processing time on a given machine Mk 6 .A/I, where k tcij., for an uninterrupted
period of a given length Pij. (In other words, this is a nonpreemptive model; a model in which
operations may be interrupted and resumed at a later time is called a preemptive model.) Each
machine can process at most one operation at a time, and each job may be processed by
at most one machine at a time. If the completion time of operation Oij is denoted by Cij,
then the objective is to produce a schedule that minimizes the maximum completion time,
Cmax maxi,j Cij" the optimal value is denoted by Cna,,.

Note that there are two very easy lower bounds on the length of an optimum schedule.
Since each job must be processed, CaX

must be at least the maximum total length of any
job, maxj. -i Pij, which we shall call the maximumjob length of the instance, and denote by
Pmax. Furthermore, each machine must process all of its operations, and so C must be at
least maxt. -;.=, Pij, which we shall call the maximum machine load of the instance, and
denote by FImax.

Our work is based on two very different approaches to the job shop problem. One ap-
proach is a geometric approach to shop scheduling, while the other is a randomized
approach that finds its genesis in problems of packet routing. We briefly review both ap-
proaches here.

The best approximation algorithms to date for job shop scheduling have primarily ap-
peared in the Soviet literature and are based on a beautiful connection to geometric arguments.
This approach was independently discovered by Belov and Stolin [3] and Sevast’yanov [18],
as well as by Fiala [4]. This approach typically produces schedules for which the length can
be bounded by l-Imax + q(m, #)Pmax, where q(., .) is a polynomial, and Pmax maxij Pij
is the maximum operation length. For the job shop problem, Sevast’yanov 16], 17] gave a

polynomial-time algorithm that delivered a schedule of length at most l"lmax -- O(m#3) Pmax.
The bounds obtained in this way do not give good worst-case relative error bounds. Even
for the special case of the flow shop problem, where each job has a single operation on each
machine and for each job the operations must be processed in the same order, the best known
algorithms delivered solutions of length g2 (mCa).

In a different vein, Leighton, Maggs, and Rao [8] have proposed the following model
for the routing of packets in a network" Find paths for the packets and then schedule the
transmission of the packets along these paths so that no two packets traverse the same edge
simultaneously. The primary objective is to minimize the time by which all packets have been
delivered to their destination.

It is easy to see that the problem considered by Leighton, Maggs, and Rao is simply the
job shop scheduling problem with each processing time Pij 1. They also added the restriction

APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING 619

that each path does not traverse any edge more than once, or in scheduling terminology, eachjob
has at most one operation on each machine. This restriction of the job shop problem remains
(strongly) A/’79-hard. The main result of Leighton, Maggs, and Rao was to show that for their
special case of the job shop problem, there always exists a schedule of length O (1-Imax %- Pmax).
Unfortunately, this is not an algorithmic result, as it relies on a nonconstructive probabilistic
argument based on the Lovfisz Local Lemma. They also obtained a randomized algorithm that
delivers a schedule of length O(l-Imax + Pmax log n), with high probability. In this paper, we
will show how their techniques can be generalized to handle the general job shop problem, as
well as several related scheduling problems.

We also give a deterministic version of the job shop scheduling algorithm.
THEOREM 1.2. There exists a deterministic polynomial-time algorithm for job shop

scheduling thatfinds a schedule of length O(logZ (m lz)Cnax).
This is the first polylogarithmic performance guarantee for a deterministic polynomial

time approximation algorithm for job shop scheduling; no such algorithm was known even
for the special case of flow shop scheduling. Note that if each job must be processed on
each machine at most once, the factor of # can be deleted for this, and all other performance
guarantees in this paper. As a corollary, we also obtain a deterministic version of the ran-
domized algorithm of Leighton, Maggs, and Rao. Our results rely on results of Raghavan and
Thompson 14] and Raghavan [12] to approximate certain integer packing problems.

In contrast to this, the only "negative" result previously known for any shop scheduling
problem is that the existence of a fully polynomial approximation scheme would imply that
79 A/’79, due to the fact that these problems are strongly A/’79-hard. Subsequent to our work,
Williamson et al. [20] showed that the existence of a p-approximation algorithm for any shop
scheduling problem with p < 5/4 would imply that 79 A/’79.

Our techniques can also be made to apply to three important generalizations of the job
shop problem. The first is dag shop scheduling, where each job consists of a set of operations
on different machines that must be processed in an order consistent with a given partial order.
(For job shop scheduling, this partial order is always a chain, while for flow shop the partial
order is the same chain for all jobs.) Note that we still require that no two operations of the
same job can be processed simultaneously. One can further generalize the problem to the
situation where, rather than having m different machines, there are m’ types of machines, and
for each type, there are a specified number of identical machines; each operation, rather than
being assigned to one machine, may be processed on any machine of the appropriate type.
These problems have significant practical importance, since in real-world shops we would
expect that a job need not follow a strict total order and that the shop would have more than
one copy of many of their machines. Finally, a further generalization of this problem is the
problem of scheduling on unrelated parallel machines subject to chain precedence constraints.
In this problem, each job now consists of a single operation which may be scheduled on any
machine, but its processing time depends on the machine on which it is scheduled. There is
a set of disjoint chain precedence constraints that further restricts the order in which the jobs
may be scheduled.

We also give some extensions ofthese results, including an 7A/’C approximation algorithm
for each scheduling model mentioned above, and a (2 + e)-approximation algorithm for the
job shop scheduling problem with a fixed number of machines.

While all of the algorithms that we give are polynomial-time, they are all rather inefficient.
Most rely on the algorithms of Sevast’yanov; for example, his algorithm for the job shop
scheduling problem takes O((#mn)2) time. Furthermore, the deterministic versions rely on
linear programming algorithms. As a result, we will not refer explicitly to running times

throughout the remainder of this paper.

2. The basic algorithm. In this section we extend the technique introduced by Leighton,

620 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

Maggs, and Rao [8] of assigning random delays to jobs to the general case of non-preemptive
job shop scheduling.

A valid schedule assigns at most onejob to a particular machine at any time, and schedules
each job on at most one machine at any time. Our approach will be to first create a schedule
that obeys only the second constraint, and then build from this a schedule that satisfies both
constraints and is not much longer. The outline of the strategy follows.

(1) Define the oblivious schedule, where each job starts running at time 0 and runs con-
tinuously until all of its operations have been completed. This schedule is of length Pmax, but
there may be times when more than one job is assigned to a particular machine.

(2) Perturb this schedule by delaying the start of the first operation ofeachjob by a random
integral amount chosen uniformly in [0, I-lmax]. The resulting schedule, with high probability,
has

log(nix)
0 (log log(nix)

jobs assigned to any machine at any time.
(3) "Spread" this schedule so that at each point in time all operations currently being

processed have the same size, and then "flatten" this into a schedule that has at most one job
per machine at any time.

This strategy is very similar to the one used by Leighton, Maggs, and Rao for the special
case of unit-length operations. Whereas Step 2 differs in only a few technical details, the
essential difficulty in obtaining the generalization is in Step 3. For the analysis of Step 2, we
assume that Pmax is bounded above by a polynomial in n and #; in the next section we will
show how to remove this assumption. For simplicity, we shall assume that n > m; analogous
bounds can be obtained when this is not true.

LEMMA 2.1. Given a job shop instance in which Pmax is bounded above by a polynomial
in n and Ix, the strategy ofdelaying each job an initial integral amount chosen randomly and
uniformly from [0, Flmax] and then continuously processing its operations in sequence will
yield an (invalid) schedule that is of length at most I-Imax + Pmax and, with high probability,
has

log(nIx)
log log(n IX

jobs scheduled on any machine during any unit of time.

Proof. Fix a time and a machine Mi; let p Prob[at least r units of processing are
scheduled on machine Mi at time t] There are at most (n ways to choose r units of
processing from those required on Mi. If we focus on a particular one of these r units and a

specific time t, then the probability that it is scheduled at time is at most 1/l-Irnax, since we
selected a delay uniformly at random from among l-Imx possibilities. If ail r units are from
different jobs then the probability that they are all scheduled at time is at most (1/I-Imx)
since the delays are chosen independently. Otherwise, the probability that all r are scheduled
at time is O, since two units from the same job can never be assigned to the same time.
Therefore

p <

(el"Imax)r() (e)r rlmax < -

APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING 621

If

r=k
log(n/z)

log log(n/z)

then p < (n/z)-(/’-1). We can bound the probability that any machine at any time is assigned
more than

log(n/z)
log log(n/z)

jobs by m(Pmax q- l-lmax)P < n(Pmax -k- I’lmax) (n /z) -(k-l). Since we have assumed that Pmax
is bounded by a polynomial in n and/z, Pmax + l-Imax is as well. If we choose k sufficiently
large, then with high probability, no more than

log(n/z)
log log(n/z)

jobs are scheduled on any machine during any unit of time. [3

In the special case of unit-length operations treated by Leighton, Maggs, and Rao, a
schedule ,9 of length L that has at most c jobs scheduled on any machine at any unit of time
can trivially be "flattened" into a valid schedule of length cL by replacing one unit of $’s time
with c units of time in which we run each of the jobs that was scheduled for that time unit (see
Fig. 1).

time 2 3

machine J J 3 J $
J" J4 J9

2 3 4 5 6

machine
2 J3 J2 J4

J; J’ J7 ,I !-L[J, J4 J7 |

machine J J J5 73
J9 J8 ’J6

FIG. 1. Flattening a schedule in the case with unit length operations.

For preemptive job shop scheduling, where the processing of an operation may be inter-

rupted, each unit of an operation can be treated as a unit-length operation and a schedule that
has multiple operations scheduled simultaneously on a machine can easily be flattened into
a valid schedule. This is not possible for nonpreemptive job shop scheduling, and in fact it
seems to be more difficult to flatten the schedule in this case. We give an algorithm that takes
a schedule of length L with at most c operations scheduled on each machine at any time and
produces a schedule of length O(cL log Pmax).

LEMMA 2.2. Given a schedule So of length L that has at most c jobs scheduled on each
machine during any unit of time, there exists a polynomial-time algorithm that produces a

valid schedule of length 0 (cL log Pmax).
Proof To begin, we round up each processing time Pij tO the next power of 2 and denote

’’thatis, Fromthe corresponding rounded time by Pij Pij 2rg’ p;j] Let Pmax maxij Pij"

622 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

So it is easy to obtain a schedule 6’ that uses the modified p!. and is at most twice as long as
tJ

So; furthermore, an optimal schedule for the new problem is no more than twice as long as an
optimal schedule for the original problem.

A block is an interval of a schedule with the property that each operation that begins
during this interval is of length no more than that of the entire interval. (Note that this does not
mean that the operation finishes within the interval.) We can divide ,5’ into [-p,x consecutive
blocks of size Pa" We will give a recursive algorithm that reschedules ("spreads") each
block of size p (where p is a power of 2) into a sequence of schedulefragments of total length
p log p; the operations scheduled in a fragment of length T are all of length T, and start at the
beginning of the fragment. This algorithm takes advantage of the fact that if an operation of
length p is scheduled to begin in a block of size p, then that job is not scheduled on any other
machine until after this block. Therefore, that operation can be scheduled to start after all of
the smaller operations in the block finish.

To reschedule a block B of size Pmax, we first construct the final fragment (which is of
length Pax), and then construct the preceding fragments by recursive calls of the algorithm.
For each operation of length Pax that begins in B, reschedule that operation to start at the
beginning of the final fragment, and delete it from B. Now each operation that still starts in B
is of length at most P’max/2, so B can be subdivided into two blocks, B and B2, each of size

P’max/2, and we can recurse on each. See Fig. 2 for an illustration of this rescheduling.

(a)

(b)

J3 Ji J2]J6

FBq FB2-1 FCq -C2--[

J J4 J5

J6 J8 J9

(c)

FIG. 2. (a) The initial greedy schedule oflength 8. plnax 4. (b) Thefirst level ofspreading. Alljobs oflength
4 have been put in the finalfragments. We must now recurse on B1 and B2 with Pmax’ 2. (c) The final schedule of
length 8 log 8 24.

The recurrence equation that describes the total length of the fragments produced from
Ta block of size T is f(T) 2f(-ff) + T; f(1) 1. Thus f(T) (R)(T log T), and each

APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING 623

block B in 6’ of size Pmax is spread into a schedule of length Pmax log Pmax" By spreading the
schedule 6", we produce a new schedule S’ that satisfies the following conditions:

(1) At any time in S’, all operations scheduled are of the same length; furthermore, any
two operations either start at the same time or do not overlap.

(2) If $ has at most c jobs scheduled on one machine at any time, then this must hold for
S’ as well.

(3) S’ schedules a job on at most one machine at any time.
(4) S’ does not schedule the ith operation ofjob Jj. until the first are completed.
Condition is satisfied by each pair of operations on the same machine by the definition

of spreading, and by each pair of operations on different machines because the division of
time into fragments is the same on all machines. To prove condition 2, note that operations of
length T that are scheduled at the same time on the same machine in the expanded schedule
started in the same block of size T on that machine. Since they all must have been scheduled
during the last unit of time of that block, there can be at most c of them.

To prove condition 3, note that if ajob is scheduled by 6’’ on two machines simultaneously
that means that it must have been scheduled by S to start two operations of length T in the
same block of length T on two different machines. This means it was scheduled by $ on two
machines during the last unit of time of that block, which violates the properties of S.

Finally we verify condition 4 by first noting that if two operations of a job are in different
blocks of size Pax in S then they are certainly rescheduled in the correct order. Therefore it
suffices to focus on the schedule produced from one block. Within a block, if an operation
is rescheduled to the final fragment then it is the last operation for that job in that block.
Therefore 6’’ does not schedule the ith operation ofjob Jj. until the first are completed.

The schedule S’ can easily be flattened to a schedule that obeys the constraint of one job
per machine at any time, since c operations of length T that start at the same time can just be
executed one after the other in total time cT. Note that since what we are doing is effectively
synchronizing the entire schedule block by block, it is important when flattening the schedule
to make each machine wait enough time for all machines to process all operations of that
fragment length, even if some machines have no operations of that length in that fragment.

The schedule S’ was of length L log p’ therefore the flattened schedule is of lengthmax,

Lc log Pmax"
3. Reducing the problem. In the previous section we showed how to produce, with high

probability, a schedule of length

(lg(n/z) lgPmax)O (Flmax + Pm,x)
log log(n/z)

under the assumption that Pmax was bounded above by a polynomial in n and/z. Since

Flmax + Pmax O(max{Flmax, Pmax}),

this schedule is within a factor of

(lg(n/z) logpmx)O
log log(n/z)

of optimality. In this section, we will first remove the assumption that Pmax is bounded above
by a polynomial in n and/z by showing that we can reduce the general problem to that special
case while sacrificing only a constant factor in the approximation. This yields an

(lg2(n#)) approximation algorithm.O
log log(n/z)

624 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

Then we will prove a similar result that reduces this case to one in which n is bounded by a
polynomial in m and/z. Combining these two results, we conclude that we can reduce the job
shop scheduling problem to its special case where n and Pmax are polynomially bounded in m
and p., while changing the performance guarantee by only a constant.

3.1. Reducing Pmax. First we will show that we can reduce the problem to one where

Pmax is bounded by a polynomial in n and p.. Let co 1691 be the total number of required
operations. Note that co < n#. Round down each Pij tO the nearest multiple of Pmax/co,

takes at most co distinct valuesThis ensures that the value Pijand denote this value by Pij.
which are all multiples of Pmax/co. Therefore we can treat the p!. as integers in {0, co}; a

1J
schedule for this problem can be trivially rescaled to a schedule S’ for the processing times

0 does not mean that this operation does not exist; instead, it(Note that assigning PijPij
should be viewed as an operation that takes an arbitrarily small amount of time.) Let L denote
the rescaled length of 6".

We claim that $’ for this rounded instance can be interpreted as a schedule for the original
operations of length at most L + Pmax. If we increase the processing time of Oij from pj to
its original time Pij, we add an amount that is at most Pmax/co. Since the length of a schedule
is determined by a critical path through the operations and there are 09 operations, we add a
total amount of at most Pmax tO the length of any path; thus the new schedule is of length at
most L + Pmax < L + Cmax. Therefore we have rounded a general instance 77 of the job shop
problem to an instance 2" for which Pmax O(n/z); furthermore, a schedule for 2" yields a
schedule for 2- that is no more than Cnax longer. Thus we have shown the following lemma:

LEMMA 3.1. There exists a polynomial-time algorithm that transforms any instance ofthe
job shop scheduling problem into one with Pmax O(n#) with the property that a schedule

for the modified instance of length kCnax can be converted in polynomial time to a schedule
for the original instance of length (k + 1)Cnax.

3.2. Reducing the number ofjobs. To reduce an arbitrary instance ofjob shop schedul-
ing to one with a number of jobs that is polynomial in m and #, we divide the jobs into
big and small jobs. We say that job J. is big if it has an operation of length more than
l-lmax/(2m/z3); otherwise we call the job small. For the instance consisting of just the short
jobs, let FI’max and Pnax denote the maximum machine load and operation length, respectively.
Using the algorithm of 17] described in the introduction, we can, in time polynomial in the
input size, produce a schedule of length FI’ 4- 2m/z3

max Pmax forthis instance. Since Pmax is
at most l-lmax/(2m#3) and FIax < l"Imax, we get a schedule that is of length no more than

2FImax. Thus an algorithm that produces a schedule for the long jobs that is within a factor
of k of optimal will yield a (k 4- 2)-approximation algorithm. Note that there can be at most
2m2/z long jobs, since otherwise there would be more than m I"lmax units of processing to be
divided among m machines, which contradicts the definition of I’Imax. Thus we have shown
the following lemma:

LEMMA 3.2. There exists a polynomial-time algorithm that transforms any instance ofthe
job shop scheduling problem into one with O(m2#3) jobs with the property that a schedule

for the modified instance of length kCrax can be converted in polynomial time to a schedule

for the original instance of length (k + 2)Caax.
From the results of the previous two sections we obtain the following theorem:
THEOREM 3.3. There exists apolynomial-time randomized algorithmforjob shop schedul-

ing that, with high probability, yields a schedule that is of length

(lg(m#))O
log log(m/z) Cax

APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING 625

Proof In 2 we showed how to produce a schedule of length

log(n/z)
log Pmax)O (I-Imax "-I- Pmax)

log log(n/z)

under the assumption that Pmax was bounded above by a polynomial in n and /z. From
Lemmas 3.1 and 3.2 we know that we can reduce the problem to one where n and Pmax are
polynomial in m and #, while adding only a constant to the factor of approximation. Since
now log Pmax O(log(m/z)) and log n O(log(m/z)) our algorithm produces a schedule of
length

log (m/z))O
log log(m/z) Cnax

Note that when/z is bounded by a polynomial in m the bound only depends on m. In
particular, this implies the following corollary.

COROLLARY 3.4. There exists a polynomial-time randomized algorithm for flow shop
scheduling that, with high probability, yields a schedule that is of length

Except for the use of Sevast’ yanov’s algorithm, all of these techniques can be carried out
in 7A/’C. We assign one processor to each operation. The rounding in the proof of Lemma
2.2 can be done in A/’C. We set the random delays and inform each processor about the delay
of its job. By summing the values of Pij for all of its job’s operations, each processor can
calculate where its operation is scheduled with the delays and then where it is scheduled in the
recursively spread out schedule. These sums can be calculated via parallel prefix operations.
With simple A/’C techniques we can assign to each operation a rank among all those operations
that are scheduled to start at the same time on its machine, and thus flatten the spread out
schedule to a valid schedule.

COROLLARY 3.5. There exists a ./V’C algorithmforjob shop scheduling that, with high
probability, yields a schedule that is of length

log log(n/z) Cnax

4. Applying the techniques to related problems.

4.1. A fixed number of machines. In thissubsection we will show that the technique of
partitioning the set ofjobs by size can be applied to give a much better performance guarantee
in the special case in which the number of machines and the maximum number of operations
per machine are assumed to be constants. It is interesting to note that Sevast’yanov’s algorithm
for the job shop problem can be viewed as a (1 + m/z3)-approximation algorithm, so that when
m and/z are constant, this is a O (1)-approximation algorithm. We will give a p-approximation
algorithm for p arbitrarily close to two.

To apply the idea of partitioning the jobs in this setting, call a job Jj big if there is an

operation Oij with Pij > I-Imax/(m/z3), where is an arbitrary positive constant. Note that
there are at most m2/z3/6 big jobs, and since m,/z and are fixed, this is a constant.

626 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

Now use Sevast’yanov’s algorithm to schedule all ofthe smalljobs. The resulting schedule
will be of length at most (1 +)Ca. There are only a constant (albeit a huge constant) number
of ways to schedule the big jobs. Therefore the best one can be selected in polynomial time
and executed after the schedule of the short jobs. The additional length of this part is no more
than Cmax.

Thus we have proven the following theorem:
THEOREM 4.1. For anyfixed value of > O, there is a polynomial-time algorithmfor the

special case of the job shop scheduling problem where both m and IZ are fixed that produces
a schedule of length <_ (2 +)Crax.

4.2. Dag shop scheduling with identical copies of machines. The fact that the quality
of our approximations is based solely on the lower bounds Flmax and Pma makes it quite easy
to extend our techniques to the more general problem of dag shop scheduling, in which each
job is given by a specified partial order of operations. We define l-’Imax and Pmax exactly the
same way, and max{l-Im, Pmx} remains a lower bound for the length of any schedule. We
can reduce this dag shop scheduling problem to a job shop problem by selecting for each
job an arbitrary total order that is consistent with its partial order. The maximum job length
and maximum machine load for the job shop instance constructed are equal to the analogous
values for the original dag shop instance. Therefore, a schedule of length p (Flmax + Pmax)
for this job shop instance is a schedule for the original dag shop scheduling instance of length
0 (PCrax).

A further generalization to which our techniques apply is when, rather than m different
machines, we have m’ types of machines, and for each type we have a specified number
of identical machines of that type. Instead of requiring an operation to run on a particular
machine, an operation now has to run on only one of these identical copies. Pma remains a
lower bound on the length of any schedule for this problem. FImax, which was a lower bound
for the job shop problem, must be replaced, since we do not have a specific assignment of
operations to machines and the sum of the processing times of all operations assigned to a

type is not a lower bound. Let Si, m’, denote the sets of identical machines, and
let FI (Si) be the sum of the lengths of the operations that run on Si. Our strategy is to reduce
this to a job shop problem by assigning operations to specific machines in such a way that the
maximum machine load is within a constant factor of the fundamental lower bounds for this

problem. For each set of machines Si, m’, the average load on that set of machines
is clearly a lower bound on the maximum machine load of machines within that set; thus

I-I (Si)
Iavg max

s, ISil

is. a lower bound on the maximum machine load. Furthermore, we cannot split operations,
so Pmax is also a lower bound. We will now describe how to assign operations to machines
so that the maximum machine load of the resulting job shop scheduling problem is at most

2l-lavg -+- Pmax. A schedule for the resulting job shop problem of length p. (I-Imax -+- Pmax)
yields a solution for the more general problem of length O(p. (1-Ivg + Pmx)). Sevast’yanov
17] used a somewhat more complicated reduction to handle a slightly more general setting.

For each operation Oij to be processed by a machine in Sk, if Pij > FI (Sk)/ISk I, assign Oij
to one machine in Sk. There are certainly enough machines in Sk to assign these operations so

that each machine is assigned at most one ofthem; this contributes at most Prnax to the maximum
machine load. Those operations not yet assigned are each of length at most I-I(Sk)/ISx.I and
have total length < I-I (Sk). Therefore, these can be assigned easily to the remaining machines
so that less than 2I-I (Sk)/Sk processing units are assigned to each machine. Combining these

APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING 627

tWO bounds, we get an upper bound on the maximum machine load of 2FIavg + Pmax, which
is within a constant factor of the lower bound of max{I-Iavg, Pmax }.

THEOREM 4.2. There exists a polynomial-time randomized algorithm for dag shop
scheduling with identical copies of machines that, with high probability, yields a schedule
that is of length

log (m/z) Crax)O
log log(m/z)

COROLLARY 4.3. There exists an 7JV’C algorithmfor dag shop scheduling with identical
copies ofmachines that, with high probability, yields a schedule that is of length

log (n #)
O

log log(n/z) Cnax

4.3. Unrelated parallel machines with chain precedence constraints. A further gen-
eralization of the job shop problem is the problem of scheduling jobs on unrelated parallel
machines subject to chain precedence constraints, which is denoted R[chainlCmax in the no-
tation of [7]. In this problem, we are given a set ofjobs J J Jn }, each of which is to
be processed by exactly one of a set of machines AA M Mm }; if J is processed by
Mi, it takes Pij time units. We are also given a partial order -< that specifies job precedence
constraints" if Jj -< Jk then Jk may not start processing until Jj has completed processing.
The precedence constraints are restricted to be a disjoint union of chains; that is, we are given
a set C {C Ck}, where each chain C1 6 C consists of some #l jobs, given with a
linear ordering on these jobs; each job is in exactly one chain (where unconstrained jobs are
viewed as chains of length one). The objective is to construct a schedule consistent with the
precedence constraints so as to minimize the maximum job completion time Cmax.

We will view the problem of finding a feasible solution for this problem as having two
phases: finding an assignment ofjobs to machines, and then constructing a schedule consistent
with that assignment. It is easy to see that the second phase is a job shop scheduling problem:
each operation of the job shop problem corresponds to a job of the parallel machines problem,
and each job of the job shop problem corresponds to a chain of the parallel machines problem.
We will construct an assignment such that the resulting job shop instance has l-Ima <: 4L
and Pmax _< 2L, where L is a lower bound for the original instance of RIchainlCmax. By
applying our approximation algorithms for the job shop problem to this instance, we obtain
approximation algorithms for RlchainlCmax with an identical performance guarantee (up to
a constant factor).

To find a suitable assignment, we give an algorithm that takes a given threshold value d,
and either proves that any feasible schedule for the instance of RIchainlCmax has Cmax > d,
or else constructs an assignment such that the resulting job shop instance has I-]ma _< 4d and
Pmax < 2d. By performing a bisection search with initial lower bound 0 and upper bound

-.j max/Pij, we obtain a polynomial-time algorithm that finds a value L such that no schedule
of length L exists (and hence L is a valid lower bound), and we have an assignment such
that the resulting job shop instance has FIrnax _< 4L and Pmax < 2L.

The algorithm that tests a given threshold is based on results of Lenstra, Shmoys, and
Tardos [9] and Lin and Vitter [10]. It works by first constructing an integer program which
must be feasible if there is a schedule of length d, and then checks if its linear relaxation is
feasible. If the linear program is infeasible, then no schedule of length d exists, and if the linear

628 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

program is feasible, then the fractional solution can be rounded to yield an integer assignment
with the claimed properties.

Observe that if there is a schedule with Cmax _< d, then the following linear program has
a feasible solution:

PijXij <_ d, m,
j=l

m

Z -PijXij <’ d, /=1 k,
i=1 jEct

m

Xij l, i- m,
i=1

xij >_ O, m, j-- n.

Let xij denote such a feasible solution; we can view this solution as a fractional assignment
where an xij fraction ofjob Jj is assigned to Mi. Let pj denote the total time spent processing
Jj in this fractional assignment; that is,

m

pj PijXij, j n.
i=1

In this fractional assignment, it is possible for Jy to have a small fraction assigned to a machine

Mi for which its Pij value is substantially more than pj. To make sure that this does not occur,
we first apply the filtering technique of Lin and Vitter [10], and round Xij to .ij by setting

Xij, if Pij < 2pj,
(1) ij

0, otherwise.

mOf course, for each job Jj, only a fraction tj i=1 ij of it is now assigned. We renormalize
this fractional assignment by forming ij Jij/tj. Observe that tj > 1/2, j n,
since less than half of each job Jj can be assigned to any machine Mi for which Pij > 2pj.
Therefore satisfies

pij.ij <_ 2d, m,
j=l

Zij- 1, m,
i=1

ij--O, if Pij > 2pj, m, j n,

ij 0, m, j n.

A result of Lenstra, Shmoys, and Tardos [9] states that, in polynomial-time, any extreme

point of such a linear program can be rounded to an integer solution x* such that

PijXij _< 2d + 2 max{pj}, m,
j=l J

mx-- 1, /--1 m,
i=1

* 2pjXij --O, if Pij > m,

xij >_ O, m, j n.

APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING 629

Furthermore, since jct PJ < d, k, we have that

m

PijXij 2pj
jCt i= jCt

Consequently, if for each job Jj we assign the corresponding operation to the machine Mi
for which x 1, then we obtain a job shop instance for which Pmax < 2d, and []max _<
2d + 2 maxj pj < 4d, as claimed.

THEOREM 4.4. There exists a polynomial-time randomized algorithm for RlchainlCnax
that, with high probability, yields a schedule that is of length at most

O
loglog------- Cnax

5. A deterministic approximation algorithm. In this section, we "derandomize" the
results of the previous sections: we give a deterministic polynomial-time algorithm that finds
a schedule of length O(log2(m#)C,ax). Of all the components of the algorithm of Theorem
3.3, the only step that is not already deterministic is the step that uniformly chooses a random
initial delay for each job with the resulting property that, with high probability, no machine is
assigned too many jobs at any time. In particular, the reduction to the special case in which
n and Pmax are bounded by a polynomial in m and # is entirely deterministic, and so we can
focus on that case alone.

We will give an algorithm that deterministically assigns delays to eachjob so as to produce
a schedule in which each machine has O (log(m#)) jobs running at any one time. We then apply
Lemma 2.2 to produce a schedule of length O(log2(m/z)Cnax). Note that the O(log(m/z))
jobs per machine is not as good as the probabilistic bound of

(log(m/z))O
log log(m /z)

Recently, Schmidt, Siegel, and Srinivasan [15] have given, a different derandomizing
strategy for this problem that yields delays that match the performance of the randomized
algorithm.

Our approach to the problem of selecting good delays is to frame it as a vector selec-
tion problem and then apply techniques developed by Raghavan and Thompson [13], [14]
and Raghavan 12] that find constant factor approximations to certain "packing" integer pro-
grams. The approach is to formulate the problem as a {0, }-integer program, solve the linear
programming relaxation, and then randomly round the solution to an integer solution. For
certain types of problems this yields provably good approximations with high probability 13],
[14]. Furthermore, for many of the problems for which there are approximations with high
probability, the algorithm can be derandomized. Raghavan [12] has shown how to do this by
essentially setting the random bits one at a time.

We now state the problem formally:
PROBLEM 5.1. Deterministically assign a delay to eachjob in the range [0, 1-I max/ log(m #)

so as to produce a schedule with O(log(m/z)) jobs on any machine at any time.
LEMMA 5.2. Problem 5.1 can be solved in deterministic polynomial time.

Proof Since we introduce delays in the range [0, I-Imax/log(m/z)}, the resulting schedule
has length e Pmax + l-Imax/log(m/z). We can represent the processing of a job Jj with a
given initial delay d by {0, }-vector of length e m, where each component corresponds to a
particular machine at a particular time. The position corresponding to machine Mi and time

630 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

is if Mi is processing job Jj at time t, and 0 otherwise. For each job Jj and each possible
delay d, there is a vector Vj,d that corresponds to assigning delay d to Jj..

Let)j be the set of vectors {V),I Vj,,, }, where dmax Flmax/log(m#), and let
Vj,k(i) be the ith component of V,.. Given the set A {,kl)n} of sets of vectors, our
problem can be stated as the problem of choosing one vector V from each)j such that

j--!

that is, at any time on any machine, the number of jobs using that machine is O(log(m#)).
As in [12], we can reformulate this as a {0, }-integer program. Let xg,k be the indicator

variable used to indicate whether Vj, is selected from 14. Consider the integer program (IP)
that assigns {0, values to the variables xj, to minimize W subject to the constraints

dmax

xj,k 1, j n,
k=l

-"axj,kVj,k(i) < W, i=1 g.m.
j= k=

Let WopT be the optimum value of W, which is the maximum number ofjobs that ever use
a machine at any time. We already know, by Lemma 2.1, that Wovr O(log(m#)), and so
an optimal solution to this integer program would solve Problem 5.1. However, the problem
is A/’P-hard. Instead, we rely on the following theorem, which is immediate from the results
in [12] and [14].

THEOREM 5.3 [12], [14]. A feasible solution to (IP) with W O(Wor,T + log(m/z))
can befound in polynomial time.

We then apply Lemma 2.2 to obtain the following result:
THEOREM 5.4. There exists a deterministic polynomial-time algorithm thatfinds a sched-

ule of length O(logZ(m/z) C’max).
ii. Conclusions and open problems, We have given the first polynomial-time polylog-

approximation algorithms for minimizing the maximum completion time for the problems of
job shop scheduling, flow shop scheduling, dag shop scheduling, and several other general-
izations.

One particularly simple special case of dag shop scheduling can be obtained if the partial
order for each job is empty; in other words, each job consists of a number of operations that
may be performed in any order. This is called the open shop problem, and it is traditional in
the scheduling literature to focus on the case when each job is processed on each machine at
most once (since operations on the same machine can be coalesced).

A consequence of our results is the following observation about the structure of shop
scheduling problems. Assume we have a set ofjobs that need to run on a set of machines. We
know that any schedule for the associated open shop problem must be of length
Pmax). Furthermore, we know that no matter what type of partial ordering we impose on the
operations of each job we can produce a schedule of length

O (l-lmax -- emax)
log log

Hence for any instance of the open shop problem, we can impose an arbitrary partial order on
the operations of each job and increase the length of the optimal schedule by a factor of

APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING 631

On the other hand, there does exist a schedule of length O(Pmax + I-Imax) for the open shop
problem. Consider the simple greedy algorithm that, whenever a machine is idle, assigns to it
any job that has not yet been processed on that machine and is not currently being processed
on another machine. Annfi Racsmfiny [2] has observed that the greedy algorithm delivers a
schedule of length at most 1-Imax nt- (m 1) Pmax. We can adapt her proof to show that, in fact,
the greedy algorithm delivers a schedule that is of length less than I’Imax -I-" Pmax _< 2Cax.
Consider the machine Mk that finishes last in the greedy schedule; this machine is active
sometimes, idle sometimes, and finishes by completing some job Jj.. Since the schedule is
greedy, whenever Mk is idle, Jj is being processed by some other machine, and so the idle
time is at most t,g-t. Pij < Pmax. Thus machine M is processing for at most l"lma units
of time and is idle for less than Pmax units of time; hence Cmax < I-Imax + emax. Fiala [5]
has also shown that if FImax >_ (16m logm + 21m)Pmax, then Cax is just l"Imax, and there is a
polynomial-time algorithm to find an optimal schedule.

We have seen that in two interesting special cases, job shop scheduling with unit-length
operations and open shop scheduling, there is a schedule of length O(Flmax + Pmax), and so
the major open question left unresolved by this paper is:

Does there exist an O (Flmax + Pmax) schedule for the general job or flow shop scheduling
problem? If so, when can it be found in polynomial time?

Beyond this, there are a number of interesting questions raised by this work, including
Do there exist parallel algorithms that achieve the approximations of our sequential

algorithms? For the general job shop problem this seems hard, since we rely heavily on the
algorithm of Sevast’ yanov. For open shop scheduling, however, a simple sequential algorithm
achieves a factor of two, whereas the best N’C algorithm that we have achieves only an
O(log n)-approximation. As a consequence of the results above, all one would need to do is
to produce any greedy schedule.

Are there simple variants of the greedy algorithm for open shop scheduling that achieve
better performance guarantees? For instance, how good is the algorithm that always selects
the job with the maximum total (remaining) processing time? Williamson et al. [20] have
shown that the existence of a p-approximation algorithm with p < 5/4 would imply that
79 N’79. It remains an interesting open problem to close this gap.

Our algorithms, while polynomial-time algorithms, are inefficient. Are there signifi-
cantly more efficient algorithms which have the same performance guarantees? Stein 19] has
given an algorithm that directly finds a good approximate solution to the integer program (IP)
by using the framework of Plotkin, Shmoys, and Tardos 11]. This yields an implementation
of our algorithm that runs in O(n2m2/z2 -+- n3/z2 log(m#)(# + log(m/z))) time. Although this
represents a dramatic improvement over the previously known bound, it remains an interesting
question to give substantially more efficient algorithms.

Acknowledgments. We are grateful to David Williamson for working with us in the early
stages of this research, and to Imre Biriny, Tom Leighton, Bruce Maggs, and Yishay Mansour
for many helpful discussions. We thank Jim Orlin for the observation about the gap between
open shop and dag shop scheduling.

REFERENCES

[1] D. Ar’r’LEGATE AND W. COOK, A computational study of the job-shop scheduling problem, ORSA Journal of
Computing, 3 1991), pp. 149-156.

632 DAVID B. SHMOYS, CLIFFORD STEIN, AND JOEL WEIN

[2] I. B,,RANY AND T. FIALA, Tbbgpes iitemezsi problmdk k6zel optimdlis megolddsa, Szigma-Mat.-
K6zgazdasigi Foly6irat, 15 (1982), pp. 177-191.

[3] I. BELOV AND Y. N. STOLIN, An algorithm in a single path operations scheduling problem, in Mathematical
Economics and Functional Analysis [In Russian], Nauka, Moscow, 1974, pp. 248-257.

[4] T. FIALA, Kizel# algorithmus a hdrom gp problmdra, Alkalmazott Matematikai Lapok, 3 (1977), pp. 389-
398.

[5] ,An algorithmfor the open-shop problem, Math. Oper. Res., 8 (1983), pp. 100-109.
[6] M.R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory ofNP-Completeness,

W.H. Freeman and Company, New York, 1979.
[7] E. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN, AND D. B. SHMOYS, Sequencing and scheduling: Algorithms

and Complexity, in Handbooks in Operations Research and Management Science, Volume 4: Logistics of
Production and Inventory, S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, eds., North Holland,
Amsterdam, 1993, pp. 445-522.

[8] T. LEIGHTON, B. MAGGS, AND S. RAO, Universal packet routing algorithms, in Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, 1988, pp. 256-269.

[9] J. K. LENSTRA, D. B. SHMOYS, AND E. TARDOS, Approximation algorithms for scheduling unrelated parallel
machines, Math. Programming, 46 (1990), pp. 259-271.

[10] J.-H. LIN AND J. S. VTTER, e-approximation with minimum packing constraint violation, in Proceedings of the
24th Annual ACM Symposium on Theory of Computing, 1992, pp. 771-782.

11 S. PLOTKN, D. B. SHMOYS, AND E. TARDOS, Fast approximation algorithmsforfractional packing and covering
problems, in Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Washington, D.C., 1991, pp. 495-504.

12] P. RAGHAVAN, Probabilistic construction ofdeterministic algorithms: approximating packing integerprograms,
J. Comput. System Sci., 37 (1988), pp. 130-143.

13] P. RAGHAVAN AND C. D. THOMPSON, Provably good routing in graphs: regular arrays, in Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, New York 1985, pp. 79-87.

14] Randomized rounding: a techniquefor provably good algorithms and algorithmic proofs, Combinator-
ica, 7 (1987), pp. 365 374.

15] J. SCHMIDT, A. SIEGEL, AND A. SRINVASAN, Chernoff-Hoeffding boundsfor applications with limited indepen-
dence, in Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, PA 1993, pp. 331-340.

[16] S. SEVAST’YANOV, Efficient construction ofschedules close to optimalfor the cases ofarbitrary and alternative
routes ofparts, Soviet Math. Dokl., 29 (1984), pp. 447-450.

17] Bounding algorithm for the routing problem with arbitrat3, paths and alternative servers, Kibernetika,
22 (1986), pp. 74-79. Translation in Cybernetics 22, pp. 773-780.

[18] On an asymptotic approach to some problems in scheduling theory, in Abstracts of papers at 3rd All-
Union Conf. of Problems of Theoretical Cybernetics [in Russian], Inst. Mat. Sibirsk. Otdel. Akad. Nauk
SSSR, Novosibirsk, 1974, pp. 67-69.

19] C. STEIN, Approximation algorithms for multicommodity flow and shop scheduling problems, Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, Aug. 1992. Also appears as MIT/LCS/TR-550.

[20] D.P. WILLIAMSON, L. A. HALL, J. A. HOOGEVEEN, C. A. J. HURKENS, J. K. LENSTRA, AND D. I. SHMOYS, Short
shop schedules, unpublished manuscript, 1993.

SIAM J. COMPUT.
Vol. 23, No. 3, pp. 633-651, June 1994

() 1994 Society for Industrial and Applied Mathematics
011

RANDOMIZED ALGORITHMS FOR BINARY SEARCH AND
LOAD BALANCING ON FIXED CONNECTION NETWORKS

WITH GEOMETRIC APPLICATIONS*

JOHN H. REIF AND SANDEEP SENat

Abstract. There are now a number of fundamental problems in computational geometry that have optimal
algorithms on PRAM models. This paper presents randomized parallel algorithms that execute on an n-processor
butterfly interconnection network in O(log n) time for the following problems of input size n: trapezoidal decom-
position, visibility, triangulation, and two-dimensional convex hull. These algorithms involve tackling some of the
very basic problems, like binary search and load balancing, that are taken for granted in PRAM models. Apart from a
two-dimensional convex hull algorithm, these are the first nontrivial geometric algorithms that attain this performance
on fixed connection networks. These techniques use a number of ideas from Flashsort that have to be modified to

handle more difficult situations; it seems likely that they will have wider applications.

Key words, parallel algorithms, randomization, computational geometry, butterfly network

AMS subject classifications. 68E05, 68C05, 68C25

1. Introduction.

1.1. Motivation and overview. In the past decade, we have witnessed a systematic
growth in state-of-the-art parallelizing algorithms in the Parallel Random Access Machine
(PRAM) environment. As a result, a number of basic problems have been recognized and
many sophisticated techniques have been developed--these can be viewed as a "tool-kit" for
tackling increasingly complex problems. There is a general consensus that PRAM models
are appropriate for the algorithm designer but that these algorithms have to be implemented
on fixed-connection networks to be of any practical significance. Using well-known general-
purpose emulation schemes, all these algorithms can be implemented to run on a butterfly (or
a hypercube) network with a O(log n) multiplicative factor degradation in time complexity.
The crucial question is: Can PRAM algorithms be extended to fixed-connection networks
without this logarithmic penalty in running time?

In a top-down approach to algorithm design, complicated algorithms are built on top
of less complex procedures. The answer to the above question would depend on how far
down in this hierarchy one can go without running into problems that cannot be mapped
optimally on the fixed-connection network. Moreover, this would also depend on the nature
of the algorithm itself. One of the most basic problems in this hierarchy is sorting. For
example, Reischuk’s [19] O(log n) time, n processor randomized PRAM sorting algorithm
was successfully extended to networks by Reifand Valiant [18] to run in O(log n) time by using
additional new sampling techniques for problem-size control. In contrast, Cole’s deterministic
O(log n) time parallel mergesort algorithm seems prohibitively difficult to implement (without
a logarithmic slowdown) on the networks because of its liberal use of pointers. Consequently
a number of algorithms that use this approach on PRAM models would be at least as difficult
as being adapted to network models.

*Received by the editors July 9, 1990; accepted for publication (in revised form) March 16, 1993. This research
was supported in part by Air Force Office of Scientific Research contract AFSOR-87-0386, Office of Naval Research
contract N00014-87-K-0310, National Science Foundation contract CCR-8696134, Defense Advanced Research
Projects Agency/Army Research Office contract DAAL03-88-K-0185, and Defense Advanced Research Projects
Agency/ISTO contract N00014-88-K-0458. A preliminary version of this paper appeared in the Proceedings of the
2nd Annual Symposium on Parallel Algorithms and Architectures, Greece, 1990.

Department of Computer Science, Duke University, Durham, North Carolina 27706.
Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi 110016, India.

633

634 JOHN H. REIF AND SANDEEP SEN

Although the eventual goal of this paper is to present efficient algorithms on interconnec-
tion networks, we would like the reader to view this in the more general context of mapping
certain kinds of PRAM algorithms on fixed-connection networks and the difficulties associ-
ated therewith. We encountered several problems that appear to be very basic for this line of
research, and we believe that these will have much wider applications.

Remark. In this paper, the term fixed-connection network has been used to allude to
networks that have 0 (log n) diameter for n-node networks. There already exists a large body
of literature for geometric algorithms on grid-like networks where the diameter is a bottleneck
for achieving the kind of time complexity for which we are aiming.

One of the underlying problems is doing binary search optimally in a model that does not
allow concurrent reads. A common scenario is the following: we are given a tree whose leaves
represent intervals and n keys for which we have to determine the interval in which each key
lies. If the depth of this tree is d, then it is trivial to do this sequentially in O(nd) time. In
case of PRAM models that allow concurrent reads, the problem is again quite simple. With
n processors, we can simultaneously search for all keys in O(d) parallel time, thus resulting
in an optimal speed-up. The main difficulty associated with this problem stems from the
possibility that the keys may be unevenly distributed among the intervals. In this paper we
have described a randomized algorithm to do this in an EREW PRAM in O(log n) time and
refined it further to run in the same asymptotic time on an n-node butterfly network.

An additional problem is that of allocation of subproblems to subnetworks for recursive
calls. Unlike PRAM models, the network topology imposes severe constraints on processor
allocation- not only should the number of processors match with the subproblem sizes but
they should also be interconnected in a certain manner. Our solution to this problem could be
applied to a more general situation than the applications described in this paper. Some of the
ideas are similar to Flashsort where one does splitter-directed routing to route the keys to the
appropriate subnetworks. However, unlike Flashsort, we may be confronted with situations
where we have to allocate resources dynamically, as the subproblems could have varying sizes.
One of our results is that we have near-optimal solutions to the above problems that should
have applications to a wide class of algorithms. These basic procedures serve as a crucial link
between the PRAM algorithms and interconnection networks.

1.2. Geometry on fixed-connection networks and main results. Designing efficient
parallel algorithms for various fundamental problems in computational geometry has received
much attention in the last few years. There have been two fundamentally distinct approaches
to this area of research, namely, the deterministic methods and algorithms that use random
sampling. Some of the earliest work in this area was by Chow [4], who developed algorithms
for a number of fundamental problems that were deterministic and executed in interconnection
networks with polylogarithmic running time. A more general approach for deterministic
PRAM algorithms was pioneered by Aggarwal et al.], who developed some new techniques
for designing efficient parallel algorithms for fundamental geometric problems. However, a
majority of the algorithms were not optimal in P T bounds. A number of the most efficient
deterministic PRAM algorithms are from Atallah, Cole, and Goodrich [2], who extended
the techniques used by Cole [8] for his parallel mergesort algorithm. Their technique is
called Cascaded merging and has been subsequently used (independently by Chandran [3])
for a number of other problems. Note that most of the geometric problems in the context of
research in parallel algorithms have sequential time complexity of f2 (n log n) and a typical
performance that one aims for is O (log n) parallel time using an optimal number ofprocessors.

In an independent development, Reif and Sen [17] were also able to derive O(log n)
time-optimal algorithms for point-location and trapezoidal decomposition, which were ran-

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 635

domized. Later they extended their methods to give optimal algorithms for three-dimensional
convex hulls (and hence two-dimensional Voronoi diagrams) on the CREW PRAM model. At
the core of their algorithms were random sampling techniques that had also been introduced
by Clarkson [5], [6], [7] and Haussler and Welzl 10]. In addition, a new resampling technique
called Polling was used successfully to derive the parallel algorithms. In essence, it is an effi-
cient resampling procedure that enables us to choose a sample that satisfies certain properties
with high probability from a set of samples for which only expected behavior is known. While
no deterministic algorithms have been developed for some of the above problems that attain
optimal bounds, we feel that the real impact of randomized techniques will be in the domain
of parallel algorithms on fixed-connection networks.

In spite of interesting developments in the PRAM world, the state-of-art of geometric
algorithms in the case of small-diameter fixed-connection networks is lagging far behind.
Presently, the only known O(log n) time algorithm for the network model is a two-dimensional
convex hull algorithm due to Miller and Stout [13]. Consequently, the Cascaded-merge
technique of Atallah, Cole, and Goodrich [2], in spite of its elegance on the PRAM models,
appear to be of little use in a fixed-connection model. The only obvious way to implement
pointer updates takes O(log n) time per step of the PRAM algorithm, which results, in an
0 (log2 n) time algorithm.

The randomized algorithms seem to be more amenable to mapping on fixed-connection
networks, although they are far from straightforward. We derive an optimal O(log n) time
randomized algorithm for constructing the trapezoidal decomposition. Using this, we can
triangulate a simple polygon in O(log n) time.

1.3. Model of computation and notation. Throughout this paper we will be using the
butterfly interconnection model where the processors operate in a synchronous fashion and
have bounded buffer size. These assumptions are consistent with some ofthe existing machines
such as the BBN Butterfly and Connection Machine. During every step, each processor
is allowed to perform a real-arithmetic operation consistent with standard models used for
sequential geometric algorithms. Moreover, each processor has access to a random-number
generator that returns in unit time a truly random number of O (log n) bits. One of the primary
reasons for choosing the butterfly network is because of its "recursive" nature. A butterfly
network of order k (which will be referred to as B F.) has k levels of 2k nodes each, i.e., it has
k2k nodes. Each node has an address (w, t) where w {0, 1} and 0 < < k (see Fig. 1).
The first component of this address will be referred to as row and the second component as
rank. The significance of this network is that there are numerous "copies" of B/ in BF. for
< k. We shall make crucial use of the following fact.

Fact 1. For any //)1, //)2 such that Iwl / Iwzl k 1, the subgraph of BF. spanned by
the nodes {(wlww2, i)lw {0, 1}/} and Iwl < < IWl] + is isomorphic to BFt.

Here [wl is used to denote the length of the (binary) string w. Moreover, we may need
to emulate a larger butterfly in a work-preserving fashion. The following simple result can be
used.

Fact 2. A B Fk can emulate a B Fk+c within O(3C) slowdown where c is a positive integer.
This is similar to Brent’s slowdown lemma except that we must construct a mapping of

the processors of BFk+ to B Fk respecting the interconnection topology. In this case it is very
straightforward. Assume that c and map the processors with addresses (xw, i) where
x 6 {0, and [wl k and < k to (w, i). One can verify that the processors of BF.+ that
were neighbors are neighbors in the smaller network. Each processor in the smaller network
has to do at most twice the amount of work and requires twice the amount of local mem-
ory. Only the processors of rank k must do the extra work of emulating the processors of rank

636 JOHN H. REIF AND SANDEEP SEN

FIG. 1. A butterfly network oforder 4. The solid lines ilhtstrate a subnetwork isomorphic to B F2.

k + 1. This scheme can be extended directly to yield the claimed bound. For a fixed c, this
implies that there is a constant factor slow-down. In this paper this scheme will often be used
with the value of c being or 2.

The term very high likelihood (probability) is used in this paper to denote probability
> n- for some c > where n is the input size. Just like the big-O function serves
to represent the complexity bounds of deterministic algorithms, we shall use 0 to represent
complexity bounds of the randomized algorithms. We say that a randomized algorithm has
resource bound O(f(n)) if there is a constant c such that the resource used by the algorithm
is no more than cotf(n) with probability > 1/n for any ot > for an input of size n.
(An equivalent definition will bound the resource by ot f(n) with probability greater than
n -C’, and in the rest of the paper they will be used in an interchangeable manner.)

The rest of the paper is organized as follows. In 2, we briefly review two important
subroutines in a fixed-connection network, namely, sorting and routing. In 3, we describe
an algorithm for conducting a binary search. This is used in 4 to develop fast methods
for searching in arrangements. We give a brief description of the algorithm for trapezoidal
decomposition. We focus mainly on those portions for which we need different methods from
the PRAM algorithms the reader is referred to a previous paper (Reif and Sen [17]) for a
more detailed description of the algorithms that were developed for the CREW PRAM model.

2. Overview of sorting and routing on fixed-connection networks. Our algorithms
use sorting and routing extensively at various stages, and a brief review of these routines will
help us in understanding the latter algorithms that use them as building blocks. The problem
of packet routing involves routing a message from processor to FI (i) for all where FI is a
permutation function. There has been a long and rich history of routing algorithms for fixed
connection networks (see [22], [21], [15], [11]), and these can be summarized as follows.

LEMMA 2.1. There exists an algorithm for permutation routing on an n-node butterfly
network that executes in O(log n) steps and uses only constant size queues to achieve this
running time.

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 637

A more general result has been proved by Maggs et al. [21] for layered networks. A
layered network is one whose nodes can be assigned layer numbers and in which each edge
connects a layer node to a layer + node (butterfly is an example of such a network). Let d
denote the maximum distance traveled by any packet and c the largest number of packets that
must traverse a single edge (this parameter c is also called the congestion). These parameters
are fixed for a given selection of paths by all the packets to be routed. Then there exists
a scheme for scheduling the movements of the packets such that with high probability the
routing can be completed in O(c + d + log n) steps where n is the size of the network and
O(n) packets are being routed.

Remark. Given the above result and the fact that d is O(log n) for most path selection
strategies, especially in a butterfly network, it remains to bound the value of c to get a bound
on the routing time. For packets being routed to a random location, c can be bounded by
O(log n) with high probability.

The first optimal 0 (log n) time-sorting algorithm, called Flashsort, for the butterfly net-
work was by Reifand Valiant 18]. It was based on aPRAM sorting algorithm by Reischuk 19]
but required several additional techniques because of the constraints imposed by the network
connectivity. A slightly simplified version can be presented as follows.

1. Select n-(e0 <. 1/2) sized random subset from the given set of n keys.
2. Sort these, using a simple method, like doing all the pairwise comparisons and ranking

them.
3. Use these keys to set up a binary tree such that the leaves of the tree correspond to the

intervals defined by a pair of consecutive splitter keys. Over-sampling techniques are used to
ensure that these intervals partition the remaining keys into roughly equal-sized subsets. This
eliminates the need for dynamic load balancing in the special case of sorting. The keys are
assumed to be in random locations initially. For each subset a subnetwork of appropriate size
is set aside and the keys that belong to this subset are routed to this part of the network. This is
done using a procedure called Splitter Directed Routing, which will be referred to as SDR in
future references. Since this is a crucial component of our algorithm, we describe it in more
detail in the appendix.

4. These steps are applied recursively until the size of the subproblems is no more than
log2 n.

Although the original analysis showed that a 0(log n) buffer size may be required, the
more recent results on routing enables one to make do with a constant amount of storage in
each buffer [21]. The overall running time of the sorting algorithm was analyzed using the
property that the problem size at the th stage of recursion is no more than n’, 0 < 1, and
there are at most a polynomial number of problems at any stage of recursion. This recursive
algorithm can be modelled as a process-tree where the root of this tree corresponds to the
original problem and the leaf nodes correspond to procedures that are solved directly. The
following result (Reif and Sen 16]) will be used to bound the running time of such algorithms.

LEMMA 2.2. Given a process-tree that models the recursive algorithm, which has the
property that a procedure at depth from the root takes time Ti such that

P[Ti > k(eo)icot logn] < 2-)’clgn,

all the leaf-level procedures are completed in O(log n) time.

We shall also use a straightforward generalization of the above result where the process
tree is modified in the following manner. Instead of all the subroutines from a node proceeding
independently, all the subroutines for a fixed (constant) depth subtree are required to finish

638 JOHN H. REIF AND SANDEEP SEN

Contract into
single node

FIG. 2. By contracting subtrees ofafixed depth, we get another tree satisfying the preconditions ofLemma 2.2.

before proceeding to the next level of subtrees. This can be reduced to the previous case if we
contract a subtree of fixed depth (see Fig. 2) into a single node of the tree. The time taken at
any node of this new (contracted) tree also satisfies the property required by Lemma 2.2 with
appropriate adjustments in the constants. This follows from the observation that at any level
of the process-tree all the procedures terminate in (log n) time, and if the process-tree is of
constant depth, then clearly the total time is also O(log n). Thus any contracted node that is
actually a subtree of constant depth satisfies the precondition of Lemma 2.2. Consequently,
we can prove the following result on similar lines as the previous lemma.

COROLLARY 2.3. All the leaf-level procedures of this modified tree will terminate in
(log n) steps.
The above two results will be used repeatedly in the rest of the paper.

3. Binary search without concurrent reads. One of the frequently encountered prob-
lems in the case of sequential and parallel algorithms is that of doing a binary search on a tree
structure. In particular, given a binary tree of depth O(log n) whose leaves represent certain
intervals and O(n) keys with one processor per key, we would like to locate the interval con-
taining the key in O (log n) parallel time for each key simultaneously. This problem is trivial in
a model allowing concurrent reads. However, the problem becomes more complicated when
concurrent reads are not permitted in the model, which is the case with interconnection net-
works. The simple algorithm uses concurrent reads in an inherent fashion, and for situations
where the distribution of the keys is not known, this problem appears even more formidable.
To make the exposition simpler we shall first describe a scheme for the EREW PRAM and
then modify it for the butterfly network. We also note that in certain cases where the intervals
and the keys are chosen from the same total ordering the problem reduces to that of merging,
which can be done efficiently. However, we are concerned about cases where the intervals
may induce an ordering different from the ordering among the keys (see Fig. 3).

We shall look at a special case where the number of leaves is n for 0 < < and the
search tree is roughly balanced, so it has depth O(log n). The basic strategy is the following.
We first try to get a reasonably accurate estimate of the number of keys associated with each
of the leaf nodes. Following this, we simulate an interconnection network like the butterfly

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 639

and allocate an appropriate number of subnetworks based on the estimate. Next we route the
keys to their destination subnetworks using a scheme similar to the SDR used in Flashsort.

d e f

FIG. 3. Points 4 and 5 are in different relative orderings with respect to each other and the segments.

The analysis for SDR carries through in this case, although some of the nodes of the
splitter tree may be artificial, i.e., both edges departing from a node may lead to the same
interval (which is a large subnetwork in our case). We show that each of these steps succeeds
with high probability.

To obtain an estimate of the number of keys in each range, we make use of a technique
used earlier in Reif and Sen 16] and Rajasekaran and Reif 14]. The result can be summarized
in the following manner. Unless otherwise mentioned, we shall use the notation SI to denote
the cardinality of set S.

LEMMA 3.1. Let Sj, < j < m < n, be disjoint subsets such that im=l Sil n. If we
sample elements independently and uniformlyfrom the union ofthe subsets with probability p
and nj is the number ofelements in the samplefrom Sj, thenfor all j such that pISs[>_ d log n,

nj is within a constantfactor of p[Sjl with high probability. Here d is a constant and the ratio

ofnj to ISj[depends on d.
In the context of our problem each subset Si is an interval and Sil Ni, the number of

keys in the ith interval. As a consequence of this lemma, we set aside max{d log n /p, Ej
space for each interval. E) is an estimate for Nj computed from n) and is O(1/p. nj). Note
that for most applications we choose a value of p such that md log nip < n. We start by
selecting each key with probability 1/n-; the exact value of/3 will be determined later.
From Chernoff bounds, it follows that the number of keys in the sample is O(n) with high
probability. For each of these keys, we can determine to which interval they belong by using
a brute-force method; for example, simply checking each key against every interval. This can
be done in O(log n) time if we choose +/ < 1. From the previous lemma, it follows that
if Ni exceeds cn- log n, where c is a constant independent of n, we can get estimates E; (of
Ni) within a constant factor. So we can set aside max(cn 1-t log n, E) space for each interval.
For n -t. n log n < n, the total space can be bounded by kn for some constant k. From
the previous two inequalities involving it can be seen that < 0.5. A possible choice for
the parameters and/3 can be 0.49 and 0.5, respectively. After routing (i.e., by simulating a
bounded queue butterfly network), we have the keys in the appropriate interval. We can now
sort them in 0(log n) time and determine exactly how many keys there are in each interval.

3.1. Binary search and splitter-directed routing. From the scheme described in the
previous paragraph, we set aside max(cn- log n, Ei)-sized subnetwork for keys in interval
i. The number of rows allocated to a particular interval j is E!L. The total number of packets

640 JOHN H. REIF AND SANDEEP SEN

that arrive at any fixed row (that is over all the L ranks) is O(L). This follows from Chernoff
bounds as the expected number of packets arriving at any fixed row is L (R) (log n)).

Remark. Note that the "subnetworks" are not isomorphic to "butterfly" networks of that
size they have to be routed to "sub-butterflies" after the termination of the splitter directed
routing when we map this algorithm to the butterfly network.

We can assume cn 1- log n divides E;, so we can refer to this size as a "unit" of a
subnetwork. We can also assume for simplicity that this is a power of two. Therefore, we
can allocate a number of "units" of subnetworks from our estimates. As seen from Fig. 4
the number of these subnetworks may not be aligned with the binary search data structure.
Henceforth, any reference to the search data structure will imply the splitter tree (of relevant
keys) for conducting SDR. More specifically, at a particular node, there could be subnetworks
allocated for a particular interval on both the left and right subtrees. We can handle this
problem as follows. Each packet that could go either left or right goes left with probability
Lk(i)/(Lk(i) + Rk(i)) where Lk(i) (Rk(i)) is the number of"units" on the left (right) subtree for the
interval k(i). The packet goes right with the complementary probability. It must be clear that
any node ofthe splitter tree can partition at most one interval and will be labeled accordingly. A
packet arriving at the node will check if it belongs to the labeled interval; if it does, then it will
branch with the probabilities mentioned previously. The probabilities for this branching can be
assigned when the data structure is set up. Setting up the data structure involves constructing
the splitter tree as in 18]. The label of each internal node can be determined easily from the
number of "units" of each interval. The number of packets going left (right) is a binomial
random variable with mean at least n 1- log n. Thus the probability that it deviates from the
mean by a small factor like 1/log n is less than l/n’ for any fixed ct > 0 from Chernoff
bounds. This imbalance factor can accumulate over the O(log n) branches through which a
packet passes during the SDR. However, since (1 + 1/logn)g" O(1), we can conclude
that in the modified SDR, the deviation in the number of packets arriving in a subnetwork
from the usual SDR is negligible with high probability.

[2,3,0.33]-"

]

FIG. 4. hltervals I-2 and 2-3 are not aligned with the binary tree. The labels at the nodes indicate the range
and the probability that a key in the range taking the left branch. Keys outside this range take the conventional routes.

We can now use arguments similar to Maggs [12] to bound the congestion. The number
of packets that enter any sub-butterfly is within a constant factor of the size of the sub-butterfly.
For a switch at rank l, at most O(L 2L-t) rows of the butterfly can be reached for a B FL.
Moreover, a switch at rank can be reached from 2 different inputs. If a packet begins at a
random node, the probability ofreaching a particular switch is 2t-z. The number ofpackets that
pass through a given switch is a binomial random variable. Using Chernoff bounds it follows
that the probability of this number (i.e., the congestion) exceetts O(L) and (> O(log n)) is
less than n -’ for any fixed c. We can therefore conclude from the remark after Lemma 2.1
that this Modified Splitter Directed Routing (to be referred as MSDR) terminates in 0(log n)
steps.

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 641

We now apply this procedure recursively in the following manner: For each interval
with Ni keys we make [Ni/n-l "copies" of the subtree whose root will be denoted by Li.
This subtree is present in the (global) shared memory and can be accessed directly. Li is the
internal node of the tree corresponding to interval i. The "copying" can be done easily in
O(log n) phases by the usual doubling strategy each phase requiring constant time. The
number of processors allocated to each of these problems is n-’. For the remaining keys,
say ri, we round it to the nearest power of 2 and "copy" a subtree with that many nodes and
apply this strategy recursively. Clearly, the problem size is decreasing as n -’, and it follows
from Lemma 2.2 that the entire procedure terminates in O(log n) time. Notice that when the
problem size becomes O(log n), we can solve the problem in O(log n) time by pipelining a
sequential search algorithm. The number of processors required at any stage of the algorithm
is no more than twice the number of keys. Thus we may conclude"

THEOREM 3.2. Given a binary search tree with O(n) leaves and a set ofn keys, we can
locate the interval (leaf) containing each ofthe n keys in O(log n) time using n processors in
an EREW PRAM.

Mapping this algorithm on the interconnection network is not straightforward since we do
not have the luxury of allocating the required space as in the case ofPRAMS. Instead, we have
to simulate a larger sized butterfly network (larger by a constant factor). Moreover, between
successive recursive stages we have to do a careful routing to set up the search tree. Unlike the
PRAM model where the search tree could be accessed directly by all processors, here we may
be forced to conduct global routing to access the relevant parts of the search data structure. So,
each recursive call could take O(log n) time. Note that the sorting algorithm is randomized.
Consequently, the expected running time increases by an O (log log n) multiplicative factor.

To circumvent the above difficulty we take a different approach. Once the problem
size becomes [O(logp n), O(logp n)] (the number of keys and the size of data structure,

respectively), we can solve the problem by emulating PRAM algorithms in an additional
O (log log2 n) deterministic time per step. Here p is some fixed integer. This has the following
consequence" we can look at a pruned search tree of size O(n / logp n) since ifwe can determine
the subtree where each key belongs to, in an additional O(log log n) time, we can complete
the entire search procedure. We need some more observations.

Given a search tree T of size IT I, we prune off the tree at a certain depth and perform a
search on this truncated tree for a set of N keys. We allocate space to the subtrees that are not
empty (i.e., there are keys that lie in the corresponding interval) in the following manner. If
the keys exceed the subtree size, then we make copies of the subtree and assign a matching
number of keys to each copy of the subtree. For the remaining keys we simply make one copy
of the subtree. Note that a subtree refers to a part of the original search data structure. Then

LEMMA 3.3. The total size ofthe subproblems is no more than TI / N. Size refers to the
quantity maximum {size ofdata structure, number ofkeys}.

Proof. For the subtrees that are full, we can charge the space to the keys in it. For the
partially full subtrees, there can be at most one for each subtree, and the lemma follows.

This lemma implies that after completing the search on the O(n/ logp n)-sized tree, p > 1,
the total space required is less than 2n, which can be simulated on the network with only a
constant factor increase in running time. Moreover, the lemma also says that if we use the
above processor allocation strategy, the size of the network required at stage of the recursion
can be bounded as follows:

LEMMA 3.4. The total size of the subnetworks at stage is no more than
i(N + ITI), where N is the number ofkeys and T is the data structure.

We shall use log log n to denote (log log n).

642 JOHN H. REIF AND SANDEEP SEN

Proof. We prove it using induction on the depth (stage) of recursion i. Clearly this holds
after the first stage (i 1) from Lemma 3.3. Assume that this is true for stage k, i.e., the total
space required is no more than k(N + ITI). In the next recursive call, we use the strategy
described previously for making "copies" and use the following charging scheme. For the
"completely full" subtrees of stage k, the space required for the completely full subtrees of
stage k + is charged to the keys. For the partially full subtrees of stage k + resulting
from "completely full" subtrees of stage k, the extra space can again be charged to the keys
since the size of the data structure in stage k was matched with the number of keys. For the
partially full subtrees from stage k, the completely full subtrees can be charged to the keys by
the previous argument. For the partially full subtrees of stage k + resulting from partially
full subtrees of stage k, they are charged to the data structure of stage k.

Hence the total amount of extra space required at stage k + is N + IT].
From the above observations, we proceed as follows. We consider first a reduced prob-

lem where the number of keys N n/logn and the size of the tree is n/log3 n. The
O(n/log n) keys are chosen uniformly at random, and the tree is pruned to this size. The
processor-allocation strategy at recursive stage j is to allocate subnetworks proportional to
size (loglogn j)(]T/.] + hi) for a subproblem with subtree size]Til and ni keys. We post-
pone the discussion of processor allocation to the next section; however, we make note of the
following fact.

Since the IT/]’s are identical and ni <]Ti], the network can be partitioned into equal-sized
subnetworks proportional to IT,. I. The motivation for this is that such a partitioning can be
done relatively easily (cf. Lemma 3.5). The drawback is that the space requirement could grow
by a factor of two at each recursive level (Lemma 3.3), so we set aside space proportional
to 21glgn-J]Ti] at stage j. Since Yi]Ti] can be bounded by the total number of keys, i.e.,
n/log n, the space requirement is O (n). Even if the number of recursive levels is greater than
log log n (but still O(log log n)), we can conduct a global routing after every log log n stages
so that the size is no more than 2n after each of those processor-allocation procedures.

From the previous lemmas, we have sufficient processors to carry out the reduced search
problem. If the keys are chosen uniformly at random with probability 1/log n, then for all
the subtrees of size log3 n that have more than logZn keys we have very accurate estimates
(Lemma 3.1). So we can set aside max{c log2 n, E}-sized subnetworks for subtree where

El is an estimate. Note that cn/logn + -4 E is O(n) so wecan perform the SDR on all the
n keys this time. Subsequently we count explicitly the number of keys in each subtree and
allocate subnetworks with the maximum problem size of O (log n). We can then emulate any
PRAM algorithm adding O(log log n) to time complexity.

3.2. Load balancing and processor reallocation. The previous strategy for processor
allocation would work if the size of the subproblems always matches the sub-butterfly size;
however, it may not always be the case. So we have to design a more general processor-
allocation procedure that can be done dynamically and also evenly distribute the work load
among the sub-butterflies. If all the subproblems are of the same size, then such a load
distribution can be achieved easily.

LEMMA 3.5. Given problems Pi of identical sizes, such that Ip <- N, where N is
the size of the butterfly network, the problems can be allocated to sub-butterfly networks A/’i
satisfying cll IPi I. Here c is a constant less than 6.

Proof Let p be the largest number less than or equal to pi that is of the form k. 2k where k
is an integer. For Pi > 2.22, the ratio Pi/P is less than 3. Let N h. 2h and p 1.2t. Then
from Fact 1, the butterfly network can be rank-partitioned into Lh/1] parts, each consisting of
2h-t sub-butterflies of size p. Assuming that h/1 > 1, the "unused" part of the butterfly is
less than 1/2, where by "unused" part we are referring to the h ([h/1) ranks. To each

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 643

sub-butterfly of size p in each partition we allocate 2 problems of size [Pi [. This achieves the
required ratio as stated in the lemma.

The previous lemma in conjunction with Fact 2 guarantees that if all problems are of the
same size, then the processor allocation achieves roughly the same work-load distribution as
in PRAM (as is the case with binary search). However, it is not clear as to how to do the
same when the problems may be of varied sizes. Instead, we aim for a weaker result than
Lemma 3.5.

Let us denote the subproblem j by 7)j and a subnetwork (which may not be topologically
equivalent to a butterfly network) to which the subproblem is allocated by J..

LEMMA 3.6. Given that Y’ [’]’)j[C N, where N is the total size of the network and
constant, there is a processor-allocation scheme such thatfor all j, [’Pj[< c2[Jj’[where c2 is
another constant. Moreover, ifsome algorithm ,4 takes time O(log lT)j I), ot > 1, forproblem
7)j on a butterfly network, then the allocation scheme ensures that the algorithm running in
parallelfor all the subproblems terminate in O(log N) time.

Note that the running time for algorithm 1 depends on N and not simply on]7)j] as in
the case of PRAM.

Proof. Assume that the network is of size M > k I’Pjl since we can always simulate
a network larger by a factor of k. This constant k will compensate for the constant c and

simplify the proof while slowing down the network only by a constant factor. Let N =/2
and M h 2h. Let Si, >_ O, denote the set of subproblems whose sizes are in the range
[h/2i]2 [/2i] and [h/2i+lj21/2i+’l. For notational simplicity we shall denote [h/2ij by hi.
Note that hi / hi+l < 4 for h > 4. Form groups by sorting the sizes of the problems.

The idea is to allocate contiguous rows of the network to each Si. For problems in Si,
we make mi [h/hiJ horizontal partition in the network, each of hi ranks. In S/ let ki,j
denote the set of problems of sizes between (hi j) 2hi-j and (hi j 1) 2’;-j-l. Let
ri,j [ki,j[. 211i-J/mi rounded to the nearest integer, which is the number of rows allocated
to problems of ki,j. Allocate two problems to each hi 2h-j "rectangular partition."

At most 1/2 the number of ranks is unused when m horizontal partitions are created. At
most 3/4 of the space within each rectangular region is unused since hi hi+l < 4. Moreover,
for each 1, 2 /, at most 2 rows are unused viz., h 2+l processors. In addition,
we may have to double the number of rows so that Zi ki,j add up to a power of two for the
butterfly network. From the previous bounds on the amount of "unused" space, one can verify
that by choosing k > 64, the above scheme succeeds.

Note that for each problem size within Si only the bottom-most hi ranks form a sub-
butterfly. So for problems in Si, we require m times the time required to execute an algorithm
,,4. For logarithmic time complexity of 1 the total time in each Si is clearly O(log N). A
similar observation applies to the case

The above two lemmas do not directly imply a general processor-allocation strategy. Even
in the simple case where all problems are of the same size, if we were to continue with this
scheme recursively, a network could be loaded by a factor of approximately c2 in the next
recursive call. By "loading" we mean the ratio of the subproblem to the subnetwork size

(which is unity in the beginning), and this is also a lower bound on the slow down of the
algorithm. This is undesirable if the depth of recursion is O(loglogn). However, we can
use the previous lemmas in the following useful manner. We can apply them for a constant
number of stages of recursive calls without increasing the run time by more than a constant
factor (in every call the load on a processor increases by a constant factor). We shall show
that this suffices for our processor-allocation strategy, where we redistribute the load "evenly"
after a fixed number of stages of recursive call. The network topology, where the subnetworks
are of sizes h2’ (h is an integer) necessitates this kind of rebalancing strategy.

644 JOHN H. REIF AND SANDEEP SEN

We shall start with a special case where the network size is h2h where h 2 for some
integer 1. In two stages of recursive call we can reduce the subproblem sizes to 2’/2. One call
is not sufficient since the subproblem sizes could be larger than n 1/2, which is 2’/2+lg’ in this
case. Now we can pack h/2 subproblems into a subnetwork of size (h/2) 2h/2. Moreover,
there are 2.2’/2 subnetworks of this size (Fact 1), which implies that the entire network is
being used instead of a fraction of it. Now we are in subnetworks of size (h/2). 2/2, and hence
the procedure can be applied inductively. Notice however that we have h/2 subproblems in
the network (instead of one) and we have to use Lemma 3.6 to allocate subnetworks, thereby
loading the subnetwork by a constant factor in the next recursive call. But this is only for a
fixed (at most 2) stages of recursive call, and hence we can maintain the same asymptotic run
time. Moreover, we also observe the following.

LEMMA 3,7. If a set ofprocessors is initially loaded by a factor), then this loadfactor
does not increase during the course of the processor-allocation strategy.

To generalize this scheme to an arbitrary value of network-size, we reduce the problem
sizes to 22k for some k. This can be done in a constant number of recursive calls since
22a+ (22a)2. Using Lemma 3.6, we can allocate subproblems such that only a constant
fraction ofthe network is unused. This happens if 2’ does not divide h evenly, and consequently
some processors may be loaded by a factor of 2. But from this stage we can use the scheme
described in the previous paragraph without increasing the load factor any further (Lemma
3.7).

We summarize our result as follows.
THEOREM 3.8. Given a binary search tree with O(k) leaves, we can perform binary

searchfor 0 (k) keys in 0 (log k) time in a butterfly network using k processors.
In a more general scenario, as will be required for the applications in the next section,

the subproblems could be of different sizes. However, a key fact is that we can bound the size
of the maximum-sized subproblem by n l-E where n is a sample size (similar to the previous
case). Let [i] denote the largest number less than that is a power of 2, i.e., if [i] 2j, then
2j _< < 2j+l. By choosing the sample sizes appropriately (n for some > 0), we can
reduce the maximum subproblem size to 2lhl. This may require more than one recursive call,
each of which is handled using the processor-allocation scheme of Lemma 3.6.

We then greedily pack as many subproblems as we can in a subnetwork of size [h] 2I1.
This is done by sorting the subproblem sizes and an application of parallel prefix followed
by actually routing the subproblems to the assigned subnetworks. We pack in subproblems
as long as there is space, so that we do not "load" a subnetwork by more than a factor of
(1 + 1/log n l-E) (specifically, + / h since we are packing at most h + subproblems in a
network that can accommodate h subproblems).

We apply this procedure recursively such that the extra loading factor at stage of recursion

is no more than + 1/log n(-); Note that in the first stage of recursion, we could misuse a
constant fraction of the network (because of problem size mismatch), but thereafter the degree
of misuse can be bound by the above quantity by our processor-reallocation strategy. If the

]-]- O(log log n)subproblems are never smaller than log n, then the load factor can be bound by ti= (1 +
1/logn (1 -e)i). If the smallest term is larger than log logn, then the above product is
bounded by e’, where ot is a constant. Note that the "load factor" is maintained inductively in
the subnetworks, by redistribution of work load. The slowdown at any stage is at least 2 and
no more than e’.

4. Applications to computational geometry. In this section we apply the techniques
developed in the previous sections to map some geometric algorithms efficiently on the but-
terfly network. The description relies partly on the work of the authors on randomized PRAM

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 645

algorithms. For a better understanding of the original algorithms, the reader is encouraged to
refer to the papers 17], 16].

4.1. Searching in arrangements. We focus our attention on the following problem.
Given an arrangement of n lines, , < 1/3, we want to find out for n given points the region
to which it belongs. In particular, we would like to do this in O(log n) time on a butterfly
network. Dobkin and Lipton had described a very simple method for solving this problem
using the following data structure. Find out all the pairwise intersections (there are n2 in this
case) and project them on the X-axis. Within each interval, the lines can be totally ordered and
one can set up a binary tree corresponding to this ordering. Thus, there are n2 binary trees
each of size n To find the region (which is a trapezoid by the above partitioning scheme) to
which a point belongs, we do two binary searches one along each direction.

To implement this algorithm in parallel, the data structure can be set up very easily in
parallel by sorting. To search n points, we first sort the n points by their x coordinates and
merge them with the endpoints of the intervals. This saves the binary search in the x-direction.
If Ii is the set of points in the ith interval, we allocate a subcube of size Ii + n nodes. This
is done using the network partitioning scheme of Lemma 3.6. Since n + n3’ < 2n, for
appropriate choice of , and moderately large n, this can be done by simulating a network
twice the size. The binary search can then be done within each subnetwork in O(logn)
time using the procedure outlined in the previous section. Thus the overall algorithm runs in
0 (log n) time.

THEOREM 4.1. Given n points on the plane and an arrangement of m lines, m < n 1/3,
for each of the n points, the (unique) region of the arrangement containing the point can be

identified in O(log n) in an n-node butterfly network.
We shall see in the next section that these trapezoidal regions define a finer partition of

equivalence classes, which are the regions in the original partition.

4.2. A framework for randomized divide-and-conquer. Given a set of nonintersecting
line segments and points, we wish to determine for each point, the line segment(s) that lay
directly below and above each of these points. There may be 0, 1, or 2 such edges, which are
called the trapezoidal edges.

We shall recapitulate the main steps of the algorithm for trapezoidal decomposition de-
scribed in [20] in a more general context of a divide-and-conquer algorithm.

1. Select O(logn) subsets of random objects (in case of two-dimensional hulls these
were half-planes) each of size [nJ for some 0 < < 1. Each such subset is used to
partition the original problem into smaller subproblems. A sample is "good" if the maximum
subproblem size is less than O (n 1- log n) and the sum of the subproblem sizes is less than ?n
for some constant 6. From the probabilistic bounds proved in Reif and Sen 17] (for problems
considered in the paper) and Clarkson [7] (for very general situations that are applicable to our
problems), it is known that the first condition for a "good" sample holds with high probability.
However, the second condition is satisfied with probability at least 1/2.

2. Select a sample that is "good" with high probability using Polling. At least one of the
log n samples in the previous case is "good" with high probability. Polling [16] is a sampling
technique that allows us to choose a "good" sample efficiently.

3. Divide the original problem into smaller subproblems using the "good" sample. The
maximum size can be bound by O(n 1- log n).

4. Use a Filtering procedure to bound the sum of the subproblem sizes by some fixed
measure like the output size or input size. The reason for this being that the probabilistic
bounds in step bounds the sum of the subproblems by 6n. If this increase by a multiplicative
constant continues over each recursive stage, after O (log log n) depth, the input size will have

646 JOHN H. REIF AND SANDEEP SEN

increased by a polylogarithmic factor. This filtering procedure is problem dependent and
uses the specific geometry properties of a problem. The purpose is to bound the number of
processors.

5. If the size of a subproblem is more than a threshold (usually it is chosen to be O(logk n)
for some constant k), then call the algorithm recursively, else solve the problem using some
direct method.

The algorithms presented in this paper are based on this approach. However, the imple-
mentation of some of these steps depend heavily on the specific problem. The procedure used
for dividing the subproblems depends on the problem at hand, and this is also closely linked
with Polling. Polling involves selecting n/logZn input objects and partitioning them using
a random subset chosen in step instead of the entire input set. Since there are O(log n)
subsets, this saves the extra work we would have had to do if we tested the "goodness" of
the sample on the entire input. The Polling lemma 16] guarantees that with high probability
we can choose a good sample using this method. Since the test for "goodness" is carried out
independently for each of the samples, this part of the algorithm is inherently parallelizable
even on the networks. Perhaps the step that is most specific to a problem is the Filtering step
where we have to use some geometric properties of the problem.

In the context of mapping algorithms to interconnection networks, step 3 turns out to be
the most difficult. Steps and 2 are inherently parallel, and step 4 for the problems that we
are interested in, is not very involved. We shall show that step 3 reduces to searching in an
arrangements of lines in two dimensions.

4.3. Trapezoidal decomposition. For trapezoidal decomposition, we sample line seg-
ments and build its convex map (see Fig. 5). We can build this using the following brute-force
approach. For every segment endpoint, we order the line segments by their y coordinates.
For every segment, we order the projection of the endpoints those are visible from below
and above. From this information, we can construct the trapezoids by simulating "pointer-
jumping" a fixed (at most 6) number of times.

FIG. 5. Convex map ofnonintersecting line segments. Line segment ab intersects the trapezoids TI, 72, 73, T4.

LEMMA 4.2. The trapezoidal map ofn segments can be constructed in O(log n) titne in
an n3 processor butterfly network.

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 647

The remaining segments (not part of the sample) are partitioned into subproblems defined
by the trapezoidal map. The partitioning step in trapezoidal decomposition can also be reduced
to the problem of searching in arrangements of linear constraints in two dimensions (see Reif
and Sen [17]). This is also known as the locus method where the problem reduces to finding
the region of the arrangement in which a query point lies. These regions are preprocessed so
that after the point location one has to perform a table look-up to determine the answer. In this
case it is a set of trapezoids that a segment intersects. Since this can be of various lengths, it has
to be done with a little care. First the number of trapezoids is determined, which is an integer,
and then an appropriate number of processors is delegated the responsibility of determining the
actual trapezoids. This allocation is done with the help of a prefix computation. Subsequently,
each of these processors do a table look up. The table look-up is done by emulating a single
step of the CREW PRAM in 0 (log n) steps.

For the filtering step, we need to keep track of parts of segments that completely span a
trapezoid. Such segments within a trapezoid have to be processed for binary search such that
for endpoints lying within the trapezoid we can quickly determine its closest visible (upper
and lower) segments. This can be done in 0(log n) time using the binary search algorithm
described in 3. Moreover, only the segments that partially or completely lie within a trapezoid
are needed for further recursive calls.

At each stage we keep track for each endpoint, which are its closest (upper and lower)
segments, and hence at the end we have its trapezoidal edge(s). From this information,
we can decompose a simple polygon into one-sided monotone polygons (see Fig. 7). This
can be accomplished by an application of sorting and prefix computation (Goodrich [9]).
Using Yap’s [23] technique, further calls to trapezoidal decomposition within these one-sided
monotone polygons enable us to determine all the triangulation edges. The procedure is as
follows.

5
3

FIG. 6. Decomposition into one-sided monotone polygons. The dotted lines indicate some of the triangulation
edges. The distinguished edge is 1, 2.

Step 1. Construct the horizontal trapezoidal decomposition of the one-sided monotone
polygon, i.e., for every vertex v determine the edges of the polygon through which a horizontal
line passes v while the line is contained within the polygon. Assume that the distinguished
edge, i.e., the one with which the polygon is monotone, is horizontal.

648 JOHN H. REIF AND SANDEEP SEN

Step 2. Denote the left visible edge by l(v) and right visible edge by r(v), and let ,k(v)
and p(v) denote vertices of l(v) and r(v), respectively, which have the lower altitude.

Step 3. The set of edges E {v.(v)} U {vp(v)} form a triangulation of the polygon.
Trapezoidal decomposition also enables us to solve the problem of determining visibility

of a set of nonintersecting line segments when they are projected orthogonally. Sort the end-
points of the line segments projected on the x-direction and choose a point (say the midpoint)
in every interval. For each of these points, determine its trapezoidal edge using the trapezoidal
decomposition algorithm described above.

We can state the main result of this section as the following.
THEOREM 4.3. We can construct the trapezoidal decomposition of n segments in time

0 (log n) on an n-processor, bounded-buffer butterfly network, where n is the input size ofthe
problem. Using this as a subroutine, a simple polygon ofn vertices can be triangulated in the
same bounds.

To the best of our knowledge, for the above problems, no matching algorithms are known
even on the EREW PRAM model.

4,4. Two-dimensional convex hulls. We need the following preliminary results"
LEMMA 4.4. The convex hull ofn, ot < 1/2, half-planes can be constructed in O(log n)

time in an n-node butterfly network.
Assume that the intersection is nonempty and bounded, and then a brute-force algorithm

suffices.
Given this hull and a point that lies in the final hull, we divide this hull into triangular

sectors and find out for the remaining half-planes which of the sectors they intersect. For
this we go to the dual plane and search in the arrangements of the (duals of) vertices of the
convex hull of the sampled half-spaces. This can be done using the procedure described in
the previous section the details are straightforward and are omitted for brevity.

The filtering scheme for two-dimensional convex hulls involves an application of two-
dimensional maxima. A large number of redundant half-planes like a can be identified by an
application of the two-dimensional maxima algorithm where the coordinates are the ranks of
the ordering of intersections of the half-planes on the two sides of a sector (starting from the
apex). For example, in Fig. 7 the coordinate corresponding to b dominates that of a.

(a) (b)

FIG. 7. In case (a), line a is completely occluded by b. h case (b), line c is occluded by d and e but not by any
one ofthem competely. However, in the other sectors, line e is eliminated by case (a).

LEMMA 4.5. The maximal points ofn points in a plane can be computed in 0(log n) time

in an n-node butterfly network.

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 649

Proof. We use a variation of the sequential algorithm in the following manner. We sort
the points based on their x-coordinates and perform a prefix computation on the operation
maximum on this sorted set. If p, p2 Pn are the points sorted on the x-coordinates, then
we compute an array MAX such that MAXi has the maximum y coordinate for all points pj
such that j > i. If the y-coordinate of Pi is smaller than MAXi, then it is not a maximal
element.

Finally we can state the result of this section as
THEOREM 4.6. The convex hull ofn points in a plane can be constructed in O(log n) in

an n-node butterfly network with bounded buffer size.

5. Concluding remarks. In this paper, we have described a strategy for implementing
PRAM algorithms for geometric problems on fixed-connection networks. These methods
involve tackling some of the very basic problems, like binary search and dynamic load bal-
ancing that we take for granted in PRAM models. Our techniques use a number of ideas from
Flashsort, but they have to be modified to handle more difficult situations, namely, searching
in partial orders and dynamically allocating subnetworks to recursive calls.

An important goal of our research is to build a hierarchy of fundamental geometric al-
gorithms for fixed-connection networks similar to that of PRAM algorithms. Two important
problems in this list include those of constructing two-dimensional Voronoi diagrams and
three-dimensional convex hulls in optimal (or near-optimal) time.

6. Appendix.

6.1. Splitter-directed routing. Let X be the set of cN keys that are totally ordered by
the relation <. V is the set of nodes in the network. Suppose that for some (1 < _< n)
we are given a set of splitters E c_ X of size IEI 21 1. We index each splitter
or[w] 6 E by a distinct binary string w 6 {0, 1} L of length less than L. Let -< denote the
ordering defined as follows" For u, v, w {0, }L, wOu -< w -< w v. We require that for all
wl, w2 6 {0, }L, o[w] < o[w2] if and only if Wl -< w2. We assume that a copy of each
splitter or[w] is available in each node V[w]. V[w] is the set of nodes with rank Iwl with row
addresses prefixed by w (same as in Reif and Valiant [18]).

Let X[,k] X where ,k is the empty string. Initially we assume that the keys of X[X] are
located in V[,k], that is, the nodes of V having stage 0. The splitter-directed routing tree is
executed in temporarily overlapping stages 0, 1. For each w 6 {0, 1} the
set of keys X[w] that are eventually routed through V[w] is defined recursively. The splitter
or[w] partitions X[w] or[w] into disjoint subsets

X[w0l- {x X[wllx <

and

X[w0] {x X[w]lx >

which are subsequently routed through V[w0] and V[wl], respectively.
In our case, we assume that after each recursive call, the subnetworks (of varying sizes

corresponding to different subroutine calls) are relabeled as if they were isolated networks.
The V[w]’s are then defined accordingly. The time analysis for this procedure is carried out

using a delay-sequence argument, and it was shown [15] that the running time is O(log n)
time in a B Fn.

6.2. Probabilistic inequalities. We say a random variable X upper bounds another ran-
dom variable Y (equivalently Y lower bounds X) if for all x such that 0 < x _< 1, Prob(X _< x)
<_ Prob(Y <_ x).

650 JOHN H. REIF AND SANDEEP SEN

A Bernoulli trial is an experiment with two possible outcomes, namely, success and failure.
The probability of success is p.

A binomial variable X with parameters (n, p) is the number of successes in n independent
Bernoulli trials, the probability of success in each trial being p. The probability massfunction
of X can easily be seen to be

Prb(X < x) (n) pk(1-
k

The tail end of the Binomial distribution can be bounded by Chernoff bounds. In partic-
ular, the following approximations due to Angluin and Valiant are frequently used:

(1)

(2)

Prob(X > m) < (np)mem-np

Prob(X < m) <

(3) Prob(X _< (1 -e)pn) < exp(-e2np/2),

(4) Prob(X > (1 + e)np) < exp(-e2np/3)

for all0<e < 1.

REFERENCES

[1] A. AGGARWAL, B. CHAZELLE, L. GUIBAS, C. O’DUNLAING, AND C. YAP, Parallel computational geonetry,

Algorithmica, 3, (1988), pp. 293-327.
[2] M. ATALLAH, R. COLE, AND M. GOODRICH, Cascading divide-and-conquer: A techniquefor designing parallel

algorithms, SIAM J. Comput. 18 (1989), pp. 499-532.
[3] S. CHANDRAN, Merging in Parallel Computational Geometry, Ph.D. thesis, University of Maryland, College

Park, MD, 1989.
[4] A. CHOW, Parallel Algorithms for Geometric Problems, Ph.D. thesis, University of Illinois at Urbana-

Champaign, 1980.
[5] K. CLARKSON, A probabilistic algorithm for the post-office problem, Proc. of the 17th Annual STOC, 1985,

pp. 174-184.
[6] New applications ofrandom sampling in computational geometry, Discrete Comput. Geom., 2 (1987),

pp. 195-222.
[7] Applications of random sampling in computational geometry II, Proc. of the 4th Annual ACM Sym-

posium on Computational Geometry, 1988, pp. 1-11.
[8] R. COLg, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[9] M. GOODRiCh, Efficient Parallel Techniques for Computational Geometry, Ph.D. thesis, Purdue University,

1987.
10] D. HAUSSLER AND E. WLZL, e-nets and simplex range queries, Discrete Comput. Geom., 2 (1987), pp. 127-152.

[11] A. KARUN AND E. UPFAL, Parallel hashing an efficient implementation ofshared memory, Proc. of the 18th
Annual STOC, 1986, pp. 160-! 68.

[12] B. MAGGS, Locality in Parallel Computation, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1989.

13 R. MILLER AND Q. STOUT, Efficient parallel convex hull algorithms, IEEE Trans. Comput., 37 (1988), pp. 1605-
1618.

[14] S. RAJASEKARAN AND J. REIF, Optimal and sublogarithmic time radomized parallel sorting algorithms, Tech.

report, Aiken Computing Lab, Harvard University, Cambridge, MA, 1986; SIAM J. Comput., to appear.
[15] A. RANADE, How to emulate shared mentor),, Proc. of the 28th IEEE FOCS, 1987, pp. 185-194.
[16] J. REIF AND S. SEN, Polling: A new random sampling technique for computational geometry, Proc. of 21st

Annual STOC, 1989, pp. 394-404.

RANDOMIZED ALGORITHMS ON FIXED CONNECTION NETWORKS 651

17] J. REIF AND S. SEN, Optimal randomized parallel algorithms for computational geometry, Algorithmica, 7
(1992), pp. 91-117.

[18] J. REIF AND L. VALIANT, A logarithmic time sortfor linear size networks, J. Assoc. Comput. Mach., 34 (1987),
pp. 60-76.

19] R. REISCHUK, Afastprobabilistic parallel sorting algorithm, Proc. of the,22nd IEEE FOCS, 198 l, pp. 212-219.
[20] S. SEN, Random Sampling Techniques for Efficient Parallel Algorithms in Computational Geometry, Ph.D.

thesis, Duke University, Durham, NC, 1989.
[21 B. MAGGS, T. LEIGHTON AND S. RAO, Universalpacket routing algorithms, Proc. of the 29th IEEE FOCS, 1988,

pp. 256-269.
[22] L. VALIANT, A schemeforfast parallel communication, SIAM J. Comput., 11 (1982), pp. 350--361.
[23] C. YAP, Parallel triangulation of a polygon in two calls to the trapezoidal map, Algorithmica, 3 (1988),

pp. 279-288.

SIAM J. COMPUT.
ol. 23, No. 3, pp. 652-661, June 1994

() 1994 Society for Industrial and Applied Mathematics
012

COMMUNICATION-SPACE TRADEOFFS
FOR UNRESTRICTED PROTOCOLS*

PAUL BEAMEf, MARTIN TOMPAf, AND PEIYUAN YAN

Abstract. This paper introduces communicating branching programs and develops a general technique for
demonstrating communication-space tradeoffs for pairs ofcommunicating branching programs. This technique is then
used to prove communication-space tradeoffs for any pair ofcommunicating branching programs that hashes according
to a universal family of hash functions. Other tradeoffs follow from this result. As an example, any pair of communi-
cating Boolean branching programs that computes matrix-vector products over GF(2) requires communication-space
product f2 (n2), provided the space used is o(n / log n). These are the first examples of communication-space tradeoffs
on a completely general model of communicating processes.

Key words, communication complexity, lower bound, tradeoff, branching program, universal family of hash
functions

AMS subject classifications. 68Q05, 68Q10, 68Q22, 68Q25

1. Communication and space. The amount of communication required among pro-
cessors cooperatively performing a computation is often the dominant factor in determining
the efficiency of parallel or distributed systems, in both practical and theoretical terms. In
addition, communication complexity has found surprising applications in the complexity of
Boolean circuits (Karchmer and Wigderson 14], Raz and Wigderson 19]), Boolean decision
trees (Hajnal, Maass, and Turfin [13]), combinatorial optimization (Yannakakis [23]), VLSI
(Aho, Ullman, and Yannakakis [3], Lipton and Sedgewick [16], Mehlhorn and Schmidt [18],
Yao [25]), and pseudorandom number generators (Babai, Nisan, and Szegedy [5]).

Nearly all the previous work on the communication complexity of various problems has
focused on their communication requirements alone, in the absence of any limitations on
the individual processors. Lam, Tiwari, and Tompa 15] initiated the study of communication
complexity when the processors have limited work space. As is customary, the systems studied
consist of two communicating processors that are given private inputs x and y, respectively,
and are to output some function f(x, y). With no restriction on the workspace it is impossible
to prove superlinear lower bounds on the amount of communication, since one processor can
send its entire input to the other, which then computes and outputs f(x, y). In contrast, Lam,
Tiwari, and Tompa proved several nonlinear lower bounds on communication in the straight-
line model, when space is limited. For example, one of their results of particular relevance to

what follows is that multiplication of an n n matrix by an n-vector in the Boolean straight-
line model with one-way communication requires communication C (R)(n2/S) when the
processors’ workspace is restricted to S.

In this paper we remove the restrictions of straight-line computation and one-way com-
munication, proving for the first time communication-space tradeoffs on a completely general
model ofcommunicating processes. This result is analogous to Borodin and Cook’s time-space
tradeoff for sorting on a general sequential model [7].

More specifically, we introduce the notion of communicating branching programs. We
use these to demonstrate that if one of the branching programs is given a member h of a
universal family of hash functions (Carter and Wegman [9], [10]) and the other is given x

*Received by the editors October 1, 1992; accepted for publication (in revised form) February 17, 1993. This

material is based upon work supported in part by National Science Foundation grants CCR-8858799 and CCR-
8907960 and by IBM Research Contract 16980043.

Department of Computer Science and Engineering, FR-35, University of Washington, Seattle, Washington
98195.

Mathematics Department, Lycoming College, Williamsport, Pennsylvania 17701.

652

COMMUNICATION-SPACE TRADEOFFS 653

and their goal is to compute h(x) cooperatively, then their communication C and space S
must satisfy the tradeoff CS f2(nm), where h maps n-bit inputs to m-bit outputs, provided
S o(n ! log m). As an example, any pair of communicating Boolean branching programs
that multiplies an n n matrix by an n-vector over GF(2) satisfies CS f2 (n2), provided
S o(n/log n). Similar applications hold over more general finite fields and for other hash
functions such as arithmetic over large finite fields, convolution, and matrix multiplication.

If a single processor can compute f(x, y) in time C and space S, then a system of
two processors can compute f(x, y) in communication O(C) and space O(S), simply by
communicating the result of every instruction executed by either. Thus, the lower bounds
outlined above imply the corresponding time-space tradeoffs of Grigoriev [12] for straight-
line programs and Abrahamson [2] for branching programs. The converse, however, is false.
Whereas the time T and space S must satisfy TS f2 (n 2) when computing the discrete Fourier
transform [2], [21], [27] or sorting [6], [8], [21], Lam, Tiwari, and Tompa [15] demonstrated
that both of these functions can be computed in linear communication steps and O(log n)
space simultaneously. Thus, these results strictly generalize previous time-space tradeoffs.

2. Communicating branching programs. The general framework for dealing with prob-
lems of two party communication requires an accurate notion of both the computational power
of the two parties involved and their method of communicating with each other. A restricted
model in which each party executes a st.raight-line program was defined by Lam, Tiwari, and
Tompa [15]. In their model each straight-line program is augmented with send and receive
instructions. They leave open the question of defining an appropriate nonoblivious model.

Since branching programs have proved to be useful sequential models for the simultaneous
measure of time and space [1], [2], [6], [7], [8], [27] it is natural to use them to model the
communicating parties. Making the analogous changes to branching programs that Lam,
Tiwari, and Tompa made to straight-line programs leads to the following model.

A communicating pair of (Boolean) branching programs consists of two branching pro-
grams, known as the X-program and the Y-program, that have input vectors x
and y 6 Y {0, }nr, respectively. The X-program is a labeled directed acyclic graph with a
designated start node, and each of whose nodes has outdegree 0 or 2. Each node of outdegree
2 is labeled either by an index in n x} or by receive, and its two emanating edges are
labeled 0 and 1, respectively. In addition to its 0 or label, an edge may be labeled either by
an output statement of the form zj 0 or zj or a communication statement of the form
send(0) or send(l). The Y-program is defined analogously.

The pair of branching programs computes a function f X Y -- Z

{0, }_<,z in

the following natural way. Each program accesses its portion of the input and, starting at its
start node, operates like a conventional branching program by following the edge labeled xi
(respectively, yi) when encountering a node labeled i. Outputs are produced according to the
output label on this edge, if any. When a program encounters a receive node it waits until
the other program traverses an edge labeled send(b), and then the receiving program follows
the edge labeled b. Similarly a program executing a send is blocked until the other program
reaches a receive node. When a program reaches a node of outdegree 0, it halts. We require
that each output bit may only be produced once on any given input pair. The function f is
computed correctly on inputs x and y if the union of the outputs produced by the two programs
comprises the bits of f(x, y).

The space of each branching program is the base 2 logarithm of the number of its nodes.
(This is the standard definition for branching programs [8], motivated by the fact that each
node represents a different configuration of the program.) The space of the pair of programs is
the maximum of the space of the two branching programs, and the communication is the length
of the longest sequence of send-receive pairs executed on any input (x, y). The definitions

654 PAUL BEAME, MARTIN TOMPA, AND PEIYUAN YAN

can be generalized to communicating R-way branching programs for any R [7].
This model is a very natural one and a very general one as well. It can simulate, for

example, two communicating space-bounded random access machines with a common write-
only area for their output values.

One aspect of communicating branching programs that is somewhat subtle is the way in
which output values are produced. Since all branchings of one of the programs that do not
affect its communication with the other program are hidden from that other program, output
values may be produced by one branching program without the explicit knowledge of the other
branching program. In fact, all the bits communicated by the pair of branching programs may
not be sufficient to determine the value of the function. However, the model in which all
output values are communicated explicitly is a useful special case. We say that a pair of
communicating branching programs is open if and only if the natural encoding of each output
statement produced by either processor is communicated bit by bit to the other processor.

3. The general lower bound. The technique we develop here is an extension of the
technique of Borodin et al. [7], [8] for time-space tradeoffs on sequential branching programs.
Being purposely vague for the moment, their technique requires the following"

(1) a probability distribution on the set of inputs such that, with high probability, a large
number of output bits are produced on any given input, and

(2) a proof that, given the distribution in (1), for any way of fixing a limited number of
input variables, the probability that an input whose variables are so fixed produces a given set
of k output bits whose values are fixed in any given way is exponentially small in k.

We develop a similar pair of conditions that allow proofs of communication-space trade-
offs. We first state our general technique for open pairs of communicating branching programs
since this is the most natural argument. Then we outline how it can be extended to arbitrary
pairs of communicating branching programs.

In order to motivate the properties that are appropriate for showing lower bounds for pairs
of communicating branching programs, we first develop some facts about their operation.

Fix some c > 0 and any pair (u, v) of nodes in the pair of communicating branching
programs, u in the X-program and v in the Y-program, and consider the action of the branching
programs on input pair (x, y) starting at (u, v). For each input pair (x, y) we can follow the
paths that the computation would take starting at (u, v) and stop when either a total of c bits
of communication have been sent in both directions or the programs halt. (A third possibility
is that there is no consistent computation on input (x, y) starting at (u, v), but any input
(x, y) that reaches (u, v) will have a consistent computation. In the following definitions, we
consider such an input pair (x, y) for which there is a consistent computation.) This produces
a string of up to c communication bits, with fewer than c bits only if the programs halt before
c bits of communication have been sent. Let ,(,. (x, y) be the following representation of
this sequence of up to c bits communicated on input (x, y) starting at (u, v)" represent each
communicated bit b by two bits, using the extra bit to indicate which program sent b. For each
string c 6 {0, }_<2c we can define a set

(x,y)=}.R,,) {(x y) X Y I’,.)
A set R

_
X x Y is a rectangle if and only if there are sets A

X and B __. Y such that

R=AxB.
LEMMA 3.1. Let (u, v) be a pair ofnodes in a pair ofcommunicating branching programs,

u in the X-program and v in the Y-program. The elements of {R(,,, o 6 {0, }_<2c} are

disjoint rectangles in X x Y whose union contains all input pairs (x, y) that reach (u, v).
Proof. The fact that the sets R(,,,) are disjoint is immediate from their definition. It is also

clear that if (x, y) reaches (u, v), then ?,c,.) (x, y) ot is defined and so (x, y) 6 R(’,,,). The

COMMUNICATION-SPACE TRADEOFFS 655

fact that each R,,v) is a rectangle follows by standard arguments in communication complexity
(Yao [24]). It is proved inductively on the prefixes of

We are now ready to state properties of a function that make it possible to prove communi-
cation-space tradeoffs. These properties will depend on certain parameters p, m,/3, q, a, and
K that will be set in later applications.

If f(x, y) z, we will call the bits of x and y input values and the bits of z output values.
For a function f X Y --+ Z and a distribution 79 on X Y, the two properties are as
follows:

Property A. There are 0 < p < and a positive integer m such that

Pry[f(x, y) has at least m output values > p.

(Recall that, as (x, y) varies, f(x, y) may have varying lengths.)
Property B. There are 0 </3 < 1, 0 < q < 1, a _> 2, and a positive integer K such that,

for all positive integers k < K, the following holds: Let R c_ X Y be any rectangle such
that Prv[(x, y) 6 R] >_ q. Then, for any set V {zi, b zi. bk} of k output values,

Pr79[f(x, y) is consistent with V

THEOREM 3.2. Suppose that for f" X Y Z there is a distribution 79 on X Y
such that Properties A and B hold with p > max(a2-s+ 2am). Then any open pair 79 of
communicating branching programs computing f using space S and communication C must

satisfy

C. S f2(m log,(1//3) min(K, log(p/q))).

(Note that, although the hypothesis p > a2-s+l refers to the space bound, it is even
weaker than the relatively innocuous assumption p > 2a/n, where n is the number of input
bits, since reading this many bits requires S > log2 n. Note also that, since there are 2 choices
for k output values and Property B must hold for all choices of output values, 2ka/k > 1.
Thus, log, (1//3) < log, 2 + / k < 2, so log, (1//3) contributes at most a constant factor to
the lower bound. However,/3 may be close to 1, so the log,(1//3) factor in the lower bound
may be close to 0.)

Proof. Let 79 be an open pair of communicating branching programs computing f, and
let C and S be the communication and space, respectively, used by 79.

Case (S + 2 > logz(p/q)/4). As explained above, log,(1//3) < 2. By Property A and
the fact that 79 is open, C > m. Thus,

6CS > 2C(S + 2) > m log,(1//3)logz(p/q)/4.

logz(p/q)- S- 1]) >Case 2 (S + 2 < logz(p/q)/4). Let c min(C, [
min(C,/2S + 4- S- J) > 0. Fix any pair (u, v) of nodes, u in the X-program and v
in the Y-program of 79. Fix ot 6 {0, }_<2 such that ot determines k < K output values, that
is, c contains the encoding of k output values. Let (x, y) be chosen at random according to
79. Suppose that Pr[(x, y) R,,v] >_ q. By Property B, Lemma 3.1, and the fact that 7
correctly computes f,

(1) Pr9[(x, y) reaches (u, v) (x, y) R,,o] <_ a/k.

Call R,,,) tiny if and only if Prv[(x, y) 6 R,,o)] < q. Let T,,,) be the set of ot such that

R,,) is tiny. For fixed (u, v) and varying o, Lemma 3.1 says that the sets R,, v) are disjoint
and their union contains all pairs (x, y) that reach (u, v). Let

W {or G {0, 1} -<2c Ic determines k output values}.

656 PAUL BEAME, MARTIN TOMPA, AND PEIYUAN YAN

For all (u, v) and all k < K,

(2)

Prz[(x, y) reaches (u, v) A ?’(,,v)(x, y) determines k output values]

Prz[(x, y) reaches (u, v) / (x, y) 6 R(,v)]
cEW

Prz[(x,y) reaches (u,v) (x,y)
u6WT(

+ Pr[(x, y) reaches (u, v) A (x, y)

< Prv[(x, y) reaches (u, v) (x, y) 6 R,,o)] + lT,,o)lq

22C+q + Prv[(x, y) reaches (u, v)

22+q +a Pr[(x, y)

a + 2a+q,

the last two lines following from inequality (1) and the fact that the sets R(,,.o) are disjoint,
respectively.

Inequality (2) is used in two different ways. For the first, by applying it to the start nodes
u and v of their respective branching programs, we have

(3) C > min (K, log2(P/q) S- lJ)
log2(p/q)- S- 1. Then by theFor assume to the contrary that C < K and C < [

definition of c, c C. Now choose k m. By Property A and the fact that 79 is open, k
rn < C < K, so inequality (2) holds. By the definition of c, 22’+q _< 21g-(P/q)-2+lq p/2,
so inequality (2) and Property A together yield p < a + 22C+1q _< aftm + p/2. That is,
p/2 < am, which contradicts the hypothesis p > 2am.

Now let k min(K, m [C/c] 1) in inequality (2). Suppose 79 uses exactly C’ bits
of communication on input (x, y). Divide this sequence of C’ bits into [C’/c] segments,
each consisting of c consecutive bits of communication (except possibly the last segment).
If f(x, y) has at least rn output values, then (x, y) reaches some pair (u, v) of nodes such
that ,,,,)c (x, y) determines at least m C’/c _> m C/c] _> k output values, for
otherwise fewer than m output values are produced by 79 on input (x, y). (The -1 term
accounts for the possibility that an output crosses a segment boundary.) Therefore, since
k < K and there are at most 22S node pairs (u, v),

p < Pr79[(:lu, v)((x, y) reaches (u, v)/

Yi,,) (x, y) determines k output values)]

< 22S(a[3l + 22C+q) 22Safllc + 22S22c+q < 22Saflk + p/2,

by the definition of c. Solving this yields 2S+ log2(2a/p) >_ k log2(1//3). Since p > a2-s+,
it follows that 3S >_ k log2(1//3).

Case 2.1 (K < m/[C/e] 1). Then k K. By Property A and the fact that 79 is open,
C > m, so 3CS > mKlog2(1/) > mKloga(1/).

Case 2.2 (K > m [C/c] 1). Then k + m [C/e] > me/(C + c), so

COMMUNICATION-SPACE TRADEOFFS 657

(4)

(5)

12CS > 6(C + c)S
> 2(C + c)klog2(1/fl
>_ (C 4- c)(k 4- 1) logz(1/fl
> mclog2(1/

> m log(1//) min C, - log(p/q) S-

> m log(1//)min K, - log(p/q) S-

> m log)_(l//) min(g, log(p/q)/4)
> m loga(1/) min(g, log(p/q)/4).

Inequality (4) follows from inequality (3), and inequality (5) from the condition of
Case 2. [3

Theorem 3.3 extends Theorem 3.2 to the case when the pair of communicating branching
programs is not necessarily open.

THEOREM 3.3. Suppose thatfor f X x Y --+ Z there is a distribution 79 on X x Y such
that Properties A and B hold with p > max(a2-s+ 2afire). Then any pair 79 of communi-
cating branching programs computing f using space S and communication C must satisfy

(C 4- m logm). S- f2(m loga(1//3) min(K, log(p/q))).

Proof For any pair 79 of communicating branching programs, let the observable behavior
of 79 on input (x, y) be the sequence of communicated bits and up to the first m output values
produced on (x, y) by 79. Because of the structure of branching program pairs, there is no
ambiguity about the order in which communication steps occur. However, the interleaving
of the two programs’ output values between communication steps is not determined, so for
definiteness we assume that, between communication steps, outputs in the observable behavior
produced by the X-program precede those produced by the Y-program. Since each output
value is produced only once by the pair of branching programs, it is easy to see that, for any
input pair, the observable behavior may be encoded using O(C 4- m log m) bits, where each
output value is encoded using O (log m) bits that specify (1) that it is an output rather than a
communication, (2) which output bit is being produced, (3) its value, and (4) which program
produced it. Let 2C* be the maximum, over all (x, y), of the length of the observable behavior
on input (x, y). (We use 2C* as the analogue of the 2C bits used in Theorem 3.2 to encode
the communication in the strings ?’,,v)(x, y).)

The proof of Theorem 3.3 is analogous to that of Theorem 3.2, except that the commu-
nication C is replaced by the number of bits needed to describe the observable behavior, C*.
The main technical difference is in the definition of ,,,v)(x, y), which, instead of being the
string of length 2c describing the next c bits of communication on (x, y) starting at (u, v), is
now the string of the next 2c bits of the observable behavior of 79 on (x, y) starting at (u, v).
Since outputs are included in the observable behavior, the string ?,,.) (x, y) determines output
values just as the communication did in the case of an open pair of branching programs. The
crucial fact, which is easily verified, is that the new RO,,,)o, based on this definition of ?’0,,c (x, y)
still are disjoint rectangles that cover the set of input pairs that arrive at (u, v).

The remainder of the proof is identical to that ofTheorem 3.2 except for a couple of points.
The part of the proof of Theorem 3.2 where the communication is divided into segments of
length c is slightly different. When c bits of communication are replaced by 2c bits of
observable behavior, it is no longer obvious that every boundary between segments of the

658 PAUL BEAME, MARTIN TOMPA, AND PEIYUAN YAN

computation on (x, y) can be chosen to be at a pair of nodes (u, v) since an output value may
be produced along an edge and this is O(log m) bits of observable behavior as opposed to
the single bit of communication that may occur on an edge. However, because the argument
ignores any output whose production overlaps the boundary, if a boundary would naturally fall
in the middle of an edge, then the boundary may be shifted past the edge to the subsequent node
with no loss in the argument. The remaining difference is that, in the places where Property A
and openness were used to show that rn < C, in the modified proof m _< C* follows directly
from Property A and the definition of C*. The conclusion of the argument is exactly the same
with C* replacing C as required. [3

It is not too hard to see how the argument and Properties A and B can be modified to deal
with R-way branching programs (Borodin and Cook [7]) or when the output values described
in Properties A and B are of a restricted type (as in, for example, Abrahamson]).

4. I-Iash functions. We now apply the lower bound technique of the previous section
to universal families of hash functions (Carter and Wegman [9], [10]). This will allow us to
obtain lower bounds for a variety of interesting computational problems. We make use of
a beautiful analog due to Mansour, Nisan, and Tiwari [17] of a lemma of Lindsey [4], [11
concerning Hadamard matrices.

Our results (and those in [17]) use the more restrictive definition of a universal family of
hash functions given by Carter and Wegman in [10] (which they called "strongly universal"
in [10]) rather than the somewhat broader definition given in [9]. To emphasize the nature of
this stronger requirement we will call such families pairwise universal.

A pairwise universal family H of hash functions from a set X to a set Z satisfies the
following two properties for h chosen uniformly at random from H:

1. For any x 6 X, h (x) is uniformly distributed in Z.
2. For any x, x’ X with x x’ and for any z, z’ 6 Z, the events h(x) z and

h (x’) z’ are independent.
We say that a pair of communicating branching programs computes the universal family

of hash functions H if and only if it computes the function f X H --+ Z given by
f(x, h) h (x).

Of the two properties of a function required to apply our lower bound technique, Property
B is the more difficult to prove. The following lemma on pairwise universal hash functions is
critical in proving Property B for families of hash functions.

LEMMA 4.1 (Mansour, Nisan, and Tiwari [17]). Let H be a pairwise universalfamily of
hashfunctionsfrom X to Z. Let A c_ X, B c_ H, and E c_ Z. Then

Pr [h(x)E]-lE’ ’H"’E’
x6A,h6B -] <

This lemma is used by Mansour, Nisan, and Tiwari [l 7] to prove time-space tradeoffs for
computing hash functions. A somewhat weaker form of this lemma was proved independently
by Yan [22] for the special case when the family of hash functions is given by matrix-vector
product over GF(2).

THEOREM 4.2. Let 7 be an open pair ofcommunicating branching programs computing a
pairwise universalfamily ofhashfunctionsfrom X to Z using communication C and space S.
Let n [log2 IX[J, m [log2 [Z[J 1, and Z c_ {0, 1} <-re+l, where < min(log2 n, m) 3
is included to allow some slack in the output encoding. Then C S 2 (nm / l).

Proof. Let 7) be the uniform distribution on pairs (x, h). Since h(x) is uniformly dis-
tributed in Z, Property A is satisfied with p 1/2. Let R A B satisfy]R] >_ 2I(-nlxx HI,
where K n/2. For any set V {zi, b zi. b-}ofk _< K output values, let

COMMUNICATION-SPACE TRADEOFFS 659

E c Z be the set of vectors consistent with V. At most 2m+l-k+l vectors are in E so that
IEI/IZI _< 2-k-z. Then Lemma 4.1 states that

ILl /IHI ILlPrz[h(x) is consistent with V (x, h) 6 R] <]- + IRI IZI
<_ 2-- / l/v:-n IXI2-z
< 2t+l 2-k.

Thus PropertyB is satisfied withq 2-n/2, /3 1/2, a 2t+l, and K n/2. Since
< min(log2 n, m) 3, p 1/2 > 2a/n and p > 2a’, so Theorem 3.2 implies that

C S 2 (nm / l).
Theorem 4.3 extends Theorem 4.2 to the case in which the pair of communicating branch-

ing programs is not necessarily open.
THEOREM 4.3. Any pair of communicating branching programs computing a pair-

wise universal family of hash functions from X to Z with communication C and space
S-- o(n/(llogm)) satisfies C. S f2(nm/l), where n [log2 IXlJ,m [log2 [Z[1,
and Z c_ {0, }_<m+l for < min(log2 n, m) 3.

Proof Using Theorem 3.3 in place of Theorem 3.2 in the proof of Theorem 4.2,

(C + m logm)S f2(nm/l).

Since, by hypothesis, Sm log m o(nm/l), the conclusion CS 2 (nm/l) follows.
Similar statements to Theorem 4.3 can be made for each of the following corollaries. We

simply state our results for open pairs of branching programs for convenience.
In the following corollaries, we can always choose to be a constant.
COROLLARY 4.4. Any open pair of communicating branching programs com_puting the

product ofan n n matrix and an n-vector over GF(2) requires communication C and space
S such that C S f2 (n2).

COROLLARY 4.5. If r > 2 then any open pair of communicating branching programs
computing f" GF(r) GF(r)2 GF(r) given by f(x, (a, b)) a x + b (in GF(r))
requires communication C and space S such that C S f2 (n2).

The next two corollaries follow from Theorem 4.2 exactly as shown by Mansour, Nisan,
and Tiwari [17] for time-space tradeoffs.

COROLLARY 4.6. Any open pair of communicating branching programs computing the
m-bit convolution ofan n-bit string with an (n + m 1)-bit string requires communication C
and space S such that C S f2 (nm).

COROLLARY 4.7. Any open pair of communicating branching programs computing the
product of two n n matrices over GF(2) requires communication C and space S such that
C. S- f2(n3).

Corollaries 4.5, 4.6, and 4.7 are interesting in their own right and because they demonstrate
tradeoffs in cases where the lower bound is greater than the total number of inputs that the two
programs receive.

Using the natural generalization of communicating branching programs to pairs of r-way
branching programs that are allowed to send and receive values in GF(r) one can prove, either
by direct simulation or an analog of Theorem 3.2, the following analog of Theorem 4.2 for
hash functions whose domain and range are vectors over GF(r).

THEOREM 4.8. Any open pair of communicating r-way branching programs computing
a pairwise universal family of hash functions from X to Z requires communication C and
space S such that C. S f2(nm(logr)/l), where n [log IXlA, m [log,. IZlJ 1, and
Z c_ (GF(r)) <-m+l, for < min(log n, m) 3.

660 PAUL BLAME, MARTIN TOMPA, AND PEIYUAN YAN

This theorem has corollaries analogous to those of Theorem 4.2, such as the following.
COROLLARY 4.9. Any open pair ofcommunicating r-way branching programs computing

the product of an n x n matrix and an n-vector over GF(r) requires communication C and
space S such that C S 2 (n 2 log r).

5. Open questions. It is an interesting question whether or not similar bounds hold for
/x-x/matrix-vector product. The results ofLam, Tiwari, and Tompa 15] show that such results
do hold in a more restricted model in which the programs are restricted to being oblivious,
i.e., straight-line, and the communication is one-way.

A natural approach to proving such a bound would be to try to prove Properties A and B for
this problem using the distribution D employed by Babai, Frankl, and Simon [4] for proving a
distributional communication complexity lower bound of g2 (x/) for/x-x/dot product (i.e., set
disjointness) and by Abrahamson [1] for proving a time-space tradeoff of TS (n .5) on
matrix-vector product. However, this approach cannot yield any interesting communication-
space tradeoff since under this distribution, which chooses each input bit independently to be
with probability 1/ and 0 with probability (1 1/4rh-), the program with the vector can

simply communicate its value in expected O (4’- log n) bits to the matrix program, which can
store this value and perform the rest of the computation on its own.

An alternative approach would be to try to generalize the distribution on inputs that
Razborov [20] used to prove that the distributional communication complexity of the set
disjointness problem is 2 (n). Unfortunately, the fact that this distribution does not set the
values of the inputs to the two programs independently creates serious problems when trying
to generalize from a problem whose input consists of two vectors to a problem with a matrix
and a vector as input. It seems unlikely that one can maintain sufficient independence between
the inputs to the two programs while maintaining sufficient information content in the two

inputs. It may be that the oblivious one-way result is leading us astray, but it seems more
likely that we are unable to generalize it because our technique is fundamentally distributional
in nature.

The question of the communication-space tradeoff for/x-x/matrix product and GF(2)
matrix-vector product raises another interesting question. Suppose that function f on
X x Y has e-error distributional communication complexity (Yao [24], [26]) at least DE.
Under what circumstances does the function F on X" x Y given by F((xl xn), y)
(f(xl, y) f(xn, y)) have communication-space tradeoff (n DE) ? As shown by Yao [24],
[26] and extended by Babai, Frankl, and Simon [4], a lower bound DE > k can be obtained
by showing that, for an appropriate distribution on X x Y under which f takes on each value
at least a constant fraction of the time, any rectangle R, in which the probability of f(x, y)
taking on a particular value is less than e, must have total probability at most 1/2’. This
condition is very similar to our Property B, the important difference being that we require that
this be true for e much smaller than a constant, that is, for e /3 k for/3 < 1. If the only
rectangles A x B in X" x Y had A of the form A x x An, then there would be a direct
translation of distributional communication complexity lower bounds for f to those for F. It
is not clear what conditions on f will allow the handling of general A as well. The technique
of Mansour, Nisan, and Tiwari 17] and Yan [22] implies that it is sufficient to have not only a
small probability of a value in such a rectangle R but also a small variance in the probability
of the value occurring in the rows (or columns) of R.

Acknowledgments. We thank Johan Hfistad, Noam Nisan, Larry Ruzzo, and Prasoon
Tiwari for helpful comments. We are particularly grateful to the anonymous referees for their
very conscientious and constructive reviews.

COMMUNICATION-SPACE TRADEOFFS 661

REFERENCES

[1] K. ABRAHAMSON, A time-space tradeofffor boolean matrix multiplication, in 31st Annual Symposium on
Foundations of Computer Science, St. Louis, MO, Oct. 1990, IEEE, pp. 412-419.

[2] Time-space tradeoffsfor algebraic problems on general sequential models, J. Comput. System Sci., 43
1991), pp. 269-289.

[3] A. V. AHO, J. D. ULLMAN, AND M. YANNAKAKIS, Or! notions of information transfer in VLSI circuits, in Pro-
ceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, Boston, MA, Apr. 1983,
pp. 133-139.

[4] L. BABAI, P. FRANKL, AND J. SIMON, Complex#), classes in communication complexity theory, in 27th Annual

Symposium on Foundations of Computer Science, Toronto, Ontario, Oct. 1986, IEEE, pp. 337-347.
[5] L. BABAI, N. NISAN, AND M. SZEGEDY, Multiparty protocols, pseudorandom generatorsfor logspace, and time-

space trade-offs, J. Comput. System Sci., 45 (1992), pp. 204-232.
[6] P. BEAME, A general sequential time-space tradeoffforfinding unique elements, in Proceedings of the Twenty

First Annual ACM Symposium on Theory of Computing, Seattle, WA, May 1989, pp. 197-203.
[7] A. BORODIN AND S. A. COOK, A time-space tradeofffor sorting on a general sequential model ofcomputation,

SIAM J. Comput., 11 (1982), pp. 287-297.
[8] A. BORODIN, M. J. FISCHER, D. G. KIRKPATRICK, N. A. LYNCH, AND M. TOMPA, A time-space tradeofffor sorting

on non-oblivious machines, J. Comput. System Sci., 22 (1981), pp. 351-364.
[9] J. L. CARTER AND M. N. WEGMAN, Universal classes of hash functions, J. Comput. System Sci., 18 (1979),

pp. 143-154.
10] New hashfunctions and their use in authentication and set equality, J. Comput. System Sci., 22 (1981),

pp. 265-277.
[11] P. ERD0S AND J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.
12] D.Y. GmGORIEV, An application ofseparability and independence notionsfor proving lower bounds ofcircuit

complexity, in Notes of Scientific Seminars 60, Steklov Mathematical Institute, Leningrad Department,
1976, pp. 38-48. (In Russian.)

13] A. HAJNAL, W. MAASS, AND G. TURAN, On the communication complexity ofgraph properties, in Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, IL, May 1988, pp. 186-191.

[14] M. KARCHMER AND A. WIGDERSON, Monotone circuits for connectivity require super-logarithmic depth, in

Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, IL, May 1988,
pp. 539-550.

[15] T.W. LAM, P. TIWARI, AND M. TOMPA, Trade-offs between communication and space, J. Comput. System Sci.,
45 (1992), pp. 296-315.

[16] R. J. LIPTON AND R. SEDGEWlCK, Lower bounds for VLSI, in Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, Milwaukee, WI, May 1981, pp. 300-307.

17] Y. MANSOUR, N. NISAN, AND P. TIWARI, The computational complexity of universal hashing, in Proceedings of
the Twenty Second Annual ACM Symposium on Theory of Computing, Baltimore, MD, May 1990, pp.
235-243.

[18] K. MEHLHORN AND E. M. SCHMIDT, Las Vegas is better than determinism in VLSI and distributed computing,
in Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, San Francisco, CA,
May 1982, pp. 330-337.

19] R. RAZ AND A. WIGDERSON, Monotone circuitsfor matching require linear depth, J. Assoc. Comput. Mach., 39
(1992), pp. 736-744.

[20] A.A. RAZBOROV, On the distributional complex#), ofdisjointness, in Automata, Languages, and Programming:
17th International Colloquium, Lecture Notes in Computer Science 443, Warwick University, England,
July 1990, Springer-Verlag, New York, pp. 249-253.

[21] M. TOMPA, Time-space tradeoffs for computing functions, using connectivity properties of their circuits, J.
Comput. System Sci., 20 (1980), pp. 118-132.

[22] E YAN, A tradeoffbetween communication and space, manuscript, 1989.
[23] M. YANNAKAKIS, Expressing combinatorial optimization problems by linear programs, in Proceedings of the

Twentieth Annual ACM Symposium on Theory of Computing, Chicago, IL, May 1988, pp. 223-228.
[24] A.C. YAO, Some complexity questions related to distributive computing, in Proceedings of the Eleventh Annual

ACM Symposium on Theory of Computing, Atlanta, GA, April-May 1979, pp. 209-213.
[25] The entropic limitations of VLSI computations, in Proceedings of the Thirteenth Annual ACM Sympo-

sium on Theory of Computing, Milwaukee, WI, May 198 l, pp. 308-311.
[26] Lower bounds by probabilistic arguments, in 24th Annual Symposium on Foundations of Computer

Science, Tucson, AZ, Nov. 1983, IEEE, pp. 420-428.
[27] Y. YESHA, Time-space tradeoffs for matrix multiplication and the discrete Fourier transform on any general

sequential random-access computer, J. Comput. System Sci., 29 (1984), pp. 183-197.

SIAM J. COMPUT.
Vol, 23, No. 3, pp. 662-669, June 1994

() 1994 Society for Industrial and Applied Mathematics
013

A NEW INSIGHT INTO THE COFFMAN-GRAHAM ALGORITHM*
BERTRAND BRASCHI AND DENIS TRYSTRAM

Abstract. The approximate solution ofthe m-machine problem is addressed. The Lam-Sethi worst-case analysis
of the Coffman-Graham algorithm is set up to be partly incorrect. A slightly different context is set up to correct
and complete this analysis. It is shown that the makespan of a schedule computed by an extended Coffman-Graham
algorithm is lower than or at worst equal to (2 2/m)coopt (m 3)/m, where COopt is the minimal makespan of a
schedule.

Key words, scheduling theory, worst-case analysis, list scheduling

AMS subject classification. 90B35

1. Introduction. The m-machine problem is to schedule a set of tasks on a given number
of identical machines, m, with a minimum makespan. The tasks are subject to precedence
constraints and have the same unit execution time. Preemption is not allowed. The Coffman-
Graham algorithm (CG-algorithm) is the only polynomial algorithm which solves exactly the
two-machine problem], [3], [4] and whose worst-case behavior has been analyzed for more
than two machines.

We present the m-machine problem in 2 and we give the elements of the Coffman-
Graham analysis in 3. We show in 4 that a part ofthe worst-case analysis ofthe CG-algorithm
published by Lam and Sethi [6], for two machines or more, is not correct. In 5, an extension
of the CG-algorithm is considered. We correct the contentious point of the Lam-Sethi analysis
and refine their worst-case bound for this extended algorithm in 6.

2. Definitions. The set of tasks and the precedence relation among the tasks are repre-
sented by an acyclic directed graph (C, <<) (see Fig. 1). Let T and T’ be two tasks of C; we
note T << T’ if and only if (iff) (T, T’) belongs to <<. T is a predecessor of T’, and T’ a
successor of T iff T << TI. The precedence relation between T and T’ is immediate iff there
exists no task T" such that T << T" and T" << T’. The set of immediate successors of T is
noted S(T). A set of tasks C is a chain iff the restriction of the transitive closure of (C, <<) to
C is a total order on C. Let S and S be two sets of tasks. We say that $ precedes S and note
S << S’ iff each task of S precedes all the tasks of $’. The concept of chain applies also to
a collection of sets of tasks. A schedule of (C, <<) on a set of m machines [M1 Mm is
defined by assigning to every task T a machine/z(T) and a slot of execution ,k(T), a positive
integer, such that the following conditions are verified:

if T << T’, then ,k(T) < ,k(T’)--a task is executed before its possible successors,
if/z(T) #(T’), then (T) k(T’)ma machine executes only one task during a
slot.

The definition of . is extended to the sets of tasks: ,k(S) {)(T)/T 6 $}. We note

co(S) the makespan of S co(S) I,k(S)l, and we define Idle(S) as mw(S) 1,91. The
schedule of (C, <<) is said to be optimal iff co(C) is minimal. The minimal makespan is noted
coopt(C). We define the optimal makespan of a subset S of C, coopt(S), as the makespan of
the optimal schedule for the restriction of the transitive closure of (C, <<) to S: We note:

Idleopt(,_q’) mcoopt(,S’) --ISI.
3. The Coffman-Graham analysis [2]. The CG-algorithm begins to assign to each task

T a positive integer or(T), its priority. These priorities follow a rule, which we translate into

*Received by the editors May 21, 1990; accepted for publication (in revised form) October 16, 1992.
tLaboratoire de Mod61isation et de Calcul, I.M.A.G., 46 Av. E Viallet, 38031 Grenoble, France.

662

A NEW INSIGHT INTO THE COFFMAN-GRAHAM ALGORITHM 663

A8 A7.2 M1
A6 A47A1

slot slot 2 slot 3 slt 4 slot 5

A8 A7 A5 A3 A1

A6 A4 A2

FIG. 1. A precedence graph (C, <<) and one ofitspossible schedules on two machines. The tasks ofS {A2, A l}
are executed during the slots of.(S) {4, 5} co(S) 2 and Idle(S) 2. There is no precedence relation between
Al and A2 A1 and A2 could be executed during the same slot. Thus the optimal makespan ofS is coopt(S) and
Idleopt (S) 0.

the CG-rule below, where c(S) denotes the set of priorities for the tasks set S and or(0) is
equal to {0}.

CG-RULE. If T T’, then c(T) :/: c(T’), and if a(T) > c(T’), then
max(ot(S(T)\S(T’))) > max(c(S(T’)\S(T))).

Then the CG-algorithm computes a schedule such that if there exists a task T and a slot
L lower than ,k (T) during which a machine is idle or executes a task whose priority is lower
than or(T), then T has a predecessor executed during L. Such a schedule is said to be a list
schedule [5].

We consider a schedule computed by the CG-algorithm and assume that the tasks are
executed on M, M2 in decreasing order of priority during a given slot. We note Next(T)
the task executed on M1 during the slot .(T) + 1, if such a task exists.

A series of critical tasks is defined by a right to left scanning of the schedule (see Fig. 2).
Let us assume that the critical task Ui, >_ 0, is defined. If there exists at least one slot lower
than k(Ui), during which the task executed by M2 has a priority lower than cr(Ui), then the
critical task U;+1 is defined to be the task executed by M1 during the rightmost of these slots.
A block ;Yi is then defined so that Ui+ precedes each task of A’i:

2(i {T/or(T) > ot(Ui) and)v(T) >)v(Ui+)}.

If Ui+ cannot be defined then A’i is defined as:

,i {T/or(T) > cz(Ui)}.

The first critical task, U0, is the task executed by M1 during the rightmost slot of .(C).
The following lemma is derived from the block definition:

BLOCK COMPOSITION LEMMA. At least two tasks ofa block ,Yi are executed during each
slot of.(2(i) except the last slot X(Ui).

4. The Lam-Sethi analysis [6]. Lam and Sethi define a second layer of tasks sets upon
the blocks layer, the segments. The segments can be characterized by the segment composition
lernrna:

SEGMENT COMPOSITION LEMMA. A segment kV is the disjoint union of k consecutive
blocks, k > 1, and ofa set ofat least k additional tasks. Each additional task is preceded
by a task of

Lam and Sethi bound 09 (V) with respect to COopt (V) by means of a chain of tasks of
We show that each task of this chain does not necessarily belong to V, as Lam and Sethi
presume.

An inductive argument employing the CG-rule makes it clear that the priorities are com-
patible with the precedence relation: if T << T’, then c(T) > ot(T’). The following property
is a consequence of this compatibility (Lemma 2.1 of [6]):

MONOTONY PROPERTY. If T is executed on M and .(T) < (T’), then or(T) > ot(T’).

664 BETRAND BRASCHI AND DENIS TRYSTRAM

According to Lam and Sethi, a task executed during a slot of)(W) that does not belong
to a block, is called an extra task and a slot of L(W) during which an extra task is executed is
called a partial slot. The p partial slots of ,k(W) are noted ,kl ,kp from left to right. The
task executed by M1 during ,ki is noted T/. The following lemma relates the partial slots to the
precedence constraints.

LAM-SETHI LEMMA. Let)i be a partial slot of (I/V) such that Next(T/) exists. Every
task Ri such that ot (Ri) > ot (Ti) has an immediate successor Ri+l such that ot (Ri+l) >_
c (Next(T/)).

Proof. It can be induced from the monotony property and the block definition that any extra
task E either is executed during the last slot of .(1/V) or has a priority lower than ot (Next(E)).

Let E be an extra task executed during -i such that Next(T/) exists. Obviously we have
ot (E) < c (Next(E)), and because Next(T,.) Next(E), there exists an immediate predecessor
T* of Next(T,.), executed during)i. The task T,. is executed on Ml, and thus the inequality
ot(Ti) > c(T*) holds and therefore by transitivity, ot(Ri) > t(T*). According to the CG-rule,
an immediate successor Ri+l of Ri, such that c(Ri+I) >_ or(Next(T,.)), must exist. Cl

If the slot i is not the last partial slot of .(I/V), the monotony property makes it possible
to state that a(Next(Ti)) > c(T/+l), thus, by transitivity, ot(Ri+l) _> o(Ti+l). This enables
Lam and Sethi to conclude, by induction, that every task T such that et (T) > ot (Ti) precedes a
chain of at least p tasks. The point is that these tasks do not necessarily belong to IV. It is
actually possible that ot(Ri) < ot(Uj) even if ot(Ri) >_ c(Next(T/)), where a(Uj) determines
if Ri belongs to a block or not. Then, we cannot decide whether Ri belongs to I/V or not.
Hence, the number of tasks in such a chain cannot be used as a lower bound for COopt (l/V), as
Lam and Sethi do. The definition of a segment given by Lam and Sethi is too narrow: in Fig.
2, the tasks A6 and A7 are similar but A7 belongs to the segment, which is not the case for

A6. We modify the segment definition in 6 to add to the blocks of a segment as many tasks
as possible.

A24A21.__ A13AI0A4
A5
A6

A7
A1

A24 A21 A18 AI6 AI4 All A8 A5 A2

A23 A20 A17 A15 A13 A10 A1 A4

A22 AI9 A12 A7 A6 A9 A3

FIG. 2. Analysis of the structure of a schedule on three machines. The tasks are given priorities ac-

cording to the CG-rule. The priority of the task Ai is its index: t(Ai) i. The task Uo is A2. The

first task executed on M;z before)(Uo) with a priority lower than ot(Uo) is A l: the task UI is A8 and 2go

{A2, A3, An, As}. There is no task executed on M:2 before ;k(Ul) with a priority lower than ot(Ul) 2gl
{A8, A9, Alo, All, AI3, AI4, AIS, AI6, AI2, AlT, AI8 A24}. The task Al2 belongs to 2g, has no successor in

2gl and does not precede all the tasks of2go A 12 has at least one successor ofpriority greater than or equal to ot(Uo)
executed during a slot of)(2gl). The task ,46, or ,47, is such a successor. A segmentW can be set as the disjoint union

of2gl {A7}, and 2go. There arefourpartial slots: TI is AI6, T2 is AI4, T3 is ,48, and T4 is A2. Since a(A24) > oe(Tl),
there exists a successor of A24, say A2, such that u(A:21) > or(T2). Recursively, A:z << Al2(c(Ai2) > c()), and

AI2 << A6(oe(,46) _> c(T4)). In conclusion, A24 precedes the chain {A21, AI2, ,46} but A’6 does not belong to W.

A NEW INSIGHT INTO THE COFFMAN-GRAHAM ALGORITHM 665

5. An extended algorithm. The CG-algorithm makes an arbitrary choice to assign dif-
ferent priorities to two different tasks T and T’ such that max(ot(S(T)\S(T’))) is equal to
max(c(S(T’)\S(T))). This choice restricts the set of priorities the predecessors of T and T’
can have, and thus, the set of schedules the CG-algorithm can compute. Let us consider a
straightforward extension of the CG-algorithm, the ECG-algorithm, which assigns to each task
T a priority or(T) according to the following relaxed rule and then computes a list schedule
according to these priorities:

RELAXED RULE. Ifc(T) > a(T’), then max(ot(S(T)\S(T’))) > max(ot(S(T’)\S(T))).
Any schedule computed by the CG-algorithm can be computed by the ECG-algorithm

but the converse is not true, as depicted in Fig. 3. We show in 6 that the main ideas of Lam
and Sethi still hold for the ECG-algorithm.

E Tasks A B C D E F
n

An instance of CG-priorities 6 5 4 2

D An instance of relaxed priorities 2 2 2 2

Aiistscheduleaccording A i iiito the instance of relaxed
priorities

FIG. 3. Contribution ofthe ECG-algorithm. According to the CG-rule, either ot (A) and or(B) are greater than
or(C) and or(D) or the inverse is true. Thus, in any schedule computed by the CG-algorithm on two machines, A
and B are executed during the same slot. On the other hand, we show a list schedule on two machines, based on

priorities whichfollow the relaxed rule, where A and B are not executed during the same slot.

6. An extended analysis. Now we consider a schedule computed by the ECG-algorithm.
Let the critical tasks and the blocks be defined as in 3. Any critical task still precedes each
task of the block to its right, if it exists. The block composition lemma and the monotony
property remain valid. We give a new definition of the segments.

6.1. The segment definition. A series of critical blocks is defined by a left-to-right
scanning of the schedule (see Fig. 4). Let us assume that the critical block 3;j, j > 0, is
defined. The set of tasks Wj(2(i) is defined for each block . as follows:

kVj(?(i) {TIT Yj or T is preceded by a task ofyj and oe(T) > c(Ui+l)}.

If there exists at least one block X/to the right of Yj such that kVj (X/) << ., then Yj+
is defined to be the leftmost of these blocks. The segment Wj is defined as FVj (yj+). If there
is no block A’i to the right of Yj such that Wj(Pdi) << ,Vi, then Wj is defined as follows:

Wj {T/T yj or T is preceded by a task of Yi and or(T) > or(U0)}.

The first critical block, 30, is the leftmost block. We note jU and Uj, the leftmost and
the rightmost critical tasks of kVj, respectively.

JU
FIG. 4. The segment definition. Vj is equal to Wj(Pdi), JU is equal to the critical task of3;j and U is Ui+l.

666 BETRAND BRASCHI AND DENIS TRYSTRAM

6.2. The segment composition lemma. We use the arguments of Lemmas 2.3 and 2.2
in [6] and show that the segment composition lemma holds in this context. Let us consider a
critical block 3;j and a block X/to the right of 3;j.

If Wj(Xi) does not precede X/, then there exists a task T of Wj(X/) and a task T’ of .
such that T does not precede T’. The tasks T and T’ can be respectively considered without
successor in Wj(Xi) and without predecessor in Xi. The critical task Ui+ precedes T’ and
thus T’ belongs to $(Ui+l). Furthermore, the priorities follow the relaxed rule and the fact
that T belongs to Wj(X/) implies that ct(T) >_ t(Ui+l). Hence, there exists a task B such
that B belongs to S(T)\S(Ui+) and

() u(B) > max(u(S(Ui+)\S(T))).

Because B is not an immediate successor of Ui+, if B were a successor of Ui+, an
immediate successor A of Ui+ preceding B should exist. As the priorities are compatible
with the precedence relation, A should verify c(A) > c(B) and thus, according to (1), A
should be an immediate successor of T. This would contradict the fact that B is an immediate
successor of T. Therefore, B is not a successor of Ui+.

For T’ belongs to ’(Ui+I), the inequality (1) induces that ct(B) _> ct(T’), and for T’
belongs to Xi, ot (B) > ot (Ui). Hence, B cannot be executed after .(Ui+ because otherwise
it would belong to . and therefore be preceded by Ui+. This means that B neither belongs
to Wj(Xi) nor to Xi. In conclusion, the task B is a successor of T and thus is preceded by
a task of 3;j and or(B) > ol(Ui). The disjoint union of "’j(Xi), Xi, and {B} is included in

Wj(Xi_), if Xi- exists, or in Wj, if Xi_ does not exist. This leads by induction to the
segment composition lemma.

We point out that we have modified the scope of the set of additional tasks. No task T
such that c(T) > ot(uJ) executed during .()/Vj) is excluded from kVj, as it actually appears
to be the problem on Fig. 2.

6.3. The partial-slot lemma. We continue the reasoning that has led to the Lam-Sethi
lemma to build a chain and ensure that each task of the chain belongs to a given segment
We consider .i a partial slot of Wj that is not the rightmost, if such a slot exists.

If the task T/is a critical task, then it is clear that T/ << Next(T/). If T/is not a critical task,
then because of the monotony property and the block definition, every extra task E executed
during ,ki is such that or(E) < or(Next(E)). Thus, following the proof of the Lam-Sethi
lemma, Ti has an immediate successor of priority greater than or equal to o (Next(Ti)).

Therefore, if Ri is a task of kVj such that ot(Ri) >_ ot(Ti), then Ri has an immediate
successor Ri+l such that o(Ri/I) >_ or(Next(T/)). Because of the monotony property, we can
state that ct(Ri+I) >_ ct(T/+I) >_ ot(uJ). These inequalities mean that Ri+l belongs to Wj and
provide the material for the straightforward recursive proof leading to the partial-slot lemma.

PARTIAL-SLOT LEMMA. Let)42 be a segment and . .p be the p partial slots of
.O/V). Every task ofW with a priority greater than or equal to ot(Ti) precedes a chain ofat
least p- tasks of)A;.

6.4. The local-bound lemma. We consider a segment kVj and we bound the worst

makespan co(kVj) the ECG-algorithm can compute. Let k be the number of blocks included
in)/Vj, X be the union of these blocks, ,4 be the set Wj\X of additional tasks, JU and 3;j be
the leftmost critical task and the leftmost critical block of kVj, and .1 .p be the p partial
slots of ,k ()/Vj). We note .T" the set of the tasks of X executed during k l.

We bound Idle(kVj) with respect to p and .T’. It is easy to verify that k(Wj) and)(X)
are equal and that Idle(Vj) is equal to Idle(X) 1,41. The set LO/Vj) is divided into three
disjoint subsets by checking the type of each slot:

A NEW INSIGHT INTO THE COFFMAN-GRAHM ALGORITHM 667

fl_. {L . (Vj)/L is a partial slot during which only one task of A" is executed},
l,m {L X(Wj)/L is a partial slot during which at least two tasks of A" are executed},
/m L 6 k(I/Vj) /L is not a partial slot}.
The block composition lemma entails that

(2) I1 k (k is the number of blocks included in Wj),

and the partial-slot definition leads to

(3) IZ;I 4- I,ml P (p is the number ofpartial slots of X0/Vj)).

The definition of E, El,m, and m and the equality between Idle(Wj) and Idle(X)
lead to

(4) Idle(l/Vj) _<_ (m 1)11 + (m 2)l,ml- I.AI.
We substitute IZ;I and 1/21,m using (2) and (3) and substitute IAI by k 1, according to

the segment composition lemma:

(5) Idle(Wj) < (p + 1)(m- 2)- (m- 3).

Furthermore, if the first slot of .(Wj) is partial, we derive the inequality (4’), if1 belongs
to/21 or (4"), if XI belongs to ,m, instead of (4):

(4’) Idle(Wj) < Idle(U) + (m 1)(11- 1) + (m 2)1/21,m -IAI,

Idle(Wj) < (m 1)1/21t

In either case, we can derive

(5’) Idle(Wj) < Idle() 4- p(m 2) (m 3).

We now establish lower bounds for (.Oopt(flj) and Idleopt(l&j) with respect to p and
f. It can be induced from the partial-slot lemma that each task T such that or(T) > or(T1)
precedes a chain of at least p tasks of Wj.

Let us assume that the first slot of ,k(Wj) is not partial. If a task T of Wj is such that
X(T) < .(T) and or(T) < ot(T), then, because the ECG-algorithm computes a list schedule,
at least one task of Wj precedes TI. This proves the existence of a chain of at least p 4- tasks
of Wj and thus

(6) p 4- < O.)op (’j).

On the other hand, if each task T of Wj executed before T is such that c (T) > c(Tl),
then there exists at least rn 4- tasks of I/Vj preceding a chain of at least p tasks of I/Vj and
the inequality (6) still holds.

Now we consider that the first slot of (I/Vj) is partial and establish a lower bound of
Idleopt(Wj). The existence of a chain including p tasks of Wj leads to

(6’) p (_Dop (’l/j).

Let us assume that j U is not executed during X. Then, each task of yj\.T" is preceded
by at least one task off for the ECG-algorithm computes a list schedule. Furthermore, every

668 BETRAND BRASCHI AND DENIS TRYSTRAM

task of .A is preceded by a task of yj and it is easy to verify that jU precedes all the tasks of
,-g\yj. Hence, each task of Wj\.T" is preceded by a task of f" and thus

(7) Idle(f) _< Idleopt (I/Vj).

If jU is executed during .l then I/Vj is equal to (J U) and the inequality (7) still holds.
The inequality (8) is derived from the usual expressions co(Wj) (ll/Vjl+Idle(l/Vj))/m

and (ljl + Idleopt(’VVj))/m COopt(l@) and from the inequality (5) and (6), or from the
inequality (5’), (6’), and (7) depending on whether the first slot of)v(Wj) is partial or not:

(8) co(lA2j) < (2- 2/m)COopt(l/Vj) (m 3)/m.

The inequality (8) is refined by factorizing its righthand member, which becomes equal
to

(8) 2COopt (’I/Vj)
2COopt(’l/V) 3

m

When m is even, the term (2OOopt (’I/V) 3)/m cannot be integer, and hence (8) can be changed
into (8’):

(8’) co0/Vj) < (2- 2/m COopt (’V)j m 2 /m

Figure 5 presents the worst case leading to (8) or (8’). The local-bound lemma ensues
from these facts (odd (m) is equal to if m is odd and is equal to 0 otherwise).

LOCAL-BOUND LEMMA. Let a schedule of (C, <<) be computed on m machines by the
ECG-algorithm and 142 be a segment with respect to this schedule. Ifrn > 2, then

(_) m 2- odd(m)
o) (W) < 2 LOop (],)

m

and the equality is achieved in the worst case.

6.. The worst-ease bound. We remain in the context of the subsection 6.4. If the
critical block j+ exists, the segment Wj precedes Yj+ by definition. Furthermore, the
critical task of Yj+l precedes each task of the blocks to its right and each additional task of

Wj+l is preceded by a task of Yj+. Thus Wj << Wj+, and the segments make up a chain.
The local-bound lemma can hence be extended to the entire set of tasks:

THEOREM. Let a schedule of (C, <<) be computed on m machines by the ECG-algorithm.

lfm > 2, then

o)(C) < (2 2) m 2- odd(m)
O)opt (C)

m rn

and the equality is possible.
The analysis we have presented still holds if the set $(T) includes all the successors

of T rather than its immediate successors only. The only point that is different if $(T)
includes all the successors of T is the proof of the segment properties that is based on the
segment definition. It becomes simpler. Therefore, if the transitive closure of the graph to be
scheduled is available, it is not necessary to compute the transitive reduction of the graph.

A NEW INSIGHT INTO THE COFFMAN-GRAHAM ALGORITHM 669

slot

lot 2

level rmf2l

slot rm/2"l

2";"slot rm/21
level 2

slot Fm/21

’
o!

lve]

////////x////////iY///////,///////h’/I//// ,////// V/////////x)/////.."//////,

r,,’///////z r,,’///////.,l ,’///////, I. v//////,zA v//////
VI///II/I VIII/1/ltt ///////1> V//////// V//////I f:" :1

P’./,/,/,,.A K(/././/,,,’/// ’
/’/’//’/’/./’A If,/#’,,"iZtt’/"A K,7,/2"/IZ,1 [/P"/"[’///,,J Z//////t’A }t

2 Fro/21 slots

FIG. 5. Worst-case instance ofthe local-bound/emma. The graph is made up of [m/21 levels, following a basic
critical-path analysis. The first level is composed ofm -t- tasks and all other levels include m + 2 tasks. The task
at the top of the figure on level i, > precedes all the tasks on level except the task at the bottom. On the
one hand, the optimal schedule on m machines is sketched directly on the graph: the boxes show the tasks executed
during a particular slot. The length of the optimal schedule is [m /21 + 1. On the other hand, we give priorities to
the task according to the CG-rule and we break the ties between two tasks by giving the lowest priority to the topmost
task. In each level, the priorities are decreasingfrom the bottom to the top. The induced schedule length is 2 [m/2].

REFERENCES

[1] M. BARTUSCH, R. H. MOHRING AND E J. RADERMACHER, m-machine unit time scheduling: a report on on-
going research, in Optimization and Parallel Processing, Kurzenski, Neumann, and Pallaschke, eds.,
Springer-Verlag, New York, 1987, pp. 165-212.

[2] E.G. COFFMAN, JR. AND R. L. GRAHAM, Optimal schedulingfor two-processor systems, Acta Inform., (1972),
pp. 200-213.

[3] M. FuJII, T. KASAMI, AND K. NINOMIYA, Optimal sequencing of two equivalent processors, SIAM J. Appl.
Math., 17 (1969), pp. 416-429.

[4] H.N. GABOW, An almost linear algorithmfor two-processor scheduling, J. Assoc. Comput. Mach., 29 (1982),
pp. 766-780.

[5] R.L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969), pp. 416-429.
[6] S. LAM AND R. SETHI, Worst-case analysis of two scheduling algorithms, SIAM J. Comput., 6 (1977), pp.

518-536.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 671-700, August 1994

1994 Society for Industrial and Applied Mathematics
001

A NEW APPROACH TO STABLE MATCHING PROBLEMS*

ASHOK SUBRAMANIAN

Abstract. It is shown that Stable Matching problems are the same as problems about stable configurations of
X-networks. Consequences include easy proofs ofold theorems, a new simple algorithm for finding a stable matching,
an understanding of the difference between Stable Marriage and Stable Roommates, NP-completeness of Three-party
Stable Marriage, CC-completeness of several Stable Matching problems, and a fast parallel reduction from the Stable
Marriage problem to the Assignment problem.

Key words, stable matching, stable marriage, stable roommates, stable configuration, circuit value, network
stability, parallel complexity, comparator, CC, scatter, assignment problem, weighted matching

AMS subject classifications. 05A05, 68Q10, 68Q15, 68Q20, 68R05, 90C27, 94C99

1. Introduction. In a Stable Matching problem, the task is to match a number of persons
in pairs, subject to certain preference information. Briefly, each person regards some of the
others as acceptable mates and ranks them in order of preference. A matching is unstable if
there are two persons, not matched to each other, who would rather be together. The task is
to find a stable matching, i.e., one that is not unstable.

This problem was first studied by Gale and Shapley [7]. They showed that a stable
matching always exists if the problem is a Marriage problem, i.e., if the participants can be
divided into two sexes, the men and the women, in such a way that the acceptable mates
of each person are all of the opposite sex; in fact, they gave a linear-time algorithm to find
such a matching. Irving, in [14], gave a linear-time algorithm for the general problem. An
introductory treatment of Stable Matching appears in [23]; a comprehensive treatment may
be found in [12].

This paper explores the relationship between Stable Matching and Network Stability. For
our purposes, a network is a boolean circuit with feedback. The task in Network Stability
is, given a network and its inputs, to find an assignment of boolean values to the edges of
the network that respects the input constraints and the gate equations. The Network Stability
problem is NP-complete in general [21], but when every gate in the network is a special gate
called the X-gate, the problem becomes equivalent to Stable Matching. The X-gate has a
certain nice property--it is scatter-free. We exploit this property to solve X-Network Stability
efficiently.

The appropriateness of the new framework is illustrated by new easy proofs of old the-
orems and simple algorithms. We give simple linear-time algorithms for finding a stable
matching and for finding a "minimum-regret" stable matching. For both of these problems,
optimal algorithms were already known [14], [15]. We give an easy proof of the theorem
of Gale and Sotomayor [8] that every stable matching of a given instance matches the same
set of persons. We also prove a structural theorem that might help us understand why cer-
tain instances of Stable Matching have no solutions. We give a new simple proof of the
#P-completeness of counting the number of solutions to an instance of Stable Matching; this
result, in a stronger form, was first proven in 16]. It turns out that just as Stable Matching
is equivalent to Network Stability for X-networks, a certain "three-party" version of Stable
Matching is equivalent to Network Stability for Y-networks. We use properties of the Y-gate to

*Received by the editors August 9, 1989; accepted for publication (in revised form) October 20, 1992. This work
was supported by Office of Naval Research contract N00014-88-K-0166.

tDepartment of Computer Science, Stanford University, Stanford, California 94305-2140. Current address:
Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India.

671

672 ASHOK SUBRAMANIAN

conclude that Three-party Stable Marriage is NP-complete, thus partly answering a question
posed by Knuth [20].

It has been observed repeatedly that the Stable Marriage problem seems easier and has
more structure than Stable Matching. We explain this difference by observing that the networks
corresponding to Stable Marriage are comparator networks. The comparat0r gate is a simpler
gate than the X-gate. The monotonicity of the comparator is responsible for the fact that Stable
Marriage instances always have solutions. Also, Conway’s lattice theorem for Stable Marriage
can be viewed as a direct consequence of the lattice theorem for comparator networks.

We also study the parallel complexity of Stable Matching. While we do not give any fast
parallel algorithms for the problem, we do point out that several problems related to Stable
Matching are complete for the class CC of problems defined in [21]. We use these ideas to
give a fast parallel reduction from the Stable Marriage problem to the Assignment problem,
thus partially solving a problem of Knuth [20].

Our approach does not seem to apply when the instances of Stable Matching have ties or
when issues of deceit are involved. It does not explore the structure of all stable matchings of
an instance, as does the work of Gusfield [10], [11], Irving [15], [17], or Feder [5].

2. Preliminaries.

2.1. Stable Matching. An instance of Stable Matching (also called Stable Roommates)
consists of a set of persons, each of whom regards some of the others as acceptable mates,
and ranks them in decreasing order of preference. For our purposes we may assume that
acceptability is mutual--x is acceptable to y if and only if y is acceptable to x. A matching
is a pairing of some or all of the persons. A matching may be unstable in three ways--
two unmatched persons may find each other acceptable; a matched person may prefer an
unmatched person to his current mate; or two matched persons may prefer each other to their
current mates. A matching that is not unstable is said to be stable.

An instance of Stable Matching is an instance of Stable Marriage if the persons can be
divided into two sets, the men and the women, so that the acceptable mates of each person
are all of the opposite sex. An instance of Stable Matching is an instance of Complete Stable
Matching if there are an even number of persons and each person is acceptable to everyone
else. Similarly, an instance of Stable Marriage is an instance of Complete Stable Marriage if
there are an equal number of men and women and each person is acceptable to every person
of the opposite sex.

The size of an instance of Stable Matching is the sum, over all persons x, of the number
of persons acceptable to x. The most common tasks associated with an instance of Stable
Matching are to determine whether a stable matching exists and to construct one if possible.
Other tasks might include counting and enumerating all stable matchings of a given instance.

Remark. Historically, most of the interest in the literature has been in Complete Stable
Marriage and Complete Stable Matching; these problems are commonly called the Stable
Marriage and Stable Roommates problems, respectively. Also, it has been traditional to
measure the running time of algorithms in terms of the number of participants and not in
terms of the "length of the input." Our departure from this tradition might lead to one cause of
confusion: algorithms that we describe as linear time (in terms ofthe size ofthe instance) might
be described in the literature as taking quadratic time (in terms of the number of participants).

2.2. Gates, circuits, and networks. The definitions in this section and in 2.3 are taken
almost entirely from [21].

A ,k-input,/z-output gate is a function g {0, }4 {0, } from ,k-bit input words to

/z-bit output words. In this paper, all gates have a fixed number of inputs and outputs. Further,
a gate does not have useless inputs or outputsmeach input bit affects some output bit, and

NEW APPROACH TO STABLE MATCHING 673

each output bit depends nontrivially on some input bit. A basis is a set of gates. The gates
that appear in this paper are listed in Table 1.

TABLE
The gates that appear in this paper.

Gate

ID il
COPY i
NOT i
AND i,i2
OR i, i2
NAND i2
C il,i2
X i, i2
Y l, i2, i3

inputs outputs

O1 il
Ol il, 02 il

Ol ’1
Ol il i2

o] i + i2
Ol -t- i2

o] =i]i2, o2-’i1+i2
Ol -ilt2, 02----1i2

ol =i1(i2+i3), 02 =i2(+i3), 03 =i3(il +i2)

A network is a finite labeled directed graph. Source (in-degree zero) nodes of the directed
graph have out-degree one and are called input nodes; sink (out-degree zero) nodes have in-
degree one and are called output nodes. Each internal node is labeled with a gate and an
ordering of its predecessors and successors. If an internal node has in-degree . and out-degree
#, its gate has k inputs and # outputs. If the underlying directed graph of a network is acyclic,
the network is called a circuit. A circuit computes a set of functions in the standard manner.
A network (circuit) is said to be over a basis f2 if every gate in it is from f2. The size of a
network is the number of edges in it.

Our definition of circuit differs from the standard definition in two respectsmall fanout is
explicit and must occur within a gate, and multiple-output gates are allowed. Our definition
of "network" is nonstandard. A network is essentially a combinational circuit with feedback;
it is not intended to compute anything.

A gate g is a restriction of gate g2 if it can be obtained as follows. Fix a subset (possibly
empty) of the inputs of g2 to constant values. This operation fixes a (possibly empty) set of
outputs of g2 to constant values. Now discard all the inputs and outputs of g2 that are fixed
and perhaps some outputs that are not fixed. For example, the NOT-gate is a restriction of the
X-gate, obtained by fixing any one input of the X-gate to 1. Also, the closure of any basis
is the basis * consisting of all restrictions of gates in

Gate g can be simulated by basis f2 if g is a restriction of the function computed by some
circuit over f2. We say, for convenience, that gate g can be simulated by gate 82 when we
mean gl can be simulated by the basis {g2}; similarly, we say a basis can be simulated (by
another basis) if every gate in it can be simulated. For instance, a gate (or basis) is monotone
if it cannot simulate {NOT}.

A gate has scatter if it has a restriction that has more outputs than inputs; otherwise, it is

scatter-free. A basis is said to be scatter-free if every gate in it is scatter-free. All the gates in
Table 1, except the COPY-gate and the Y-gate, are scatter-free.

The X-gate and the C-gate (comparator) play crucial roles in this paper. These gates are
scatter-free; in addition, the comparator is monotone. Many of the results of this paper rely
on these elementary facts.

The following easy lemma is crucial.
LEMMA 2.1. Let N be any network over a scatter-free basis f2. Then N has at most as

many outputs as inputs. In particular, ifN has no inputs, it has no outputs.

Proof. Sum the quantity (#(inputs of g) #(outputs of g)) over all gates g of N. Each
input edge of N is an input edge of exactly one gate of N and thus contributes one to the sum;

674 ASHOK SUBRAMANIAN

similarly, each output edge of N contributes minus one. Each internal edge of N is an input
edge of exactly one gate of N and an output edge of exactly one gate of N and so contributes
zero. Thus the sum equals the difference between the number of inputs of N and the number
of outputs of N. Notice, however, that the sum is nonnegative, because each (scatter-free)
gate of N contributes a nonnegative quantity to the sum; hence N has at most as many outputs
as inputs.

2.2.1. X-networks and snakes in X-networks. An X-network is a network over {X}.
We introduce some terminology to describe X-networks. Recall that the X-gate has inputs il, i2
and outputs ol i i2, 02 il i2. We associate input ij and output oj. This association allows
us to describe an X-network in terms of snakes. A snake is a sequence of edges; the sequence
may be cyclic or acyclic. If an input edge of an X-gate is in snake q, the associated output
edge is the next element of q; if an output edge of an X-gate is in q, the associated input edge
is the previous element of q. The first element of an acyclic snake is thus an input edge of the
network; the last element of an acyclic snake is an output edge of the network. The snakes of
a network constitute a partition of its edges.

We often describe an X-network by naming its snakes and telling how they meet each
other; in such a description, the gates are implicitmthere is a gate wherever two snakes meet.
We say that a snake enters a gate with value v if the edge of the snake that is an input to the
gate has the value v. (Some care is needed, because a snake could enter the same gate twice,
once through each input.)

2.3. The Circuit Value and Network Stability problems. The Circuit Value problem
(CV) is the task of computing the value assigned to a specified output of a circuit, when the
circuit is evaluated on a given input assignment. More formally, given a circuit with) inputs
and an input assignment Sin {0, }n to the circuit, determine whether the specified output
takes the value 1.

The Network Stability problem is a question about the existence of configurations of a
network consistent with a given input a,ssignment. Let N be a network with ,k >_ 0 inputs.
Let Sin {0, } be an input assignment to N. A configuration Q of N is an assignment of
boolean values (0s and ls) to the edges of N. It is astable configuration of[N, Sin if it satisfies
the gate equations at each internal node and is consistent with the input assignment Sin. The
Network Stability problem (NS) is this" given a network N and an input assignment sin, deter-
mine whether IN, Sin has a stable configuration. Often we leave the input assignment implicit,
and say "N has a stable configuration" when we mean "IN, Sin] has a stable configuration."

Given a basis 2, we define -CV and -NS to be the special cases of CV and NS,
respectively, in which the network is required to be over f. For instance, C-CV is the circuit
value problem for comparator circuits, and X-NS is the stability problem for X-networks.

The input assignment that assigns every input of a network the value is called 1; the
empty input assignment is called e.

3. The Stable Matching problem is an X-Network Stability problem. We show how
to transform an instance I of Stable Matching into an X-network N in such a way that the stable
matchings of i are in one-to-one correspondence with the stable configurations of IN, 1]. Here
is the transformation. Network N has one acyclic snake qx for each person x of instance I;
there are no other snakes. Snakes qx and qy meet if and only if x and y find each other
acceptable; snake qx meets the snakes of other persons in the order that these persons appear
on the preference list of person x, i.e., in decreasing order of their popularity with x. Any
two snakes meet at most once; no snake meets itself. This description completely specifies N.
We present a method to construct N given the description. For each pair x, y of persons
who find each other acceptable, introduce an X-gate labeled with the pair {x, y}. For each

NEW APPROACH TO STABLE MATCHING 675

person, introduce a snake that visits all the gates whose labels contain his name, in the order
determined by his preference list. This completes the construction. An example is shown in
Fig. 1. (In this figure, the snake of each person is labeled with his name for clarity.)

Person Preferences

A D B
B D C A
C B D
D A B C

FlG. 1. Reducing Stable Matching to X-Network Stability.

In 3.1, we prove a lemma about stable configurations of X-networks. We then prove the
correspondence between stable matchings and stable configurations in 3.2.

3.1. A preliminary lemma about stable configurations of X-networks. Let N be any
X-network without cyclic snakes. Let Q be a stable configuration of IN, 1]. The stability of Q
places two conditions upon it--it must satisfy the input assignment, and it must satisfy all the
gate equations. Let us investigate what these conditions really mean. Let q (el, e2 be
any snake of N; for each j, let vj be the value on edge ej. Every input edge has the value 1,
so v 1. The behaviour of the X-gate requires that vj. 0 = vj+ 0. Thus, the sequence
(v, v2 is a sequence of ls, followed perhaps by a sequence of 0s. Define the 1-segment
of snake q in configuration Q to be the subsequence of edges that have value 1.

We say that snake q drops at gate g if the 1-segment of q ends at gate g; we say that g
is the endpoint of the 1-segment of q. (A snake that has the value along its entire length is
identical with its 1-segment and has no endpoint.) It is clear that each snake drops at most
once.

A snake that enters a gate with value will drop if and only if the other snake entering
the gate also enters with value 1. Thus, snakes must drop in pairs. Also, the 1-segments of
different snakes cannot share vertices, except possibly a common endpoint. We describe this
situation informally by saying that 1-segments avoid one another.

It turns out that the conditions listed above are necessary and sufficient for Q to be a stable
configuration. In other words,

LEMMA 3.1. Let N be an X-network witho_ut cyclic snakes; let Q be a configuration
of [N, 1]. Then Q is stable ifand only if:

(i) the values on any given snake ofNform a nonempty sequence of Is, followed by a

possibly empty sequence of Os,
(ii) snakes drop in pairs, and
(iii) the 1-segments ofdifferent snakes avoid one another.

Proof. We have already seen that the above three conditions will be met if Q is stable.
Suppose now that Q is a configuration that meets the three conditions" we show that Q must
be stable. The first value on each snake is a 1, so the input conditions are satisfied. Let g be
an arbitrary gate of N; we must show that the gate equations are satisfied at g. If both snakes
entering g do so with value 0, condition (i) requires that both outputs of g be 0 as well. If

676 ASHOK SUBRAMANIAN

one snake is 0 and the other is while entering g, conditions (i) and (ii) demand that both
snakes leave g with the same values with which they entered it. If both snakes are while
entering g, condition (iii) demands that both drop. In all three cases, the gate equations are
satisfied.]

3.2. The correspondence between stable matchings and stable configurations.
THEOREM 3.2. Let I be an instance of Stable Matching; let N be the corresponding

X-network. Then there is a one-to-one correspondence between the stable matchings of I and
the stable configurations of[N, 1].

Proof. The rule to read off a matching of I from a stable configuration of [N, 1] is this:
two persons are matched to each other if their snakes drop together; a person is unmatched
if his snake does not drop. To produce the configuration of [N, 1] corresponding to a given
matching of I, we invert the above rule: if person x is matched to person y, snake qx takes
the value until it meets snake qy and the value 0 thereafter; if x is unmatched, snake qx is
along its entire length. We now show that stable configurations yield stable matchings and
vice-versa.

Suppose that stable configuration Q yields matching M. Assume that M is unstable.
Hence there must be two persons x and y, each of whom prefers the other to his mate in M
or to the state of being unmatched. Since x and y are acceptable to each other, snakes qx
and qy meet. We claim that qx is after meeting qy. To prove the claim, we consider two
cases. If x is unmatched, then qx must be along its entire length, and we are done. In the
other case, let z be the mate of x. Then qx and qz must meet with value 1; hence qx must
be all the way until it meets qz. Since x prefers y to z (by hypothesis), qx meets qy before
it meets qz. It follows that qx is after meeting qy; this proves the claim. By an entirely
analogous argument, qy is after meeting qx. This means that the 1-segments of qx and q, do
not avoid one another. Lemma 3.1 tells us that Q must be unstable, which is a contradiction.
Hence M must be stable.

Now suppose that stable matching M yields configuration Q. It is clear that Q meets
conditions (i) and (ii) of Lemma 3.1. To prove that Q is stable, it suffices to show that
condition (iii) is met as well. Assume, for the sake of contradiction, that there are two persons
whose snakes violate condition (iii). Then it follows that each of these persons prefers the
other to his mate (if any) in M, contradicting the stability of M. [3

Remark. We reiterate the meaning of the value assigned to an edge by a stable configu-
ration of [N, 1]. Let e be the edge of snake qx just after q meets q,. Then e is assigned the
value 0 in a stable configuration of [N, 1] if and only if x has a mate no worse than y in the
corresponding stable matching of I.

4. Solving Network Stability for scatter-free networks.

4.1. The algorithm. In this section, we show how to construct a stable configuration
of a network over any scatter-free basis. This algorithm was presented in [21]. The X-gate
is scatter-free, so the results of this section apply to Stable Matching. In particular, we get
a simple linear-time algorithm for constructing a Stable Matching. A different linear-time
algorithm for this problem was already known [14].

Let N be any network over a scatter-free basis f2; let Sin be an input assignment to N.
We show how to find a stable configuration of IN, Sin]. The interesting case is when N has
no inputs, i.e., when Sin is the null assignment e. Otherwise, we could use the input assign-
ment to simplify the network. After all, if we know the value of an input to a gate g, we
can replace g by a restriction with fewer inputs and perhaps deduce the value of some of
the outputs of g. Iterating this process of "input elimination" yields a partial assignment P

NEW APPROACH TO STABLE MATCHING 677

of values to edges and an input-free network N’ on the remaining edges, with the property
that the stable configurations of [N, Sin are obtained by augmenting the stable configurations
of [N’, e] with P. In particular, [N, Sin] has a stable configuration if and only if [N’, e] does.
Notice that the time taken to perform input elimination is linear in the amount of simplification
performed, i.e., in the number of edges that are assigned values by the partial assignment P.
The order in which the inputs are eliminated is immaterial; in fact, the process is properly
regarded as a concurrent process, although we do not use this fact here. Lemma 2.1 assures
us that N’ will have no outputs. Henceforth we will simply assume that N has no inputs or
outputs.

Consider what happens if we break an edge e of N, thus creating an input e(in) and an
output e(out), and then place the value v E {0, 1} on e(in). We get a network with one input
and one output; we may apply input elimination to this network. We call this the process of
propagating the pair [e, v]. The following observation is crucial: the elimination of the sole
input of the network must assign a value, say v(out), to the output edge e(out). To see this,
apply Lemma 2.1 to the network that remains after the propagation. If v(out) v, we say
that the propagation is successful and that [e, v] is viable in N. The result of a successful
propagation is a partial assignment P and an input-free network N’ on the remaining edges,
with the property that the stable configurations of [N, e] that assign edge e the value v are
obtained by augmenting the stable configurations of [N’, e] with P. If, on the other hand,
v(out) v, no stable configuration of [N, e] may assign edge e the value v; in this case,
we say the propagation is unsuccessful. Again, the time taken by a successful propagation is
linearly related to the amount of simplification achieved.

The type of an edge in an input-free network is the set of viable values for it, i.e.,
typeN(e) {v [e, v] is viable in N}. If typeN(e) 13, we say that e is a contradicting
edge. Clearly, if the edge we select is contradicting, there can be no stable configurations.
Also, if its type is {0} or }, there is only one possible value that this edge could take in any sta-
ble configuration; thus we can assign this edge its value and simplify the network accordingly.
The difficulty arises when both values seem possible, i.e., when typeN(e) {0, }.

Our strategy in such a situation is to pick either value and proceed. Clearly, if we are
lucky, we will make all the right choices and find a stable configuration. But what if we
are unlucky? Might not a set of bad choices early on in the algorithm lead us to a situation
where we can no longer complete the partial assignment we have to a stable configuration?
Lemma 4.1 comes to our rescue, because it says that the type of an edge is preserved by
successful propagations. This means that if we find a contradicting edge after performing a

sequence of successful propagations, then the same edge must have been contradicting in the
original network as well, meaning that there were no stable configurations from the start. In
other words, there are no bad choices.

LEMMA 4.1. Let N be an input-free network over a scatter-free basis f2. Suppose that
[el, vii is viable in N. Let N’ be the network left afterpropagating [el, v] in N; let e2 be an
edge of N’. Then typeN,(e2) typeu(e2).

Proof This proof is due to Feder [6]; our original proof was much more complicated.
We make the following definition. A trace of the propagation of [e0, v0] in N is a sequence of
statements that records all the assignments that are made during this propagation, along with
the dependencies between the assignments. Each statement is of the form e +- v, meaning
"edge e gets value v." The first statement is e0 +-- v0 and constitutes the preamble of the trace;
the rest of the trace is called its body. A statement in the body of the trace is said to be terminal
if it mentions edge e0. All other statements of the trace are nonterminal. Every statement in
the body is derived from a subset of the nonterminal statements preceding it in the trace by
invoking the equation of a single gate. The trace is complete, in the sense that all statements

678 ASHOK SUBRAMANIAN

that are derivable in the above manner are included. A statement may occur at most once in
the body of the trace; any subsequent occurrences would be redundant.

Each statement of a trace may be regarded as a step in the propagation process. A
propagation succeeds if the statement e0 +-- v0 appears in the body of the trace; it fails if the
statement e0 +-- v- appears in the body. Clearly both statements cannot appear simultaneously
in the body of any trace; on the other hand, we know that at least one of these statements will
appear in the body, because the network is input-free and scatter-free.

Let T1 be atrace of [e, v] in N; let T2 be atrace of [e2, v2] in N. The effect ofpropagating
[el, v is to assign values to some edges of N. We would like to claim that, even after these
assignments are made, each statement in the body of T2 can still be inferred from the preamble
of T2. This would mean that propagating [e2, v2] in N’ will establish every assignment that
would have been made by the propagation of [e2, v2] in N that has not already been made by
the propagation of [el, v] in N. It would then follow that [e2, v2] is viable in N if and only
if it is viable in N’, completing the proof of Lemma 4.1.

To prove the claim, it suffices to show that there is no conflict between the two traces.
A conflict is a situation where the statement e +-- v appears in one trace while the statement
e +-- appears in the other. "We assume a conflict exists and derive a contradiction. Let $2 be
the earliest statement in T2 that is involved in a conflict; assume that it says ec +-- vc and that
it conflicts with statement S of T. Statement $2 cannot be in the preamble of T2, because,
by hypothesis, edge e2 does not appear in T. Hence, edge e is the output of some gate; let
this gate be g. The gate equations used to derive S and $2 assert that g has two partial input
assignments P and P2, such that on one of these assignments, output ec takes the value re,
whereas on the other assignment, output e takes the value . Now, by the choice of $2, the
partial input assignments P and P2 do not conflict. Let P be the partial input assignment that
is the union of P and P2. Consider the behaviour of gate gc on P. Clearly, output e must be
both 0 and in this situation, which is a contradiction. [3

An immediate consequence of Lemma 4.1 is the correctness of the following simple
polynomial-time algorithm for constructing a stable configuration of a network over any
scatter-free basis.

ALGORITHM 1.
1. Eliminate all inputs.
2. Pick any edge e. (If there are no edges, there is nothing to do.)
3. Determine that e is contradicting (in which case there are no stable configurations),

or find a value v such that [e, v] is viable.
4. Suppose [e, v] is viable. Propagate [e, v], obtaining a partial assignment P and a

simplified network N’.
5. Find a stable configuration of N’ and augment it with P to yield the desired stable

configuration. If N’ has no stable configuration, neither does N.

THEOREM 4.2. Let N be a network over a scatter-free basis 2; let Sin be any input
assignment to N. There is a linear-time algorithm that will construct a stable configuration
of IN, Sin] if there is one, or conclude that none exists.

Proof. Algorithm can be implemented to run in time that is linear in the size (number
of edges) of the network N. Notice that steps and 4 take time linear in the amount of
simplification they perform and that step 2 takes constant time. Also, if step 3 determines
that e is contradicting, the time needed to do so is linear in the size of the network. The only
obstacle to a linear run-time is that step 3 may take a long time to return a viable value v. To
avoid this, we use the following standard trick. Implement step 3 as follows: propagate [e, 0]
and [e, 1] "in parallel"; whichever propagation succeeds first determines the value v to be

NEW APPROACH TO STABLE MATCHING 679

used in step 4. This guarantees that step 3 runs in time linear in the amount of simplification
performed in step 4. The linear time bound for the algorithm follows from the observation
that the size of N’ in step 5 is less than the size of N by the amount of simplification achieved
in step 4.

The following corollary is useful in the context of parallel computation:
THEOREM 4.3. Let N be an input-free network over a scatter-free basis f2. Then N has

a stable configuration ifand only if it has no contradicting edge.
Proof. If N has a contradicting edge, this edge can take neither the value 0 nor the value

in any stable configuration. Hence there cannot be any stable configurations. If, on the other
hand, there are no contradicting edges, Algorithm will find a stable configuration.]

The type of an edge has a nice interpretation:
THEOREM 4.4. Let N be an input-free network over a scatter-free basis f2; suppose that N

has no contradicting edges. Let e be an edge of N. Then the type of e in N equals the set of
values assigned to e in the (various) stable configurations of N.

Proof. Clearly, if [e, v] is not viable in N, then no stable configuration of N may
assign e the value v. If [e, v] is viable, on the other hand, we can construct a stable con-
figuration that assigns e the value v, by letting [e, v] be the first edge-value pair picked by
Algorithm 1. [

The following theorem is proven for Stable Marriage in [8]; a prooffor the Stable Matching
case can be found in [12]. We give an easy alternative proof.

THEOREM 4.5. The set of unmatched persons in any instance of Stable Matching is the
same in every stable matching.

Proof. Let I be an instance of Stable Matching; let N be the corresponding X-network.
The process of eliminating the inputs of N assigns a value to every output edge of N. Hence
every stable configuration of IN, 1] has the same output assignment. The theorem follows
by observing that a person is unmatched in a stable matching of instance I if and only
if the output edge of his snake takes the value in the corresponding stable configuration
of [N, 1]. [-]

It is an interesting exercise to interpret Irving’s original algorithm for Stable Matching 14]
in the network framework. Phase of Irving’s algorithm achieves essentially the same effect as
input elimination on the appropriate X-network. Each phase 2 reduction of Irving’s algorithm
either finds a contradicting edge (and concludes that there are no stable configurations) or
finds a viable edge-value pair, propagates it, and simplifies the network accordingly. The
specific method used by Irving to find the viable edge-value pair (the seek-cycle procedure)
is sophisticated and uses specific properties of X-gates that are not shared by all scatter-flee
gates. The amount of simplification achieved is proportional to the length of the all-or-nothing
cycle found, whereas the amount of time spent in a phase 2 reduction is proportional to the
length of the all-or-nothing cycle plus the length of the "tail"; hence Irving uses the device of
remembering the tail in order to achieve a linear-time algorithm.

4.2. Application to Minimum-regret Stable Matching. Algorithm has two kinds of
flexibility: edge e may be chosen to be any edge of the network, and there is some flexibility in
the choice of value v. We have already demonstrated how to use the second kind of flexibility
to make the algorithm run in linear time. Here we explore a different possibility.

Let I be any instance of Stable Matching. The regret of a participant in a stable matching
of I is the position of his mate on his preference list. Thus, a participant who gets his first
choice of mate has regret 1. Clearly, each participant would like to minimize his regret. In
the Minimum-regret Stable Matching problem, we seek a stable matching that minimizes the
largest regret among all the participants. A linear-time algorithm is given in 10]. However, this
algorithm relies on nontrivial properties of the structure of all stable matchings of an instance

680 ASHOK SUBRAMANIAN

of Stable Marriage; moreover, it works only for instances of Stable Marriage. Irving [15]
gives a linear-time algorithm that works for all instances of Stable Matching; see 12] for an
exposition. We give a different linear-time solution based on the network formulation.

We assume that I has a stable matching and that no person is unmatched in the stable
matchings of I. The second assumption is legal because, by Theorem 4.5, the unmatched
persons are the same in every stable matching; hence we can find these unmatched persons
by input elimination in linear time, delete them, and find a minimum-regret matching of the
remaining participants.

Define regret(I) to be the value of the largest regret in a minimum-regret stable matching
of I. The crux of the problem is the computation of regret(l). We first show how to proceed
if regret(I) is known and then show how to compute regret(I).

Suppose regret(I) r. Delete from each person’s list all but the first r persons, and then
make the acceptability relation symmetric: if person x does not appear on the list of person y,
delete y from the list of person x. Let us call the resulting instance Ir. It is easily checked
that the stable matchings of Ir are precisely the minimum-regret stable matchings of I. A
stable matching of Ir may be found in linear time by using the strategy outlined in the proof
of Theorem 4.2.

We show how a modified version of Algorithm can compute regret(l) in linear time.
Let N be the X-network for I. Number each edge of N by its position on its snake: input
edges get the number 1; output edges get big numbers. The value of the largest regret in any
stable matching is given by the largest number of an edge, among all the edges with value
in the corresponding stable configuration. This means that the way to get a small regret is to
assign the value 0 to the edges with big numbers.

Run Algorithm with the following modifications. Whenever we have to pick an edge-
value pair to propagate, we choose an edge e that has the largest number and assign it the
value 0. Suppose edge e is the edge numbered k on the snake of person x. Then assigning e

the value 0 amounts to guaranteeing that person x gets one of his first (k 1) choices. If
the propagation of [e, 0] fails, there is no stable matching, consistent with the choices already
made, that assigns x one of his first (k 1) choices; hence regret(l) must be k. (The reason
it cannot be larger than k is because at the time we assign edge e the value 0, we have
already succeeded in assigning every edge with number larger than k the value 0.) Also, if
the propagation assigns the value to another edge with number k, then again the value of
the minimum regret is k. We continue assigning the value 0 to more and more edges with
large numbers, until ultimately one of the two exit conditions applies. Thus this algorithm
will compute regret(l). To see that it takes linear time, observe that the time taken by all the
successful propagations taken together is linear in the number of edges of N; also, there is at
most one unsuccessful propagation, which can take at most linear time.

5. The structure of the network of contradicting edges. Theorem 4.3 says that if an
instance of X-network stability has no stable configurations, the associated input-free network
contains at least one contradicting edge. In this section, we prove that the contradicting
edges form disjoint cycles, each containing an odd number of NOT-gates. We believe this
is a step toward understanding why certain instances of Stable Matching do not have stable
matchings.

LEMMA 5.1. Let N be any input-free network over X*. Suppose that [el, vii is viable
in N and that edge e2 is assigned the value v2 during the propagation oriel, vl]. Then lea, re]
is viable in N.

Proof. As in the proof of Lemma 4.1, let TI be a trace of [el, v in N and T be a trace of
[ea, v2] in N. If e e, then v ve and there is nothing to prove; so assume that e =/= ee.
Notice that the preamble of Te occurs in T, and every statement of T occurs as a nonterminal

NEW APPROACH TO STABLE MATCHING 681

statement in T1. Hence we may show inductively that each statement of T2 occurs in T1. It
follows that the value assigned to edge e2 by the propagation of [e2, v2] is v2. 1-1

Lemma 5.1 says that successful propagations do not assign values to contradicting edges.
By repeatedly performing successful propagations, we can assign values to all noncontra-
dicting edges. What is left is an input-free network No over X* consisting of exactly the
contradicting edges.

LEMMA 5.2. The network No ofcontradicting edges does not contain any X-gates.
Proof Assume the opposite, that No contains an X-gate g, with input edges i, i2 and

output edges ol, 02. We derive a contradiction.
Let T1 be a trace of [o, 0] in No. Since o is contradicting, the statement o must

appear in the body of T1. In order for this to happen, statements +- and i2 - 0 must also
appear in T1; hence so must 02 -- 0.

Now let T2 be a trace of [02, 0] in No. Edge 02 must be assigned a value by the propa-
gation of [02, 0]; hence at least one of the edges or i2 must be assigned a value during this
propagation. Let S be the first statement in the body of T2 that assigns a value to any of the
edges incident upon gate g. Clearly, statement S assigns a value to either or i2. We claim
that S appears in T1. To prove the claim, observe that the preamble of T2 occurs in TI and
that the derivation of S in T2 does not involve edge ol in any intermediate step. Hence we
may prove inductively that every statement involved in the derivation of S in T2 occurs as a
nonterminal statement in T1, and the claim follows. Thus S must be either - or i2 +-- 0.
In either case, the statement 02 0 will appear in the body of T2. This indicates that [02, 0]
is viable, which is a contradiction. [3

THEOREM 5.3. Each connected component of No is a directed cycle over the basis
ID, NOT} with an odd number of NOT-gates.

Proof Follows from the fact that No is input-free and contains no X-gates. Each cycle
must have an odd number of NOT-gates in order for the edges on it to be contradicting.

Remark. The results of this section extend naturally to the case where N is over any
scatter-free basis, but the proof of Theorem 5.3 is more involved. (See [27] for details.)

6. The case of Stable Marriage. In this section, we examine the X-networks arising
from instances of Stable Marriage. We show that these networks of X-gates may be replaced
by comparator networks. This observation, together with the monotonicity of the comparator,
yield easy algorithms for certain problems associated with Stable Marriage.

6.1. Bipartitionable X-networks and comparator networks. A network of X-gates
is bipartitionable if its snakes can be two-colored so that snakes of the same color never
meet; such a coloring is called a bipartition. In any bipartition, the color of an edge is
defined to be the color of the snake to which it belongs. In this paper, whenever we say that a
network is bipartitionable, we shall implicitly mean that a bipartition is given. The X-networks
corresponding to instances of Stable Marriage are bipartitionable: color the snakes of the men
red and the snakes of the women blue. This shows that instances of Stable Marriage may be
solved by solving X-Network Stability for bipartitionable X-networks. The converse is also
true; see 7.3.

We adopt the following conventions: in all diagrams containing X-gates, an input and its
associated output appear opposite each other; in diagrams of bipartitionable X-networks, the
red edges are drawn vertically and the blue edges are drawn horizontally; in all bipartitionable
networks derived from instances of Stable Marriage, the red snakes belong to men and the
blue snakes belong to women.

Given a bipartitionable X-network N and an input assignment Sin, we show hOW to trans-
to N’ in such a wayform them into a comparator network N’ and an input assignment Sin

682 ASHOK SUBRAMANIAN

that the stable configurations of [N, Sin] and [N’, Sitn] are isomorphic. Bipartition the snakes
of N into red and blue snakes. Replace every blue edge of the network by two NOT-gates
in series. Regard every X-gate g to be part of a triplet of gates: g, the NOT-gate on the blue
input of g, and the NOT-gate on the blue output of g. Each triplet is functionally equivalent
to, and hence may be replaced by, a comparator; see Fig. 2(a). After these replacements, the
only noncomparator gates in the network are the NOT-gates on the blue inputs and outputs.
These NOT-gates just mean that the input and output assignments of the two networks do not
match exactly: the blue bits have to be complemented. Delete the NOT-gates to get N’. To

’, complement the blue input bits of Sin.get Sin

I. i+i2

12

(b)

FIG. 2. Interchanging comparators and X-gates.

Essentially the same transformation may be used to replace a comparator network by a

bipartitionable X-network on a different input assignment. Proceed as follows. Replace each
comparator by three X-gates as shown in Fig. 2(b). A bipartition of the resulting X-network
is obtained by coloring all the "horizontal" snakes blue and all the "vertical" snakes red.

NEW APPROACH TO STABLE MATCHING 683

These transformations show that finding stable configurations in bipartitionable
X-networks is just the same as finding stable configurations in comparator networks. Thus,
we may find stable matchings for instances of Stable Marriage by finding stable configurations
of comparator networks.

6.2. Applications. In this section, we give linear-time algorithms for some problems re-
lated to Stable Marriage. For convenience of presentation, we phrase the following discussion
partly in terms of bipartitionable X-networks and partly in terms of comparators.

6.2.1. Existence of stable matchings. The standard way to show that every instance of
Stable Marriage has a stable matching is to give an algorithm, the proposal algorithm of [7],
that finds the man-optimal stable matching in linear time. It is nice to be able to give a proof
of the existence of stable matchings that does not involve an algorithm. Here is such a proof.
An instance of Stable Marriage has a stable matching if and only if the associated comparator
network has a stable configuration (on the appropriate input assignment). Comparator gates
are monotone; monotone networks always have stable configurations.

6.2.2. Finding a stable matching. Finding a stable configuration of a monotone network
is easy: eliminate the inputs, and then assign all remaining edges the value 0. This stable
configuration is the "most-0" stable configuration Q0 of the network (on the given input
assignment), because every edge that is assigned the value in this stable configuration must
have the value in every stable configuration. We show that this strategy yields the man-
optimal stable matching found by the proposal algorithm of [7].

THEOREM 6.1. Let I be an instance of Stable Marriage; let [N, sin] be the associated
instance of Comparator Network Stability. Then the "most-O" stable configuration Qo of
IN, sin] yields the man-optimal stable matching of I.

Proof. Let ;Q be the X-network corresponding to I. (Thus, N is obtained from ;Q by
applying the first transformation of 6.1.) The configuration of [/, 1] that corresponds to Q0
has the following property: it assigns each edge on a red snake the value only if it must be
in every stable configuration of [N, 1]; likewise, each edge on a blue snake is 0 only if it must
be 0 in every stable configuration of I/Q, 1]. The implication for the Stable Marriage instance
is that the stable matching found by the above procedure assigns every man the best possible
mate he could get in any stable matching; similarly, every woman gets the worst possible mate
she could get in any stable matching. 3

We may obtain the woman-optimal stable matching by an analogous procedure: eliminate
the inputs of N, and then assign the remaining edges the value 1. Thus input elimination gives
us both extremal matchings. The first phase of Irving’s algorithm [14] also simultaneously
finds both extremal matchings in instances of Stable Marriage.

6.2.3. Stable matchings are fixpoints. Any network stability problem may be viewed
as a fixpoint problem: find a configuration that is a fixpoint of the network. The discussion
in 6.2.2 tells us that the man-optimal and woman-optimal stable matchings of an instance of
Stable Marriage are given by the least (maximally false) and greatest (maximally true) fixpoints
respectively of the following system of equations: for every edge e of the comparator network,
introduce a boolean variable one(e) (intended to evaluate to true exactly if edge e is assigned
the value 1); for each red input edge e of the network, introduce the ground condition one(e);
for each blue input edge e of the network, introduce the ground condition one(e); for each
comparator gate with input edges and i2 and output edges ol and o2, introduce the gate
equations one(il) /x one(i2) := one(o), one(il) =: one(02), and one(i2) =: one(02).
The system of equations is monotone because the gate equations are monotone; hence the
least and greatest fixpoints are unique. Eliminating the inputs of the network corresponds
to determining all those variables whose values are forced by the ground conditions. Our

684 ASHOK SUBRAMANIAN

algorithm then computes the two extremal fixpoints by assigning all remaining variables the
same value (false for the least fixpoint, true for the greatest fixpoint).

By interpreting it in the network framework, it can be seen that the proposal algorithm
of [7] is a clever strategy to compute the least fixpoint of the same system of equations. It has
been observed that several different serializations of the proposal algorithm yield the same
final result; this is because the various serializations merely represent different routes to the
unique least fixpoint.

6.2.4. Finding other stable matchings. The following lemma is useful in giving another
algorithm to find a stable matching.

LEMMA 6.2. Let N be an input-free network over a monotone scatter-free basis; let e be
an edge of N. Then typeN(e) {0, }.

Proof. The "all-0" and "all-l" configurations of IN, e] are stable; this means that e takes
both values in stable configurations of [N, e]. The result follows from Theorem 4.4.

Let N be the comparator network corresponding to an instance of Stable Marriage; let N’
be the network left after input elimination. By Lemma 6.2, each edge of N’ has type {0, };
thus, every edge-value pair leads to a successful propagation. This means that we may, in
steps 2 and 3 of Algorithm 1, pick the next edge-value pair arbitrarily and still retain the
guarantee of a successful propagation; moreover, the algorithm still runs in linear time. This
appears to be an interesting way to pick an arbitrary stable matching out of all the different
possible stable matchings.

6.3. The lattice theorem for stable configurations ofcomparator networks. We show
that the stable configurations of comparator networks form a distributive lattice. Conway’s
lattice theorem for Stable Marriage follows directly. For an introduction to the theory of
lattices, see].

Let N be any network. The set of all configurations of N has the structure of the boolean
lattice 2m under the natural ordering. (Here, m is the number of edges of N.) It is an easy
exercise in lattice theory to show that any subset of 2m that is closed under the operations
of bitwise AND and bitwise O/:i’ forms a distributive sublattice of 2m under the following
definition of meet andjoin: the meet of two elements is their bitwise AND and the join of two
elements is their bitwise O/:i’. We show that the set of stable configurations of a comparator
network is closed under bitwise AND and O/:i’; it follows that they form a distributive sublattice
of the boolean lattice of all configurations.

We need the following lemma.
LEMMA 6.3. Let Sin be an input assignment to a comparator network N. Let el and e2

be two edges that are inputs to the same gate g of N. Then there cannot be two stable
configurations Q and Q of[N, Sin], such that el +-- 0 and e2 +- in Q and el +-- and

e2 +-- 0 in Qt"
Proof Assume the contrary, i.e., suppose el +-- 0 and e2 +-- in Q and el --and e2 +- 0 in Q,. Eliminate the inputs of N. This process will not assign a value to

either e or e2, because, by hypothesis, these edges take on both possible values in the stable
configurations of IN, Sin]. Hence the network left after input elimination will also have two
stable configurations Q’ and Q’, such that e, +-- 0 and e2 +-- in Q’ and el -- and e2 0

in Q. Hence it suffices to prove Lemma 6.3 for input-free networks. From now on, we
assume Sin e.

Let e3 be the "min" output edge of g. Since e3 +-- 0 in Q, and Q/, [e3, 0] is viable
in N. Hence the propagation of [e3, 0] must assign the value 0 to at least one of el and e2.
Assume that el is assigned the value 0. This means that el is assigned the value 0 in every stable

NEW APPROACH TO STABLE MATCHING 685

configuration of [N, Sin in which e3 is assigned the value 0. This contradicts the stability
of Qty. Similarly, if e2 is assigned the value 0, the stability of Q is contradicted.

THEOREM 6.4. Let N be a comparator network, and let Sin be an input assignment to N.
Then the stable configurations of IN, Sin form a distributive sublattice of the lattice of all
configurations, under thefollowing definition ofmeet andjoin: the meet oftwo configurations
is their bitwise AND; the join oftwo configurations is their bitwise OFI.

Proof. By previous remarks, it suffices to prove that the set of stable configurations is
closed under bitwise AND and bitwise OF/.

Let Q and Q be two stable configurations of [N, Sin]. Let Q be the bitwise AND of
Q, and Q. The values assigned by Q, Q, and Q to any particular input edge of N are the
same, so Q trivially satisfies the input conditions. Hence it suffices to show that Q satisfies
the gate equations at every gate of N. Let g be an arbitrary gate of N; let el and e2 be its two
input edges. The following simple case analysis shows that the gate equations are satisfied at

gate g.
The first case is where one of Q and Q assigns both input edges the value 0. If this

happens, the input and output edges ofg are all assigned the value 0 in Q, so the gate equations
are satisfied. The second case is where one of Q and Qt, say Q, assigns both input edges
the value 1. In this case, the input and output edges of g are assigned the same values in Q
and in Q, so the gate equations are satisfied. In the third case, Q and Qt both assign the
same values to the two input edges. In this case, the input and output edges of g are assigned
the same values in Q, in Qa, and in Q, so again the gate equations are satisfied. The only
remaining case is when one of Q and Q assigns the input edges the values el -- 0, e2 +--

and the other assigns the input edges the values el -- 1, e2 +- 0. But Lemma 6.3 assures us
that this is not possible.

The case of the bitwise O/:/of Q and Q is analogous.
Remarks. Tarski’s theorem [28] says that the set of fixpoints of any monotone func-

tion from a complete lattice to itself forms a complete lattice. This theorem, together with
Lemma 2.1, is sufficient to prove that the stable configurations (on a given input assignment)
of any monotone scatter-free network form a lattice. However, this approach does not seem to
yield the sublattice property. Nevertheless, and even though our proof is specific to the com-
parator, Theorem 6.4 does extend to any monotone scatter-free network. An easy application
of the ideas in [5] yields the desired proof.

Interpreting Lemma 6.3 in the context of Stable Marriage yields the following theorem
proven in 16].

LEMMA 6.5. Let I be an instance of Stable Marriage. Suppose man m is matched to

woman w in some stable matching M of I. Then there is no stable matching of I in which
both m and to get better mates than in M.

Proof Consider the comparator network corresponding to instance I, and apply
Lemma 6.3.

An easy corollary of Theorem 6.4 is the Lattice Theorem for Stable Marriage, proven and
attributed to Conway in [20].

THEOREM 6.6. The stable matchings of a given instance of Stable Marriage form a
distributive lattice, under thefollowing definition ofmeet andjoin: The meet oftwo matchings

M and M2 is a matching in which every man is married to the better ofhis two mates in M
and)1//2; the join ofM and M2 is a matching in which every man is married to the worse of
his two mates in M and M2. (A man who is unmatched in M and M2 stays unmatched in
meet(M, M2) andjoin(M, M2)).

Remark. By Theorem 4.5, it is not possible for a man to be matched in exactly one of the
two matchings.

686 ASHOK SUBRAMANIAN

7. Implications for parallel complexity.

7.1. Complexity theory background. For an introduction to complexity theory, see
[13],[26]; for an introduction to parallel computation, see [3], [19].

The reductions in this paper are the many-one logspace reductions of[18]. We believe
our reductions are simple enough that they will continue to hold under reasonable alternative
definitions of reducibility. A problem is complete for a class if it is in the class and every
problem in the class reduces to it. The class CC is the class of decision problems that are
equivalent to Comparator Circuit Value (C-CV); see [21].

7.2. Overview of reductions. In the following sections, we show that several problems
related to Stable Matching are CC-complete. Section 7.3 shows that Stable Matching and
Network Stability for X-networks are essentially the same problem and that Stable Marriage
and Network Stability for comparator networks are essentially the same problem. Thus,
determining whether an X-network has a stable configuration is just as hard as determining
whether an instance of Stable Roommates has a stable assignment; constructing a stable
configuration of an X-network is just as hard as constructing a stable roommate assignment
for an instance of Stable Roommates. Similar remarks apply to Stable Marriage and Network
Stability for comparator networks. Of course, in this case the existence questions are trivial,
because the answer is always "Yes."

Section 7.5 shows that the existence of stable configurations in X-networks is equivalent
to Comparator Circuit Value. In 7.6, it is shown that constructing a stable matching for an
instance of Stable Marriage is equivalent to Comparator Circuit Value: given an oracle for
C-CV, we can compute the man-optimal stable matching; in the other direction, C-CV reduces
to the problem of telling whether man m is married to woman w in an instance of Stable
Marriage that has exactly one stable matching. This leaves the problem of constructing a
stable configuration of an X-network in the nonbipartitionable case; our methods do not tell
us whether this problem reduces to CoCV.

Section 7.6 also shows the following problems to be equivalent to C-CV: the Fixed Pair
and Stable Pair problems, and the decision version of the Minimum-regret problem. For these
problems, it does not matter whether the instance is one of Stable Matching or Stable Marriage.
For the Minimum-regret problem, there is a difference between three and two: determining
whether the largest regret is at most three is equivalent to C-CV, but telling whether the largest
regret is two seems easier--at least it is no harder than a 2-SAT computation. (Of course, at
this point, we have no proof that C-CV is harder than 2-SAT.)

Section 7.6 also shows that constructing a minimum-regret stable matching for an in-
stance of Stable Marriage is just as hard as C-CV. The proof indicates that constructing a

minimum-regret stable matching for instances of Stable Matching reduces to C-CV if and
only if constructing a stable configuration of an X-network reduces to C-CV. However, we do
not know how to reduce directly the construction of a minimum-regret stable matching to the
construction of a stable configuration of an X-network.

Feder [5] has recently shown that (the decision problem corresponding to) constructing a
stable configuration of an X-network is no harder (for parallel computation) than determining
its existence. Given this theorem, it follows that all the problems considered above (except
Regret-2 Stable Matching and 2-SAT) are equivalent to Comparator Circuit Value or, in other
words, are CC-complete.

Finally, in 7.7, we give a reduction from C-CV to the Assignment problem (also called
Bipartite Weighted Matching). This implies a fast parallel transformation of instances of
Stable Marriage into instances of the Assignment problem in such a way that the solution
of the Assignment problem yields the man-optimal stable matching of the Stable Marriage
instance; this partially answers a question posed in [20]. However, our reduction is not entirely

NEW APPROACH TO STABLE MATCHING 687

satisfactory, because it loses all the stable matchings except the man-optimal one. It is an open
problem to give a fast parallel transformation from Stable Marriage to the Assignment problem
in a manner that preserves the structure of all solutions.

7.3. Stable Matching is the same as X-Network Stability. In this section, we show that
Stable Matching and X-Network Stability are essentially the same problem. There are easy
reductions between the two problems that map instances of one problem to instances of the
other in a manner that preserves the structure of solutions. These reductions take Stable Mar-
riage instances into instances of Network Stability for bipartitionable X-networks. We have
already seen that bipartitionable X-networks and comparator networks are interchangeable. It
follows that Stable Marriage and Network Stability for comparator networks are essentially
the same problem.

THEOREM 7.1. Stable Matching is equivalent to X-Network Stability.
Proof. The reduction from Stable Matching to X-Network Stability follows immediately

from the reduction of 3. We show how to reduce X-Network Stability to Stable Matching.
Given an X-network N and its input assignment Sin, we construct an auxiliary X-network N
in such a way that the stable configurations of [N, Sin] are in one-to-one correspondence with
the stable configurations of [), 1]. The new network/ has the following properties: every
snake is acyclic; no two snakes meet more than once; no snake meets itself.

The first step is to delete snakes whose input edges are assigned the value 0 by Sin. Observe
that if an input edge of a snake is 0, every edge on this snake will take the value 0 in every
stable configuration; furthermore, every snake that intersects this snake will have the same
value after the intersection as it did before it. Hence, such 0-snakes may be identified and
removed without altering the set of stable configurations.

The next step is to insert two NOT-gates in series on every noninput edge of N. We
then replace each NOT-gate by an X-gate with one input fixed at the value 1. The resulting
network is the desired network N. It is easy to check that it has the properties claimed above.

Finally, we can read off the desired instance I of Stable Matching from the network by
inverting the reduction of 3 in the following manner. Introduce a person for each snake of N.
Two persons find each other acceptable if and only if their snakes meet. Finally, the order in
which a person’s snake meets the other snakes gives his preference ordering. It follows from
Theorem 3.2 that the stable configurations of [N, Sin] are in one-to-one correspondence with
the stable matchings of instance I. [3

Remarks. The above proof actually proves a little more. First, if N is bipartitionable, so
is , and then instance ! will be an instance of Stable Marriage. Second, the sizes of N and !
are linear in the size of N. Finally, note that in N each snake meets at most three other snakes,
and furthermore, if a snake meets more than one other snake, the value on its output edge
is 0. This means that in instance I, each person has at most three persons on his preference
list. Also, in every stable matching of I the persons who list more than one other person are
guaranteed to be matched to one of their first three choices. We shall use this later, to prove
Theorem 7.15.

We give an easy proof, based on the network formulation of Stable Matching, of the
following well-known lemma.

LEMMA 7.2. Complete Stable Matching is no easier than Stable Matching. Complete
Stable Marriage is no easier than Stable Marriage.

Proof. Given an instance of Stable Matching, we convert it to an instance of Complete
Stable Matching, without affecting the set of stable matchings. The first step is to introduce
the appropriate number of extra persons and decree that they have no acceptable mates. This
does not affect the set of stable matchings. In terms of X-networks, introducing these extra

persons amounts to adding new snakes with input as separate connected components.

688 ASHOK SUBRAMANIAN

It is instructive to do the rest of the proof with networks instead of preference lists. Let
be the X-network corresponding to the Stable Matching instance we have so far. Network N
has one deficiency: each snake of N might not meet every other snake that it should meet.
We remedy this by a "cascade" construction, i.e., by appending a new network N2 at the
"back" of N. The outputs of N become the inputs of N2. Our final network N will be the
composition of these two networks.

Let us examine what properties N2 should have. First, each snake of N2 must meet a

prescribed set of the other snakes, each exactly once. Second, the sets of stable configurations
of [N, 1] and [Nl, 1] should be isomorphic. The second condition will be met if the following
condition is met: whenever s is the output word of some stable configuration of [N, 1], [N2, s]
has exactly one stable configuration. A simple solution is to make N2 a circuit. This works
because every circuit has exactly one stable configuration on any given input assignment.

We construct N2 as follows. Pick any fixed total order O of the snakes, and let each
snake meet all the snakes it ought to meet in the order induced by O. This defines N2 and
hence N. The desired instance of Stable Matching can be read off from N. This completes
the reduction. The proof for Marriage instances is similar.

Notice that the cascade construction actually does something very simple with the pref-
erence lists: it enlarges the preference list of each person x, by appending to it all the mates
originally unacceptable to x, in the order given by O.

7.4. On reducing problems to Comparator Circuit Value. Following 18], we say that
a problem Z is many-one reducible to C-CV if we can exhibit a reduction from Z to C-CV
that takes each instance of Z to a comparator circuit plus an input assignment to it, so that the
instance has a "Yes" answer if and only if the circuit has output when evaluated on the given
input assignment. In proofs, it is more convenient to think in terms of Turing reductions to
C-CV. The following lemma helps convert Turing reductions to many-one reductions.

LEMMA 7.3. If Z and Ze are many-one reducible to C-CV, so are O(Z,Ze),
AND(Z1,Z2), and NOT(ZI).

Proof The many-one reducibility of OFt(ZI ,Z2) and AND(Z ,Z2) to C-CV follows from
the fact that the comparator can simulate the OFi’-gate and the AND-gate. The many-one
reducibility of NOT(Z) to C-CV follows because the X-gate can simulate {C,NOT} and
because X-CV reduces to C-CV by Lemma 7.4. [3

LEMMA 7.4. X-CV is equivalent to C-CV.
Proof The basis {X} can simulate {}; hence C-CV reduces to X-CV. The reduction

in the other direction utilizes Goldschlager’s idea of using "double-rail" logic [9]. In other
words, encode the values 0 and by the pairs (1,0) and (0, 1) respectively. Replace every
edge e in the original circuit by a pair of edges (e-, e+); the rest of the construction will
guarantee that the two edges in a pair will always have complementary values. If e is an

input edge that is assigned the value v, edges e- and e+ are assigned the values and v
respectively. Finally, we must replace every X-gate by an appropriate gate. The X-gate has
two inputs il, i2 and two outputs Ol i i2, 02 i i2. The new gate will have four inputs
i-, i+, i-, i- and four outputs o]-, o-, o-, o-. The new gate must simulate the behaviour of
the X-gate in the following sense: when presented with an input word that is a valid encoding
of the input word to an X-gate, it must produce an output word that is the valid encoding
of the corresponding output word of the X-gate. The action of the gate on input words like
0010 may be arbitrarily chosen. One solution is to use the gate defined by the equations
o]- i- + i-, o+ i+ i, o- i+ + i-, 02+ i- i2+. It is easily seen that this gate can
be simulated by the comparator.

An easy inductive proof shows that if edge e in the original circuit has value v, then the
pair of edges (e-, e+) in the new circuit will be assigned the value-pair (, v). Hence, in

NEW APPROACH TO STABLE MATCHING 689

particular, if e0 is the output edge of the original circuit, the edge e- will serve as the output
edge of the new circuit. Finally, since the new gate can be simulated by the comparator, the
new circuit can be converted into a comparator circuit.

7.5. X-Network Stability is equivalent to Comparator Circuit Value. Let f be a
scatter-free basis that can simulate {NAND}. The objective of this section is to show that
-NS and f-CV are equivalent. (This result was presented in [21]; here we give a complete
proof.) In particular, X-NS is equivalent to X-CV; hence, using Lemma 7.4, X-NS is equivalent
to C-CV.

7.5.1. Reducing -CV to 2-NS. The proof uses the idea of a forcer. A v-forcer is a
one-input, zero-output network that has a stable configuration if and only if the input takes the
value v. A 0-forcer may be built by tying the output of a NAND-gate to one of its inputs, and
a 1-forcer may be obtained by adding a NOT-gate at the input of a 0-forcer.

LEMMA 7.5. Let 2 be any basis that can simulate NAND}. Then -CV reduces to 2-NS.
Proof To determine the output of a circuit over g2, feed its output into a 1-forcer. The

resulting network has a stable configuration if and only if the circuit has output 1. Since
basis f2 can simulate NAND}, we can build forcers over

7.5.2. Reducing g2-NS to f2-CV. Given a network N over a scatter-free basis f2 and an
input assignment Sin to N, we wish to construct a circuit over 2 so that the output of the circuit
is if and only if [N, Sin] has a stable configuration.

Let N’ be the network left after the inputs of N are eliminated. We say that an edge ofN is
bad if it is a contradicting edge of N’. By Theorem 4.3, network N has no stable configuration
if and only if it has a bad edge. Thus the key step is to construct a circuit that will tell us if a
given edge is bad. Once this is done (independently) for every edge of N, we may combine
the results and answer the stability question by using some simple additional circuitry. The
rest of the discussion is divided into three stages. In the first stage, we show how to tell if an
edge is bad; in the second stage, we define a network process that will compute whether or not
an edge is bad; in the final stage, we convert the network process into a circuit computation.

Stage 1. How do we tell if edge e is bad? Break edge e, thus creating an extra input e(in)
and an extra output e(out). Call the resulting network Ne. Let Se be the input assignment to Ne
obtained by augmenting Sin with the assignment e(in) +-- v. Consider the following experiment
Expt(e, v): Assign each input of Ne the value it gets under the input assignment Se, and perform
input elimination. Since the gates are scatter-free, each output of Ne will be assigned a value.
We say that experiment Expt(e, v) succeeds if the value assigned to edge e(out) is v; otherwise
it fails.

LEMMA 7.6. Edge e is bad ifand only if both the experiments Expt(e, 0) and Expt(e, 1)
fail.

Proof The key observation is that the result of input elimination does not depend on the
order in which the inputs are eliminated. Hence we may pretend that experiment Expt(e, v)
is conducted in two phases: in the first phase, all the inputs except e(in) are eliminated; in the
second phase, input e(in) is eliminated. There are two cases, depending on whether or not
edge e(out) is assigned a value in the first phase.

Case 1. Suppose edge e(out) is assigned a value v’ in the first phase. This means that
edge e would be assigned the value v’ when the inputs of N are eliminated. It follows that e
is not an edge of N’; hence e is not a bad edge of N. Notice also that Expt(e, v’) will succeed.
Thus Lemma 7.6 is true in this case.

Case 2. Suppose edge e(out) is not assigned a value in the first phase. This means two
things: first, the effect of the first phase is identical to that obtained by eliminating the inputs
of N; second, edge e is an edge of N’. Notice that the second phase of Expt(e, v) will assign

690 ASHOK SUBRAMANIAN

value v to edge e(out) if and only if [e, v] is viable in N’. It follows that both Expt(e, 0) and
Expt(e, 1) fail if and only if edge e is contradicting in N’. Hence Lemma 7.6 is true in this
case as well. [3

Stage 2. We now define a network process that will compute the value assigned to
edge e(out) by experiment Expt(e, v). Consider the following network process: Initialize
network Ne to any configuration consistent with the input assignment Se. Then let the network
"run." In other words, perform the following primitive operation at each gate of the network,
in parallel: apply the gate function to the values on the input edges, and use the result to
update the values on the output edges of the gate. The crucial observation is that the values
on certain edges of the network will stabilize, i.e., will not change after a certain number of
parallel steps. In particular, the value on edge e(out) will stabilize at the value it is assigned
in experiment Expt(e, v).

LEMMA 7.7. Each edge that is assigned a value in experiment Expt(e, v) will stabilize at
the same value in the network process.

Proof Notice that the value on each input edge of network Ne is held constant. Hence
Lemma 7.7 is true for these edges. The process of eliminating the inputs of Ne in experiment
Expt(e, v) gradually assigns values to some edges of Ne. An assignment to an output edge of
gate g follows from an assignment to a subset of the inputs of g by invoking the equation of g.
This process is faithfully mimicked in the network process: first each edge in the relevant
subset of the inputs stabilizes to the correct value; then the output edge stabilizes.

The proof ofLemma 7.7 may be extended to bound the number of parallel steps needed for
edge e(out) to stabilize. Let m be the number of edges in network N. Then the longest chain
of influence in the input elimination process of experiment Expt(e, v) involves at most m +
edges. Hence edge e(out) will reach its correct value after at most m parallel steps.

Stage 3. The final step is to use the regularity of the network process to "unravel" it into
a circuit computation. In other words, we construct a circuit over that will simulate the
network process. The idea is to make m copies of network Ne (we call each copy a layer) and
connect these layers up into a circuit C in such a way that the values that leave the tth layer
are the values that appear in network Ne after parallel step t. As a result, the correct value of
edge e(out) may be read off from the top layer of the circuit.

More accurately, we make m copies of network N and change the output edges of all the
gates so that they enter the next layer, instead of the same layer. The gates of C are (g, t) g
isagateofNe; < <_ m};theedgesare{(,t)]isanedgeofNe; 0 <_ < m}. (Not
quite! The edges of the form (g’, 0) for Y an output edge of Ne or of the form (g’, m) for
an input edge of Ne are not actually present.) The gates {(g, t) < < m all have the
same gate type as g. If g has inputs il ix and outputs ol ou, then (g, t) has inputs
(il, 1) (ix, 1) and outputs (ol, t) (ou, t).

If Y is an input edge of Ne with value 5, all the input edges {(Y, t) 0 _<_ < m} get the
value 5 in C; this has the effect of presenting the real inputs of Ne to each layer of the circuit.
The edges (Y, 0), for Y an internal edge of N, are assigned arbitrary values; thins reflects the
arbitrariness in the initial configuration of N. Finally, if Y is a noninput edge of N, edge (Y, m)
is an output edge of C. This completes the description of C.

The following lemma may be proven by an easy induction on t.
LEMMA 7.8. The value on edge (, t) ofC equals the value on edge ofNe afterparallel

step t.
In particular, the value assigned to edge e(out) in experiment Expt(e, v) is given by the

value assigned to edge (e(out), m) in C. Once we have the values assigned to edge e(out)
in experiments Expt(e, 0) and Expt(e, 1), we may determine whether or not edge e is bad
by adding an AND-gate and a NOT-gate. We may then combine the results for each edge

NEW APPROACH TO STABLE MATCHING 691

and answer the stability question by adding O/:/-gates and a NOT-gate. Thus we get a
circuit over f2tA{NAND} that computes the answer to the question "Does [N, Sin have a stable
configuration?" This circuit has O(m3) gates.

THEOREM 7.9. Let f2 be any scatter-free basis that can simulate NAND}. Then f2-NS is
equivalent to f2-CV.

Proof. The reduction from f2-NS to f2-CV follows from the construction above; the
reduction from f2-CV to f2-NS follows from Lemma 7.5. 1

7.6. More Stable Matching problems equivalent to Comparator Circuit Value. In
this section, we prove that several Stable Matching problems are CC-complete. We begin by
showing (Lemma 7.1 O) that X-network stability problems remain just as hard even if we place
certain constraints on the values that certain edges can take.

LEMMA 7.10. Thefollowing problems are equivalent (and hence equivalent to C-CV):
1. Given an X-network N, an input assignment Sin, and a partial assignment P to the

noninput edges of N, can P be completed to a stable configuration of the network?
2. Given an X-network N and an assignment Sin to the input edges of N, is there a

stable configuration of [N, Sin]?
Proof. Problem 2 is clearly a special case of problem 1, so it suffices to reduce problem

to problem 2. This can be done by using forcers. Suppose P requires that edge e get the
value v. Break edge e, creating input e(in) and output e(out). Assign edge e(in) the value v,
and feed e(out) into a v-forcer.

THEOREM 7.11. Thefollowing problems reduce to C-CV.
1. Fixed Pair. Is the given pair ofpersons a fixed pair of the given instance of Stable

Matching, i.e., is it true that these two persons are matched to each other in every stable
matching?

2. Stable Pair. Is the given pair ofpersons a stable pair, i.e., is it true that there is a
stable matching that matches these two people to each other?

3. Minimum-regret. Is it true that there is a stable matching of the given instance in
which every person has regret at most k?

Proof To check that two persons form a fixed pair, it suffices to check that the snakes
corresponding to these two persons always meet each other with the value in the correspond-
ing instance of X-Network Stability. Let g be the gate where the two snakes meet; we have
to check that there is no stable configuration that assigns either edge entering g the value 0.
This reduces to C-CV by Lemma 7.10 and Lemma 7.3.

To check that two persons form a stable pair, it suffices to check that there is a stable
configuration that matches these two persons to each other, i.e., a stable configuration in
which the snakes corresponding to these two people meet each other with the value 1. This
reduces to C-CV by Lemma 7.10.

To check that there is a stable matching in which every person has regret at most k, just
check whether there is a stable configuration that assigns each snake the value 0 after it has
traversed k gates. (If snake q has fewer than k gates on it, the desired stable configuration
must assign the output edge of q the value 0.) Again, we invoke Lemma 7.10 to reduce this
problem to C-CV. q

THEOREM 7.12. The Man-optimal Stable Marriage problem, "Given an instance I of
Stable Marriage, a man m, and a woman w, determine whether rn is matched to w in the
man-optimal stable matching M of I," reduces to C-CV.

Proof. Let [N, Sin] be the instance of Comparator Network Stability corresponding to

instance I; let Q0 be the stable configuration of [N, Sin] corresponding to the man-optimal
stable matching of I. We show how to construct a comparator circuit to compute Q0. The
proof of Theorem 7.12 then follows by applying Lemma 7.3.

692 ASHOK SUBRAMANIAN

Theorem 6.1 tells us that Q0 is the "most-0" stable configuration of [N, Sin]. We claim
the following network process finds Q0. Initialize N to the "all-0" stable configuration. Then
make all the red inputs 1. These changes create disturbances that propagate through the
network. But the network will eventually enter the stable configuration Q0.

We justify the claim. Notice that all the input disturbances "increase" the value assigned
to an input edge. The comparator is a monotone gate--increasing the values assigned to the
inputs can never cause an output to decrease. Hence, the effect of the disturbances as they
move through the network will be to increase the value of some edges of N, but no edge will
ever move from to 0. It follows that the disturbances will die out in at most m steps. Now
observe that an edge is assigned the value during the network process only if it must have
the value in every stable configuration of [N, Sin]. It follows that the stable configuration
the network reaches is Q0.

The network computation on N may be unravelled into a circuit computation over the
same basis in the standard fashion. (See, for example, the discussion in 7.5.) rq

We can also reduce the problem of constructing a minimum-regret stable matching for an
instance of Stable Marriage to C-CV. Let I be any instance of Stable Marriage; let regret(I)
be the value of the largest regret in a minimum-regret stable matching of I. The discussion in

4.2 tells us that there is a single instance/regret(I) of Stable Marriage whose stable matchings
are all the minimum-regret stable matchings of I. Define the man-optimal minimum-regret
stable matching of I to be the man-optimal stable matching of/regret(l). The following theorem
shows that the construction of this special stable matching reduces to C-CV.

THEOREM 7.13. The Man-optimal Minimum-regret Stable Marriage problem, "Given an
instance I of Stable Marriage, a man m and a woman w, determine whether m is matched
to w in the man-optimal minimum-regret stable matching of I," reduces to C-CV.

Proof. Assume without loss of generality that there are at least as many men as women
in instance I; let n be the number of men. Then regret(I) is one of the integers between
and (n + 1). If regret(I) (n + 1), this is taken to mean that there is some person who
is unmatched in every stable matching of I. The idea is to compute the man-optimal stable
matching separately in each of the (n + 1) cases and then select the correct stable matching
using the value of regret(I).

Suppose we wish to compute whether m is matched to w in the matching that is best for
the men from among all the stable matchings in which each person has regret at most k. First
compute the appropriate instance Ik of Stable Marriage as in 4.2. The proof of Theorem 7.12
can be made to yield a comparator circuit Ck whose output is if and only if man m is matched
to woman w in the man-optimal stable matching of instance Ik.

The reduction from the Minimum-regret problem to C-CV (see Theorem 7.11 above) can
be made to yield, for each k 6 [1, (n + 1)], a comparator circuit Atmost whose output is
if and only if regret(I) < k. (The circuit Atmostn+l is trivial; its output is always 1.) Now
build a comparator circuit Exactk, where the output of Exactk is if and only if regret(I) k.
For k > 1, regret(I) k if and only if Atmostk has output but Atmostk_l has output 0;
Lemma 7.3 then yields the comparator circuit Exacb,. Also, Exact is just AtmOStl. (Of
course, for these constructions, we need two copies of the circuits Atmostk.)

The circuit ot(AND(Exactk, Ck)) has output if and only if man m is matched to
woman w in the man-optimal minimum-regret stable matching of I. This circuit can be built
with comparatorsmjust simulate the AND-gate and the O/:i’-gate with comparators. [

The problems reduced to C-CV in the previous three theorems are in fact equivalent to
C-CV.

THEOREM 7.14. C-CV reduces to the Fixed Pair problem, the Stable Pair problem, the
Man-optimal Stable Marriage problem, and the Man-optimal Minimum-regret Stable Mar-
riage problem.

NEW APPROACH TO STABLE MATCHING 693

Proof. Let C be the given comparator circuit. Use the transformation of Fig. 2(b) to
replace it by a bipartitionable X-circuit. Delete snakes whose input edges have the value 0, as
in the proof of Theorem 7.1. Circuit C has output (on a given input assignment Sin) if and
only if the output edge of a certain vertical snake q of the X-circuit is assigned the value 1.
Add a new horizontal snake q’ with input to the X-circuit. Let q’ meet q and no other snake.
Let q meet q’ last. Then C has output on sin if and only if q and q1 meet each other with
value in the new X-circuit. The method used in the proof of Lemma 7.2 can be used to
ensure that the number of horizontal and vertical snakes are equal and that every horizontal
snake meets every vertical snake exactly once. Now, read off an instance of Complete Stable
Marriage from the X-gate circuit. This instance will have exactly one stable matching. Also,
the output of C is on Sin if and only if the persons corresponding to snakes q and q’ are
married to each other in the unique stable matching. The theorem follows. [

THEOREM 7.15. C-CV reduces to the question "Does the given instance of Complete
Stable Marriage have a stable matching in which every person has regret at most 3?"

Proof Given an instance of C-CV, we produce an instance of Complete Stable Marriage
with the following properties: there is exactly one stable matching; the regret of every person
except woman w in this stable matching is at most 3; woman w has regret 3 if and only if the
instance of C-CV has output 1, otherwise she has regret 4.

As in the proof of Theorem 7.14, replace the given comparator circuit C by a bipartition-
able X-circuit without 0-snakes, so that C has output on input assignment Sin if and only if
the output edge of a certain vertical snake q of the X-circuit is assigned the value 1.

The next step is to prepare the snake of woman w appropriately. Introduce the following
new snakes: q0, q2, q3, q4, qs, q7. The input edge of each of these snakes is assigned the
value 1. The snakes with odd subscripts will be vertical snakes, and the snakes with even
subscripts will be horizontal snakes. Snake q0 will ultimately become the snake of woman w.
Snake q0 meets q3, qs, q, q7 in that order; snake q2 meets q3 only; snake q3 meets q2 and q0 in
that order; snake q4 meets q5 only; snake q5 meets q4 and q0 in that order; snake q7 meets q0

only. Snake q meets qo last. The effect of this construction is to guarantee that woman w gets
either her third choice or her fourth choice; she gets her third choice if and only if circuit C
on input Sin has value 1.

The rest of the proof contains a general construction that can be used to simultaneously
reduce the regret of some or all of the participants to three and make the instance "complete,"
without changing the structure of the set of all stable matchings. It introduces new persons,
but each of them has regret at most three. The same construction works, with the appropriate
changes, for the nonbipartitionable case. The size of the output instance produced by the
construction is O(n4), where n is the size of the comparator circuit; it is possible to produce
an instance of size O(n2) if the output instance is not required to be bipartitionable, but such
considerations are largely irrelevant from the viewpoint of parallel reductions.

The method used in the proof of Lemma 7.2 converts our bipartitionable X-network
into the X-network corresponding to an instance of Complete Stable Marriage. There is one
difficulty, however: some of the participants other than w might have regret more than 3, or in
other words, some snakes other than q0 might have the value even after meeting three other
snakes. This can be rectified by performing some minor surgery on the network. The trick,
much as in the proof of Theorem 7.1, is to insert two NOT-gates in series into every noninput
edge of the network except the edges on snake q0 and then to replace each NOT-gate by an
X-gate with input 1. The result is a bipartitionable X-circuit with the following properties:
each snake except q0 meets at most three other snakes; the value on the input edge of every
snake is 1; the value on the output edge of every snake is 0; there are an equal number of
man-snakes and woman-snakes. Now convert this to an instance of Complete Stable Marriage

694 ASHOK SUBRAMANIAN

by completing each person’s list in any manner. The resulting instance will have all the desired
properties. [3

It follows from the following theorem and Theorem 4.5 that the question "Does the given
instance ofStable Matching have a stable matching in which every person has regret at most 2?"
is in NC. This suggests that the number 3 in Theorem 7.15 cannot be reduced.

THEOREM 7.16. Stable Matching is in NC ifeachperson lists at most two otherparticipants
as acceptable mates.

Proof. Introduce for each person x two boolean variables gets(x, 1) and gets(x, 2).
The intended meaning is that gets(x, j) is made true by a stable matching if and only if x
is matched to his jth choice. Then the stable matchings are precisely the solutions of the
following equations.

1. gets(x, 1)/ gets(x, 2).
2. If x is the jth choice of y and y is the kth choice of x, then gets(y, j) gets(x, k).
3. If x is the first choice of y and y is the first choice of x, then gets(x, 1).
4. Ifx is the first choice of y and y is the second choice ofx, then gets(x, 1) /gets(x, 2).
5. If x is the second choice of y and y is the second choice of x, then gets(x, 1) /

gets(y, 1) /gets(x, 2).
Notice that if x and y are second choices of each other, then all the equations involv-

ing gets(x, 2) and gets(y, 2) may be replaced by the single defining equation gets(x, 2)
gets(y, 2) gets(x, 1) v gets(y, 1). We say that such variables gets(x, 2) and gets(y, 2)
are inessential. Solve the original system of equations as follows: delete all the equations
involving inessential variables; solve the resulting system of equations; and then solve for the
inessential variables by using their defining equations. The key observation is that eliminating
the inessential variables renders the system of equations simpler--each equation in the new
system mentions at most two variables. Hence the new system may be converted into an
instance of 2-SAT and can be solved in NC [4]. [3

Remark. The difference between preference lists of lengths two and three has also been
observed by Soroker [25]. He considers a special case of Stable Marriage, called Priority
Marriage. He shows that Priority Marriage is just as hard even if each preference list is at
most three long; however, if each list has at most two persons on it, the problem is in NC.

7.7. A reduction from Comparator Circuit Value to the Assignment problem. In
this section, we exhibit a fast parallel reduction from C-CV to Bipartite Weighted Matching.
Cook [2] initially showed that X-CV is equivalent to a problem called Lex-first Maximal
Matching; also, there are easy reductions from C-CV to X-CV and from Lex-first Maximal
Matching to Weighted Matching. The actual reduction used in this section incorporates these
ideas; the specific gadgets used are due to Soroker [25].

Let C be the given comparator circuit, with n gates; let Sin be the given input assignment
to C. We shall assume that C is topologically sorted, that is, we are given a function hum
that maps the gates of C into distinct integers in [0 (n 1)], in such a way that if an
output edge ofg is an input edge of g2, then num(g) < num(g2). This assumption is justified
(see [24]) because there is a fast parallel transformation that takes as input any circuit C and an

input assignment sin and returns a (larger) circuit C’ over the same basis, a topological-sorting
function num for C’, and an input assignment si’n, so that [C’, si’n] has output if and only if
[C, Sin] has output 1. We shall also assume, without loss of generality, that the output whose
value we wish to compute is the O/:i’ output of gate (n 1). We shall construct a bipartite
graph G and a function weight from the edges of G into the positive integers, so that the
maximum-weight matching of G is unique; furthermore, this matching has odd weight if and
only if the output of C on the input assignment Sin is 1.

NEW APPROACH TO STABLE MATCHING 695

input ecge ,/ C 0.0

0

inl:)Ut eage ii,,>

(a) The Reduction

(b) An Example

FIG. 3. Reducing Comparator Circuit Value to Bipartite Weighted Matching.

The construction is illustrated in Fig. 3(a). Each comparator gate g is locally transformed
into a graph gadget with four vertices and five edges. If num(g) k, the edges of the gadget
are labeled from k.1 to k.5 as shown. The weight of an edge labeled k.l will be 25"-(5k+).
Think of the gadget as taking in two input edges (shown dotted) and producing two output
edges, the edges labeled k.4 and k.5. The gadgets for different gates are connected to one
another in exactly the same way as the gates are connected in C.

Input edges of C are treated as follows. Suppose e is an input edge of C. If e is assigned
the value by Sin, it becomes an edge with label 0.0 (and weight 25n) in G. On the other
hand, if e is assigned the value 0, it does not appear in G. An example of the transformation
is shown in Fig. 3(b).

It is easy to prove that G is bipartite--the shape of the vertices (square or round) in Fig. 3
gives a bipartition.

THEOREM 7.17. The maximum-weight matching ofG is unique, and it has odd weight if
and only if the value assigned to the output edge ofC on input assignment sin is 1.

696 ASHOK SUBRAMANIAN

Proof Say an edge is heavy if its weight is 25n; it is light otherwise. Every heavy edge will
appear in every maximum-weight matching, of G, because these edges do not share vertices,
and the combined weight of all the light edges is 25n 1, which is less than 25. The weights
of the light edges are decreasing powers of 2, and no two light edges have the same weight.
This means that the heaviest light edge weighs more than all the other light edges combined,
and hence it is always advantageous to add the heaviest light edge to the current matching.
Reasoning in this fashion, we conclude that the maximum-weight matching is unique and can
be found by the following greedy algorithm. Start with a matching consisting of the heavy
edges, and then inspect each light edge in decreasing order of weight, adding it to the current
matching if at all possible.

We prove the following inductive assertion.

(,) Edge e of C is assigned the value in the unique stable configuration of [C, Sin]
if and only if the corresponding edge in G is matched in the unique maximum
weight matching M of G.

We first prove (,) when e is an input edge. Then we consider each gate of G, in increasing
order of num(g), and prove that if (,) is true for the edges that are inputs to g, it must also be
true for the edges that are outputs of g. This will complete the proof of (,).

The base case is when e is an input edge of C. If e is assigned the value 0 by Sin, (*) is
vacuously true. If e is assigned the value by Sin, the corresponding edge in G is heavy and
will be included in M.

Now assume that (,) is true for the edges that are inputs to the gate g with num(g) k.
We wish to prove (,) for the outputs of g. To do this, examine the graph gadget corresponding
to gate g. See Fig. 3(a). Define the boolean variables al and a2 as follows: al is true if and
only if the top input to g is 1; a2 is true if and only if the bottom input to g is 1. By assumption,
these variables also capture whether or not the input edges to the graph gadget are matched
in M. Now notice that in the vicinity of the graph gadget, the weights decrease in the following
order: the input edges (in some order); then the edges labeled k. 1, k.2, k.3, k.4, k.5, in this
order; then the other edges, if any, that are incident to the right endpoints of the edges labeled
k.4 and k.5. This allows us to infer when (under what conditions on the variables al and a2)
the greedy algorithm will match the edges labeled k.l. The computations in Table 2 verify
that (,) holds for the output edges of g.

TABLE 2
When the edges of the graph gadget are matched.

Edge When Matched
Top input edge

Bottom input edge
Edge labeled k.
Edge labeled k.2
Edge labeled k.3
Edge labeled k.4
Edge labeled k.5

al

al a2
al a2
al a2

al +a2

Given (,), we complete the proof of Theorem 7.17. All the edges of G have even weights
except the edge labeled (n 1).5, which has weight 1. Hence M has odd weight if and only
if this edge is in M, which happens if and only if the output edge of C is assigned the value
when C is evaluated on input assignment Sin. [-]

Remark. By combining the reduction of this section with the reduction in the proof of
Theorem 7.12, we get a reduction from the Man-optimal Stable Marriage problem to Bipartite

NEW APPROACH TO STABLE MATCHING 697

Weighted Matching. This reduction takes an instance of Stable Marriage with n men and n
women to an instance of Bipartite Weighted Matching that has (2 -t-o(1))n4 vertices on either
side of the graph and edge weights that have (5 + o(1))n4 bits each. Given the optimal
matching M of the Weighted Matching instance, we can read off the man-optimal stable
matching of the Stable Marriage instance.

8. Other reductions.

8.1. Counting the number of stable matchings is #P-complete. We show how to use
the network formulation to give a simple proof that the problem of counting the number
of stable matchings in an instance of Stable Matching is #P-complete. A stronger result is
known 16], namely, that the theorem holds even if the instance is one of Stable Marriage,
but the proof of the stronger result uses a nontrivial theorem about the structure of all stable
matchings of an instance of Stable Marriage.

THEOREM 8.1. Theproblem ofcounting the number ofstable configurations in an instance

ofX-Network Stability is #P-complete.
Proof Testing whether a configuration of an X-network is stable is clearly in P; this puts

the counting problem in #P. To show completeness for #P, we give a parsimonious reduction
from Monotone 2-SAT. Monotone 2-SAT is shown to be #P-complete in [29].

Let I be the instance of Monotone 2-SAT. Construct X-network N as follows: it has a
cyclic snake q for each variable a of I; snakes q and qb intersect if and only if the clause
a x/b appears in I. The instance of X-Network Stability is IN, e].

Notice that all the edges of any snake qa are assigned the same value in any stable
configuration of [N, el. If this value is 0, this is taken to mean that the variable a is "true." It
is easy to check that this gives a one-to-one correspondence between the stable configurations
of [N, e] and the satisfying assignments of I. [

8.2. Three-party Stable Marriage is NP-complete. Knuth [20] asks about the com-

plexity of Stable Marriage if the participants are of three kinds: men, women, and dogs. We
show that one possible formulation of this problem is NP-complete. It has been independently
shown in [22] that this problem is NP-complete.

We consider the following formulation. An instance of Three-party Stable Marriage has
equal numbers of three kinds of participants, say men, women, and dogs. A matching M is a
set of triplets: each triplet contains exactly one participant of each kind, and each participant
is in exactly one triplet of M. The participants have preference lists. Each participant lists
all the triplets containing his name in order of preference. Matching M is unstable if there is
a man m, a woman w, and a dog d, each of whom prefers the triplet (m, w, d) to the triplet
he is assigned to in M. The problem is: given an instance of Three-party Stable Marriage,
determine whether there is a stable matching.

LEMMA 8.2. Three-party Stable Marriage is equivalent to Y-Network Stability.
Proof. Section 3 shows that every instance of Stable Matching is an instance of X-

Network Stability. In an analogous fashion, it can be shown that every instance I of Three-
party Stable Marriage is an instance [N, 1] of Y-Network Stability. The Y-gate is a natural
generalization of the X-gate. It has three inputs i, i2, i3 and three outputs o, o2, 03. The
function Y l, iz, i3 --+ ol, o:, 03 is defined as follows: Y(1, 1, 1) (0, 0, 0); on all other
input words, Y(il, i2, i3) (il, i2, i3). Input ij and output oj are associated. This association
allows us to describe Y-networks in terms of snakes, just as we did for X-networks.

Network N contains one acyclic snake per participant. Snakes meet in triples at Y-gates.
The sequence of Y-gates on the snake of a participant corresponds exactly to the sequence
of triples that appear on his preference list. Proceeding in much the same way as in 3,
it can be shown that snakes drop in triples in any stable configuration of [N, 1], and that

698 ASHOK SUBRAMANIAN

the stable matchings of I are in one-to-one correspondence with the stable configurations
of [N, 1]mthree persons are matched in I if and only if their snakes drop together in [N, 1].
This completes the reduction from Three-party Stable Marriage to Y-Network Stability.

The reduction from Y-Network Stability to Three-party Stable Marriage is similar to
the reductions in 7.3. Given a Y-network N and its input assignment Sin, we construct an
auxiliary Y-network in such a way that the stable configurations of [N, Sin] are in one-to-
one correspondence with the stable configurations of [, 1]; furthermore, network has the
following properties: every snake is acyclic; no two snakes meet more than once; no snake
meets itself; each snake is assigned a color {1, 2, 3}; if an edge of snake q is input ij or

output oj of some gate g of N, the color of snake q is j.
A snake whose input edge is assigned the value 0 by Sin may be deleted from the network,

just as we did for X-networks. Next, assign each edge a color 6 1, 2, 3} as follows: if edge e
is output oj of some gate, set color(e) equal to j; if e is an input edge of the network and is
input oj to some gate, set color(e) equal to j. (Edges that are both input and output edges of
the network may be assigned an arbitrary color.) There are two difficulties to resolve--the
network may have cyclic snakes, and there may be color conflicts, i.e., an edge with color j
may be input ik to a gate, with j :/: k.

Notice that Y(1, 1, a) (, , 0) and Y(1, , 1) (a, 0, a). Connect these two gates
together by making the second output of the first gate be the second input of the second gate.
Color the resulting circuit in the obvious fashion. The resulting circuit serves to "change the
color" of an edge from 3 to 1. (Just ignore all outputs except output o of the second gate.)
Simple variants of this circuit can be used to change from any color j to any color k. Inserting
such circuits in every noninput edge of the Y-network resolves all color conflicts and makes
each snake acyclic. Let the color of a snake be the common color of its edges. The resulting
network is N; it is easy to verify that it has all the desired properties.

We can read off an instance of Three-party Stable Marriage from network , as follows.
Introduce a participant for each snake of N, and read off the preference ordering of a participant
from the order in which his snake participates in triples. A participant is a man, woman, or
dog if and only if his snake is colored 1, 2, or 3 respectively. There are two difficulties" in
the resulting instance, the numbers of the three different kinds of participants may not be
equal, and each participant may not list all the triples he is supposed to. These difficulties
may be resolved as in the proof of Lemma 7.2 by introducing extra snakes and appending a
circuit.

THEOREM 8.3. Three-party Stable Marriage is NP-complete.
Proof By Lemma 8.2, it suffices to show that Y-NS is NP-complete. The Y-gate can

simulate and be simulated by NAND,COIY}, so Y-NS is equivalent to NAND, C,OPY}-NS,
which is known to be NP-complete [21]. [2

Remark. Knuth [20] also proposes another formulation of Three-party Stable Marriage.
In this "circular" version, men list women in order of preference, women list dogs, and dogs
list men. A matching M of men, women, and dogs is stable if there is no destabilizing triple
(m, w, d) such that man rn prefers woman w to the woman he has been assigned to in M,
woman w prefers dog d to the dog she has been assigned to in M, and dog d prefers man rn to the
man it has been assigned to in M. It is not known whether this problem has a polynomial-time
solution.

9. Open problems. We seek new applications of the network approach to Stable Match-
ing. We would like to find a fast parallel algorithm for Stable Matching. We would also like
to find a fast parallel reduction from the Stable Marriage problem to the Assignment problem
that preserves the structure of solutions.

NEW APPROACH TO STABLE MATCHING 699

Acknowledgments. This research has benefited from the ideas and suggestions of many.
Ernst Mayr introduced me to the X-gate, and Danny Soroker introduced me to Stable Marriage.
Discussions with Richard Anderson, Richard Cleve, Shaibal Roy, and Danny Soroker were
very helpful in the early stages of this research. Marianne Baudinet helped me read portions
of [20] and pointed me to Tarski’s theorem; David Wolfe suggested that I look at Three-party
Stable Marriage; and Alan Hoffman pointed out the importance of the nonalgorithmic proof
of 6.2.1. Tomfis Feder deserves very special thanks for simplifying the proof of Lemma 4.1,
for many absorbing discussions, and for extending the network approach in wonderful ways
in [5].

I would especially like to thank Ernst Mayr and Christos Papadimitriou for many use-
ful discussions and for steadfast guidance and encouragement throughout the tenure of this
research. I would also like to thank Andrew Goldberg, Dan Gusfield, Don Knuth, and Jeff
Ullman for their comments at various stages of this research. This research has also been en-
riched by many intangible contributions from my fellow students and friends. Finally, thanks
to the referees for their careful reading and constructive criticism.

REFERENCES

G. BIR:HOrr, Lattice theory, Amer. Math. Soc. Colloq. Publ., 25, Amer. Math. Soc., Providence, RI, 1967.
[2] S.A. CooI<, indirect personal communication.
[3] A taxonomy ofproblems with fast parallel algorithms, Inform. and Control, 64 (1985), pp. 2-22.
[4] S. A. COOK AND M. Lug3’,’, A simple parallel algorithm for finding a satisfying truth assignment to a 2-CNF

formula, Inform. Process. Lett., 27 (1988), pp. 141-145.
[5] T. FEOER, A new fixed point approach for stable networks and stable marriages, J. Comput. System Sci.,

45 (1992), pp. 233-284.
[6] personal communication.
[7] D. GALE ANt L. S. SHAPLEY, College adnissions and the stability ofmarriage, Amer. Math. Monthly, 69 (1962),

pp. 9-15.
[8] D. GALE AND M. SOTOMA’O, Some remarks on the stable matching problem, Discrete Appl. Math., 11 (1985),

pp. 223-232.
[9] L.M. GOLtSCm,AGE, The monotone and planar circuit value problems are logspace completefor P, SIGACT

News, 9 (1977), pp. 25-29.
10] D. Gust:lEt.o, Threefast algorithmsforfourproblems in stable marriage, SIAM J. Comput., 16 (1987), pp. 111-

128.
11 The structure of the stable roommate problem: efficient representation and enumeration of all stable

assignments, SIAM J. Comput., 17 (1988), pp. 742-769.
12] D. GUSIELD AN3 R. W. IRVING, The Stable Marriage Problem: Structure andAlgorithms, MIT Press Ser. Found.

Comput., MIT Press, Cambridge, MA, 1989.
[13] J. E. HOr’COFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison-

Wesley, Reading, MA, 1979.
14] R.W. IP,WNG, An efficient algorithmfor the stable roommates problem, J. Algorithms, 6 (1985), pp. 577-595.
[15] ,On the Stable Room-Mates Problem, Tech. Report CSC/86/R5, University of Glasgow, 1986.
[16] R. W. IRVING AND P. LEATHER, The complexity of counting stable marriages, SlAM J. Comput., 15 (1986),

pp. 655-667.
17] R.W. IRWNG, P. LEATrtE, AND D. GusrzlELD, An efficient algorithm for the optimal stable marriage, J. Assoc.

Comput. Mach., 34 (1987), pp. 532-543.
[18] N.D. JONES, Space-bounded reducibility among combinatorial problems, J. Comput. System Sci., 11 (1975),

pp. 68-85.
19] R.M. KARP AND W. RAMACHANDRAN, Parallel algorithtnsforshared-memory machines, Handbook ofTheoretical

Computer Science, Vol. A, MIT Press/Elsevier, Cambridge, MA/Amsterdam, 1990.
[20] D. E. KNUTH, Mariages stables et leurs relations avec d’autres problmes combinatoires, Les Presses de

l’Universit6 de MontrOal, Montr6al, 1976.
[21] E. W. MAYR AND A. SUBRAMANIAN, The complexity of circuit value and network stability, Proc. 4th Annual

Conference on Structure in Complexity Theory, 1989, pp. 114-123.

700 ASHOK SUBRAMANIAN

[22] C. NG AND D. S. HIRSCHBERG, Complexity of the stable marriage and stable roommate problems in three
dimensions, manuscript, 1988.

[23] G. P(3LYA, R. E. TARJAN, AND D. R. WOODS, Notes on htroductory Combinatorics, Birkhiuser, Basel, 1983.
[24] W.L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383.
[25] D. SOROKER, personal communication.
[26] L. STOCKMEYER, Classifying the computational complexity ofproblems, J. Symbolic Logic, 52 (1987), pp. 1-43.
[27] A. SUBRAMANIAN, The Computational Complexity of the Circuit Value and Network Stability Problems, Ph.D.

thesis, Department of Computer Science, Stanford University, 1990; Tech. Report STAN-CS-90-1311,
Stanford University, 1990.

[28] A. TARSKI, A lattice-theoreticalfixpoint theorem and its applications, Pacific J. Math., 5 (1955), pp. 285-309.
[29] L.G. VALIANT, The complexity ofenumeration and reliability problems, SIAM J. Comput., 8 (1979), pp. 410-

421.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 701-712, August 1994

994 Society for Industrial and Applied Mathematics
002

WAIT-FREE CONSENSUS USING ASYNCHRONOUS HARDWARE*
BENNY CHORt, AMOS ISRAELI:l:, AND MING LI

Abstract. This paper studies the wait-free consensus problem in the asynchronous shared memory model. In this
model, processors communicate by shared registers that allow atomic read and write operations (but do not support
atomic test-and-set). It is known that the wait-free consensus problem cannot be solved by deterministic protocols.
A randomized solution is presented. This protocol is simple, constructive, tolerates up to n processors crashes
(where n is the number of processors), and its expected run-time is O(n2).

Key words, asynchronous distributed systems, wait-free protocols, fault tolerance, randomized algorithms,
consensus

AMS subject classifications. 68Q22, 90D10

1. Introduction. The problem of reaching consensus among different processors in a
distributed environment [20] is one of the most fundamental problems whenever any type of
cooperation is to be achieved. The nature of solutions to this problem depends on the properties
of communication media, on the reliability of participating processors, and on their relative
speeds. In this paper we investigate the consensus problem in a totally asynchronous system,
where communication is carried out by shared registers that are atomic with respect to read
and write operations, and up to n out of n processors may fail-stop (i.e., crash).

The consensus problem we study is the following multivalued problem: Every processor
starts the protocol with an arbitrary input value (for example, an externally supplied variable
or an internally computed constant). Upon termination, each processor decides on an output
value. We have two requirements from the output. The first is that all processors that have
terminated hold the same output value. The second is that the output value must be one of
the input values of the processors. The consensus problem has been extensively studied in
the asynchronous message passing model (e.g., [6], [24], [10]). The original version of this
work [9] is the first one that studies and solves consensus in this asynchronous shared memory
model.

It is convenient to think about all the read and write operations in terms of a global time
model. In this model each such I/O operation takes place in a closed interval on the global-time
axis. Atomicity of a register means that every set of reads and writes from/to this register is
equivalent to a sequence in which each interval is shrunk to a distinct point, hence all these
operations are totally ordered. We refer the reader to the works of Lamport [19], Herlihy
and Wing [16], and Ben-David [5] for precise definitions of atomicity and linearizability. In
particular, the techniques of [5] imply that when analyzing protocols that use atomic shared
registers, the global time model can be used with no loss of generality.

*Received by the editors December 10, .1990; accepted for publication (in revised form) March 22, 1993. A
preliminary version of this paper appeared in Proceedings of the 6th Annual Association for Computing Machinery

Conference on Principles of Distributed Computing, August 1987, pp. 86-97.
tDepartment of Computer Science, Technion, Haifa 32000, Israel (benny@cs. techn+/-c>n, ac. +/-]_). Part of

this author’s research was carried out at Aiken Computation Laboratory, Harvard University, Cambridge, Massachu-
setts, and was supported in part by National Science Foundation grant MCS81-21431. Research at the Technion
was supported in part by United States-Israel Binational Science Foundation grant 88-00282, and by Technion Vice
President for Research Fund-E. & J. Bishop Research Fund.

Department of Electrical Engineering, Technion, Haifa 32000, Israel. Part of this author’s research was carried
out at Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts, and was supported in part by
a Weizmann postdoctoral fellowship and National Science Foundation grant DCR-86-00379.

Department of Computer Science, University of Waterloo, Ontario N2L 3G1, Canada. This author’s research
was supported in part by Office of Naval Research grant N00014-85-k-0445 at Harvard University, Cambridge,
Massachusetts, and by National Science Foundation grant DCR-86-06366 at OSU.

701

702 BENNY CHOR, AMOS ISRAELI, AND MING LI

We look for solutions to the consensus problem that satisfy the wait-free termination
requirement. Wait-free termination means that every processor that is activated a sufficient
number of times will decide and terminate. We would like to have a solution that guarantees
that every schedule in which a processor is activated at least k(n) times (for some k(n) which
is a function of n, the number of processors, but does not depend on the scheduler) leads
to termination of that processor. This implies, in particular, that no processor needs to wait
for other processors to take stepsmit should terminate regardless of whether or not other
processors were active in between its own steps (the output value could, however, depend on
other processors’ activity). Such a requirement is in accordance with the complete asynchrony
of the system: It does not make sense to force the very fast processors to wait until a very
slow processor makes a move. Furthermore, wait-free termination implies resilience to any
number of processor crashes.

It is known that wait-free consensus cannot be achieved by deterministic protocols, even
for systems with n 2 processors. This impossibility result has been proven in the original
version of this paper [9] and independently by Loui and Abu Amara [22]. It is also implicit
in the work of Dolev, Dwork, and Stockmeyer [13]. All those proofs follow the ideas in the
impossibility proof for the message passing model of Fischer, Lynch, and Paterson 17]. The
gist of the proof is as follows: First, one shows that there are bivalent initial configurations
of the system, namely, configurations that can lead to more than one decision value (under
different schedulers). After establishing this fact, it is shown that starting from any bivalent
configuration, there is an infinite scheduler that keeps the deterministic system in a bivalent
state.

It is by now a well-known fact in the area of distributed computing that certain problems
that cannot be solved by deterministic protocols do admit randomized solutions [24], [21],
[6]. It is then only natural that in order to overcome the above-mentioned impossibility result,
we employ a randomized protocol, allowing processors to toss coins. We present an efficient
randomized protocol, that achieves consensus for systems of size n, using atomic single-writer
multireader registers. The protocol is fairly simple and constructive, and its expected run-time
is O(n2). This means that for any adversary scheduler, the system reaches a decision after
O (n 2) expected number of steps by all processors. The protocol uses unbounded size registers
(though large values are actually written only with very low probability). The main usage of
the unboundedness is to maintain a global order among processors. Processors who maintain
larger values get preference over processors holding lower values. Coin flips are used to break
possible ties among processors holding equal values.

We briefly discuss other approaches and developments. Loui and Abu-Amara [22] over-
come the impossibility of deterministic consensus by using a much stronger communication
primitive, namely, atomic test-and-set. Following the publication of the original version of
our work [9], various improvements were made: One was designing protocols that operate in
the presence of a stronger adversary model than the one used here. Another direction was the
development of the so-called "bounded time stamps" 18], [14], and using them in consensus
protocols with registers of bounded size. See 2 and 4 for further details.

The remainder of this paper is organized as follows: In 2 we formally define the model,
the class of admissible schedules, and the consensus problem. In 3 we present the protocol,
and 4 contains some concluding remarks.

2. Model and definitions. In this section we define our model of asynchronous con-
current computation, the consensus problem, and the class of schedulers in which we are
interested.

An asynchronous concurrent system is a collection of n processors. Every processor P
is a (not necessarily finite) state automaton with an internal input register ie and an internal

WAIT-FREE CONSENSUS 703

output register ot,. The input register contains any value v taken from a set V, while the output
register has initially the value 2- 2_ V) and could be changed once to a value in V. The
set of all states of processor P will be denoted by St,. The set St, contains a set of states It,
that are the initial states of the processor P. States in St, where ot, contains a value - 2_

are called the decision states of processor P. The set St, might be infinite. In particular, this
enables every internal state to include a description of the whole history of the computation
of the processor P.

Processors communicate via shared registers. We use atomic single-writer multireader
registers: Every shared register can be written by one processor and read by all other processors.
Processors execute their programs by taking steps. A step consists of an internal operation,
possibly involving coin tosses, and an input/output operation. In the model we consider, these
two parts are executed as a single atomic step whenever the processor is scheduled. Formally,
every processor P takes steps according to its transition function Tt,. Each step consists of a
single input/output operation, followed by a state transition. The input/output operation could
either be "read register r" or "write the value v to register r." In case the communication
action is a read, the new state of P depends not only on the old state but also on the value
read by this action. The transition function Tt, could be either deterministic or randomized.
In the latter case, for every state s 6 St,, there is a probability measure assigned to the next

step. The choice of the actual step is done, according to these probabilities, only when the
processor makes its next step. Given an asynchronous system as specified above, a protocol
is a collection of n transition functions T1 Tn, one per processor.

A configuration C of the system consists of the state of each processor together with the
contents of the shared registers. In an initial configuration, every processor is in an initial
state, and all shared registers and output registers contain the default value 2_. The set of all
configurations will be denoted by C. A step takes one configuration to another by activating
a single processor P. A run of length e is a sequence of e steps. Each run has an associated
schedule that is a sequence of g. processors, numbered according to the order of processors that
take steps in that run. We denote schedules, finite or infinite, by a list of processor numbers,
e.g., (2, 3, 3, 2, 1). If S is a finite schedule, then we denote by S o i, where is any processor
number, the schedule obtained from the schedule S by concatenating the number to the end
of S. We say that processor P is activated k times in a run if P appears k times in its schedule.
The history 7-(of a run is the sequence obtained by interleaving the sequence of configurations
with the steps in the run, starting with the initial configuration. For a finite run, we refer to
the last configuration in its history as the current configuration.

When arguing about randomized protocols, the power of the scheduler crucially depends
on its adaptivity (see [8] for a discussion of this issue). Adaptive schedulers can use information
derived from the state of the system and its history in making scheduling decisions. Formally,
an admissible scheduler ,9 in our system is a mapping from 7-(into the set of n processors.
Given the configuration of the system, the scheduler picks the next processor that is to take
a step. The scheduler could either be a deterministic mapping or a randomized one. The
scheduler is best viewed as an adversary that tries to prevent us from reaching our goal. Under
the definition, this adversary scheduler is adaptive, and it has complete knowledge on the state
of every processor and on the contents of the shared registers during the entire history.2 In
case the processors are randomized, the scheduler could also base its choices on the outcome

An alternative approach separates the atomic operations to internal operations, input operations, and output
operations.

2In the more refined level of atomicity, where internal operations, input operations, and output operations are
separate, the adversary is even stronger. For example, it knows what a processor is about to write before scheduling
that processor. For more details, see 4.

704 BENNY CHOR, AMOS ISRAELI, AND MING LI

of past coin flips. We do not allow it, though, to be able to predictfuture randomized moves of
the processors. This is a necessary requirement if randomization is to be helpful at all, and it
is used in all algorithms where randomization is employed, e.g., [24], [21], [6]. In particular,
in randomized protocols, a processor might be in a state in which the adversary does not know
which input/output operation will be taken by that processor, before the action takes place.
Given a history 7-/and a scheduler S, the runs that can be produced by ,9, extending 7-/, on some
possible randomized choices are called the runs compatible with 7/and S. Notice that if both
processors and scheduler are deterministic, then there is a single compatible run extending 7-(.

We say that a configuration C is reachable from history 7t with schedule S if there is
a run compatible with 7-/and S that leads to configuration C. We say that a configuration
has a decision value v if some processor P is in a decision state with its output register o,
containing v I.

A randomized consensus protocol is designed for an asynchronous system of n processors
(n >_ 2). The protocol specifies a set V of possible inputs whose cardinality is at least two
(otherwise the problem is trivial). It is required to satisfy the following properties:

(1) Consistency: for every schedule, no configuration reachable from an initial configu-
ration has more than one decision value.

(2) Nontriviality: if processor P has decided on value v in a run, then v is an input value
for at least one processor.

(3) Randomized wait-free termination: each processor must decide after taking a finite
expected number of steps. Formally, there is a probability function f from the natural numbers
into the interval [0, 1] (Y= f(k)- 1), satisfying -= kf(k) < , such that for every
initial configuration Co and for every admissible scheduler, if a processor P was activated k
times by the scheduler, then the conditional probability that P is in a decision state, conditioned
on P not being in a decision state after its previous activation, is at least f(k).

We required that randomized consensus protocols will never err. The randomization
effects only the running time of the protocol and not its correctness. There could be a positive
probability for arbitrary long nonterminating runs, but this probability should be very small
(converging to 0 with the length of the run), so that the expected running time is bounded.

3. Wait-free consensus protocol. The high-level structure of the protocol is as follows:
In every point of an execution, each processor holds a preferred value (which is a potential
decision value) and a confidence level (which is a nonnegative integer). Initially, the confidence
level is 0, and the preferred value of the processor is its input value. Both the preferred value
and the confidence level are written by each processor into a shared register, which can be read
by all others. Processors compare their confidence levels, and if a large enough gap forms, the
leading processor decides on its preferred value. In case of ties, processors increment their
confidence level. In order to prevent live locks, where competing processors concurrently
increment their confidence ad infinitum, coin flips are used. Confidence levels can possibly
reach any nonnegative integer, which means that registers of unbounded size are used by the
protocol. There is a positive (though very small) probability for very large numbers to be
written into the shared registers. This probability decreases to 0 when the numbers increase
to infinity.

To simplify the description of the protocol, we will say that a processor is on node
if its confidence level is i. The initial node is node 0. Before deciding and terminating,
the processor moves to a special node, denoted by cx (this move facilitates the design and
analysis of the protocol). Each processor starts execution by writing its input value in its

register while staying on the start node. The steps of each processor in any given history H of
the protocol are divided into phases. In each phase a processor reads the registers of all other
processors, computes a new value, and writes it in its own register. A processor decides if it

WAIT-FREE CONSENSUS 705

is at least two nodes ahead of all other processors with contending values. Thus, by the time
of decision, processors with contending values are at least one step behind and will change
their preferred value to that of the leading processor. There could be a situation with ties. The
protocol resolves ties by having the option of advancing (to the next node) or not advancing,
according to the outcome of coin tossing. This is where the use of randomization overcomes
the deterministic impossibility result. In a bivalent configuration, only some of the choices
made by some processors lead to another bivalent configuration. Other choices could lead to a
univalent configuration. The adversary does not know which choices the processor will make
before scheduling it, because the choice is made by flipping a coin.

If the coin used by every processor (in choosing whether to advance or not) would be
unbiased, then with high probability, about half the contenders would advance. Those lagging
behind would then join them, and again we would be in a tied situation. While such protocol,
using unbiased coins, would satisfy the requirements of randomized consensus, it would lead
to exponential (in n) expected running time (for an appropriate adversary strategy). To be more
efficient, our protocol tries to have, with high probability, only one successful advancement
out of n attempts. Leading processors in a tied situation flip a biased coin and advance only
with small probability. Intuitively, this probability should be 0 (). The specific value we use,
! is based on calculations done to minimize the expected running time.2n

It is dangerous to let a lagging processor decide, even if all leading processors have
the same preferred value. The reason is that another processor might advance substantially
after its value was last read by the lagging processor. The lagging processor, who thinks all
leading processors have the same value, would in fact be wrong. Therefore, in our protocol,
processors lagging behind never decide, and they always advance. A lagging processor who
sees all leading processors with the same preferred value changes its own value. If the lagging
processor sees conflicts at the top, it retains its old preferred value. In both cases, the lagging
processor advances. If it is no more than two nodes behind the maximum, it advances by one.
If it more than two nodes behind the maximum, it "jumps" to a point that is the maximum
minus two. This shortcut allows the protocol to converge quickly to a decision, even if it starts
from a configuration where one processor is way behind other active processors (e.g., if it just
woke up). Thus, our upper bound on the expected running time will be valid starting from
every reachable configurations, and not just the initial one.

To continue the description of the protocol, some definitions are introduced. Assume that
processor P/has just finished all the read steps in its jth phase, a phase we denote by 4j. Let

maxnode} be the maximum node on which Pi sees a processor during 4 (including itself).

Using the data collected on 4, Pi computes two sets of processors, L and A L. The set L (the
leaders) contains the processors whose node, as read by/9. is maxnode. The set A L (the
almost leaders) is the set of processors whose node, as read by/9/, is maxnode. 1. Denote
by Lji (A L}) the set L (A L) computed by P/in phase 05}.

A processor/9, terminates after the write step of phase qj in one of two cases"

T If another processor has already terminated. The decision value is the value of the
terminating processor.

tO AL} have the same pref.and all processors in the set LjTa If Pi itself is in the set L
The decision value is the common pref.

We say that a processor Pi is committed to terminate in phase } if it completed all the
read steps of the phase and one of the termination conditions T1 or T2 holds (so its next step is
a write, after which/9/decides and terminates). If none of the termination conditions holds,
then P/either moves to a new node or it stays put. The motivation behind the protocol design
is to create a single leader. If Pi is a leader (that is, Pi L}), then the new node to which

706 BENNY CHOR, AMOS ISRAELI, AND MING LI

(rl)

(r2)

newreg "= (input, O)
regl "=write(newreg)
repeat

1) newreg
for "= 2 through n do vi :=read (regi) od
maxnode "= maxl <i<, {vi.node}
L := {P/ vi.node maxnode}
AL "= Pi vi.node maxnode
if qi vi.node
then regl "= write(vi.pref, cx), decide vi.pref and halt.

elseif P1 e L and prefof all processors in L U AL vl.pref
then regl :=write(vl.pref, cxz), decide vl .pref and halt.

elseif PI e L
then

newreg.pref := Vl.pref
newreg.node v.node +
toss a biased coin with 1/2n probability of heads
if tails (this occurs with probability
then newreg Vl (retain old value)

endif
elseif maxnode- Vl.node <_ 2

then
newreg.node "= Vl.node +
if all leading processors have the same pref
then

newreg.pref prefof leading processor
else

newreg.pref’= Vl.pref
else (maxnode-v.node > 3)

newreg.node "= maxnode 2
newreg.pref := pref of processor with minimum index in L

endif
regl =write(newreg)

until decision is made

FI6. 1. The n processor protocol or P1).

it can move is the successor of its node. However, it moves to its successor node only with
probability 1/2n. With probability 1/2n, Pi stays on its current node. In both cases, the
leader P/retains its old preferred value.

If P is not a leader, then it always moves to a new node. Let k denote Pi’s node during
q. If maxnode. k < 2, then P moves to the successor of its node, k + 1. In this case, Pi’s

have the same pref, thisnew preferred value is determined as follows" If all processors in Lj
value is the new pref of P/. If this is not the case, then P/keeps its own pref.

If P,. is not a leader and maxnode} k > 3, then P/moves to node maxnode} 2. In such
case, we say that Pi jumps. In case of a jump, the new pref of Pi is the pref of the processor

with the minimal index.in Lj
LEMMA 3.1. Let Ho be an initial segment of a history H of an arbitrary execution of

the protocol. If in Ho no processor reaches node with preferred value v, then for any node
j > i, no processor reaches j, in Ho, with preferred value v.

Proof Assume, toward a contradiction, that H is the history of an execution not satisfying
the lemma. Let H0 be an initial segment of H of minimal length that violates the lemma. This

3This specific probability 1/2n was chosen in order to optimize the expected running time.

WAIT-FREE CONSENSUS 707

means that there is a node such that in H0 no processor reaches with preferred value v and
there is a processor Pk that reaches a node j > with preferred value v.

Let qe be the phase in which Pk moves to node j. If Pk jumps to j, then, by the protocol,
at least one processor Pm Le has been on node j + 2 with preferred value v before this
jump. Since j + 2 > i, this contradicts the minimality of H0. We can therefore assume that Pk
moves to node j from node j without jumping. First, we show that the preferred value of
Pk at j is v’ - v. If j then, this is true by our assumption that in H0 no processor
prefers the value v on node i. If j > i, then this is true because of the minimality of H0.
Having established this claim, we observe that by the protocol, in order for Pk to change its
preferred value from v’ to v while moving from j- to j it has to see all processors in Le with
preferred value v. We now show that for any possible value of maxnode this is impossible.
In q P is on j > i. Therefore maxnode > j > i. If maxnodee i, then by our
assumption no processor has preferred value v on i. If maxnode > i, then as we have shown
above, no processor in Le has preferred value v.

LEMMA 3.2. Let Pk be the first processor reaching node with preferred value v. Then
Pk does notjump to i, and its preferred value on node is also v.

Proof. Let qe denote the phase in which Pk moves to node i, and let H0 be the initial
segment of the history of the execution that ends with the last read step of Pk in be. In H0
no processor has reached node with preferred value v. Thus, by Lemma 3.1, no processor
has reached any node j >_ in H0 with preferred value v. Therefore Pk sees no leader on any
node j > with preferred value v during q. According to the protocol, Pk does not jump
to node with preferred value v in qk Since Pk reaches node with preferred value v, this
argument implies that Pk does not jump to node i.

Assume, by way of contradiction, that Pk changes its preferred value from v’ to v while
moving from to at the end of be. This happens only if pref of all processors in
is v. Consider the following cases:

Case 1’ maxnodee --i- 1. In this case P 6 Le. By the protocol Pk keeps its preferred
value while moving to i. Contradiction.

Case 2" maxnodee i. In this case the preferred value of all processors in L does not
equal v, since we assumed that Pk is the first processor reaching with preferred value v.
Contradiction.

Case 3: maxnode > i. In H0 no processor has been on node with preferred value v,
and by Lemma 3.1, in this execution no processor has preferred value v on maxnodee before
the completion of 4e. Contradiction.

We conclude that Pk prefers the value v during 4e, its last phase on node 1. By the
protocol, processors retain their preferred values when staying on the same node. This means
that P prefers the value v during all phases it executes while residing on node 1.

LEMMA 3.3. Let H be the history of an arbitrary execution of the protocol. Let Pj be
a processor committed to terminate, in H, by T2. If Pj is committed to terminate on with
decision value v, then in H, no processor reaches with a preferred value v’ :fi v.

Proof Assume, by way of contradiction, that Pe is the first processor reaching with
preferred value v’ 5 v. By Lemma 3.2, Pe moves to node withoutjumping, and the preferred
value of Pe on is also v’. Let 4) be the phase in which Pj is committed to terminate with

v. At the beginning of 4j, Pe is on node m < 1. (Otherwise Pj sees Pe as either a leader

or an almost leader during phase 4j and condition T2 does not hold.) After Pe advances tok,

it starts a new phase q. In 4e, Pe reads the values of all processors. The leaders in

L are on a node >_ i. The value preferred by all these leaders before Pe moves there is v, as
the only value preferred at is v. By the protocol Pe takes v as its new preferred value and
advances to i. Contradiction.

708 BENNY CHOR, AMOS ISRAELI, AND MING LI

LEMMA 3.4. Let H be the history ofan arbitrary execution of the protocol. Assume that
in H a single processor Pi movesfrom node.m to node m + as a result ofa successful coin
toss. (That is, all other processors that tried to move from m to m + as a result of a coin
toss fail to do so.) If Pi’s preferred value on node m is v, then all processors reaching node
m + in H have v as their preferred value on node m + 1.

Proof. Assume, by way of contradiction, that the lemma does not hold. Let Pj (i j) be
the first processor reaching node m + with preferred value v’ (v’ - v) in H. By Lemma 3.2,
Pj does not jump to node m + 1. By the supposition, Pj does not flip a coin when moving
from node m to node m / 1. This implies, by the protocol, that Pj is not one of the leaders

during the phase 4) in which it moves to node m + (i.e., Pj L). Since all processors who
move to node m / in H before Pj’s move prefer the value v on node m + 1, it follows from

Lemma 3.1 that all leading processors (those in L) prefer the value v. All these leaders are
on a node > m + and according to the protocol Pj moves to m + with preferred value v

in phase 4)mcontradiction. [3

LEMMA 3.5. Let H be the history ofan arbitrary execution of the protocol. Assume that
in H, processor Pi is the first processor who movesfrom node m to node m + as a result of
a successful coin toss. Then after this write step of Pi, any other processor Pj makes at most
one attempt to movefrom node m to node m + as a result ofa coin toss.

Proof. Consider the execution after Pi’s move. If Pj succeeds in its first attempt to move
from node m to node m + as a result of a coin toss, then we are done. If Pj fails, then it
stays on node m. In the phase following the failed attempt, Pj is not a leader (as it sees P/at
least one node ahead). By the protocol, Pj does not flip a coin in its next phase on node m and
moves to a new node in this phase. [q

THEOREM 3.6. The n processor protocol is consistent.

Proof Let H be an arbitrary history of the protocol. It is easy to see that a processor
terminates by T1 with value v only if some other processor terminated earlier with v by T2.
Therefore, it suffices to show that in H all processors that terminate by T2 have the same
decision value. Let be a minimal node on which some processor is committed to terminate
by T2. Without loss of generality assume that Pj terminates on with value v. In order to

prove that the protocol is consistent we will show that no other processor is committed to
terminate on any node with a value v’ :/: v. By the protocol, the first processor committed to
terminate with value v’ is committed by T2. Since is a minimal node on which any processor
is committed to terminates by T2, no processor is committed to terminate by T2 on any node
k < i. By Lemma 3.3 no processor reaches with any preferred value v’ : v. By the protocol,
this implies that no processor is committed to terminate by T2 on node with decision value
v’. This also implies, by Lemma 3.1, that no processor reaches any node k > with preferred
value v’ :/: v. Therefore, by the protocol, no processor is committed to terminate by T2 with
decision value v’ - v. V1

We now proceed to analyze the expected running time of the multiprocessor protocol.
THEOREM 3.7. Let C be any reachable configuration of the n processor system and .A

an arbitrary adversary scheduler. If fit schedules the processors such that at least 15n entire
phases are executed following C, then with probability >_ 0.4534, at least one processor
decides and terminates.

Proof Let m (m > 0) be the maximal node on which any processor resides at C. By the
protocol, any processor Pi that executes an entire phase following C finds that some processor
resides on a node > m and will subsequently move to a node j >_ m 2 in the write step of
this phase. After completing two additional phases, P reaches node j > m. (Recall that if a
processor is not among the leaders in some phase, then it does not flip a coin and traverses at
least one edge in the write step of that phase.)

WAIT-FREE CONSENSUS 709

Thus, of the 15n entire phases that are executed following C, at most 3n are executed
by processors residing on nodes smaller than m. Therefore, at least 12n entire phases are
executed, following C, by processors residing on nodes greater than or equal to m.

Consider the first processor P/that is scheduled to make a write step while residing on
node m following C. If some other processor has already decided before this write step of P,
then we are done. If no other processor has yet decided, then since m is the maximal node in
C, the value maxnode that/9,, maintains at the time of this write equals m. If P/decides and
moves to , then we are done. Otherwise, according to the protocol, Pi flips a coin when
making its write step, and if it succeeds (this happens with probability 1/2n), it moves to node
m+l.

We base our analysis on the following two events:

El: Of the first 4n attempts to move from node m to node rn + as a result of a coin
toss following C, exactly one succeeds. Subsequent to the successful move, all attempts to
move from node m to node rn + as a result of a coin toss fail.

E2: Of the first 4n (or fewer) attempts to move from node m + to node m + 2 as a
result of a coin toss following C, at least one succeeds.

Using Lemma 3.5, the number of subsequent attempts to toss a coin on node m, after the
first successful toss on node m, is less than or equal to n 1. Since the adversary is unable to

predict the outcome of a write that uses coin tossing before the action takes place, we have

Pr(E) >_
succ.n

st

no subsequent success

(1_ t
--(1-(1-1"4n

success in 2nd success in 4nth

+

n-1

If E1 occurs, then at most 4n + n 5n of the entire phases that are executed on nodes
> rn following C involve an attempt to move from node rn to rn + by tossing a coin. At
most n additional phases can involve moving from node rn to rn + without tossing a
coin. Thus overall, if E1 occurs, then at most 6n 2 of the entire phases that are executed on
nodes > rn following C are executed by processors residing on node m. This implies that at
least (12 6)n + 2 6n + 2 entire phases are executed, following C, by processors residing
on nodes greater than or equal to rn + 1.

Consider the first processor P/that is scheduled to make a write step while residing on
node rn + following C. If some other processor has already decided before this write step
of Pi, then we are done. If no other processor has yet decided, then since m is the maximal
node in C, the value maxnode that P maintains at the time of this write must equal m + 1. If
P,. decides and moves to , then we are done. Otherwise, according to the protocol, Pi flips
a coin when making its write step, and if it succeeds (this happens with probability 1/2n), it
moves to node rn + 2. If P does not succeed, then by the same reasoning the next processor
that resides on node m + flips a coin when it is scheduled to write, and so on. Thus, until at

least one processor succeeds, all processors that reside on node rn + try to move to node rn +2
by flipping a coin. The probability that out of the first 4n attempts at least one is successful
satisfies

710 BENNY CHOR, AMOS ISRAELI, AND MING LI

Pr(E2 E1) >_ 1-- 1-- n
sequence {(1 --’)’-},2 is monotonically decreasing to the limit ee" The sequenceThe

{1 (1 n)4" }’=2 is monotonically decreasing to the limit (the limits can easily be
kverified, using the fact that {(1) },=2 monotonically increases to). Combining these

properties with the two inequalities above, we have (for n >_ 2)

Pr(E2 fq E) > 1- 1- -n

> 0.4534.

n--1

If E2 occurs, then at least one of the first 4n (or fewer) attempts succeeds. Using Lemma 3.5,
the number of subsequent attempts to toss a coin on node m + after the first successful toss
is less than or equal to n 1. At most n additional phases can involve moving from node
m + to m + 2 without tossing a coin. Thus overall, at most 6n 2 of the entire phases that are
executed on nodes >_ m + following C are executed by processors residing on node m + 1.
This implies that at least (6n + 2) (6n 2) 4 entire phases are executed, following C, by
processors residing on nodes greater than or equal to m + 2.

In particular, it follows that at least one processor Pi completes a phase, including a write
step, while residing on node m + 2. By Lemma 3.4, if E1 occurs, all processors reaching
node m + have the same preferred value v on node m + 1. But since on node m + all
processors prefer the same value v, Lemma 3.1 implies that on m + 2 all processors prefer v
as well. Thus the first processor/9, that completes a phase while residing on node m + 2 finds
out during that phase that all leaders (processors on m / 2) and almost leaders (processors on
m / 1) prefer v. P/thus moves to the decision node cxz by T2, and terminates.

Therefore, with probability at least 0.4534, at least one processor terminates after 15n
phases are completed following C. 1

Using Theorem 3.7, we can easily give an upper bound on the expected time until some
processor decides, starting from any reachable configuration C. Dividing the execution into
blocks such that in each block exactly 15n phases are completed, we know that the probability
of termination in each block is at least 0.4534. The expected number of entire phases is thus

15n/0.4534 < 33.1n operations. In terms of elementary operations (atomic read, atomic
write), each entire phase involves exactly n elementary operations. At most n (n 1) initial
elementary operations can belong to phases whose execution have already begun. Thus, the
expected number of elementary operations until at least one processor decides is at most
33.1n2 / n(n 1) < 35n2. This implies the following.

THEOREM 3.8. The n processor protocol is a randomized wait-free consensus protocol.
Starting from any reachable configuration, the expected number of elementary steps until at

least one processor decides is less than 35n2o

4. Concluding remarks. The analysis of the expected running time of our n processors
protocols relied on the inability of the adversary to predict the outcome of a write that uses
coin tossing, before the action takes place. Following the publication of the original version
of our paper [9], Abrahmson [1] considered a stronger adversary model, where the outcome
of the coin toss that is used in the next write step is known to the adversary before the step

WAIT-FREE CONSENSUS 711

takes place. In this adversary model, the scheduling choices can be based on the outcome of
the coin. Abrahmson modified our protocol and produced one that works in the presence of
the strong adversary but has exponential (2n2)) expected running time. Subsequently, this
was dramatically improved by Aspnes and Herlihy [3], who designed an efficient wait-free
consensus protocol for this strong adversary model, with n expected running time. The
protocol of Aspnes and Herlihy employs the same basic structure of our protocol, namely
an incremental walk on the line of nonnegative integers. It introduces novel ideas from the
theory of random walks in the implementation of the coin flips. Improved algorithms that use
bounded shared registers and work in the presence of the strong adversary were later designed
by Attiya, Dolev, and Shavit [4], Aspnes [2], and Saks, Shavit, and Wohl [25]. (Most of these
algorithm solve the somewhat simpler problem of binary consensus, where the input set is
{0, }.) The expected running time of the later protocol is (R)(n 3) elementary steps. This has
subsequently been improved by Bracha and Rachman [7] to an O(n2 log n) consensus protocol.
Despite these improvements, our protocol remains the most efficient of which we know for
the model considered in this paper and is a strong candidate for practical consensus protocols.
By bounding the size of the shared registers in our protocol to, say, 128 bits per processor, we
get a protocol that still never errs and has probability less than 2-56 of nontermination.

We view the possibility of achieving wait-free consensus as a fundamental tool in shared
memory systems and believe it is only the first step in a promising direction. The subsequent
results of Herlihy [15] and Plotkin [23] on wait-free implementation of sequential objects and
of Chor, Moscovici, and Nelson [11], [12] on solvability of distributed decision tasks and
distributed interactive tasks seem to support this belief.

Acknowledgments. We thank Maurice Herlihy for pointing out an error in the original
version of the protocol. Discussions with Nissim Francez and Lenny Pitt that helped initiating
this work are also acknowledged.

REFERENCES

K. ABRAHMSON, On achieving consensus using a shared memory, Proc. 7th ACM Conference on Principles of
Distributed Computing, August 1988, pp. 291-302.

[2] J. ASPNES, Time- and space-efficient randomized consensus, Proc. 9th ACM Conference on Principles of
Distributed Computing, August 1990, pp. 325-331.

[3] J. ASPNES AND M. HERLIH, Fast randomized consensus using shared memory, J. Algorithms, 11 (1990),
pp. 441-461.

[4] H. ATTIVA, D. DOLEV, aND N. SHAWT, Bounded polynomial randomized consensus, Proc. 8th Annual ACM
Symposium on Principles of Distributed Computing (1989), pp. 281-293.

[5] S. BEN-DAVID, The global time assumption and semantics for concurrent systems, Proc. 7th Annual ACM
Symposium on Principles of Distributed Computing (1988), pp. 223-231.

[6] M. BEN-OR, Another advantage offree choice: completely asynchronous agreement protocols, Proc. 2nd
Annual ACM Symposium on Principles of Distributed Computing (1983), pp. 27-30.

[7] G. BRACHA AND O. RACHMAN, Randomized consensus in expected O(n logn) operations, Proc. 5th Internat.
Workshop on Distributed Algorithms (1991), Lecture Notes in Comput. Sci. 579, Springer-Verlag, New
York, pp. 143-150.

[8] B. CHOR AND C. DWOR:, Randomizedalgorithmsfordistributedagreement--A survey, Advances in Computing
Research, Vol. 5, Randomness and Computations, S. Micali, ed., JAI Press, 1989, pp. 443-497.

[9] B. CHOR, A. ISRAELI AND M. L, On Processors Coordination Using Asynchronous Hardware, Proc. 6th ACM
Conference on Principles of Distributed Computing, 1987, pp. 86-97.

[10] B. CHOR, M. MERRTT, AND D. SHMOYS, Simple constant-time consensus protocols in realistic failure models,
J. ACM, 36 (1989), pp. 591-614.

[11] B. CHOR AND L. MoscovIc, Solvability in asynchronous environments, Proc. 30th IEEE Conference on the
Foundations of Computer Science, 1989, pp. 422-427.

[12] B. CHOR AND L. NELSON, Resiliency ofinteractive distributed tasks, Proc. 10th ACM Conference on Principles
of Distributed Computing, 1991, pp. 37-49.

712 BENNY CHOR, AMOS ISRAELI, AND MING LI

[13] D. DOLEV, C. DWORK, AND L. STOCKMEYER, On the minimal synchronism neededfor distributed consensus, J.
Assoc. Comput. Mach., 34 (1987), pp. 77-97.

[14] D. DOLEV AND N. SHAVIT, Bounded concurrent "time stamps systems are constructible, Proc. 21st ACM Sym-
posium on Theory of Computing, 1989, pp. 454-466.

[15] M. HERLIHY, Impossibility and universality results for wait free synchronization, Proc. 7th Annual ACM
Conference on Principles of Distributed Computing, 1988, pp. 276-290.

16] M. HERLIHY AND J. WING, Linearizability: A correctness condition for shared objects, ACM Trans. Program.
Languages and Systems, 12 (1990), pp. 463-492.

17] M. FISCHER, N. LYNCH, AND M. PATERSON, hnpossibility of distributed consensus with one faulty process, J.
Assoc. Comput. Mach., 32 (1985), pp. 374-382.

18] A. ISRAELI AND M. LI, Bounded time stamps, Proc. 28th IEEE Symposium on Foundations ofComputer Science,
1987, pp. 371-382.

[19] L. LAMPORT, On interprocess communication, Distributed Computing, Vol. 1, 1986, pp. 77-101.
[20] M. PEASE, R. SHOSTAK, AND L. LAMPORT, Reaching agreement in the presence offaults, J. Assoc. Comput.

Mach., 27 (1980), pp. 228-234.
[21] D. LEHMANN AND M. RABIN, On the advantages offree choice: A symmetric andfully distributed solution to

the dining philosophers problem, Proc. 8th Principles of Programming Languages 1981, pp. 133-138.
[22] M. C. LouI AND H. H. ABU-AMARA, Memory requirements for agreement among unreliable asynchronous

processes, Advances in Computing Research, JAI Press, 1987, pp. 163-183.
[23] S. PLOTKIN, Sticky bits and the universality ofconsensus, Proc. 8th Annual ACM Conference on Principles of

Distributed Computing, August 1989, pp. 159-175.
[24] M. RAN, The choice coordination problem, Acta Inform., 17 (1982), pp. 121-134.
[25] M. SAKS, N. SHAVIT, AND H. WOHL, Optimal time randomized consensus making resilient algorithms fast

in practice, Proc. 2nd ACM Symposium on Discrete Algorithms, 1991, pp. 351-362.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 713-737, August 1994

() 1994 Society for Industrial and Applied Mathematics
003

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES*
SAMPATH K. KANNAN AND TANDY J. WARNOW*

Abstract. One of the longstanding problems in computational molecular biology is the Character Compatibility
Problem, which is concerned with the construction of phylogenetic trees for species sets, where the species are
defined by characters. The character compatibility problem is NP-Complete in general. In this paper an O (n2k) time
algorithm is described for the case where the species are described by quaternary characters. This algorithm can be
used to construct phylogenetic trees from DNA sequences.

Key words, algorithms, graphs, evolutionary trees, evolution

AMS subject classifications. 05C05, 05C85, 68Q25, 92-08, 92B05, 92D 15, 92D20

1. Introduction. Given a set S of n species, a phylogenetic tree, or, more simply, a
phylogeny or evolutionary tree, is a rooted tree with n leaves that describes the evolution of
the species in S from a common ancestor. The internal nodes represent ancestral species, and
the leaves represent the species in S.

One standard way to describe species is through the use of characters. A character is
an equivalence relation on the set S of species, partitioning the species set into the distinct
equivalence classes, which we will call the character states. Since the number of possible
states of any character is finite over any finite species set, we can number the states of each
character. If there are n species and k characters, we can represent our data by an n x k integer
matrix M, where the entry Mij is the state of species si for the jth character. The th row in
this matrix is a vector over Zk (where Z denotes the integers) that is identified with the species
Si.

In any phylogeny T for the species set S each leaf has a vector of character states in Zk

associated with it. We also assign to each internal node of the tree T a vector in Z thereby
hypothesizing the character states of the ancestral species in our phylogeny. The desired
property for this phylogeny (and assignment of vectors to internal nodes) is that, for each state
of each character, the set of nodes in the phylogeny having that state should form a subtree.
That is, the subgraph induced by those nodes should be a connected graph. Such a phylogeny
is called a perfect phylogeny. This is also expressed by saying the phylogeny is convex for
each character, or simply that it has the convexity property.

Given a phylogeny T, Fitch 17] has shown that one can efficiently determine whether
there is an assignment of character vectors to the internal nodes so as to make T perfect. Thus
the crux of the problem is the choice of phylogeny.

When a perfect phylogeny exists for a set C of characters defining a species set S, we say
the character set is perfectly compatible, or, simply, compatible, on the species set S. In the
literature it is common to drop the reference to the species set S and simply say the character
set C is compatible. When there is no possibility of confusion about the species set, we shall
use this convention.

We can now state the following.
Perfect phylogeny problem. Given a set of species defined by a set of characters,

determine whether a perfect phylogeny exists.

*Received by the editors September 24, 1991; accepted for publication (in revised form) April 27, 1993.
Department of Computer Science, University of Arizona, Tucson, Arizona 85721-0001. This author’s research

was supported in part by National Science Foundation grants CCR-8513926 and CCR91-08969.
*Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania

19104-6389. This author’s research was supported by National Science Foundation grant DMS 90-05833 and De-
partment of Energy grants DE-FG03-90ER60999 and DE-AC04-76DP00789. This work was performed in part at
Sandia National Laboratories.

713

714 SAMPATH K. KANNAN AND TANDY J. WARNOW

This problem is also referred to in the literature as the Character Compatibility Problem.
What we will describe is an O(nZk) divide-and-conquer algorithm that will determine

whether a set of n species defined by k quaternary characters has a perfect phylogeny; when
a perfect phylogeny exists, the algorithm will construct one. If each species in S is defined
by a DNA sequence and the DNA sequences are all perfectly aligned (so that there are no
gaps), then each position in the sequences represents a character. Thus we have the quaternary
character compatibility problem, since each position must take on one of only four possible
values (A, C, T, or G). We can apply the algorithm to this case and determine whether a perfect
phylogeny exists for species defined by perfectly aligned DNA sequences.

Unfortunately, in practice the set of characters is seldom perfectly compatible. We can
still use our algorithm to find maximal sets of compatible characters. This can be done by
iteratively adding a compatible character to a set of mutually compatible characters until no
further characters can be added. This procedure takes time O(nZk2). By contrast, the problem
of finding a maximum set of compatible quaternary characters is NP-Hard [7].

The structure of the remainder of the paper is as follows. We discuss the history of the
character compatibility problem in 2. Essential concepts that are used in the algorithm for
quaternary character compatibility are defined in 3. We show how we reduce to subproblems
for the trinary character compatibility problem in 4. The reduction to subproblems for
quaternary characters is described in 5. We conclude with a discussion of further problems
in 6.

2. History of the character compatibility problem. The character compatibility ap-
proach to phylogenetic tree construction is related to parsimony and compatibility criteria.
Parsimony criteria seek to find a tree of minimum size, where the size of the tree is the number
of character state changes indicated by the edges. Compatibility criteria seek instead to keep
as many characters as possible while eliminating others, so that with respect to the characters
that are kept, it is possible to construct a perfect phylogeny. Each approach has its proponents,
but essentially they agree in their philosophy, which is that the tree ofminimum evolution is
the right tree.

This approach to phylogenetic tree construction originated in the 1960s. (Edwards and
Cavalli-Sforza are usually credited with introducing parsimony in their papers from the early
1960s [9], [10]); variations on the basic parsimony criterion were also proposed ([22],[23],
[24], [4] and others).

The concept ofcharacters being perfectly compatible with a given tree arose naturally from
these approaches, in that it represents the best possible tree (i.e., having minimum possible
evolution on the tree). This objective was championed by LeQuesne in a series of papers [23],
[24], [25], [26], and later given its firm mathematical foundation in the literature by two papers
of Estabrook and McMorris 11], 12].

Since construction of phylogenies using compatibility criteria was shown to be an NP-
hard problem by Day and Sankoff in [7] and many variations of parsimony were also shown
to result in NP-hard problems [5], [6], 18], the character compatibility problem was assumed
to be NP-Complete as well. This was finally proved independently in 1991 by Steel [29] and
Bodlaender, Fellows, and Warnow].

Until 1990, the only progress on algorithms for the character compatibility problem was to
show that binary character compatibility [27] and compatibility oftwo characters at a time 13],
17] could be solved in polynomial time. An important theoretical breakthrough came in 1974,
when Buneman proved a beautiful result [3] showing that the problem reduced in polynomial
time to the graph-theoretic Triangulating Colored Graphs Problem. These problems were
shown polynomially equivalent by Kannan and Warnow in [21] in 1990. This equivalence
was used in to show that the character compatibility problem was NP-Complete, so that no

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 715

polynomial time algorithm for the character compatibility problem will exist unless P NP.
In the biological literature, the first algorithms presented to determine compatibility oftwo

characters were given in 1975 13], 17] and only proved correct two years later by Estabrook
and McMorris in [14]. Algorithms for three characters at a time were discovered first by
Kannan and Warnow [21] and later by Bodlaender and Kloks [2] and Idury and Schaffer
[20]. Each of these algorithm used linear time, but [21 required quadratic space, while the
others find linear space implementations. The only algorithm for the character compatibility
problem that runs in polynomial time when the number of characters is bounded by a constant
is the algorithm of McMorris, Warnow, and Wimer [28] that achieves a running time of
O(rI+1 kk+l + nk2). Since this grows exponentially in the number of characters, it is primarily
of theoretical interest.

Characters derived from molecular data (such as DNA sequences) are associated with
the columns of a multiple alignment and thus have the restriction that the number of states
achieved by any particular character is limited to a small constant. In the case of DNA or
RNA sequences, this number is four, while for amino-acid sequences, the number is 20. As
we will see, by restricting the number of states, we are able to obtain efficient algorithms for
constructing perfect phylogenies. (If they exist, of course!)

The first case of this type that was handled was for binary characters. Polynomial time
algorithms for binary character compatibility were found by several authors with the best being
the O(nk) algorithm of Gusfield [19], for testing compatibility of k characters on n species.
This is optimal, since the input requires O (nk) space, and each entry must be checked. Finally,
an O (nk2) algorithm for compatibility of three-state characters was found by Dress and Steel
[8].

In this paper we present two new results: an O(min(nk2, n2k)) algorithm for the tri-
nary character compatibility problem, and an O(n2k) algorithm for the quaternary character
compatibility problem.

3. Basic concepts. We describe in this section the basic concepts which are used in our
techniques for determining character compatibility for four-state characters. These concepts
form the basis of our divide-and-conquer algorithms.

3.1. Canonical labeling of phylogenies. Let P be a proposed phylogeny for S in which
only the leaves are assigned labels. To determine whether we can label the internal nodes in P
so that the phylogeny is perfect, we apply a modification of Fitch’s algorithm [16] for finding
the minimum size assignment of labels to internal nodes. The difference is that we will permit
an internal node to take on a dummy state, if its state for a character is not constrained by
values at the leaves. The technique we will describe will simultaneously set the labels at the
internal nodes and determine whether a labeling that is convex for every character is possible.

Let v be an internal node of P that is not yet labeled. We can define c(v) for every
character c C by using the following rule: or(v) or(x) if there exist leaves x and y in
different components of P {v} such that c (x) c (y). If for some internal node v we do not
have such a pair of leaves, and thus for all leaves x and y in different components of P {v}
we have or(x) - c(y), we let or(v) remain "unset," i.e., it takes on the dummy state, c*. The
labeling we have described thus is determined entirely by the topology and the leaf labels. We
call this the canonical labeling.

To determine if P with the canonical labeling at the nodes (as described above) is perfect,
it suffices, clearly, that for every node v, we do not have a conflict in how to set o(v) for any
character or. That is, if P {v} has components P1, P2 Pr, we do not have sl 6 P/, $2 G., t 6 PI, and t2 6 Pm such that/ j and/:/: m and cc(sl) c(s2) c(t) c(t2). Thus,
we can determine whether a phylogeny is perfect by knowing the topology and examining the
labels at the leaves.

716 SAMPATH K. KANNAN AND TANDY J. WARNOW

We can assume that every perfect phylogeny P is given the canonical labeling.
Two adjacent nodes v, w in P can be identified if, under the canonical labeling, for each

c 6 C, whenever c(v) c(w), 6 {c(v), or(w)}. In other words, if two nodes disagree
for a character only when one is given the dummy state, then we can identify the two nodes.
We will sometimes use this flexibility in a phylogeny and thus change the topology of a perfect
phylogeny.

We make the following definitions.
DEFINITION 1. Let P be a perfectphylogeny such that, using the canonical labeling, every

two adjacent nodes v and w cannot be identified. Then P is said to be rigid.

3.2. Tree-structures. Let P be a (possibly perfect) phylogeny for S, and consider a
specific character, or. The c-tree-structure for P is formed by repeatedly contracting edges
connecting nodes that have the same (nondummy) state for t. This tree does not depend on
the sequence of edge-contractions and is thus well defined. We are interested in the set of
tree-structures that can arise from perfect phylogenies and hence make the following definition.

DEFINITION 2. A tree-structure for ot that can be obtainedfrom some perfect phylogeny
will be called a realizable tree-structurefor t.

Note that when a phylogeny is perfect, the resultant tree-structure for ct has exactly one
node for each state of or.

For quaternary characters, the set of possible tree-structures is shown in Fig. 1.

12 Paths 3 2-dummy-node trees 4 Stars 12 1-dummy-node trees

FIG. 1. Tree structuresfor a quaternary character.

We first make the following definition.
DEFINITION 3. We will say that a perfect phylogeny P is in reduced form if it satisfies the

following conditions:
(i) every internal node of P has degree at least three, and
(ii) P has]SI leaves, each labeled by a distinct element of S.

Clearly, every perfect phylogeny can be put in reduced form and then labeled using the
canonical labeling. Thus, in searching for a realizable tree-structure, it will suffice to look for
a tree-structure arising from such a perfect phylogeny. We make the following definition:

DEFINITION 4. A tree-structure that arisesfrom a perfect phylogeny in reducedform and
canonically labeled is called a realizable elementary tree-structure.

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 717

It is not hard to prove that a phylogeny in reduced form is defined by its set of tree-
structures (one for each character in C). It can also be noted that when a tree-structure is
derived from a canonically labeled phylogeny in reduced form, then a node with a dummy
state has degree at least three in the tree structure.

The tree-structure of a perfect phylogeny for a character ot is thus node labeled by et states.
We will define some notation that will be used in representing tree-structures as well as in the
algorithm statement.

DEFINITION 5. The denote by Ol the set {s S t(s) i}.
We will use a slightly nonstandard definition of "adjacency" in a tree-structure.
DEFINITION 6. We will say that two states ol and Olj are adjacent in a tree-structure T if

Ol and tj are connected by an edge or the pathfrom Ol to Olj in T goes only through dummy
nodes.

This definition suits the usage made of the concept of adjacency in this paper. However,
when we say that O is between tj and otk, we will mean that the path from otj to otk goes
through oti.

We call a set big if it contains at least two elements. Thus O/i is big if Iotil > 2. We then
make the following definition:

DEFINITION 7. A character is informative if it has at least two big states.

Using this definition, we can state the-following:
LEMMA 3.1. Let C be a set of characters for a set S of species, and suppose that the

character ot is not informative. Then C is compatible on S ifand only ifC {c} is compatible
on S.

Proof. One direction is obvious. Now suppose that ot is a noninformative character (i.e.,
it has only one state, ct, which is big), and suppose that C ct is compatible on S. Let P
be a perfect phylogeny for S with respect to the characters in C or. The species in S each
occupy a leaf and are labeled by a vector of character states of length [C[(one position
per character in C

We can now set the or-state for each node in P, both internal and external, in such a

way that the resulting node-labeled tree will be a perfect phylogeny for S with respect to the
character set C. The internal nodes will all have state ct, while the external nodes (leaves)
will have their ct states set according to the "true" character state information. It is easy to see
that this is a perfect phylogeny for the enlarged character set.

We will show that if we can find a realizable tree structure in some manner (for example
by consulting an oracle) for an informative character, then we can construct subproblems of
strictly smaller size so that the two subproblems have perfect phylogenies if and only if the
original instance had a perfect phylogeny. More precisely, given a realizable tree-structure
for an informative character, we can construct what we call a legal partition of the set S, and
from this partition, we can define subproblems. We now define these partitions.

3.3. Legal partitions. Let S be the set of species and C the set of characters.
DEFINITION 8. Given a phylogeny P, we will let .(P) indicate the leaf set of P.
DEFINITION 9. A partition of S into S and $2, with n 2 > S l, IS21 >_ 2, is called

a legal partition if whenever C is compatible on S there is a perfect phylogeny P with the
following property: P contains an edge e whose removal breaks up P into subtrees P and P2
with . Pi Si, 1, 2.

When the character set is incompatible, any partition of S into two big parts is a legal
partition. The reason we require the cardinalities of each side of the partition to be between
2 and n 2 is that by doing so we ensure that the subproblems on which we will recurse are

small enough.

718 SAMPATH K. KANNAN AND TANDY J. WARNOW

3.4. Splitting vectors. We begin by making the following definition.
DEFINITION 10. Given a partition S $1U $2, we define the splitting vector x (sometimes

also called the splitting species), as follows. Let ot E C be a character. If there exist Sl SI
and s2 $2 such that c(s) c (s2), then we set c(x) c(sl); otherwise we set c(x) ",".

Thus, we define the vector x using exactly the technique we used for labeling the internal
nodes of a perfect phylogeny. We will refer to x as the splitting vector defined by the partition
S= S S.

Note that the method used in setting x depends only on the partition S $1 t5 $2 and not

on the actual perfect phylogeny P yielding that partition. If the method of setting x fails (so
that for some character c, there are species s, t 6 S and s2, t2 6 $2 with c(sl) a(s2) :fi
ot(t) c(t2)), then we know immediately that either the character set is not compatible or
the partition we have is not a legal partition.

LEMMA 3.2. Let C be a set of characters on the species set S, and let S SI 12 $2 be a

legal partition of S. Let x be the splitting vector defined by the partition S S 12 $2. Then
C is perfectly compatible on S if and only if there exists a perfect phylogeny T for S, C and
an edge e E T) such that

1. ,(Ti) Si for 1, 2, where T {e} has components T and T2;
2. the labeled phylogeny T formed by inserting x into the edge e is also a perfect

phylogenyfor S, C.
Proof. If C is perfectly compatible on S and if S S 12 $2 is a legal partition, then the

perfect phylogeny T and edge e in T must exist producing the partition. Let x be the splitting
vector for S S 12 $2. If we insert x into e (i.e., subdivide the edge), it is easy to see that
the convexity property still holds for the new tree. Thus, if C is perfectly compatible with S
and S S 12 $2 is a legal partition, then C is perfectly compatible on S 12 {x }, where x is the
splitting vector defined by the legal partition.

The other direction is trivial to prove. [3

3.5. Deriving subproblems. We now state the lemma that permits us to use a legal
partition of the species.

LEMMA 3.3. Let C be a set ofcharacters defined on the species set S, and let S S1 12 $2
be a legal partition. Let x be the splitting vector defined by the previous lemma. Then C is

compatible on $1 12 {x} and $2 12 {x} ifand only if C is compatible on S.
Proof Suppose C is compatible on each of S 12 {x} and $2 12 {x} and that T and T2

are perfect phylogenies for S1 U {x} and $2 U {x }, respectively. Define the phylogeny T by
identifying the leaf for x in T with the leaf for x in T2. We will show that this phylogeny is
also perfect. Suppose that u and v are nodes in T with o(u) a(v) for some character or, and
let w be a node on the path from u to v. We will show that c(w) or(u).

Since T1 and T2 are perfect phylogenies, if u and v are both within the same Ti, then
c(w) c(u). If u is in T and v is in T2, then by our definition of the splitting vector x,
c(x) c(u). Without loss of generality, assume that w is in T1. Then w is on the path from
u to x, and therefore or(w) c(u). Thus, T is a perfect phylogeny.

Now suppose that C is compatible on S but not on, say, S1 12 {x }. Since S S1 12 $2 is a
legal partition, the fact that C is compatible on S implies that there exists a perfect phylogeny
T and an edge e in T such that T {e} is the union of two subtrees T and T2, where the leaves
of Ti are the species in Si. Furthermore, the way we set the character states for the splitting
vector x (to be inserted into the edge e) allows us to enlarge T1 into a perfect phylogeny for
S 12 {x }: we simply make x a leaf and attach it to T at the point where the edge e was attached
to T1.

Thus, C is also compatible on S11..) {x}.

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 719

The subproblems will have one more species each than the sizes ofthe parts ofthe partition,
and this is why we constrained each set Si to have at most n 2 species. Note that the way
we have defined or(x) may result in ot having r + states on S U {x}, where ot had r states
on S. When we reduce to subproblems, however, we will only have r states for c in each
subproblem. We now show this.

LEMMA 3.4. Let S S1 U $2 be a legal partition, and let x be the splitting vector defined
by theprevious theorem. Then in each subproblem Si U {x }, the number ofstatesfor a character
ot is bounded by r, where c had r states on S.

Proof. If c (x) :/: " ", then it is trivially true. Otherwise, if ot (x) " ", then the states
of ot are partitioned by S1 U $2 (i.e., no state is on both sides of the partition). The only way
that S U {x} can have r + states is for all r original states of ot to be in the S side. But in
this case, $2 is empty, and hence S S1 U $2 is not a legal partition.

At this point, all we need to do is show how to find a legal partition for S, given a realizable
tree-structure.

LEMMA 3.5. Given a realizable tree-structure T for an informative character c, we can

find a legal partition of S.
Proof. The removal of any edge from T defines a partition that is legal, provided that the

parts of the partition have at least two and no more than n 2 species each. We will show that
T has at least one edge e whose parts satisfy this constraint.

Since ot is informative, t must have at least two big states. Let e be an edge in T such
that each subtree of T {e} has at least one big state. Then each component of T {e} has
at most n 2 species, and thus we have a legal partition.

We will call this kind of legal partition of S a legal partition of ot since members of the
same o-state belong to the same part of the partition. Note that this implies a constructive
algorithm for reducing to subproblems, given a realizable tree-structure.

3.6. The top-down structure ofthe algorithm. A top-down description ofthe algorithm
is then as follows:

Algorithm Findtree(S)
begin

if SI < 7 then do exhaustive search
else

find a legal partition of S S1 U $2
define the splitting vector s (as defined in Section 3.4)
if both Findtree(S1 t2 s }) and Findtree(S2 {s }) produce trees

T and T2 respectively then
define T to be the tree formed by identifying the leaves for s
in each tree T and return T
else return No

end of algorithm

Note that the splitting vector s can be determined in O(nk) time. The algorithm may
determine that no legal partition exists, in which case it does not recurse on subproblems but
returns "No."

It is clear that the only difficult part of this algorithm is to find a legal partition of S. We
will now describe the techniques we use for finding a legal partition when all the characters
have at most three states. The techniques we use for four-state characters involve the same
basic ideas but require a much more complicated case analysis.

720 SAMPATH K. KANNAN AND TANDY J. WARNOW

4. Finding a legal partition from trinary characters. For trinary characters, there are
only four possible tree-structures: the three paths, ai aj ak, for {i, j, k} 1, 2, 3},
and the star with the dummy node in the center. We will describe a rule-based technique for
finding a legal partition of S where all characters have three states. The rules we will present
will use character state intersection information to determine which of the four tree-structures
could arise from canonically labeled perfect phylogenies in reduced form (i.e., be elementary
realizable tree-structures). These rules will also be applied for deriving a legal partition for
quaternary characters and are thus stated and proved in general terms. We may abuse notation
and sometimes indicate the value of a species s for the character a by a instead of i.

4.1. Rules for deriving tree-structures. We now define two rules for reducing the orig-
inal set of four possible tree-structures (three paths and one star) to a smaller set of tree-
structures, when the characters are trinary.

RULE 1. Suppose for two characters, a and , we know that al C 1, a2 fq 2 =/= 0, and
a3 fq f12 . Ifthe character set is compatible and T is a realizable elementary tree structure

for a, then a is not on the path between a2 and a3.

Proof. Suppose that the character set is compatible, and yet the only realizable elementary
tree-structures have a on the path between a2 and a3. Let T be one perfect phylogeny for the
species set, and consider the path P in T from a2 to a3. On this path there is at least one, and
possibly several, nodes labeled a l. Attached to each of these nodes are one or more subtrees
with species in S having state a l. Each node v in the path must have fl-state f12, since the a2
species and c3 species are in different components of T {v}.

Now consider the number of possible subtrees containing species labeled a hanging off
nodes labeled a in P. There can be at most one such subtree, since if there were two, the
node(s) in P between the two subtrees would have to have state fl, since all species having
state c also have state/. Thus, we see that the number of subtrees (containing species in S)
must be exactly one. Since P is in reduced form and canonically labeled, the tree-structure
arising from P is elementary and a does not lie in the path between a2 and a3.

RULE 2. Let and a be characters such that a (q 1 :/: 0, a (q f12 , a2 N 2 ,
and Ol2 3 . If T is a realizable elementary tree-structure for a, then a2 falls between
otl and 3 in T.

The proof of this rule is easy, and is omitted.

4.2. Intersection patterns. To describe the intersection patterns between characters we
introduce the following notation. If a is an r-state character then for any character fl, its
intersection with a is represented by an r-tuple, the th component of which lists all the
/3-states that have nonempty intersection with ai.

As an example, consider two trinary characters a and/3 on S {1, 2 8}, defined
by the following partitions: a partitions S into {1,2}, {3, 4, 5}, {6, 7, 8}, and/ partitions S
into {2, 3, 4, 5}, 1, 6, 7}, {8}. Using the representation above, we determine that al intersects

/31 and f12, a2 intersects only/31, and a3 intersects /2 and/33. Thus, the three-tuple used to
describe the intersection pattern is (flfl2, ill,/32/33).

The different intersection patterns are then classified by type. Since often we only care

about/J-states that intersect more than one a-state, we will use symbols x, y, and z to represent
possibly empty subsets of/J-states that are contained in one a-state. Subsets represented
by these letters are mutually disjoint and do not include any explicitly mentioned/-states.
Whenever we use the above notation we will bear in mind the symmetries due to relabeling
of the a- and/3-states.

For trinary characters only a few kinds of intersection patterns are possible. Here we list
the types up to symmetry. When the symmetry is broken and we have to distinguish between

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 721

two characters of the same type, we will refer to subtypes of a type. A subtype is defined by
a particular rearrangement of the a-states.

Type 1: (/3ix,/ y,/1 z).
Type 2: (/31,/31, x).
Type 3: (/lX,/31y,/33).
Type 4: (/3ix,/31/32y,/2z).
Type 5: Any other intersection pattern where a and/ are both trinary characters.
Some of these types of intersection immediately allow us to reduce the set of four possible

tree-structures (the three paths and one star) to a smaller set. We will therefore define the set
Q, which will be used in the algorithm for quaternary character compatibility as well as in the
algorithm for trinary character compatibility.

4.3. The set Q of candidates.
DEFINITION 11. Let J’i be the set of rules used to remove a tree-structures for i-state

character information. Q is the set of tree-structures that are not eliminated by applications
ofthese rules.

The analysis that we will now make of the implications of the different intersection types
will be used to reduce the original set of tree-structures to the (possibly smaller) set Q.

A type-5 intersection can only mean that a and/3 are themselves incompatible, so that
the entire set C is incompatible. A type-4 intersection immediately implies (by an application
of Rule 2) that the only possible realizable tree-structure is a a2 a3. If/3 has a type-3
intersection, then by an application of Rule 1, we know that we can remove the a a3 a2
tree-structure from Q. Type-1 and -2 intersections do not allow us to reduce Q.

Now suppose Q 0. In this case, we know that no tree structure is realizable, so that
the character set is incompatible. If Q contains a single tree-structure, then that is the tree-
structure we use to reduce to subproblems. Otherwise, Q contains at least two tree-structures,
and so we have processed only characters of types 1-3. We will show now that we can handle
each of these cases. Before we introduce our technique, we need to make some definitions.

DEFINITION 12. Let T be an a-tree-structure, e be an edge in T, and T {e} have
components T1 and T2 with underlying species sets $1 and $2, respectively. Then we say that
the vector x (Z U {", ,,})k is compatible with the pair (T, e) ifthe following is true:

(i) If there exists sl $1 and $2 $2 with a(s) a(s2) then a(x)
(ii) Else, a(x) is either set to the dummy state " or is set to i, where either S or $2

is contained in
Thus, a vector is compatible with an edge in a tree if we can insert the vector into that

edge without changing the convexity property of the tree.
DEFINITION 13. Let T be a tree-structure for a, and let e E(T). We define f(T, e)

{x 6 (Z t2 {". "})k :x is compatible with (T, e) }.
That is, f(T, e) consists of all the possible vectors, with dummy states permitted, that

can be inserted compatibly into the edge e 6 E(T).
DEFINITION 14. For a tree-structure Tfor a, we define a disconnector to be a minimal set

ofedges ofT whose removalputs each ofthe a-states into a separate component, lfel et
is a disconnector ofa tree structure T, a set ofspecies 79 {sl, s2 st si f(T, el),
1 will be termed a disconnecting species set.

We extend these concepts to the case where we have a collection of tree-structures, Q and
state the following theorem.

THEOREM 4.1. Let C be a set of characters defining a species set S, and assume that C
is compatible on S. Let a C be a character, and let 7" be any set of tree-structures that
contains at least one realizable tree-structure. If there exists a set D that is a disconnecting
species setfor every T 7-, then every tree in "T is realizable.

722 SAMPATH K. KANNAN AND TANDY J. WARNOW

Proof. Assume that such a set D exists and that 7- contains at least one realizable
tree-structure, T*. Let P* be a perfect phylogeny for S with tree-structure T*. Since D is
a disconnecting species set for T*, we can insert the elements of D compatibly into their
associated edges of T*, and hence C is compatible on S to D.

Now let T 6 7" be arbitrarily chosen. If we remove the edges associated with the nodes
in D from T, we separate T into r components, each containing one state of or. We can then
reattach the deleted edges to each of these components and insert into each such edge the
associated element of D. Call these subgraphs TI, T2 Tr. Each Ti consists of one c-state
and at least one element from D. Every two such subgraphs share at most one element of D.
Since C is perfectly compatible on S t_) D, there is a perfect phylogeny Pi for each subgraph
T. We can then combine these perfect phylogenies Pi into a perfect phylogeny for S tO D,
in the following way. Each d 6 D is a leaf in at least two of these perfect phylogenies Pi.
Identify the leaves corresponding to each d. The resultant graph P is acyclic, has the convexity
property, and contains S and is therefore a perfect phylogeny for S. Furthermore, it is easy to

verify that T is the tree-structure for P, so that T is realizable. [3

THEOREM 4.2. Let C be a set of trinary characters defining a species set S, and let us
assume that every character in C is informative. Let ot be any character in C, and let Q be
the set of candidate tree-structures not eliminated by Rules and 2. Either some big or-state
is a leaf in every T Q, so that we have a legal partition, or either every tree-structure in Q
is realizable or none is.

Proof. If C is not compatible on S, the theorem trivially follows. Otherwise, assume that
C is a set of informative characters that is compatible on S and let c 6 C be any character.
We will either determine that some big or-state is a leaf in every tree-structure in Q or we will
define a disconnecting species set D for Q. Since C is compatible, it must contain at least one
realizable tree-structure. The existence of D will then ensure that every tree-structure in Q is
realizable, by Theorem 4.1.

The proof continues using a case analysis.
Handling only Type-1 and -2 characters. Consider the case where there have only been

characters of Types and 2, so that Q consists of all four possible tree-structures. In this
case, we will define a vector A as follows. Each character/ has exactly one state, l, which
intersects more than one a-state; let/(A) 1. To set the c-state of A, we use a new dummy
state. Note that if P is a perfect phylogeny for S, C and e is an edge in P between two c-states,
then A can be inserted into that edge without changing the convexity of P. Thus, {A is a
disconnecting species set for Q.

When there are Type-3 characters. The definition of the set D depends on the exact
constitution of Q, which can vary when there are Type-3 characters. Each Type-3 character
removes one path tree-structure from Q. If there is at least one Type-3 character present and
QI > 1, then we either have removed one or two path tree-structures from Q.

If we have removed two path tree-structures, then we have reduced Q to consisting of one
path and the star. Without loss of generality, assume that the only path tree-structure in Q is

or1 or2 c3. Then c1 and or3 are leaf-states in every tree-structure in Q. Since ot has at least
two big states, without loss of generality, we can assume Cl is big. Thus, oil is a big state that
is a leaf in every tree-structure in Q.

If Q contains two paths, say c1 -or2 -c3 and or3 -c1 -o2, then all Type-3 characters have
had the same intersection subtype (that is, exactly as indicated above). Note that for every
tree-structure in Q, ot and c2 are adjacent and or3 is a leaf. If a3 is a big state, then we are
done. Otherwise, if Iot3l 1, we will need to define two vectors A and B so that D {A, B}
is a disconnecting species set.

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 723

The node A will be inserted between c3 and c tO lY2 and the node B will be inserted
between Oil and Of2 in each tree-structure. Note that setting A x, where c3 {x} will
always work. To set/ (B), note that since every character has type 1, 2, or 3,/ has exactly
one state in common between t and ot2. Let/(B) be that common state. It can then be
checked that the nodes A and B can be inserted into each candidate tree-structure in Q so as
to preserve convexity. Thus, D is a disconnecting species set, so that every tree-structure in
Q is realizable. [3

We thus have the following.
THEOREM 4.3. Given a set of three-state characters, we can in O(nk) time eitherfind a

legal partition of S or determine that the set ofcharacters is incompatible.
Proof We can compute the pairwise intersections of c with every other character 1 in

O(nk) time and apply Rules and 2, thus reducing the set of four possible tree-structures
to a (possibly smaller) set Q. If this set Q is empty, then the characters are incompatible.
Otherwise, let T be any tree-structure in Q. By Theorem 4.2, T is realizable, and by Lemma
3.5, we can find a legal partition of S given T.

Using the same top-down structure as described for the quaternary character compatibility
problem in 3.6, we now have an algorithm for trinary character compatibility. We now analyze
the complexity of this algorithm.

THEOREM 4.4. We can determine compatibility of k trinary characters on n species in
O(nk min{n, 2k}) time.

Proof. It suffices to show that we recurse at most min{n, k} times, since each recursion
costs us only O(nk) time. Having computed a legal partition of S S tA $2, we note that the
number of species always goes down by at least one in each part, so that the number of iterations
is at most n. Now consider what happens to a character as we reduce to solving subproblems.
If it becomes uninformative on one side, it is eliminated from the subproblem. Furthermore,
if the character only has two states on a subproblem, the reduction to subproblems takes
O(n) time instead of O(nk) time. Thus, a character continues to contribute to the cost of its

subproblem only by being informative and having at least three states. If a character remains
informative and has at least three states in one subproblem, then in the other subproblem it
is uninformative. Thus, the total number of characters present between the two subproblems
goes down by one at each iteration. Therefore, the number of iterations is min{n, 2k}, and the
algorithm has running time O(nkmin{n, 2k}). [-1

4.4. Application to quaternary character compatibility. The algorithm given above
for the compatibility of trinary characters has an important extension to quaternary character
compatibility. Suppose we are given a set C of quaternary characters (i.e., characters with
number of states bounded by four), and suppose that ot 6 C is actually a trinary character.
Then for any quaternary character/ (which is compatible with or), its intersection pattern with
c either belongs to one of the four types described or is of the form (]12,]1, f13f14), which
we will denote as Type 6. Thus, any other pattern will indicate pairwise incompatibility of ot

and/.
If all characters/3 intersect c with a pattern that belongs to one of the first four types, then

we can obtain a legal partition of oe using the trinary character algorithm. Suppose, however,
that there is a/ of Type 6. Then looking at ot’s intersection with respect to/3 we note that oe

has the pattern (otot2, ot, or3, or3). When the intersection pattern of ot with/3 is of the above
form (where one state of ot is shared by two states of/3 and another state of c is shared by
the other two states of/ and no other ot states are shared), oe is said to induce a matching
on/. In 5.4 we describe how a legal partition may be found in the presence of match-
ings. It will be seen that matchings can be handled even in the presence of some characters

724 SAMPATH K. KANNAN AND TANDY J. WARNOW

with fewer than four states. Thus, we will assume (without loss of generality) that all characters
are quaternary, since the presence of even one informative character with at most three states
can be handled using simpler techniques.

5. The quaternary character compatibility algorithm. We have described in detail in
the previous section how we solved the trinary character compatibility problem in polynomial
time. We will describe in this section a more complicated case analysis that permits us to solve
the quaternary character compatibility problem in polynomial time as well. The algorithm
we give for quaternary characters has much the same structure as the algorithm for trinary
character compatibility, in that it operates by finding a realizable tree-structure for a character.
In 5.1 we state the third rule for reducing the set of tree-structures to a smaller set of candidate
tree-structures, which presumes an intersection pattern called a matching. In 5.2 we describe
a new technique (similar to the technique given in Theorem 1) for finding a legal partition
from the set Q of candidates. In 5.3 we define the character intersection types and show how
applications of Rules 1-3 permit us to derive information about Q from quaternary characters.
In 5.4 we show how to derive a legal partition in the presence of a matching pair. In 5.5
we show how to derive a legal partition when no character/3 induces a matching on the base
character. The analysis of the running time is presented in 5.6.

5.1. The third rule. For the trinary character compatibility problem, we defined two
rules that allowed us to reduce the set of possible tree-structures to a smaller set, Q, and
from Q we either were able to find a big a-state that was a leaf in every tree-structure in Q
or to use any tree-structure in Q as the basis of a legal partition. The case for quaternary
characters is a bit more difficult. In addition to the two rules described earlier we need one
extra rule, which concerns a different type of intersection pattern. However, in addition, the
determination of a legal partition from the set Q of tree-structures that are not eliminated by
any of these three rules is much more complicated. This complication is due in part to the fact
that the intersection patterns can be much more involved, due to the larger number of states.
Thus, we will use a great deal of case analysis to determine a legal partition from Q. Still, the
general approach is similar, in that we derive a legal partition of S by fixing a base character
0/and then looking at intersections of 0/’s states with the states of other characters.

We begin by describing the third rule we need.
RULE 3. Let and 0/be characters such that [1 (’) 0/1 , i1 ("1 0/2 , i2 [’) 0/3 ,

and i2 0 0/4 . If T is a realizable elementary tree-structure other than a star, then T
contains an edge e such that T {e} has components T and T2 with V(T) {0/1, 0/2} and
V (T2) {0/3, 0/4 }.

Proof If T is a realizable tree-structure that is not a star, then it contains an edge e that is
not incident to any leaf. Let P be a perfect phylogeny that has the T tree-structure for 0/, and
let e’ (u, v) be the edge in P corresponding to e. Clearly, P {e’} partitions the 0/-states.

If P {e’} has 0/ U 0/2 on one side and 0/3 to 0/4 on the other, then our rule is valid. Otherwise,
without loss of generality, let 0/ tO 0/3 be on one side and 0/2 U 0/4 be on the other. How do we
label/(u)? Since 0/1 is on one side and 0/2 is on the other,/(u) 1. On the other hand, 0/3

is on one side and 0/4 is on the other, so that/(u) 2. This yields a contradiction, so that e’
must separate 0/ U 0/2 from 0/3 to 0/4. Therefore, T {e} must have components 0/1 U 0/2 and
0/3 U 0/4. I-I

DEFINITION 15. A character having the above intersection pattern with 0/is said to

induce a matching on 0/. The pair (0/, fl) is referred to as a matching pair.
We can now make some observations.
LEMMA 5.1. Let C be a set ofquaternary characters, S a set ofspecies defined in terms of

C, and 0/a character in C. Suppose that Q is the set ofcandidate tree-structuresfor 0/derived

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 725

from C by applications of Rules 1, 2, and 3. If the set C is compatible, then Q contains a
realizable tree-structure.

Proof If C is a compatible set of characters on S, then there is a perfect phylogeny P
for S. Without loss of generality, P can be assumed to be canonically labeled and in reduced
form. Let 0/E C be a character, and let T be the tree-structure for P with respect to 0/. Then
T is an elementary realizable tree-structure and hence will not be eliminated by any of the
rules above. Thus T E Q.]

5.2. Finding a legal partition from Q. Our algorithm starts by picking a base character,
0/, arbitrarily and finding the set Q of candidate tree structures for 0/by applications of Rules
1-3. If lQI 0, by Lemma 5.1, the character set C is incompatible on S. Again, if lQI 1,
we know, by Lemma 5.1, that if the characters are compatible, then there is only one possible
tree structure for 0/, and it is the unique element of Q. We can then split the problem into
subproblems using that tree-structure. The difficulty is when QI > 1. In what follows we
describe some general techniques for dealing with the case that Q contains more than one
candidate tree-structure. Although these techniques cover most situations, we will, in some
cases, find it necessary to change the base character and find a legal partition on the basis of
some other character.

We now generalize the techniques we used for trinary characters, in which we derived a
legal partition from the set Q. Recall that for trinary characters, we were able to state that
any tree-structure that is not eliminated by Rules and 2 is realizable, provided that the set of
characters is compatible. We proved this by proving the existence of a disconnecting species
set D, which allowed us to transform any given tree-structure from Q into any other. By
contrast, when working with quaternary characters, the existence of a disconnecting species
set D cannot be assumed, although we may be able to define such a set of vectors under certain
circumstances.

Another technique we use for quaternary characters is described in the following theorem.
THEOREM 5.2. Suppose s is a vector and {eT E(T) T Q} is a collection of edges

such that s is compatible with every pair (T, eT). Suppose there exists T Q such that
T {er} has components T and T2 whose underlying species sets S and $2 are both big.
Then S S U $2 is a legal partition of the original species set.

The proof of the above theorem follows along the same lines as the proof of Theorem 4.1.
The above two techniques try to find similarities among the tree-structures in Q and exploit

this similarity to find a legal partition. In the case where we have a character/3 inducing a
matching on our base character 0/, such similarities are hard to find. For example, if the
intersection of/3 with 0/is given by (1/2, ill, /3/4, /4), then the possible tree structures for
0/include stars centered at 0/ and 0/3 and the four paths with 0/ and 0/2 on one side and 0/3

and 0/4 on the other. It is hard to find splitting vectors that work for both of these types of
realizable tree-structures. To handle matchings we introduce a new technique.

The technique we use involves a concept we call a rigid tree-structure. Certain phyloge-
nies are flexible in the sense that the labeling at some adjacent internal nodes are compatible
and the nodes can therefore be identified, so that the topology changes, and hence also the
tree-structure(s). Thus, it is possible to move from one tree-structure to another, and under
the proper conditions, we may be able to know that certain tree-structures may be removed
from Q by the above process. We discuss the details of this technique in the subsection on
handling matchings.

5.3. Analysis of the character intersection information. Our divide-and-conquer al-
gorithm solves the perfect phylogeny problem by exhaustive search when there are at most
six species. In practice, this can be done more efficiently by considering a partition of S into

726 SAMPATH K. KANNAN AND TANDY J. WARNOW

two sets containing 2 and k 2 species (assuming IS] k < 6), defining the splitting vector
for this partition, and checking that the two subproblems created both have solutions.

We first preprocess the data so as to remove all noninformative characters. We then
assume that the (reduced) character set contains at least one quaternary character, since if it
consists of entirely three-state characters, we will use the simpler algorithm described in 4.

We pick a character ot arbitrarily from C and call it the base character. We then compute
the intersections of the c-states with every state of every remaining character.

We list (up to symmetry) the types of intersections that other characters can have with c
assuming that they are compatible with or. Thus, we have eliminated all intersection patterns
of ot with/ that indicate that ot and/ are pairwise incompatible, so that the entire set C is
incompatible. Any/3 whose intersection does not fit any of the following eight types will thus
imply incompatibility of the character set. As before we will sometimes refer to subtypes of
a type.

As explained before, we will represent the intersection of a character/ with a character ot

by a four-tuple, the ith component ofwhich lists all the/-states that have nonempty intersection
with ci, for 4. We indicate pairwise disjoint (possibly empty) subsets of/-states
by lower-case letters (w, x, y, and z), and we use a "." in a component of the four-tuple to
indicate that we do not care about the/-states in that component even if they cross or-state
boundaries.

Intersection Types of Characters.

1. (/3x,/lfl2Y, f12f13, f13) or (fllfl2fl3x, fllY, fl2z, fl3to).
2. (fll, fllX, fl2Y, fl2z), (fllfl2, ill, ill, f13f14), or (ill, fllfl2, f12, f13f14).
3. (fllX, fllfl2Y, f12, f14).
4. (ill W, lX, 3, f14)"
5. (illW, fl fl2X fl2Y fl2Z
6. (1x, fllY, fll Z, f14)"
7. (1, , 23, 4).
8. (fllX, fllY, fllZ, ill) or (ill, ill, ill, z).
There are conclusions which can be drawn from each of these types of intersections, by

applying Rules 1-3. These are as follows:
Type 1: When we have an intersection of this type, the tree-structure of is entirely

determined. To make the problem interesting, we will assume that no character fl has this

type of intersection pattern with
Type 2: The first case has

inducing a matching on ft. In the last two cases, we switch the roles of and fl, since we have

special techniques for handling matchings.
Type 3: In this case, we can assume that 4 is a leaf-state and that 2 is between 1 and

if3.
Type 4: We can assume that and 2 are adjacent.
Type 5: (, 2) is an edge in every tree-structure for , and is a leaf-state occuing

between and
Type 6: We can assume that 4 is a leaf-state.
Type 7: We can assume that 4 does not fall between and 2.
Type 8: This intersection pattern does not permit us to eliminate any tree-structures from

the thiy-two possible candidates but does permit us to set the splitting vectors (which will
make up our disconnecting species set) easily.

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 727

The above enumeration also expresses the order in which we will process other characters
with respect to c. We first bucket sort all other characters by the type of intersection they have
with 0/and process them starting with Type-1 characters, if any.

Some comments are in order with regard to the algorithmic implementation. If it is
determined that 0/i is a leaf-state, then we immediately check the cardinality of ci. If 10/il > 1,
then S o/i I,.J (S 0/i) is a legal partition, and we are done.

5.4. Handling matchings. When we have a character/3 that induces a matching on o
we can find a legal partition based either on a or on . Note that if/3 induces a matching on
c, then 0/must perforce be a character with four states.

In order to discuss matchings, we will need to analyze the phylogenies that give rise to
tree-structures that are stars.

5.4.1. Star tree-structures and their phylogenies. Assume that the only realizable tree-
structures for o are stars and that one such tree-structure is an c-star, i.e., a star with ot as
the node at the center. Consider the phylogenetic tree T that yielded this tree-structure. In T
the points of attachments P, Q, and R of the c2, 0/3, and 0/4 subtrees to the ot subtree must
be distinct. If two of these points, say P and Q, are not distinct, we can modify T to create a
tree T’ that yields a path structure for ot (Fig. 2).

FIG. 2. Converting a star to a path.

Furthermore, we may be able to change the character states for these vertices P, Q, and
R and still have a perfect phylogeny. If this can be done so that two of these vertices become
indistinguishable, then we can transform the star into a path, as before. This can always be
done unless we are forbidden from making these changes by the existence of certain characters.
For example, we could relabel P and Q unless they differed for some character ?,, and we
could not change their character state for ?,. Thus, ?, (P) V1 -7- ?’ (Q) /2.

We make the following definition:
DEFINITION. A star tree-structurefor ot that cannot be transformed into a path (using the

techniques described above) is called a rigid star.
If none of the realizable tree-structures for 0/is a rigid star, then it is clear that 0/has a

realizable tree-structure that is a path (unless, of course, the character set is incompatible).
This allows us to reduce to small subproblems, as we showed earlier.

Types of rigid stars and matchings. Let us suppose that we have a matching for 0/and
that we have a rigid star for 0/, in which Oil is the center. There are basically two types of
perfect phylogenies that yield star tree-structures for 0/. Figure 3 shows the two different types.

The first star has the points of attachment of ot2, c3, and 0/4 to Of all falling on a path. The
second star has these points not falling on a single path. We will call the first type a linear
star, and the second a nonlinear star.

We suppose now that/3 induces a matching on o.
There are, up to symmetry, the following types of matchings:

728 SAMPATH K. KANNAN AND TANDY J. WARNOW

F6. 3. Types ofstars.

1. (/31, fll f12,/3,/3fl4),
2. (flfl3, 12, /4, 4), and
3. (ill, fll/2f13,/4,/4),
We refer to the first two kinds of matchings as weak matchings since there are two possible

star tree-structures for a in these cases. We will refer to the third kind of matching as a strong
matching since in this case the only possible star tree-structure for a is the star with center or2.
(If/3 has less than four states, the matching is of the form (fllX, ill, f12, f12).) We can treat this
as a special case of a matching of the first kind.

Both linear and nonlinear stars are possible as tree-structures for c if the matching induced
on c is strong while only the linear star is possible if the matching is weak. This is because
an or-state that is the central state of a nonlinear star must intersect three/3-states.

Again this enumeration expresses the order in which the algorithm will process characters
that induce matchings.

5.4.2. Matchings of the first kind. Assume that the character/3 has intersection given
by (/31, fll/2, f13, fl3/4) If a rigid star exists, by Rule 1, it must be a linear star and have one of
c2 and or4 for the center. Without loss of generality, let us suppose that a rigid star exists with

c2 as center and the picture looks like Fig. 4. (There could be a potentially different situation
if the positions of or3 and or4 were interchanged. However, in our argument, these two cases
will be completely symmetric. Thus, we can without loss of generality claim that the figure
shown is valid.)

Here A is the point of attachment of the otl subtree to the or2 tree, B the point of attachment
of the ot3-subtree to the or2 subtree, and C the point of attachment of the 04 subtree to the or2
subtree. The distinctness of B and C and the rigidity of the star implies the existence of a
character ?’ for which C has state ?’ and B has state ?’2. Further the ?’-states of B and C
cannot simply be relabeled to be identical, and this implies that ?’ intersects c2 and O4 (and
no other or-state) and ?’2 intersects or3 and one of or1 and or2, a fact that we will in the future
indicate by the notation

?’1 (02, 04) and ?’2 (0/3, o/1 U 0/2).
Note that if ?’2 f) otz - 0, then by Rule 2, the intersection pattern for ?’ implies that 0/2

is between or3 and c4. The combined information of/3 and ?’ thus rules out all path tree-

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 729

C

FIG. 4. A rigid linear c2 star.

structures paths as well as the ot4-star, so that Q will contain only the c2-star. The remaining
case,),2 (or3, Cl), requires more careful analysis.

First we note that the intersections of), and/3 with ot indicate that the only realizable
tree-structure for ot is a star. If/3 were a trinary character, then/2 or f14 would be empty, so that
at most one of the c-states would not be contained inside a single fl-state. Thus, Q would be
reduced to a single tree-structure. Thus, if/3 were trinary, we would be able to obtain a legal
partition and recurse. If/3 is truly quaternary, then we have reduced Q to two tree-structures,
the c2-star and the ot4-star.

Consider the intersections of), with/3. If we examine the previous figure, we can see that
)’1 (12, (j3 U 14)) and)’2 (11, f13). If),l fq/33 :/: 0, then the tree-structure for/3 is forced to
be a star with/33 as the center. Thus, we can assume that)’1 (/32,/34).

We know at this point that any realizable tree-structure for 3 must be a star with either
or 33 as center. If either/3 or/33 has a single)’-state, we can immediately determine which of
the two stars is realizable. Similarly if either or2 or c4 has a single)’-state, we can determine
which of the two c-stars is realizable. Thus, the only case left to handle is the following:

Intersections with respect to

(31, 3132, f13, 3334),

(}"2,),1),3,)’2,),1),4)-

Intersection with respect to/3:

()’2)’3,)’l,)’2)’4,

It can be seen that each of ot, IY3, f12, 34,)’3,)’4 forms a leaf in their corresponding tree-
structures. Thus if any one of these states is big, we can obtain a legal partition. On the other
hand, if each is occupied by a single species, then, in fact, the entire set of species is limited
to six species, since every species in S is in one of these states. However, we stated at the
beginning that the case of six or fewer species would be handled by exhaustive search. Thus,
we can always find a legal partition of a character in this case.

To sum up, whenever/3 induces a matching of the first kind on c, either the tree structure
of c or 3 is identified as a star with a particular center or a third character y is found such that
there is a legal partition based on a leaf state of one of c,/3, or),. Otherwise, there is no rigid
star tree structure for or, and we can assume the legal partition, (otc2), (ot30t4).

730 SAMPATH K. KANNAN AND TANDY J. WARNOW

5.4.3. Matchings of the second kind. We assume that there is a character/3 whose
intersection with c is given by (/Ifl3,/1/32,/4,/4). Suppose there is a realizable rigid star
tree-structure for c. Without loss of generality assume that this is an otz-star. The configuration
is the same as Fig. 4. The distinctness of B and C implies the existence of a character F such
that ?’1 (oe2, u4) and ?’2 (c3, otl t2 c2). If V2 has a nonempty intersection with c2, the

u2-star is forced as the tree-structure for c. Otherwise, it is clear that ot is forced to have a star
tree-structure although the center of the star could be either otl or oe2. In order for us not to be
able to decide which star is the correct one, F must have at least two of its states intersecting
each of c1 and Ot2. This forces the intersection of F with ot to look like (FzF3,)/1F4, F2, F1),
a matching of the first kind. Since we look for matchings of the first kind before we look for
matchings of the second kind, this case will not occur and thus the tree-structure for c will
always be determined.

5.4.4. Strong matchings or matchings of the third kind. Now, suppose we have a
matching on c induced by/3 and that the intersection of ot and/3 is (/1,/J1/2/3, 4,/4).
Suppose we have a phylogenetic tree T for which the tree-structure on c is a rigid star with

or2 as the center. We have two cases, depending on whether the star is linear or nonlinear.
Case 1: The rigid star is non-linear. The tree T must have the structure shown in Fig. 5.

FIG. 5. Rigid non-linear star.

The rigidity of T implies that B and C differ for some character F, since otherwise, we
could transform T into a linear star. Thus, we assume that ?, (C) ?’1 and F (B) F2. It
follows that ?’1 (/34,/32) and V2 (ql,/33 t2/34). The distinctness of B and D in turn implies
the existence of a character 8 such that 81 (/33, f14) and 82 (11, f12 I,_) f14). We thus have three
possibilities for each of ?’2 and 82 and nine possibilities for combinations. In all but two cases,
the information gathered from ?, and 8 allows us to determine the tree-structure for/ as a star
centered at/34. The two problem cases are:

(1) FI (flZ, f14), ’2 (/1,/3), 81 (/3, fl4),82 (ill,]2).
In this case, it is clear that the tree-structure for/ must be a star and the center must be either

/1 or/4. In order for us not to be able to decide which star is the correct one, neither/l nor

4 can be contained in a single 8-state, and hence we have the following intersection of 8 with

respect to/ (8283, 82, 81, 8184). In this case, however, 8 induces a matching of the first kind

on/3 and we switch to/ as the base character and process this weak matching.
(2) ’1 (f12, f14), 2 (ill, f14), 81 (/3, f14), 82 (ill, f14). It is clear that/1 must be a

leaf-state, and since/3 is not a singleton, we have a legal partition of/3.
Thus, in each of these cases, we were either able to determine a legal partition of/3 or

we reduced to handling a matching of the first kind. Note that without such characters ?’ and
8, the star would not be rigid, and thus we would have been able to assume that a path was a
realizable tree-structure for c, yielding a nontrivial partition of the character

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 731

Case 2: The rigid star is linear Let us now consider the case of strong matchings, where
the rigid star is linear. In this case, we have the same 0/-/ intersection as before, and the
phylogenetic tree yielding the rigid star must essentially look like Fig. 4 although 0/2 now has
three/3-states instead of two.

As before, we note that the rigidity of the star and the distinctness of B and C imply the
existence of a character ?’ such that ?’1 (0/2, 0/4), ?’2 (0/3, (0/ U 0/2)). Each of the possible
cases indicates that a path is not a realizable tree-structure for 0/, and hence it must be that
the tree-structure for 0/is a star (unless, of course, the character set is incompatible). As we
mentioned earlier, since we have a strong matching, only 0/2 can be a center of a star. Thus,
we know that the tree structure is the star with 0/2 as center. This gives us a legal partition of

Thus, given any strong matching of/ on 0/, we are either able to find a legal partition of
either 0/or/ or we reduce to solving a weak matching.

5.5. When no character induces a matching on 0/. We assume now that Q is nonempty
and contains at least two tree-structures and that we had no matching pairs involving 0/. This
indicates that the only characters we may have seen are of Types 3-8. In the light of our
discussion in 4.4, we will also assume that all characters are truly four-state characters (i.e.,
each character partitions the species set into four nonempty subsets).

We will attempt to define three vectors A, B, and C that form a disconnecting species
set for every T 6 Q. If we succeed, we can divide into subproblems on the basis of any
tree-structure in Q, by applying Theorem 4.1 and Lemma 3.5. In what follows we show that
in cases where Theorem 4.1 does not apply, we either find a legal partition of 0/ or find a
matching pair (/, ?’), or discover that the characters are not compatible. Thus in all cases, our
algorithm either succeeds in dividing into subproblems or discovers that the character set is
incompatible.

Type 3: Suppose that we process a character/ ofType 3, with the vector (/lx,/31/2y,/2,
/34) describing the intersection between 0/and/. Such a character informs us that 0/2 is between

or1 and 0/3. Furthermore, we know that 0/4 is a leaf-state and that 0/2 is never a leaf-state. If 0/4

contains more than one species, we have found a legal partition. Otherwise let s be the only
species in 0/4. After processing all other characters if Q consists of a single tree-structure, we
will have found a legal partition. Hence assume that Q has more than one tree-structure. We
can name our splitting vectors in this case, with A inserted between 0/1 and 0/2, B inserted
between 0/2 and 0/3, and C inserted in the edge from 0/4. Having identified these splitting
vectors, we then set/3(A) =/31,/3(B) f12, and/3(C)

For any subsequent character ?,, we set the v-values of A, B, and C as follows: ?’ (C)
?’(s). For A if either 0/ or 0/2 is covered by a single ?’-state, ?’1, we set ?’(A) ?’1. Otherwise,
if a v-state, ?’, intersects both 0/ and 0/2, we set ?’ (A) ?’1. Any other intersection pattern
for ?’ that is consistent with the partial 0/tree-structure implies that 0/induces a matching on

?’ and hence this situation would have been handled earlier. Splitting vector B is handled
symmetrically to A.

We show why the splitting vectors correctly define a disconnecting species set. Since 0/4

is a singleton and a leaf-state in all tree-structures, C is certainly correct.
Now consider vector A. Clearly, if 0/1 and O/2 are truly adjacent in a tree-structure (without

dummy nodes in between), then A can be inserted compatibly into the edge between c1 and
0/2. There is only one tree-structure T* not of this form. T* has a dummy node d, with 0/1,0/2,

and 0/4 connected by edges to d and 0/3 a leaf hanging off 0/2. We will show that if]QI > 1,
then we can identify one of the two edges in the path from ot to 0/2 in T* in which we can

place A compatibly. This will show that we can place A compatibly into every tree-structure
in Q.

732 SAMPATH K. KANNAN AND TANDY J. WARNOW

If we place A on the edge (0/1, d) in this tree structure, then the only potential problem
is a character ?’ such that ?’1 is shared by 0/1 and 0/4 and ?’2 covers 0/2. Such a character might
cause ?’ (A) to be set to ?’2, which would be incorrect. However, if such a character ?’ exists
and QI > 1, we will show we can place A in the edge (0/2, d). This placement of A will
always work unless there is a character 3 such that 31 is shared by 0/2 and 0/4 and 32 covers
0/1. In this case we could set 3(A) 32, and this would be incorrect. However, note that
?’ implies that 0/2 is not between 0/1 and 0/4 and that 3 implies that 0/1 is not between or2 and
ot4. But the combined character information from/, ?’, and 3 reduces Q to a single possible
tree-structure, T*. Since we have presumed QI > 1, we can always insert A compatibly into
T* and, hence, into every tree-structure in Q.

Using a symmetric analysis, we show that we can define the vector B and insert it com-
patibly into every tree-structure in Q, unless QI 1.

Having set the splitting vectors A, B, and C, we then apply Theorem 4.1 and Lemma 3.5
to derive a legal partition of S.

Type 4: If the first character/3 is of type four, then without loss of generality it is of the
form (ill, /lf12, f13, f14) and says that oil and C2 are adjacent in every realizable tree-structure
for or. If after processing all characters there is a big leaf-state in all tree-structures in Q or
if lQI 1, we can derive a legal partition. We assume that this is not the case. Note that
since we presume/ to be truly quaternary, the 0/z-state is big; thus, if the intersection patterns
permit us to deduce that o/2 is a leaf in every tree-structure, then we have a legal partition.
We will think of A as being inserted on the edge incident to 0/1 along the path to 0/2. We set

/ (A) 1. We need to define ?, (A) for every subsequent character ?,.
We begin our analysis by noting that in the presence of certain Type-4 characters ?’, we

will switch to processing/ as our base character. If there is a second Type-4 character ?’ that
says that c3 and 0/4 are adjacent, then y has intersection pattern either (yl, ?’2, y3?’4, ?’4) or

(?’1, ?’2, ?’4, ?’3 ?’4) with 0/. It is then easy to see that ?’ induces a matching on/ with ?’2 shared
by/31 and/32 and ?’4 shared by/3 and/34. We then switch to/ as the base character and
process it as in Type 2. Similarly, if ?’ is a subsequent Type-4 character implying that either

0/1 and 0/3 or c1 and 0/4 are adjacent, then ?’ is of Type 3 with respect to/, and we switch to

/ as the base character and process it as in Type 3. Thus, we only need to concern ourselves
with processing Type-4 characters that imply adjacencies between 0/1 and 0/2, 0/2 and or3, or 0/2

and 0/4.

We need to show how to set ?’(A) for characters ?’ of Type 4 that indicate adjacency ofcl
and cz2, or2 and or3, or 0/2 and or4. If ?’ is a subsequent Type-4 character indicating that c1 and
0/2 are adjacent (by ?’1 f) 0/i , for 1, 2), we set y(A) 1. If ?’ is a subsequent Type-4
character and says that 0/2 and 0/3 or 0/2 and 0/4 are adjacent, 0/1 must be covered by a single
?’-state ?’1 and we will set ?’ (A) 1. Thus for every subsequent Type-4 character ?’, we can
set ?’ (A).

If ?’ is ofType 5, then there must be a ?’-state, ?’1, shared by 0/1 and 0/2 and we set ?’(A)
(otherwise 0/1 and 0/2 are not adjacent, as implied by/). If ?’ is of Type 8, we set ?’(A)
where ?’1 is the state of ?’ that crosses ot state boundaries. If ?’ is of Type 6 and there is a

?’-state, ?’l, shared by 0/1 and 0/2, we set ?’ (A) 1. If not, 0/1 must be covered by a single
?’-state, ?’2, and we set ?’ (A) 2.

If ?’ is a Type-7 character, then there is exactly one V-state, ?’l, that crosses 0/-state

boundaries. If ?’1 has a nonempty intersection with 0/1 or c2, then we set ?’ (A) ?’l. Otherwise,
one of 0/1 or 0/2 must be covered by one ?’-state, ?’3, and we set ?’(A) ?’3. Clearly, if0/1 C ?’1,
this setting will permit us to insert A compatibly into every tree-structure in Q. The only
problem arises when intersection of ?’ with 0/is given by (?’1 ?’2, ?’3, ?’4, ?’4). However, in this
case ?"s intersection with/3 is given by (?’1 ?’2?’3, ?’3, ?’4, ?’4) and hence ?’ induces a matching
on/ and thus we can process instead.

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 733

Thus we have shown that either we can switch to processing a different character as the
base character or that we can set A compatibly with every tree-structure in Q. At this point we
check to see if the split produced by A is a legal partition in at least one of the tree-structures
in Q. If so, we can apply Theorem 5.2 and use that legal partition. Otherwise 0/1 must be a
leaf in all of the tree-structures and so presumably a singleton state (otherwise we have a legal
partition). Since 0/must have at least two big states, without loss of generality, let c3 be a big
state. We assume that 0/3 is not a leaf in all the tree-structures in Q (since otherwise we can
derive a legal partition).

We will now set the splitting vector B. The placement of the vector B into each tree-
structure T in Q depends on the topology of T. If T contains an edge e whose removal
separates {0/1,0/2} from {0/3, 0/4}, then we will insert B into edge e. Otherwise, 0/3 is a leaf,
and we insert B into the edge incident to 0/3. We set/3(B) "" where/3* is a new state of
/. We now show how to define ?’ (B) for every subsequent character ?’.

Of the Type-4 characters, by a previous analysis we only need to concern ourselves with
characters ?’ that indicate adjacency between 0/1 and 0/2, 0/2 and 0/3, or 0/2 and 0/4, because the
other subtypes have intersections with/ of Types 2 or 3, permitting us to switch to processing
/. On the other hand, since 0/3 is presumed to be a big state, we can presume that we do not
have characters of Type 4 indicating that 0/2 and 0/4 are adjacent, since then 0/3 is a leaf in every
tree-structure and we can derive a legal partition. Handling Type-4 characters ?’ indicating
adjacency between 0/2 and 0/3 is easy, since then there is a common ?’-state ?’1 intersecting both
0/2 and 0/3, and we can set ?’ (B) 1. The remaining Type-4 character to consider indicates
that 0/1 and 0/2 are adjacent. In this case, 0/3 is contained in a single ?’-state, ?’1, and we can set

(B) .
If ?’ is of Type 5 or 6 and a y-state is shared between or2 and 0/3, we can set ?’(B) to be

that y-state. If not, one of 0/2 and 0/3 must have been proven to be a leaf and since these are
both big states, we will have a legal partition. If ?’ is of Type 8 and the shared y-state is ?’1,

we simply set ?’ (B) Y1.
Finally if ?’ is of Type 7 and the V-state crossing 0/-state boundaries is ?’1, we will set

?’ (B) 1. It is easy to see that this setting is compatible for tree-structures containing
two dummy nodes (so that all 0/-states are leaves) and any tree-structure containing an edge
separating {0/, 0/2} from {or3, 0/4}. The remaining case is where Q contains the 0/z-star tree-
structure. Again, however, if either 0/2 or 0/3 is covered by ?’1, then the setting of B is correct.
The problem arises if the shared V-state is between 0/1 and 0/4. Since in the 0/z-star 0/2 comes
between 0/1 and 0/4, by Rule 1, we must have 0/2 covered by two ?’-states, ?’2 and ?’3. In this
case 0/3 is covered by the single V-state, ?’4. If such a ?’ exists, then it says that 0/3 is not
between 0/1 and 0/4. The character/ says that 0/3 is not between 0/1 and 0/2. Together, these
two characters imply that 0/3 is a leaf in all the tree-structures in Q. Since 0/3 was presumed
to be a big state, we can derive a legal partition.

Types 5-8: Suppose all the characters have intersection types between 5 and 8. We will
show that we can define a single splitting vector, A, such that one of the following will be true.

(1) A will be compatible with every tree structure in Q other than nonrigid stars, and A
will produce a legal partition in at least one of these tree-structures, OR

(2) some big or-state will be a leaf in every tree-structure in Q.
If the first case holds, then Theorem 5.2 tells us that we can use A to derive a legal partition.
In the second case, we can derive a legal partition using the big 0/-state. Thus, in either case,
we can derive a legal partition.

The vector we choose will have its states set as follows: If is a Type-5 character
intersecting 0/,/(A) will be the unique -state that intersects three 0/-states. For any other
character/3,/3 (A) will be the only/3-state that crosses 0/-state boundaries.

734 SAMPATH K. KANNAN AND TANDY J. WARNOW

We will now assume that there is no c-state that is a leaf in every tree-structure in Q and
that is also a big state. Using this, we will show that A is compatible with every tree-structure
in Q (other than the nonrigid stars). We will look at each type of tree structure in turn.

It is clear that tree-structures with two dummy nodes will not be in Q if there is a Type-5
character. When such tree-structures are in Q (so that all characters have Types 6, 7, or 8),
then for every character/3, one of the dummy nodes must have the/3-state that crosses or-
state boundaries. We can assume then that both of the dummy nodes have this/-state since
the dummy nodes are adjacent and there is no constraint on the/3-state of the other dummy
node. Clearly the vector consisting of the common states is a splitting vector whenever the
tree-structure has two dummy nodes.

When the tree structure has one dummy node, we will again show that our vector is a valid
setting for the position represented by the dummy node. For a Type-5, -6, or -8 character, this
is obvious. For a Type-7 character, if the common/-state is shared by the two or-states on
one side of the dummy node, we can still set the/3-state of the dummy node to be that/3-state
since it is the only one that crosses u-state boundaries and it is present at a neighboring node
to the dummy node.

When the tree structure is a path, we will show that the splitting vector in the middle edge
can be set in the way we described. Again for Type-5, Type-6, and Type-8 characters this is
obvious. If the character is Type-7 also, it is pretty evident since if the shared/-state does not
cross the middle edge, we can still set it to be the/-state of the middle edge because it is the
only state on a node incident with the middle edge.

Now consider the case where Q contains a rigid star, T. For the sake of our discussion, we
will assume T is an Otl-star. It is clear from our earlier analysis that Otl will not be a singleton
state. Thus, at least one edge in this tree-structure will be between two big states, Otl and some
other or-state. We will prove that either we can insert A compatibly into every such edge or
we will be able to deduce that either the Cl-star is nonrigid or that some big o-state is a leaf
in every tree-structure in Q.

Consider the case where/3 is a Type-5 character, in which/1 intersects c1 and or2 and
/2 intersects or l, c3, and or4. The intersection pattern then implies that or2 is a leaf in every
tree-structure in Q, so that we can presume c2 is a singleton state. The/3 setting for A is then
seen to be compatible with the edges (or1, c3) and (Otl, c4), which go between two big states.

If/ is a Type-6 character, then without loss of generality /3 has intersection pattern
(/lx,/lY,/lz,/4). This implies that Ot4 is always a leaf in every tree-structure in Q. It
follows that or4 is a singleton state (since otherwise we can derive a legal partition). By our
construction, then, we will have placed A into an edge between c and one of the remaining
two or-states, and for each of these two edges the/-state of A is compatible.

There are two subtypes for Type-8 characters 9’; one has a V-state 9’1 intersecting all the
or-states, and the other has one 9,-state intersecting three or-states, while the fourth or-state is
contained in a single 9,-state. In the first case, 9,1 is always compatible with every edge of any
tree-structure. In the second case, the fourth u-state is a leaf in every tree-structure in Q and
so is small (otherwise we have a legal partition). Thus, in each edge between two big states,
the 9, setting for A is compatible, when 9, has Type 8.

Hence, in each of the cases where/3 is a Type-5, -6, or -8 character, A can be inserted
compatibly into any edge in the c-star tree-structure between two big states.

Now, let/3 be a Type-7 character with/ the sole/3-state crossing or-states. If c is
covered by/31, then we can insert A into every edge of the ot-star tree-structure. If c1 is
covered by a single/3-state that is not/31, then we would not have the Otl-star in Q. The only
other possibility is that c1 is covered by two/3-states. Without loss of generality, we will
assume that/3 is given by the intersection (/32/33,/34, ill, ill), indicating that lY2 does not fall

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 735

between 0(3 and 0(4. We will now show that this star is either nonrigid or that the character that
makes this star rigid would rule out enough tree-structures for us to deduce a big leaf-state.

So let us assume that this 0(1-star is rigid. Recall that to ensure rigidity of a star we need
characters with two states that cross 0(-state boundaries. Since all the characters are of Types
5-8, the only characters that can ensure rigidity of this star must be Type-5 characters. If there
is a perfect phylogeny P realizing the rigid 0(1-star, let X, Y, and Z be the points of attachment
to the or1 subtree of the 0(2, 0(3, and 0(4 subtrees, respectively. Since 0(has only two/3-states,
X, Y, and Z must lie on a path and one of Y and Z must be an extreme point on the path.
Without loss of generality assume that Y is an extreme point. Since the entire path from Y to
Z must be labeled by/31, there can be only two 0(1 subtrees hanging off this path, one with
/-state/z and the other with/-state/33. Thus Y is adjacent to one of X and Z, and to make
sure that Y cannot be identified with this neighbor, we must have a Type-5 character , that
indicates (0(1,0(3) is a true tree edge and 0(3 is a leaf. Since/3 implies 0(2 is not between 0(3 and
0(4, this forces 0(2 to be a leaf as well. Thus by assumption 0(2 and 0(3 are singleton states and
c4 is a big state. We will prove that we can insert A compatibly into the edge (0(4, 0(1).

From our previous analysis, we will not have any problem with any character 3 having
intersection type other than the following: (332, 33, 33, 34). This character, however, implies
that 0(4 is not between 0(2 and 0(3. The combined information between/3, ,, and 3 would then
imply that 0(4 was also a leaf-state. Since we presume 0(4 to be a big state, this would contradict
our assumption that no big 0(-state be a leaf in every tree structure in Q.

Note that each edge we indicated for the insertion of A separated S into two big sets,
so that we can apply Theorem 5.2 if A can be inserted compatibly in order to obtain a legal
partition. The only tree-structure into which we fail to be able to insert A is the nonrigid
0(1-star. If the 0(-star is in Q and is rigid, then we are able to obtain a legal partition of S via
other means. Thus, we are able to derive a legal partition of S in this case as well.

We summarize with the following:
THEOREM 5.3. If 0(is a character that is not involved in a matching pair, we can find a

legal partition of S by analyzing the intersectionofother characters with 0(.

Putting the above theorem together with our results when 0(is part of a matching pair, we
can state our major theorem.

THEOREM 5.4. The algorithm either determines that the character set is incompatible or

produces a perfect phylogeny.
To summarize, the algorithm uses a divide-and-conquer strategy to reduce to subproblems,

by finding a legal partition of the species set S. The legal partition that it finds is based on
the kinds of intersections the characters have with a fixed base character 0(. In the event of a
matching pair, it uses the techniques described in 5.4. When 0(is not a member of a matching
pair, then the algorithm is able to find a legal partition of 0(by using the techniques of 5.5.

5.6. Analysis of running time. We assume that the input to the problem is a matrix
whose (ij)th entry gives the state of species for character j. We can construct the sets of
species corresponding to each of the character states of each of the characters in O(nk) time.
The sets are constructed using a sequence of unions as we examine each species in turn. Since
we always union singleton sets to existing sets, the elements of the sets are always at depth one,
and hence subsequent FIND operations can be performed in O(1) time. Thus, we can now
find the pairwise intersections of the character sets in O(nk) time. The algorithm then picks
a character 0(, makes a linear pass through the characters, and bucket sorts them according to

type. This is O(k) time. The separation into subproblems takes O(n) time, and defining the
splitting vector takes O(nk) time. We then recurse on the subproblems.

Since each of these subproblems involves less than n species, we have an O(n2k) algo-
rithm.

736 SAMPATH K. KANNAN AND TANDY J. WARNOW

The overall running time of the trinary character compatibility algorithm is seen to be
O (n2k), the same as for quaternary character compatibility. This has lead us to conjecture that
the techniques we use for determining compatibility of four-state characters can be extended
to the general case and will yield an O(rr-2n2k) algorithm for the case of k characters, n
species, and with the restriction to at most r states per character.

6. Comments. Recently [15], Richa Agarwala and David Fernandez-Baca have devel-
oped an O(23r(nk3 + k4)) algorithm for solving the perfect phylogeny problem when the
number of states is bounded by r.

7. Acknowledgments. The authors wish to thank Gene Lawler and Manuel Blum for
financial help and encouragement and Chris Meacham, who first introduced us to the character
compatibility problem. Special thanks are due to Dan Gusfield, who recommended this special
case to us and who went over intermediate drafts of this paper with great care.

REFERENCES

[1] H. BODLAENDER, M. FELt.OWS, AND T. WARNOW, Two strikes against perfect phylogeny, Proceedings, Interna-
tional Congress on Automata and Language Processing, 1992.

[2] H. BODLAENDER AND T. KLOKS, A simple linear time algorithm for triangulating three-colored graphs, J.
Algorithms, to appear.

[3] P. BUNMAN, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205-212.
[4] J. CAMIN AND R. SOKAL, A methodfor deducing branching sequences in phylogeny, Evolution 19, (1965), pp.

311-326.
[5] W.H.E. DAY, Computationally difficult parsimony problems in phylogenetic systematics, J. Theoret. Biol., 103

(1983), pp. 429-438.
[6] W.H.E. DAY, D. S. JOHNSON, AND D. SANKOrF, The computational complexity of inferring rooted phylogenies

by parsimony, Math. Biosci., 81 (1986), pp. 33-42.
[7] W.H.E. DA’,’ AND D. SANKOFrZ, Computational complexity ofinferringphylogenies by compatibility, Syst. Zool.,

35 (1986), pp. 224-229.
[8] A. DRss ANO M. A. STt, Convex tree realizations ofpartitions, Appl. Math. Lett., 5 (1992), pp. 3-6.
[9] A.W. E EDWARDS AND L. L. CAVALII-SORZA, The reconstruction ofevolution, Ann. Human. Genet., 27 (1963),

p. 105.
[10] Reconstruction ofevolutionary trees, in Phenetic and Phylogenetic Classification, V. H. Heywood and

J. McNeill, eds., London Systematics Association Publication No. 6, London, 1964, pp. 67-76.
11 G.F. ESTABROOK, Cladistic methodology: a discussion ofthe theoretical basisfor the induction ofevolutionary

history, Ann. Rev. Ecol. Syst., 3 (1972), pp. 427-456.
[12] G. E ESTABROOK, C. S. JOHNSON, JR. AND F. R. McMoRRIs, An idealized concept ofthe true cladistic character,

Math. Biosci., 23 (1975), pp. 263-272.
13] G. E ESTA3ROOK AND L. LANDRUM, A simple testfor the possible simultaneous evolutionary divergence oftwo

aminoacid positions, Taxon., 24 (1975), pp. 609-613.
[14] G. E ESTABROOK AND E R. MCMORRIS, When are two qualitative taxonomic characters compatible?, J. Math.

Biol., 4 (1977), pp. 195-200.
15] R. AGARWALA AND D. FERNANDEZ-BACA, A polynomial time algorithmfor the perfect phylogeny problem when

the number ofcharacter states is fixed, SlAM J. Comput., 23 (1994), to appear.
[16] W. M. FITCH, Toward defining the course of evolution: minimum change for a specified tree topology, Syst.

Zool., 20 (1971), pp. 406-4 16.
17] Towardfinding the tree of maximum parsimony, Proc. Eighth International Conference on Numerical

Taxonomy, G. E Estabrook, ed., W. H. Freeman, San Francisco, 1975, pp. 189-230.
18] L. R. FOULDS AND R. L. GRAHAM, The steiner problem in phylogeny is NP-Complete, Adv. in Appl. Math., 3

(1982), pp. 43-49.
19] D. GUSmLD, Efficient algorithmsfor inferring evolutionary trees, Networks, 21 1991), pp. 19-28.
[20] R. IDURY AND A. SCHArZrER, Triangulating three-colored graphs in linear time and linear space, SIAM J.

Discrete Math., 6 (1993), pp. 289-293.
[21 S. KANNAN ANO T. WARNOW, Triangulating three-colored graphs, SIAM J. Discrete Math., (1992), pp. 249-258.
[22] A.G. KtJG ANt) J. S. FARRIS, Quantitative phyletics and the evolution ofanurans, Syst. Zool., 18 (1969), pp.

1-32.
[23 W.J. LQUESNE,A method ofselection ofcharacters in numerical taxonomy, Syst. Zool., 18 (1969), pp. 201-205.
[24] Further studies on the uniquely derived character concept, Syst. Zool., 21 (1972), pp. 281-288.

INFERRING EVOLUTIONARY HISTORY FROM DNA SEQUENCES 737

[25] W.J. LEQUESNE, The uniquely evolved character concept and its cladistic application, Syst. Zool., 23 (1974),
pp. 513-517.

[26] The uniquely evolved character concept, Syst. Zool., 26 (1977), pp. 218-223.
[27] E R. MCMORRIS, On the compatibility ofbinary qualitative taxonomic characters, Bull. Math. Biol., 39 (1977),

pp. 133-138.
[28] E R. MCMORRIS, Z. WARNOW, AND Z. WIMER, Triangulating vertex colored graphs, SIAM J. Discrete Math., 7

(1994).
[29] M.A. STEEL, The complexity ofreconstructing treesfrom qualitative characters and subtrees, J. Classification,

9 (1992), pp. 91-116.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 738-761, August 1994

() 1994 Society for Industrial and Applied Mathematics
004

DYNAMIC PERFECT HASHING:
UPPER AND LOWER BOUNDS*

MARTIN DIETZFELBINGERt, ANNA KARLINt, KURT MEHLHORN,
FRIEDHELM MEYER AUF DER HEIDE HANS ROHNERTII, ,rI3 ROBERT E. TARJAN**

Abstract. The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set,
allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized
algorithm for the dynamic dictionary problem that takes O (1) worst-case time for lookups and O (1) amortized
expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower
bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This
class encompasses realistic hashing-based schemes that use linear space. Such algorithms have amortized worst-case
time complexity f2 (log n) for a sequence of n insertions and lookups; if the worst-case lookup time is restricted to k,
then the lower bound becomes (k nl/k).

Key words, data structures, dictionary problem, hashing, universal hashing, randomized algorithm, lower bound

AMS subject classifications. 68P05, 68P10, 68Q20

1. Introduction. A dictionary over a universe U {0, N- is a partial function
S from U to some set I. The operations Lookup(x), Insert(x, i), and Delete(x) are available
on a dictionary S; Lookup(x) returns S(x), Insert(x, i) adds x to the domain of S and sets S(x)
to i, and Delete(x) removes x from the domain of S. In the following, the "information field"
S(x) associated with the "key" x in the dictionary will be ignored; thus, S is identified with
its domain and regarded as a (dynamic) set. There are two major techniques for implementing
dictionaries: trees and hashing.

For a static set S (no updates), Fredman, Koml6s, and Szemer6di [9] described a hashing
technique that achieves linear storage (in n) and constant query time for all N and n, where n
is the size of S.

In this paper (2), we present an extension of their scheme to the dynamic situation,
wherein membership queries are processed in constant worst-case time; insertions and dele-
tions are processed in constant expected amortized time; and the storage used at any time is
proportional to the number of elements currently stored in the dictionary. The algorithm is
randomized; the averaging involved in the analysis is over choices made by the algorithm and
not over the sequence of operations.

Besides solutions that use (balanced) search trees, several other approaches to the dynamic
dictionary problem have been proposed, some of which lead to expected or average constant
time per instruction. Aho and Lee presented a scheme achieving the same time and storage

*Received by the editors January 21,1991; accepted for publication (in revised form) April 27, 1993.
Universitit Dortmund, Fachbereich Informatik, Lehrstuhl II, 44149 Dortmund, Germany. This author’s research

was partially supported by Deutsche Forschungsgemeinschaft grant Me 872/1-4.

tDEC Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301. While visiting Princeton
University, this author’s research was partially supported by National Science Foundation grants DCR-8605962 and
STC88-09648 and Office of Naval Research contract N00014-87-K-0467.

Max-Planck-Institut ftir Informatik, 66123 Saarbrticken, Germany. This author’s research was partially sup-
ported by Deutsche Forschungsgemeinschaft grant Me 620/6-1 and ESPRIT-project ALCOM. This author was affil-
iated with the Universitit des Saarlandes when this research was done.

Universitit-GH-Paderborn, Fachbereich Mathematik/Informatik and Heinz Nixdorf Institut 33095 Paderborn,
Germany.

IISiemens AG, 81370 Mtinchen, Germany. This author’s research was partially supported by Deutsche
Forschungsgemeinschaft grant Me 620/6-1 and ESPRIT-project ALCOM. This author was affiliated with the Univer-
sit,it des Saarlandes when this research was done.

**Princeton University, Department of Computer Science, Princeton, New Jersey 08544 and NEC Research
Institute. This author’s research was partially supported by National Science Foundation grants DCR-8605962 and
STC88-09648 and Office of Naval Research contract N00014-87-K-0467.

738

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 739

bounds as our algorithm. However, in order to prove these bounds, they require that the items
being inserted be chosen uniformly at random from the universe of possible elements.

Carter and Wegman [4] proposed universal hashing as a way of avoiding assumptions
on the distribution of input values. This approach works particularly well in combination
with the idea of "continuous rehashing" introduced by Brassard and Kannan [3]. In this way
an algorithm is obtained that needs linear space and expected constant time for each single
instruction. However, for n keys being stored in the dictionary in a scheme of this kind the
best upper bound known on the expected worst-case time for an instruction (i.e., the length
of the longest chain in the resulting hash table with chaining) is O (log n/log log n) (cf. [7],
16]), and it can be argued that it is (log n / log log n) no matter what universal class is used.

In fact, this lower bound even holds in the case of uniform hashing, where one assumes that
the hash values for different keys are chosen uniformly at random [11], [15].

In contrast, our algorithm guarantees constant time for each membership query.
When we say that no assumption is made about the sequence of operations, we mean that

the sequence is arbitrary but fixed before the algorithm starts running. In essence, all that
is needed for the analysis is/that the sequence of operations be independent of the random
choices made by the algorithm. Thus, we require that the party that chooses the sequence of
operations not use any knowledge on these random choices to determine which items to insert
in the table.

In the second part of the paper (4 and 5), we consider the case that we have to deal with
an adversary that knows the random choices made by the algorithm or, equivalently, that the
algorithm is deterministic. We prove an f2 (log n) lower bound on the amortized worst-case
time complexity for any deterministic solution to the dictionary problem which is solely based
on hashing and uses only linear space. Furthermore, if we assume the worst-case lookup time
to be bounded by k, the amortized worst-case complexity is f2 (k. n/).

Remark 1.1. Some of the lower bounds that hold for the model considered in 4 and 5 are
bigger than the O(log n) worst-case bound guaranteed by balanced search trees. This results
from the fact that our model is defined so as to cover only pure hashing strategies. In [14],
which was motivated by the first version of the present paper, a lower bound of (n log log n)
for n insertions is shown in a stronger lower bound model that encompasses both hashing
strategies and search trees. In 17], this lower bound was extended, by different methods, to
an even wider class of models.

In 3, some general facts concerning the performance of universal classes of hash func-
tions consisting of polynomials of constant degree or variants thereof are established. These
results have proved useful for variations of the scheme presented in this paper, which yield
constructions of dynamic dictionaries for parallel and distributed machine models as well as
further improvements of the sequential scheme [2], [6], [7], [10].

2. Dynamic perfect hashing. We begin by reviewing the Fredman-Koml6s-Szemer6di
(FKS) scheme for statically storing a set S of size n. Assume p is prime and p > N. For

<_ s < p, let

7s {h U --+ {0 s 1} [=la E (1 p- 1}’v’x U" h(x) (ax mod p) mod s}.

The scheme has two levels. At the top level, a hash function partitions the elements being
stored into s sets. The second level consists of a perfect hash function for each of these sets.

Specifically, a function h chosen uniformly at random from s is used to partition the set
Sintos blocks. Let Wjh {x S h(x) j}; the superscripth is omitted whenh is
understood. Fredman, Koml6s, and Szemerddi show that if a function h is chosen from

740 M. DIETZFELBINGER ET AL.

uniformly at random, then

(2.1)
O<j<s

2
n(n- 1)

(where E(X) denotes the expectation of the random variable X) and consequently that

(2.2)
0_<j<s

s

Choosing s 2(n 1), relation (2.2) implies that for at least half of the functions h 6 7-/s
one has

Such a function is used to partition S into blocks Wj, 0 < j < s. For each block Wj one
uses relation (2.2) with sj max{l, 21W9l(IWjl 1)}. It follows that for at least half of the
functions h 6 7-/sj one has

where Wj,t {x Wj h(x) 1}, i.e., IWj,zl for all I. For each j, therefore, at least
half of the functions in 7-/s. are injective on Wj. One uses one such function for each Wj. The
total space requirement is linear since_, sj<_s+4" (IWjl)=O(n)

O<j<s O<j<s
2

by the choice of the hash functions.
For the dynamic case, we use the standard doubling method to deal with the fact that we

do not know in advance how big the top-level table or any of the subtables will get.
Suppose that n is the current number of elements stored in the table. The FKS scheme in

use will accommodate up to M elements. The value of M will initially be set to (1 + c) n,
l+cfor some c with 0 < c < 1, and as n changes will never be more than n. Let s(M),

to be specified, be the number of sets into which the top-level hash function is to partition
the elements of S. The function h will be a random element of 7-/s(M). Thus, the set S is

partitioned by h into the subsets Wj {x S h(x) j}, 0 < j < s(M).
Let Tj be the block of memory used for storing Wj. The amount of space allocated to Tj

is sj, where sj 2mj (mj 1) and mj is the maximal size of Wj the current table Tj is meant
to manage. The quantity mj is always at least as big as]Wj] and is at most twice the number of
all elements ever mapped to j by the current top-level function h. The subset Wj is resolved
within Tj by using a perfect hash function hj from 7-/sj.. If the value aj specifies which hash
function hj is being used, then x Wj is stored in location (ajx mod p) mod sj of subtable

Tj. It will be arranged that the following condition is always satisfied:

32M2

(2.3) sj < + 4M
O<j<s(M)

s(M)

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 741

The parameter s(M) will be chosen to be (R)(n) so that the right-hand side of this equation
is O (n). We will see that this guarantees that the total space used is linear in the number of
elements currently stored in the table.

The algorithm can be specified more precisely as described in the program given in
Figs. and 2. The variable count keeps track of the number of updates performed in the hash
table of the present size M. From time to time it becomes necessary to restructure the whole
table. This is the case when count reaches M or when condition (2.3) becomes wrong. In
both cases, we start a new phase, resetting M to the new value (14- c) n, where n is the
number of elements currently stored in the dictionary; the variable count is set to n, so that the
system is able to perform up to c. n updates before the beginning of the next phase. Deletions
are performed by attaching a tag "deleted" to the table entry to be erased; only when a new
level-one hash function h or a new hash function hj for the subtable T is chosen, do we drop
the elements with a tag "deleted" from Tj. Note that all variables occurring in the procedures
(in particular M, s(M), count, h, hi, for 0 < j < s(M)) are global; an exception are the lists
L and Lj, for 0 < j < s (M), which are local to the procedures that use them.

Let us first analyze the space needed by the scheme. By a phase we mean the time period
during which one level-one hash function h is "in use": a phase starts when some h is chosen
and ends when the next level-one function is chosen, either in the same or the subsequent call
to RehashAll. Phases that only consist of choosing an h to find out that h does not satisfy
condition (2.3) are called degenerate. During any phase that starts with n keys being stored in
the dictionary the number of keys will never drop below (1 c). n, since at most c. n updates
are made. Thus, the following lemma is sufficient to prove the claimed space bound.

LEMMA 2.1. The memory space used during a phase that starts with n keys being stored
in the dictionary is 0 (n).

Proof The lemma is obviously true for degenerate phases, since s(M) (R)(n). Thus,
we assume that a function h is chosen that satisfies condition (2.3) and determine how big
the table T has to be to accommodate all versions of all subtables. For 0 < j < s(M), let

/j denote the final capacity of Tj, that is, the value of mj at the end of the phase, and let

gj 2rhj (rhj 1) be the final size of Tj. The previous versions of Tj (if there were any) had
capacity 1/2rhj, /j Since, for > 0,

2. (2-l. thj)(2-t. thj 1) < 4-t. 2rhj(thj 1) 4-l.

the total number of cells occupied by all versions of all subtables Tj is bounded by

4-t’gJ41>o"
4 (32M2)sj < + 4M

O<_j<sM) - s(M)
O<j<s(M)

The last inequality holds since the algorithm makes sure that condition (2.3) remains valid
throughout the phase.

The space required by the header table is at most 5s (M), since the jth entry of the header
table need only contain a pointer to Tj, the variables sj, bj, and mj, and the number aj that

describes the hash function hj. If we let s(M) /ff6. M, the space needed by the subtables
4and the header table taken together is bounded by ((32M2 15)/(8v/ M) + 4M) +

5. 1- M (-6 + 1). M < 35. (1 4- c).n, which proves the lemma.
Now we turn to the time bounds. Note first that membership queries do not interfere with

the time analysis, since they are executed in constant time in the worst case. Thus, there is no
harm in assuming that there are no membership queries at all. Note further that instructions
that are executed in constant time (i.e., deletions in any case and insertions if they do not
cause a subtable Tj to be rearranged) can be safely ignored, since they will not invalidate an
overall linear time bound. Thus, we only need to worry about the time spent for installing

742 M. DIETZFELBINGER ET AL.

procedure Insert(x);
count +-count + 1;
if count > M
then

RehashAll(x);
else

j +-- h(x);
if position hj (x) of subtable Tj contains x

then
if x is marked "deleted" then remove this tag;

else (, x is new for Wj ,)

if bj <_ mj
then (, size of Tj sufficient ,)

if position hj (x) of Tj is empty
then

store x in position hj (x) of Tj;
else

go through the subtable Tj, put all elements
not marked "deleted" into a list Lj, and
mark all positions of Tj empty;
append x to list Lj; bj +-- length of Lj;
repeat hj +-- randomly chosen function in 7-/sj
until hj is injective on the elements of list Lj;
for all y on list Lj store y in position hj (y) of Tj;

else (, T is too small ,)
mj +-- 2.max{1, mj};sj +-- 2mj(mj 1);
if condition (2.3) is still satisfied

then (, double capacity of Tj ,)
allocate new space, namely sj cells, for new subtable Tj;
go through old subtable Tj, put all elements
not marked "deleted" into a list Lj,

and mark all positions empty;
append x to list Lj; bj +-- length of Lj;

repeat hj +-- randomly chosen function in 7-/s.
until hj is injective on the elements of list Lj;

for all y on list Lj store y in position hj (y) of Tj;
else (, level-l-function h "bad" ,)

RehashAll(x);

FIG. 1. Insertion.

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 743

procedure RehashAll(x
(, RehashAll is either called by Insert with a parameter x 6 U,

or by Delete or Initialize without parameters. RehashAll builds a
new table for all elements currently in the table (plus x, if given). ,)

go through the whole table T, put all elements not tagged "deleted"
into a list L, count them, and mark all positions in T "empty";
if x 6 U then append x to L;
count +- length of list L;
M +- (1 + c) max{count, 4};
repeat h +- randomly chosen function in 7-/s<m);

for all j, 0 _< j < s (M), do form a list Lj of all x L with h (x) j;
for all j, 0 _< j < s (M), do

bj +- length of list Lj mj +-- 2. bj sj +- 2mj (mj 1);
until condition (2.3) is satisfied;
for all j, 0 _< j < s(M), do

allocate space sj for subtable Tj;
repeat hj +-- randomly chosen function in 7-(sj
until hj is injective on the elements of list Lj;
for all x on list Lj do store x in position hj (x) of Tj;

procedure Delete(x);
count +- count + 1;
j +-- h(x);
if position hj (x) of subtable Tj contains x

then mark x as "deleted"
else return(x is not a member of S);

if count > M
then (, start new phase ,)

RehashAll();

procedure Lookup(x);
j +-- h(x);
if position hj (x) of subtable Tj contains x (not marked "deleted")

then return("x is a member of S")
else return("x is not a member of S");

procedure Initialize;
T +-- an empty table;
RehashAll();

FIG. 2. Setup, deletion, lookup, and rehashing.

744 M. DIETZFELBINGER ET AL.

new level-one functions at the beginning of a phase (in RehashAll) and for constructing new
versions of the subtables Tj (in RehashAll or in Insert).

LEMMA 2.2. The expected time for a phase that starts with n keys being stored in the
dictionary is O(n).

Proof Consider the call to RehashAll in which the phase starts. Clearing the old table
(header table and the subtables) and building up the list L takes time O (n), since by Lemma 2.1
the old table occupies only space O (n). Time linear in n suffices to construct the sublists Lj,

to compute the values bj, mj, and sj, 0 <_ j < s(M), and to compute ’O<_j<s(M) Sj. Thus,
if the phase is degenerate, it takes O (n) time in the worst case. In a nondegenerate phase h
initially satisfies condition (2.3). By the remarks immediately preceding Lemma 2.2, we only
have to estimate the time spent for installing new hash functions hj for the subtables. Fix some
j, and split the phase, as far as Ti is concerned, into subphases, one subphase being defined
as a maximal time period in which the capacity mj and hence the size sj of Tj have a fixed
value. We need the following observation:

Claim. Assume a hash function hj is chosen for Tj at the beginning or in the course of a
subphase. Then the probability that hj stays in use until the end of the subphase exceeds

Proofof Claim. Let the capacity of Ti during the phase be mj. Let Wj be the set of keys
x contained in the list Lj when hj is chosen. Let Vj be the set of the first mj Wj] different
keys x in the sequence of the Insert instructions to be executed next that satisfy h (x) j and
do not occur in Wj. Then, by relation (2.2), table size sj 2mj (mj 1) (for mj - 0) implies
that with probability exceeding g the elements of Wj t_J Vj will be mapped by hj to different
locations in Tj. If this happens, the way bi is changed and repeated keys are treated in Insert
and Delete implies that hj stays in use until bj grows beyond mj, that is, until the end of the
subphase. This proves the claim.

By the claim, the probability that u or more hash functions hj are used in a single subphase
is at most 2-("-), and hence the expected number of functions hj chosen during the subphase
is bounded by 2. Thus, the expected cost for installing new hash functions hj during a
subphase in which Tj has size sj is O(si). Exactly as in the proof of Lemma 2.1 we get
an overall bound of O (M) O (n) for the expected time for installing new hash functions

hj, 0 < j < s(M), by summing over all subtable sizes and all j, and using condition
(2.3).

In order to finish the time analysis, we will show in the following two lemmas that there
will not be too many phases. Fix some phase (no assumptions are made as to whether the phase
will turn out to be degenerate or nondegenerate), and let S be the set of elements stored in the
table at the beginning of the phase (whose number is n) together with those that occur in the
next c n update instructions to be executed. (Even though elements may occur repeatedly in
these instructions, they appear only once in the set S.) Let M (1 + c) n; clearly, IS[< M.
For h E 7-/s(M) chosen at random, define Wj {X S h(x) j}, 0 < j < s(M).

LEMMA 2.3. (a) With probabili, exceeding - we have

32M2

z..., 41WjI(21Wjl 1) < /4M.
O<j<s(M)

s(M)

(b) Ifthe inequality in (a) is satisfiedfor the level-onefunction h chosen at the beginning of
the phase, then the phase ends with the variable count reaching M; i.e., the phase comprises
c. n updates.

Proof (a) In the situation just described, relation (2.2) reads

0<_j<,(M)
2 -- 2"

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 745

The claim then follows by a simple transformation, using the obvious inequality
-O<j<s(M) W/I SI _< M.

(b) It is immediate from the way the variables bj and mj are initialized in RehashAll
and updated in Insert and from the fact that only keys from S can occur in the phase that
bj <_ Wj I, and hence mj <_ 21Wj I, throughout the phase. Since the equality sj 2mj (mj 1)
is preserved by the algorithm, we see that the inequality in (a) entails that relation (2.3) stays
valid throughout the phase.

LEMMA 2.4. Suppose that RehashAll is called at a time when n > keys are stored in
the dictionary. Then the (expected) time needed until the first call to RehashAll after c n
updates have been performed is 0 (n).

Proof Consider an arbitrary phase (degenerate or nondegenerate) that starts before the
next c n updates have been processed. The number of keys in the table at the beginning of
this phase is n’, where (1 c) n < n’ < (1 + c) n. By Lemma 2.3(a),(b), the probability

Since c. n In’- n[<that during this phase c. n’ updates are performed exceeds .
c. n’ no matter if n’ < n or n’ _> n, this means that the probability that this phase extends
further than the c n updates we are considering is at least . Thus, the expected number
of phases (degenerate or nondegenerate) needed to perform these c n updates is not more
than 2. Each phase occurring starts with n’ keys, (1 c) n < n’ < (1 + c) n, and takes
O (n’) steps (expected) by Lemma 2.2. This finishes the proof of Lemma 2.4 and the time
analysis.

Lemmas 2.1-2.4 taken together yield the following result.
THEOREM 2.5. Dynamic perfect hashing, as described by the algorithm in this section,

uses linear space, needs constant timefor membership queries, and has 0 (1) expected amor-
tized insertion and deletion cost.

Remark 2.6. Obviously, the space bound 35(1 -k- c)n proved in 2.1 is not satisfactory from
a practical point of view. There are many conceivable ways of reducing the space bound: by
varying the parameters fixed in the algorithm, by using slightly different hash functions, or

by adapting more involved schemes, e. g., that described in [9], which achieves an n + o(n)
space bound in the static case. Most of these variations will increase the bounds on the
expected computation time, but this does not necessarily mean that the time requirements
observed in practice will grow significantly. Wenzel [20] has implemented a variant of the
scheme described above. In his implementation the universe U is {0, 231 }; the space
requirements are kept small by avoiding the use of subtables if IWjl is small. He reports that
the space requirements of his implementation are comparable to those of balanced trees and
that the running time is superior to search trees provided n is moderately large (n > 1000).
We refer the reader to [20] for details.

Remark 2.7. It is intuitively clear, and it can be seen in practice, that the evaluation time for
the hash functions is critical for the performance of every implementation of the algorithm. In
many installations, the functions from the following alternative class will be faster to evaluate
than those from the class 7-/s above, since division by powers of 2 can be effected by shifts of
binary representations of integers. The class corresponds to the classic multiplicative hashing
scheme (see 12, p. 509]) with a randomly chosen multiplier. Assume U {0 N },
where N 2 is a power of 2, and that s 2, for < . < v. Let

7-/’. {h 3a 2 }, a odd, Yx U h(x) (ax mod 2) div 2(-z)}.

In [8] it is shown that the class 7-/’ also satisfies inequality (2.1), thus it can be used in the algo-
rithm described above without impairing the performance guarantees given by Theorem 2.5.

3. Higher-order hash functions. In this section we generalize inequality (2.1) from 2
(which originated in [9]) to polynomials of degree larger than and note some consequences

746 M. DIETZFELBINGER ET AL.

of this generalization. These extensions have proved useful since the first version of this paper
appeared as [5]; see, e.g., [2], [6], [7], [10]. In order to formulate the result in a slightly
more general way than just for polynomials, we recall a definition given originally in 19] and
studied further (with varying notation) for example in [15], [16].

DEFINITION 3.1 [19]. Let 7-(be a collection offunctions h with domain D and range
R. Let c > O, and let k >_ be an integer. The class is called (c, k)-universal iffor all
sequences xl xk of different elements of D, all sequences Yl yk of elements of R,
and randomly chosen h

Pr(h(xi) yi for <_ < k) <

(Alternatively, such classes have been called c strongly k universal or (k)c-independent.)
Examples. (a) [19] If F is a finite field, we may let D R F; then

|
qao a,_ F h (x) "--" ai X for all x 6 F |

/O<i<k

is (1, k)-universal. This holds since for each sequence of k different arguments in F and k
prescribed values there is exactly one polynomial of degree at most k that interpolates
through these argument-value pairs.

(b) [15], [19] If is (c, k)-universal andr R --+ R’ is such that]r-l(j)l < d for all j,
then the (multi)set 7-/’ {r h h 7-/} is (, k)-universal, for . c. (dIR’I/IR[).

(c) A direct consequence of (a) and (b): If p is prime and < s < p, then for D
{0 p- 1} and R {0 s 1} the set

s {hao a,_, l0 < a0 a_ < p},
where

hao a,_,(X)’-- (- aixi modp) mods,
O<_i <k

forx 6 D and0 < a0 ak-1 < p,

is (c, k)-universal, for c ([p/s] sip) < (1 + sip).
(d) For the finite field D R GF(pt), p prime, > 1, we obtain (1, k)-universal

classes with [R’[pr, < l’ <_ l, by combining (a) with a suitable function r R -+ R’.
(See [15] for further examples.)

In the following, we assume that D and R {0 s are fixed and that 7-(is a class
of functions from D to R. Let a set S D be fixed, SI n, and let x0 be an element of
D S. For h 6 7-{ and 0 < j < s we define B {x 6 S h(x) j} and bjh. IBJ.’I" further,

we define Bh {x S h(x) h(x0)} and bh IBxh01 Assume that h is chosen uniformly
x0 x0

at random from 7-/. (In the notation, we drop the superscript h.) For arbitrary z 6 I, k > 0,
we let (z)k denote the "falling factorial" z(z 1)... (z k + 1).

LEMMA 3.2. lf T-[is (c, k)-universalfor D and R, then
(a) E((bj)) < c. (n)k/s < c. (n/s) forO < j < s;

(n)k-1(b) E((bxo)k-1) < C. (n)k_l/Sk-1 < C. .-.
Proof For > 1, let (S)t denote the set {(xl xt) 6 S x x different}.
(a) Fix j, and define random variables Xx, xk, for(x xk) (S)k, by

ifh(x) h(x) j,Xxl xk 0 otherwise.

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 747

Then E(Xx xk) Pr(Xx k- 1) < c/sk, since is (c, k)-universal. On the other hand, it
is clear that

Consequently,

(x x,)E(S)k

C C

(x x)E(S)

(b) The proof is similar to the one given in (a). Define random variables Y k_,

(Xl x_) 6 (S)-I, 0 j < s, by

ifh(x) h(xk_) h(xo) j,YJ x_ 0 otherwise.

Then E(YJ x_,) c/s, since is (c, k)-universal. Fuaher,

(Xl Xk-l)(S)k-10j<s

Taking expected values, we get
c c

.s.

as claimed.
A hash function h is called l-pe(ect for S if b for all j, 0 j < s, i.e., if no block

Bf has size exceeding I.
COROLLARY 3.3. In the situation ofLemma 3.2, ifwefurther assume that s n, we have:
(a) Pr(h is (k 1)-perfect) (c/kl) n (n/s)-. In case s n+/-) this

probabili exceeds ck .
Oj <s

() frcasin(b)"(c) Pr (b) 2c. n R ,
Oj<s

Pro@ (a) We estimate the probability that h is not (k 1)-perfect.
Clearly,

Pr(j b R k) Pr(j (b) R k) Pr((b) R k).
Oj<s

By 3.2(a) and the Markov inequality the last term is bounded above by s (c/k) (n/s)
(c/) n (n/s)-.

(b) Let J j b k 1}. Since e b SI n, it follows from elementary
considerations that je(b) [] (k 1) + (n [J (k 1)) n. (k 1)-.

We need the following simple fact:
Claim. If z R k, then z/(z) < e-.
Proofof Claim.

z - z -1 k k-z-j k-j (k-1)(z .= .=

(k-1)(k-l) (k- 1)
< .< ek-1

1=0 (k- 1). :o 1.

748 M. DIETZFELBINGER ET AL.

Thus, we may write:

O<j<s j6J jJ O<j<s

By Lemma 3.2, we obtain for ck (k 1)-1 + ce- that E(o<_j<s(bj)) < c n, as
claimed.

(c) is immediate from (b).
COROLLARY 3.4. In the situation ofLemma 3.2 we have
(a) For 0 < j < s arbitrary

> u) < l c" (eU-1/uU) .(n/s)" for < u < k;Pr(bj
| C" (e-l/uk) (n/s)k for k < u.

In particular, for s > n and u > k, we have Pr(bj > u)= O(u-k).
(b)

> u) < J c. (eU-l/uU) (n/s) for < u < k- 1;Pr(bxo | c. (et-2/u-) (n/s)k-1 fork- < u.

In particular, for s > n and u > k- 1, we have Pr(bxo > u) O(u--)).
(Note. The special case k u in Corollary 3.4(a) has already been analyzed in 15].)
Proof (a) Assume first that u > k. Then, by Lemma 3.2(a),

Pr(bj _> u). (u) Pr((bj)k > (u)k). (u) < E((b)k) < c.

whence we get

Pr(bj > u) <
(u) s

By the claim in the proof of Corollary 3.3(b), this implies

Pr(bj >u)< b/k S

In case < u _< k it is easily seen that 7-/is also (c, u)-universal. Applying the above
result yields the desired estimate Pr(bj > u) <_ c eu- (n/s)"/u".

(b) The argument is exactly the same as in (a); just use Lemma 3.2(b) instead of Lemma
3.2(a).

4. Optimal lower bounds for the deterministic case. In this and the following section
we consider deterministic algorithms for the dictionary problem that are based on hashing and
lower bounds on their performance. It will turn out that such deterministic algorithms must
be much slower than the randomized algorithms described in the preceding sections.

As a basis for our lower bound proofs we introduce a simplified, abstract type of algorithm.
Such algorithms maintain the following data structure D. If S c_ U is the set of elements in
the dictionary, then D consists of a rooted tree whose leaves are labeled with the elements
of S. The inner nodes are labeled with hash functions whose values correspond to the edges
leaving the node. In order to access a key x 6 S, one starts at the root and repeatedly evaluates
the hash function at the current node (with x as argument) to determine the edge to be followed

DYNAMIC PERFECT HASHING’ UPPER AND LOWER BOUNDS 749

out of the node until a leaf is reached. This leaf has label x. This data structure generalizes
the one used in 2, where two hash functions had to be evaluated to access a key. We count
one step for the evaluation of a hash function.

In more detail, the data structure can be described as follows. D is a rooted tree in which
each inner node v is labeled with a hash function hv U -- {0, my }, with m > 2,
and has m children, one for each value of h Each x 6 U determines a path from the root to
a leaf. This path is given by wo, Wl Wr, where w0 is the root, wt+l is the hw, (x)th child
of wt, for 0 < < r, and Wr is a leaf. We say that D is a dictionary for S {x0 xn

_
U

if each leaf contains exactly one of the xi. To each node v of D we associate the set A (v)

U

of keys that are "sent to" v by the hash functions on the path from the root to v. We define

inductively: A(v) U for v the root and A(vq) {x A(v) ho(x) q} for 0 < q < mo
where Vq, for 0 _< q < my, are the children of v.

For our lower bound arguments, we will consider only insertions. To insert a key xn+l
x 6 U into a dictionary D for S, we follow the path wo, w Wr determined by x, and
for some node v on this path (determined by the algorithm) perform a rehashing at v, which
means that we choose a new perfect hash function hv for A(v) f3 (S to {x}). Thus, all IA(v) f3

(S tO {x})l children of v become leaves, and to each of them corresponds exactly one element
of A(v) fq (S to {x}). Such a rehashing must be performed for exactly one node v on the
path. The cost of such an insertion is depth(v) + IA(v) f3 (S tO {x})[. The cost of inserting
x, x2 xn 6 U into a dictionary D is the sum of the costs of the single insertions. Note
that we assume that D initially contains one element x0 in a leaf, with no root.

Remark 4.1. When a rehashing at v is performed, a perfect hash function for A(v) N (StO
{x}) is given at linear cost; in addition, setting up the hash table, i.e, the subtree of depth 1,
for this set has linear cost as well. This assumption excludes search trees that use an order
on the universe U to define the way keys are distributed at nodes, as well as other schemes
involving cleverly chosen hash functions that can be extended to additional keys at low cost
while keeping the function injective.

Remark 4.2. (a) We require that collisions are resolved immediately by rehashing. In
particular, we do not allow forming chains, i.e., linked lists, at the leaves of the tree as is done in

many hashing schemes. But the absence of this restriction would not change the lower bounds
by much. If we were to allow chaining, inserting n elements would cost n steps, because
we could insert each element at the head of the chain, which would mean constant time per
insertion. To justify our model, we have to consider tasks with insertions and lookups. If
after inserting x we include a lookup for the element at the end of the chain into which x was
inserted, then this lookup costs essentially as much as rehashing at the leaf to which the chain

belongs. Thus algorithms for insertions and lookups, with chaining allowed, are at least as

costly as algorithms without chaining for insertions only.
(b) One could ask if it would be advantageous to allow also rehashings at nodes v that do

not lie on the path determined by the x just being inserted. But it is easily checked that the
algorithm does not become slower if such rehashings are performed at the time when the last
element of S f3 A (v) is inserted into D. Thus it is justified not to admit such "spontaneous"
rehashings.

Remark 4.3. The role of space limitations. In the description of the data structure D,
we did not introduce the concept of the space used by D. On the other hand, some space
restriction is necessary, since using the identity function as the hash function at the root would
make all rehashing superfluous.

If we assume that storing a hash function ho together with the corresponding table takes
space O(m,,) O(Irange(ho)l), then vnodeinD my is a reasonable measure for the space
used by D. In our description ofthe data structure D we assumed that every leaf of D contained

750 M. DIETZFELBINGER ET AL.

an element of S, so for every hv and every j 6 {0 mo 1} there is some x 6 S with
hv(x) j. Since in every rooted tree with n + leaves and outdegree at least 2 the number
of edges is bounded by 2n, our data structure D satisfies o mo < 2n, which means that it
needs linear space.

If the algorithm were allowed to use hash functions ho with range larger than IA (v) C3 SI
when rehashing at node v, then the lower bounds given in the theorems below would still hold,
with constants smaller by a factor of than those in the theorems. We only have to assume
that the space used by D is not too large in relation to the size of the universe U (namely,
IUI >_ (S(n)2 log n)21gn (n nt- 1) in Theorem 4.4 and IUI >_ (S(n)/k) in Theorem 4.6 for
S(n) Yo mo). We shall comment on this in more detail below when the adversary strategies
for the lower bound proofs are discussed.

We want to study the following quantities.

T (n) worst-case (amortized) cost incurred by an optimal algorithm
to insert n elements.

Tmax (n) worst-case cost needed for a single insertion or membership
query in a sequence of n instructions.

Tk (n) worst-case amortized cost needed by an optimal algorithm to
insert n elements, if the depth of the tree is not allowed to
exceed k, i.e., if the worst case lookup time is k.

The following three theorems sum up the results (upper and lower bounds) concerning these
three quantities. Theorem 4.4 shows that amortized time O(n) for n insertions cannot be
achieved in the deterministic case but rather that a slowdown by a factor log n is unavoidable.
Theorem 4.5 shows that in any case there will be single instructions that are very costly. If
we demand constant lookup time to be guaranteed, Theorem 4.6 shows that this can only be
achieved by many costly rehashings.

THEOREM 4.4. (a) T(n) > (n + 1). log(n + 1), iflUI > (n/logn)21gn (n + 1).
(b) T(n) < 3(n + 1)log(n + 1).
THEOREM 4.5. (a) Zmax(n) /, iflUI >__ 2(/)"/.
(b) lfonly algorithms with a total cost smaller than f (n nfor n insertions are considered

and IUI >_ (n/f (n))2f(n (n + 1), then Tmax(n) f2(n/f (n)).
THEOREM 4.6. (a) Tk(n) > (k/e). n+l/kforn > e, iflUI > (2n/k).
(b) T(n) < d n+/ for all sufficiently large n, where the constants d can be chosen

to satisfy dk k/e. (Here e 2.71828 the base of the natural logarithm.)
The proofs of the theorems will be given in the next section.
Remark 4.7. If we reconsider the randomized algorithm presented in 2, we see that

randomization is only used for constructing perfect hash functions at expected linear cost.
Thus, if we give such hash functions at guaranteed linear cost, we should obtain a deterministic
algorithm that is at least not slower than the randomized one. This seems to contradict our
lower bounds! To resolve this paradox, consider adversary strategies for the randomized
computation model. Here the adversary has to determine the moves of the strategy without
knowledge of the outcomes of the coin flips of the algorithm to be executed. This means
that the data structure produced by the algorithm cannot be taken into consideration by the
adversary. But this is what happens in the deterministic case and what makes the adversary
as strong as indicated in the lower bounds for the deterministic model.

Remark 4.8. Theorem 4.5 gives a lower bound for our model that is bigger than the
O (log n) worst-case bound for single instructions guaranteed by implementations of dictio-
naries as balanced search trees. This is an effect of the quite severe restriction that rehashing
at a node v has cost linear in the size of the subtree rooted at v. (Cf. Remark 1.1.)

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 751

5. Proofs of the lower bounds. This section contains the proofs of the theorems stated
in 4.

5.1. The adversary strategy. For proving the lower bounds, we apply an adversary
argument in each case. Let us first give a general description of the adversary strategy.
Initially, the tree D contains one element x0. The adversary chooses, step by step, the element
xi to be inserted next. Basically, xi is always chosen in such a way that it has to follow a
longest path in D.

in order to be always able to find such an element xi, we must make sure that the set
of elements of U that belongs to such a longest path is not empty. The aim of the ad-
versary is to build up long paths w0, Wl, w2 in the tree and to make sure that the sets
A(wo), A(wl), A(w2) are as large as possible. Thus, if a decision is to be made which
path to choose, the adversary will, at each node v, choose that child q of v that maximizes
Ih-l[q] f) A(v)l, 0 < q < my. (If there is a tie, the smallest such q is chosen.) For the sake
of simplicity of notation, we will assume that q 0 always has this property. (If this is not
the case, renumber the children of v.)

ASSUMPTION 5.1. For all trees D ever built by the algorithms andfor all nodes v ofD, the
set A (v) rqh-l [O] is maximal (with respect to cardinality) among A (v) f3h- [q], 0 <_ q < mv.

We will regard the child number 0 of v as the leftmost child of v and define the leftmost
path and the leftmost leaf in D accordingly (always follow the edge to child 0).

Simple adversary strategy: Choose xl x0 arbitrarily. For/ > 1, assume thatxl xi-1
have been inserted and that a tree D has been set up by the algorithm. Then let xi be an arbitrary
element of A(v) {x0, x xi-}, where v is the leftmost leaf of D.

Note that all elements inserted follow the leftmost path in D. This path grows as the result
of inserting xi if the algorithm chooses to perform a rehashing only at the leftmost leaf, or it
is cut off at v if the algorithm performs a rehashing at an inner node v of the leftmost path.

Remark 5.2. We have made the assumption that in all nodes v of D all values of h are
used by members of S. This has the effect that each insertion causes a collision at some node
on the path to the leaf reached by the newly inserted element and, hence, causes a rehashing.
Here, we wish to justify the statement made in Remark 4.3 that the lower bounds essentially
also hold in the more general model where it is permitted that some values of ho are not used
by elements of S. We apply the same adversary strategy. But now it may happen that when xi
is inserted, it reaches a leaf that is not already occupied by a key from {x0 xi-1 }, hence
no rehashing is necessary. However, observe that out of two subsequent insertions performed
according to the adversary strategy at least one must cause a rehashing somewhere along the
leftmost path. It is then seen that all lower bounds proved below hold under the assumption
that not n but 2n keys are inserted, because they cause at least n rehashings.

The following lemma makes precise how big U has to be in order to guarantee that some
suitable xi is available in each step of the adversary strategy.

LEMMA 5.3. Let v be a node on the leftmost path in D, and let the depth of v in D be r.
Then

(a) Ia(v)l >_ IUl/(2n/r)r.
(b) lfwe drop the assumption (cf Remark 4.3) thatfor all nodes v in the tree A (v)

and regard s(D) Y-v node in D mv as a measurefor the space needed by D, then for v as in
(a) we have IA(v)l >_ [Ul/(s(D)/r)r.

Proof Let To, wl Wr v be the path from the root w0 to v. By definition, IA (w0)l
r-1IUI; further, lA(wt+l)l > IA(wt)l/mm,, by Assumption5.1. Thus, [A(v)l _> IUI/(I-I=0 mw,).

r-1 r-1Obviously, Yt--0 mwt <_ s(O). From this it is easily seen that the denominator 1--It=0 mwt
cannot be larger than (s (D)/ r)r. This proves (b). As noted already in Remark 4.3, ifA (v)
0 for all nodes v in D, then s(D) < 2n. This proves (a).

752 M. DIETZFELBINGER ET AL.

LEMMA 5.4. Let (n) denote the minimal number of steps needed by any algorithm for
inserting n elements, ifthese elements are chosen according to the simple adversary strategy.
(In particular, the algorithm has to admit the simple adversary strategy, which means that

for each < n we have that after inserting xi the set A(v) {x0, xl xi} is nonempty, for
v the leftmost leaf in D.) Then

(n) > (n + 1)log(n + 1).

Proof. (Induction on n.) Fix such an algorithm for n elements. Clearly, (0) 0,
T(1) 2 (rehashing at the root is forced). Let n > 1. Let < < n where is maximal
such that xi is inserted by rehashing at the root. (Such an exists, since this applies to 1.)
Inserting x xi- costs at least (i 1), by the definition of ; inserting xi costs + 1;
inserting xi+l x, costs at least n + T (n i), since the hash function at the root has to
be evaluated for xi+l x,, and all these elements are sent into the leftmost subtree and have
to be inserted there and are chosen according to the simple adversary strategy with respect to
this subtree. (Note that this subtree already has an element.) Thus

77"(n) > (i 1) + (i + 1) + (n i) + 7(n i).

By the induction hypothesis, this entails

(n) >/log/+(n+l-i)log(n+l-i)+n+l,

and the right-hand side of the last inequality is at least (n + 1)log(n + 1), since the
function ylog y + (n + y) log(n + y) attains its minimum in the range < y < n in
y (n + 1)/2. [3

5.2. Proof ot" Theorem 4.4. We first consider the lower bound (part (a)). We would
like to use the adversary strategy described above. However, to provide for the case that the
leftmost path in D becomes very long and U is not as big as demanded in Lemma 5.3, we
must slightly change the adversary strategy: We choose xi so that it aims at the [2 log nlth
node on the leftmost path in D.

Modified adversary strategy: Choose x x0 arbitrarily. For > 1, assume that

xl xi_ have been inserted and that a tree D has been set up by the algorithm. Let
w0, wl wr be the path from the root to the leftmost leaf in D. Choose xi to be an

arbitrary element of A(w,) {x0 xi-1}, where r’= rain(r, [21ogn]).
By Lemma 5.3, this strategy will work as long as IU[/((2n)/(2 log n))21gn > n + 1, i. e.,

[U >_ (n/logn)21gn. (n-+- 1).
Define

L xi < < n, depth(v) >21ognforthevertexvinD
at which rehashing is performed when xi is inserted }.

Clearly, for each xi L the cost of evaluating the hash functions on the way down to v alone is
at least 2 log n. We determine a lower bound for inserting the elements in {xi, xi xi,,,
{x x} L into the tree as follows. (Here, n’ n ILl.) Observe that if we disregard
all elements xi L and all inner nodes at depth > 2 log n in the computation for x x,,,
then we obtain a computation in which xi xi,,, are inserted into a dictionary that always
has depth smaller than 2 log n and xit xi,,, are chosen according to the simple adversary
strategy considered in Lemma 5.4. Thus we may conclude from Lemma 5.4 that inserting
xi, xi,,, has cost at least (n’ + 1)log(n’ / 1). Altogether we get

T(n) > ILl" 21ogn + (n -ILl / 1). log(n -]LI + 1)

> min (y.21ogn+(n-y+l).log(n-y+l)).
O<y<n-1

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 753

For n > 4, the minimum is attained for y 0; hence T(n) > (n + 1)log(n + 1). For
n 1, 2, 3, the lower bound in Theorem 4.4 is obvious. This finishes the proof of Theo-
rem 4.4(a).

To prove the upper bound in Theorem 4.4 (part (b)), we use the following algorithm for
arbitrary n" Perform a global rehashing (i. e., a rehashing at the root) for xi if is a power
of 2. Choose the hash functions hv, for v the root, in such a way that Ih;-l[q]l for
all q > 0; then all insertions that do not cause a rehashing at the root go into the leftmost
subtree, to which the same algorithm is applie_d recursivel_y. Let (n)~ cost of this algorithm
when applied to n elements. By inspection, T (1) 2, T (2) 5, T (3) 8. We claim that

(n) < 3(n + 1) log(n + 1) for all n. Fix n > 4, and let [log n]. We split Xl x,, into
three groups and two single elements"

inserting xl Xzt-,_ costs 17 (2t- 1);
inserting x2,- costs 2t- + 1;
inserting x2,-i+ x2,- costs (2t-1 1) + (2t-1 1);
inserting x2, costs 2 + 1;
inserting x2,+ x,, costs i?(n 2t) + (n 2t).

Thus, by the induction hypothesis,

7(n) < 2 + 2t-1 + n + 2.3.2t-1 log(2t-) + 3. (n 2 + 1)log(n 2 + 1).

With 2 + 2t- + n < 3 2 it follows that

T(n) <3.2tlog(2t)+3.(n-2t+l)log(n-2t+l);

hence, by the convexity of the function y log y, we get (n) < 3(n + 1) log(n + 1), as desired.
This finishes the proof of Theorem 4.4(b).

5.3. Proof of Theorem 4.5. (a) Apply the simple adversary strategy from 5.1. If at
some time the leftmost path in the tree becomes longer than v/-h, then at least one insertion
had cost ’-h. Otherwise, the assumption IUI > 2(v/-)" guarantees, by Lemma 5.3, that the
adversary strategy can be carried out. Only nodes on the leftmost path have children; hence,
there must be one node on the leftmost path that has at least Vc children. Thus, the cost of
the last rehashing at this node was at least 4’5.

(b) Apply the modified adversary strategy from the proof of Theorem 4.4, for r’
min{r, 2f(n)}. At most n/2 keys can be inserted below level 2f(n), by the overall time
bound; hence, at least n/2 will be above that level. In levels smaller than 2f(n), only nodes
on the leftmost path can have children; as in (a) it follows that one insertion must have had
cost at least n/2f(n).

5.4. Proof of Theorem 4.6.

5.4.1. The lower botnd. Recall that in Theorem 4.6 only algorithms that produce trees
whose depth is bounded by some constant k are considered. Let such an algorithm for inserting
x xn (into a table that initially contains one element x0) be given. We use the simple
adversary strategy from 5.1. From Lemma 5.3 we know that the assumption IUI > (2n/k)k

is sufficient to ensure that IA(v)l >_ 2 for v the leftmost leaf of D and hence that the strategy
is always applicable under this assumption.

For k > 1, n > define 7k(n) the minimal number of steps needed by any algorithm
that produces only trees ofdepth at most k to insert x xn chosen according to the adversary
strategy. Clearly, T(n) >_ T(n). Trivially, ’(0) 0 for all k >_ 1.

LEMMA 5.5. ’k (n) satisfies the following inequalities.
(a) l(n) (n + 1)(n + 2)/2- 1,forn > O.

754 M. DIETZFELBINGER ET AL.

(b) k(n) > min{/+ Y=(jaj + k-l(aj 1)) > 1, a at N, _}-=, aj n },
for n > l,k > 2.

Proof. (a) If k 1, then every element xi is inserted by rehashing at the root, which has
cost/+ 1. Thus 7(n) in=l(i d- 1) (n H- 1)(n + 2)/2- 1.

(b) Letxl x,, be inserted, chosen according to the simple adversary strategy. Consider
an algorithm that for inserting these elements needs Tk (n) steps. Let Xio, Xi Xil_l be those
elements that are inserted by global rehashing, i.e., by constructing a new perfect hash function
at the root. (For X this is forced, hence i0 1.) Also, let it n + 1. Note that between
global rehashings the elements Xij_l+l Xij-- are chosen so that they are all sent to the
subtree rooted at the leftmost child of the root of D and that insertions into this subtree are
performed according to some strategy for ij j-1 elements and depth k 1; further,
after the insertion of Xij_l this subtree already has one element. By the definition of (n),
inserting these elements into the subtree has cost at least i_ (ij ij-i 1). In addition, for
these elements the hash function at the root has to be evaluated, which has cost ij ij_l 1.
Inserting xb, j 0, l, has cost ij + 1. Thus the total cost is

l-1

l(n) >_ E((ij --ij_ 1) + k-l(ij --ij_! 1)) + E(ij -t- 1)
j=l j=O

E ,_,(ij -ij_, 1) + E ij.
j=l j--1

Let al+l-j ij ij-1 for < j _< I. Then Y:I aj it- io n and ZJ:I ij
l" 0 -" E=I (l -t- j) at+l-j; hence,

k(n) >_ E(j aj + ’-l(aj- 1))+ I.
j=l

This proves part (b).
The proof of Theorem 4.6 is completed by the following lemma.
LEMMA 5.6.

’(n) > g(n + 1)

for all k > 1, n > O, where

0 for y 0;

gk(Y)
y ln y for O < y < e;
k y+l/ for e < y.

For the proof of this lemma see the appendix. It is a technical argument based solely on
the inequalities of Lemma 5.5.

5.4.2. The upper bound. We will describe an algorithm for inserting n elements x
x,, 6 U into a table (which initially contains one element x0) so that the depth of the resulting
tree never becomes larger than k. As in the proof of Theorem 4.4(b), the hash function h
chosen for a vertex v always satisfies Ih;-l[q] N A(v)l for all q > 0. This means that
subsequent elements that are inserted in the subtree rooted at v are always sent to the leftmost
subtree of v. Let

()(k-1)/kdk_ldl- 1 dk-k .k+
k+2" k-1

fork> 1.

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 755

) an b, d,/kThen d k. lZIq_z((q + 1)/(q + 2))q
/*

As abbreviation, let k.

Algorithmfor a table ofdepth at most k (inductive description)"
k 1" Insert each element by global rehashing.
k > 1" Letit [_s=l(S/(k. bk_l))k-1], for 0, 1, 2, 3 Insert the elements
xl xi, xi,, xi3 by global rehashing; that is, by establishing a new hash function hv at the
root v. Between these global rehashings the elements Xit_l-t-1 Xi all go into the leftmost
subtree of the root. Apply the algorithm for depth at most k to this subtree, for these
it- it-1- elements.

It is obvious that this algorithm always maintains a tree of depth at most k; hence, a lookup
time of k is guaranteed. We only have to analyze the time required for insertions. For k >_ 1,
n > 0, let

]?k(n) cost of inserting x xn into a table, which initially
has one element, using the algorithm just described.

(Note that for the cost of the algorithm it is irrelevant which particular elements xl xn
are inserted.) To finish the proof of Theorem 4.6(b), we just have to show the following.

LEMMA 5.7. (a) k(n) < d nl+/ for all n > n, for n large enough (for all k > 1).
(b) limk d/(k/e) 1.

Proof (a) (Induction on k.)
Initial step (k 1): Obviously, 7(n) (n + 1)(n + 2)/2 < n2 for n > 3.

Induction step (k > 1)" Assume ’_ < d_ n’/(’-l) for all n > n-l. Now let n be
fixed, n large enough. Define to min{t >_ it > n}, for the sequence it, > 1, defined in
the strategy. We first estimate to. Clearly, by the definition of it and to we have

to- to

sk-l < (k bk_l)k-1 ./ < sk-1
s=l s=l

hence (by estimating the sums by integrals and taking kth roots),

l(k-1)/k 1/k(5.1) to-1 < k.,k_ .n < to+

In the following, we estimate k(it0 1), which certainly is an upper bound for (n). We let

io 0. Then inserting the element xi, (by global rehashing) hascostit+ 1, fort l, 2 to-
1; inserting the elements Xit_l+l Xit_ has cost (it it-1 1) %- k-l(it it-1 1), for

1, 2 to. Thus,

to to--

(n) <_ ((it- it-1 1) + k-l(it --it-1 1)) + (it + 1),
t=l t=l

or, after a trivial transformation,

t0

(n) <_ ((to + t)(it i,_l) + k_l(it it_l 1)).

Substituting the induction hypothesis k-1 (n’) < d-I (n’)k/(k-1), for n’ > n-l, into this
inequality yields

to

(n) <_ ((to q- t)(it it-1 1) q- 4-1(it it-1 1)//(*c-1)) q- to(to at- 1) q- E/,
t=l

756 M. DIETZFELBINGER ET AL.

for some constant Ek (needed to make up for the error caused by replacing Tk-1 (it it-1 1)
by dk-1 (it it-1 1)k/(k-1) for so small that it it-1 < nk-1). By the definition of it
we clearly have it it-1 _< (t/(kbk_l))k-’, furthermore, from the bounds on to in (5.1) it
follows that t O((nl/k)) O(n). Thus,

k(n) <_ E (to + t) + dk-1 + O(n)
t--1 kbt-I kbk-1

(kbk-1) 1-/" (to + 1)tk-1 tk/k + O(n).
t=l

k-1 < (to + 1)k/k and =1 k > to+l/(k + 1)We substitute the two inequalities =1
(obtained by replacing the sums by integrals) and simplify, noting that (to + 1)k+l t0+l +
O(t). In this way we get

’k(n) < (kbk-1) 1-k
k+l t+ + o(tg) + o0.

By (5 1), we have to O((nl/k)k) O(n) and furthermore that t0+1 kk+l k-1/k
’-’k-

n l+l/k + O(to). Hence

k(n) _< (kbk-l) 1-k kk+l "’k-lt’k-1/k nl+l/k Af_ O(n)
k+l

k2

k+l
bff_-ll)/, n + O(n).

For n large enough, this implies

7k(n) < k.
k+l
k+2

bff_-i1)/k n l+l/k dk n l+l/k

and this is what we wanted to show
k(b) By definition, dk/k (1-Iq=2((q -+- 1)/(q + 2))q) 1/k Recall that

(+12)q+21(q+l)q+l+e
< <

q+2

for all q, and hence

dk.k (q=(q+lq+2)2)l/k <_
(k-1)/k

k -t-2

Clearly,

lim
q +

k q + 2 =lim(3)
1/k

ko k +
=1,

and thus limko dk/k 1/e, as claimed

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 757

A. Appendix.

A.1. Proof of Lemma 5.6. We show the following: If the functions Tk, k > 1, satisfy
slightly weaker inequalities than those stated in Lemma 5.5, namely, Tk (0) 0 for all k >_ 1,
and

(a) T(n) > (n+l)(n+2)/2-1 foralln_> 1,
(b) T,(n) >_ man{ + Y’=(jaj + Tk-l(aj 1)) > 1,a at N, Y’=laj n },

for all n > 1, k > 2, then the functions T satisfy the assertion of Lemma 5.6, that is,

T(n) > g(n + 1)

for all k > 1, n > 0, where, for k > 1,

0 if y 0;
g(y)= ylny if0<y <ek"

(k/e).y+/k ife <y.

We proceed by induction on k. For k 1, it is easily checked that g(n + 1) < (n + 1)(n +
2)/2 for all n > 0. Thus, let k > 1, and assume the claim to be true for k 1; that is,
T_(n) > g_(n + 1) g(n + 1), for all n > 0. (From here on, we will write g for g_.)
For n 0, the claim is trivially satisfied. Let n > be fixed. By assumption (b) above and
the induction hypothesis, we may fix some > and a sequence a (a at) of natural
numbers with= aj n and

(A.1) Tk(n) > (jaj 4- T,_(aj 1)) > (jaj -4- g(aj)).
j--1 j--1

We want to find a lower bound on the last sum in (A. 1). The first step we take is to transform
sums to integrals and sequences of natural numbers to real functions. The sequence a may be
regarded as equivalent to the piecewise constant function fa" I-]K- defined by

L(x) /O ifl <x < cxz.

The condition)-=, aj n translates to ff(x)dx n, and the sum in (A.1) can be
expressed as

(A.2) Lcx() y/

(jaj + g(aj)) xfa(x) + g(fa(X)) dx + -.
j=l

Our aim is now to find a lower bound on the integral in (A.2). To this end, we transform the
minimization problem a little further: instead of piecewise constant functions such as fa we
will consider continuous functions.

DEFINITION A.1. (a) Let 79 be the class ofall continuousfunctions f: IK- IK+ (strictly
expositive) so that ff(x) dx n and so that limx f(x) exists and is positive.

(b) Let G:]K -+ be defined by G(x, y) xy + g(y) xy + gk_ (y).
(c) For f 79 let I (f) fG(x, f(x)) dx. (Note thatthe condition limx eX f(x) >

0 ensures that the integral exists.)
It is easy to see that for any given e > 0 the piecewise constant function f, can be

approximated by some fa, 6 79 in such a way that

(A.3) I (fa,e) < e + xf(x) + g(f(x)) dx.

758 M. DIETZFELBINGER ET AL.

Now it follows from (A. 1), (A.2), (A.3), and the fact that f,,e 6 79 for all e > 0 that

(A.4) (n)Tk(n)-- +1 > inf{l(f) lf679}.

The following proposition establishes the existence of a function f0 6 79 that realizes this
infimum; moreover, it provides an equation for f0 that will enable us to calculate f0 explicitly.
Then we may evaluate I (f0) to obtain the desired lower bound on Tk(n). The proposition is
proved by reducing the problem of minimizing I (f) over 79 to a standard situation treated in
the Calculus of Variations. (The details of this proof, which will be given in the second part
of the appendix, are irrelevant for the rest of the argument.)

PROPOSITION A.2. There is a unique function fo 79 such that

(A.5) I (f0) min{ I (f) f 6 79 }.

Moreover, there is some constant A]R such that fo satisfies

OG(x y)(A.6) Oy
y=fo(x)

A forallx IR-.

Our next goal is to use (A.6) in order to obtain an expression for f0. First, we calculate A. By
the definition of G, we have that (O/Oy)G(x, y) x + g’(y), and hence (A.6) becomes

(A.7) x + g’(fo(x)) A for x > 0.

It follows easily from the definition of g gk-1 that

l+lny if0<y <ek-l"

g’(y)
(k/e) yl/(k-1) if e-l < y < c.

Obviously, g’(y) is a strictly increasing function of y with range IR, and the inverse of g’ is

given by

ez-1 if--cx: < z < k;(A.8) (g,)-I (z) (ez/k)- if k _< z < cx.

Thus (A.7) can be transformed to

(A.9) fo(x) (g,)-i (a x) forx > 0.

Since f0 6 79, we have (using the explicit formula (A.8) for (g’)-)"

(A.IO) { eA-1n-- (g’) (A x) dx (e_ /k) A
if A < k;
ifA > k.

We may now solve (A. 0) for A to obtain

l+lnn ifn <ek-"(A.11) A (n/el:-l) l/t k if n

_
e’-’.

Now, finally, we are in a position to evaluate I (f0). First, we substitute (A.9) into the definition
of I (f0) (see Definition A. (b),(c)) to obtain

(A.12) 1 (fo) x. (g’)- (A x) -t- g((g’)- (A x)) dx.

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 759

Case 1" n > ek-. Then A k > 0, and we get from (A.12), by substituting (A.8) and the
definition of g g,-t, that

A-k k-
l(fo) x (e(A x)/k)-1 +

e
(e(A x)/k)k dx

+ x eA-x-1 + eA-x-1 ln(eA-x-l) dx.
-k

The second integral evaluates to (A 1)e-; the first one equals

A. - (A-x dx-
k

(A -x)dx

e-A ek-1
k
"(A-k)-

k k+l
(A/+ k/+ 1)

Ak+l ea._ 1. k
A ek-1 nt- ek-1

k’ k+l
k

k+l

Altogether,

k
I (f0) A:+ ek- e-k’ k+l k+l

Substituting the value A (n/et-1)/ k given by (A.11) into the last equation and using
the fact that k/(k + 1) > e- ’ results in

ek-1 k e’-
I (f0)

k -l+l/k l+l/k l+l/k.e -k .n > .n
k+ k+ e k+

In combination with (A.4) and (A.5) this yields

k l+l/k ek-I l’l
(A.13) T,(n) > n - +-e k+l

Elementary estimates (which use the assumption that n >_ e-) show that the right-hand side
of (A.13) is bounded from below by (n + 1) ln(n + 1) ifn + < ek and by (k/e). (n + 1) 1+1/

if n + > e’. This proves the inequality Tk (n) > g, (n + 1) in Case 1.
Case 2: n < e- Then A k <_ 0, and we get from (A.12) and (A.8) that

I (fo) X eA-x-1 -if- eA-x-1 ln(eA-x-l) dx (A 1) eA-1

We now substitute the value A + Inn from (A.11) to obtain that I (f0) n Inn. In
combination with (A.5) and (A.4) this entails that

n
T(n) > n lnn + + l.

Elementary estimates show that the right-hand side of this inequality is bounded from below
by (n + 1) ln(n + 1) g(n + 1). This finishes the proof of Lemma 5.6.

760 M. DIETZFELBINGER ET AL.

A.2. Proof of Proposition A.2. We sketch a proof of Proposition A.2 stated in the first
part of this appendix. We reduce the proposition to a standard theorem from the Calculus of
Variations. First, instead of dealing with conditions defined by the integrals of the functions in
class 7) (see Definition A.1 (a)) we need conditions on the values of the functions considered
at the boundaries of the interval. For this, we consider the integral functions x fo f() d,
for f 7), x -. Second, we transform the unbounded interval 0+ to the bounded interval
[0, l] by means of the transformation x x(t) ln(1 t), for 0 _< < l, with inverse
transformation (x) e-x, for 0 < x < o3.

DEFINITION A.3. (a) Let be the class of all functions o" [0, l] -- - that have a
continuous derivative (d/dt)9(t) 99’(t) > 0 in [0, 1] and satisfy 99(0) 0 and o(1) n.

(b) Let H" [0, 1]]K- - be defined by

H(t,z) ! G(-ln(1- t)’ (1- t)z)

/ zlnz

if z > OandO < < 1,

ifz > Oandt 1,

where G(x, y) xy + g(y) is as in Definition A.l(b).
(c) For q9 let J(9) fd H(t, tp’(t))dt. (The following lemma implies that the

integral is well defined.)
LEMMA A.4. The function H from the previous definition is continuous, andfor each

fixed [0, 1] thefunction z + (02/Oz2)H(t, z), z I, is continuous and strictly positive,
exceptingfort and y ek-1/(1 t).

Proof. Straightforward verification.
LEMMA A.5. There is a bijection between 7) and given by the mappings f w- tpf and

p - f where

pf(t)

In(l-t)

f()d ifO <_ < 1,

and

fo(x) tp(1-e-x)=p’(1-e-x) e if O < x <o3.

Moreover, we have I (f) J (qgf), for all f 7).

Proof Straightforward verification.
We now need the following theorem, which is obtained by combining Proposition (3.10)

and Theorem (3.7) from [18].
THEOREM A.6. If H H(t, z) is continuous on [0, - and if for each [0,],

the function z - (2/Oz2)H(t, z) is continuous and positive (except possibly at a finite set

ofz-values), then there is exactly onefunction 990
Moreover, this function 990 satisfies (O/Oz)H(t, Z)[z=ot const, for [0, 1].

By Lemma A.4, the function H from Definition A.3 satisfies the hypothesis of this theo-
rem, and hence there is a unique function q90 6 that minimizes J(tp) over ; moreover, there
is some A E] with (O/Oz)H(t, Z)[z-o(t A for all 6 [0, 1]. By Lemma A.5, the function

f0 f,0 minimizes I (f) over 7). It remains to establish equation (A.6).
By Definition A.3(b) we have (O/Oz)H(t, z) (O/Oy)G(-ln(1 t), Y)ly=(l-t)z, and

hence

(A.14) G(-ln(1-t) y)A H(t,z) --}
Z=ot y=(1-t)qg’o (t

for0<t < 1.

DYNAMIC PERFECT HASHING: UPPER AND LOWER BOUNDS 761

By Lemma A.5, we have fo(x) (d/dx)tpo(1 e-x) 99(1 e-x) e-x 99(t).
(1 t), under the bijection x(t) -ln(1 t). Hence, equation (A.14) entails that
(8/Oy)G(x, Y)ly=fox A for all x 6]K-, as claimed. This finishes the proof of Proposi-
tion A.2.

REFERENCES

H.V. Ano AND D. LEE, Storing a dynamic sparse table, Proc. 27th IEEE Symp. on Foundations of Computer
Science, 1986, pp. 55-60.

[2] H. BAST AND Z. HAGERUP, Fast and reliable parallel hashing, Proc. 3rd Annual ACM Symp. on Parallel
Algorithms and Architectures, 1991, pp. 50-61.

[3] G. BRASSARD AND S. KANNAN, The generation of random permutations on the fly, Inform. Process. Lett., 28
(1988), pp. 207-212.

[4] J. L. CARTER AND M. N. WEGMAN, Universal classes of hash functions, J. Comput. Syst. Sci., 18 (1979),
pp. 143-154.

[5] M. DIETZFELBINGER, A. KARLIN, K. MEHLHORN, E MEYER AUF DER HEIDE, H. ROHNERT, AND R. E. TARJAN,
Dynamic perfect hashing: Upper and lower bounds, Proc. 29th IEEE Symp. on Foundations of Computer
Science, 1988, pp. 524-531.

[6] M. DIETZFELBINGER AND F. MEYER AUF DER HEIDE, How to distribute a dictionary in a complete network, Proc.
22nd Annual ACM Symp. on Theory of Computing, 1990, pp. 117-127.

[7] A new universal class ofhash functions and dynamic hashing in real time, Proc. 17th ICALE Lecture
Notes in Comput. Sci., 443, Springer-Verlag, New York, 1990, pp. 6-19. Final version in J. Buchmann,
H. Ganzinger, and W. J. Paul, eds., Informatik Festschrift zum 60. Geburtstag yon Gtinter Hotz, B. G.
Teubner, Stuttgart, 1992, pp. 95-119.

[8] M. DIETZFELBINGER, Z. HAGERUP, J. KATAJAINEN, AND M. PENTTONEN, A reliable randomized algorithm for the
closest-pair problem, Forschungsbericht Nr. 513, Fachbereich Informatik, Universitit Dortmund, 1993.

[9] M. L. FREDMAN, J. KOMLOS, AND E. SZEMERIDI, Storing a sparse table with O(1) worst case access time, J.
Assoc. Comput. Mach., 31 (1984), pp. 538-544.

10] J. GIL AND Y. MATIAS, Fast hashing on a PRAM Designing by expectation, Proc. 2rid Annual ACM-SIAM
Symp. on Discrete Algorithms, 199 l, pp. 271-280.

11 G.H. GONNET, Expected length ofthe longestprobe sequence in hash code searching, J. Assoc. Comput. Mach.,
28 (198 l), pp. 289-304.

12] D.E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.

13] K. MEHLHORN, Data Structures and Algorithms, Vol. l: Sorting and Searching, Springer-Verlag, Berlin, 1984.
14] K. MEHLHORN, S. N,HER, AND M. RAUCH, On the complexity ofa game related to the dictionary problem, SIAM

J. Comput., 19 (1990), pp. 902-906.
15] K. MEHLHORN AND U. VISHKIN, Randomized and deterministic simulations ofPRAMs by parallel machines with

restricted granularity ofparallel memory, Acta Inform., 21 (1984), pp. 339-374.
16] A. SIEGEL, On universal classes offast hash functions, their time-space tradeoff, and their applications, Proc.

30th IEEE Symp. on Foundations of Computer Science, 1989, pp. 20-25.
[17] R. SUNDAR, A lower bound for the dictionary problem under a hashing model, Proc. 32nd IEEE Symp. on

Foundations of Computer Science, 199 l, pp. 612-621.
18] J. L. TROUTMAN, Variational calculus with elementary convexity, Springer-Verlag, New York, 1983.

[19] M.N. WEGMAN AND J. L. CARTER, New classes and applications ofhashfunctions, Proc. 20th IEEE Symp. on

Foundations of Computer Science, 1979, pp. 175-182.
[20] M. WENZEL, Eine Implementierung von Dynamic Perfect Hashing, Diplomarbeit, Universitit des Saarlandes,

1990.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 762-779, August 1994

1994 Society for Industrial and Applied Mathematics
0O5

MEASURE, STOCHASTICITY, AND THE DENSITY OF HARD LANGUAGES*

JACK H. LUTZ AND ELVIRA MAYORDOMO

Abstract. The main theorem of this paper is that, for every real number ot < (e.g., ot 0.99), only a measure
<’ -reducible to languages that are not exponentially0 subset of the languages decidable in exponential time are _na_tt

dense. Thus every <" -hard languagefor E is exponentially dense. This strengthens Watanabe’s 1987 result, that--tt

every <’ tt-hard language for E is exponentially dense. The combinatorial technique used here, the sequentiallyo(log n)
mostfrequent quer3., selection, also gives a new, simpler proof of Watanabe’s result.

The main theorem also has implications for the structure of NP under strong hypotheses. Ogiwara and Watanabe
(1991) have shown that the hypothesis P - NP implies that every _<tt-hard language for NP is nonsparse (i.e., not

polynomially sparse). Their technique does not appear to allow significant relaxation of either the query bound or
the sparseness criterion. It is shown here that a stronger hypothesismnamely, that NP does not have measure 0 in
exponential timemimplies the stronger conclusion that, for every real ot < every <P -hard language for NP is

exponentially dense. Evidence is presented that this stronger hypothesis is reasonable.
The proof of the main theorem uses a new, very general weak stochasticity theorem, ensuring that almost every

language in E is statistically unpredictable by feasible deterministic algorithms, even with linear nonuniform advice.

Key words, complexity classes, computational complexity, dense languages, polynomial reductions, resource-
bounded measure, sparse languages, weak stochasticity

AMS subject classification. 68Q 15

1. Introduction. How dense must a language A

_
{0, }* be in order to be hard for a

complexity class C? The ongoing investigation of this question, especially important when
C NP, has yielded several significant results [3], [12], [20], [22], [23], [30], [31] over the
past fifteen years.

Any formalization of this question must specify the class C and give precise meanings to
"hard" and "how dense." The results of this paper concern the classes E DTIME(21inr),
E2 DTIME(2plynmial), and all subclasses C of these classes, though we are particularly
interested in the case C NP.

We will consider the polynomial-time reducibilities <Pm (many-one reducibility), <_ (Tur-
ing reducibility), _<, (bounded truth-table reducibility), and < (truth-table reducibilityq(n)-tt

with q(n) queries on inputs of length n, where q N --+ Z+). If <’ is any of these reducibil-
ities, we say that a language A is <-hard for a class C of languages if C

P,(A), where

Pr(A) B

_
{0, 1}*l B <r A].

Two criteria for "how dense" a language A is have been widely used. A language A
is (polynomially) sparse, and we write A 6 SPARSE, if there is a polynomial p such that
]A<_,[< p(n) for all n 6 N, where A_<., A fq {0, }-<". A language A is (exponentially)
dense, and we write A DENSE, if there is a real number > 0 such that [A_<,, >_ 2" for
all sufficiently large n 6 N. It is clear that no sparse language is dense.

For any of the above choices of the reducibility <, all known <_-hard languagesfor NP
are dense. Efforts to explain this observation (and similar observations for other classes and
reducibilities) have yielded many results. (See [9] for a thorough survey.) We mention four
such results that are particularly relevant to the work presented here.

*Received by the editors September 24, 1992; accepted for publication (in revised form) April 23, 1993.
Department ofComputer Science, Iowa State University, Ames, Iowa 50011 (:1_ t: z @ 5_ a t: at:. du). This au-

thor’s research was supported in part by National Science Foundation grant CCR-9157382, with matching funds from
Rockwell International, and by the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS),
where he was a visitor during the first phase of this work.

Department of Llenguatges Sistemes Inform?atics, Universitat Politbcnica de Catalunya, Pau Gargallo 5, 08028
Barcelona, Spain. This author’s research, performed while visiting Iowa State University, was supported in part by
Spanish Government grant FPI PN90 and by National Science Foundation grant CCR-9157382.

762

MEASURE AND THE DENSITY OF HARD LANGUAGES 763

Let DENSE denote the complement of DENSE, i.e., the set of all languages A such that,
for all e > 0, there exist infinitely many n such that [A_<n[< 2n. For each reducibility <P
and set ,S of languages, we write

Pr(,S) U Pr(A).
A.,S

The first result on the density of hard languages was the following.
THEOREM (Meyer [22]). Every <Pro-hard languagefor E (or any larger class) is dense.

That is,

E Pm (DENSEC).

Theorem was subsequently improved to truth-table reducibility with O(log n) queries
in the next theorem.

THEOREM 2 (Watanabe [31 [30]) Every <P -hard languagefor E is dense. That--O(logn)-tt
is,

E PO(Iog,,)_It(DENSEC).

Regarding NP, Berman and Hartmanis [3] conjectured that no sparse language is _<,,-
hard for NP, unless P NP. This conjecture was subsequently proven correct as seen in the
following.

THEOREM 3 (Mahaney [20]). If P NP, then no sparse language is <-hardfor NP.
That is,

P :/: NP == NP Pro(SPARSE).

Theorem 3 has recently been extended to truth-table reducibility with a bounded number
of queries.

THEOREM 4 (Ogiwara and Watanabe [23]). IfP NP, then no sparse language is
hardfor NP. That is,

P NP NP Pt,tt(SPARSE).

The Main Theorem of this paper, Theorem 14, extends Theorems and 2 by showing
that, for every real c < (e.g., o 0.99), only a measure 0 subset of the languages in E

<P _it-reducible to nondense languages. "Measure 0 subset" here refers to the resource-are -n
bounded measure theory of Lutz [!8], [15] (also explained in 3 below). In the notation of
this theory, our Main Theorem says that, for every real u < 1,

(Pn"-t (DENSEc) E) 0.

This means that Pn_tt(DENSEc) (q E is a negligibly small subset of E [18], [15].
In particular, our Main Theorem implies that

(1.2) E P,,,_tt(DENSEC),

i.e. every <P -hard language for E is dense. This strengthens Theorem 2 by extending
the truth-table reducibility from O(logn) queries to n queries (u < 1). It is also worth

764 JACK H. LUTZ AND ELVIRA MAYORDOMO

noting that the combinatorial technique used to prove (1.1) and (1.2)--the sequentially most
frequent query selection--is simpler than Watanabe’s direct proof of Theorem 2. This is not
surprising, once one considers that our proof of (1.2) via (1.1) is a resource-bounded instance
of the probabilistic method [5], [25], [26], [6], [27],], which exploits the fact that it is often
easier to prove the abundance of objects of a given type than to construct a specific object of
that type.

Our proof of (1.1) also shows that, for every real o < 1,

#(P,,-,,(DENSEc) E2) 0.

Much of our interest in the Main Theorem concerns the class NP and Theorems 3 and 4.
As already noted, for all reducibilities <rP discussed in this paper, all known _<rP-hard languages
for NP are dense. One is thus led to ask whether there is a reasonable hypothesis 0 such that
we can prove results of the form

(1.4) 0 ==, NP Pr(DENSEC),

for various choices of the reducibility <P (Such a result is much stronger than the corre-
sponding result

0 == NP P,. (SPARSE),

because there is an enormous gap between polynomial and 2n growth rates.)
Ogiwara and Watanabe’s proof of Theorem 4 does not appear to allow significant relax-

ation of either the query bound or the sparseness criterion. In fact, it appears to be beyond
current understanding to prove results of the form (1.4) if 0 is "P - NP." Karp and Lipton
[12] have proven that

x2 - n’ NP Pr(SPARSE).

That is, the stronger hypothesis Z; - rI gives a stronger conclusion than those ofTheorems 3
and 4. However, Karp and Lipton’s proof does not appear to allow relaxation of the sparseness
criterion, and results of the form (1.4) do not appear to be achievable at this time if 0 is taken
to be ,,w.P

""2 ::: I-I.
To make progress on matters of this type, Lutz has proposed investigation of the measure-

theoretic hypotheses #(NP E2) # 0 and #(NP E) # 0. These expressions say that NP
does not have measure 0 in E2 ("NP is not a negligible subset of E2") and that NP does not
have measure 0 in E ("NP 3 E is not a negligible subset of E"), respectively. We now explain
the meaning of these hypotheses. Both are best understood in terms of their negations.

The condition #(NP E2) 0 means that there exist afixed polynomial q, afixed positive
quantity c0 of capital (money), and a fixed betting strategy (algorithm) cr with the following
properties. Given any language A, the strategy o- bets on the membership or nonmembership
of the successive strings ,k, 0, 1,00, 01, 10 in A. Before the betting begins, c has capital
(money) co. When betting on a string w 6 {0, }*, the strategy o- is given as input the string
consisting of the successive bits [Iv 6 A]] for all strings v that precede w in the standard
ordering of {0, 1}*. On this input, the strategy cr computes, in _< 2q(Iwl) steps, a fraction
r 6 [- 1, of its current capital to bet that to 6 A. If a’s capital prior to this bet is c, then ’s
capital after the bet is c(1 + r) if w 6 A and c(1 r) if w ’ A. (That is, the betting is fair.)
Finally, the strategy cr is successful, in the sense that, for all A 6 NP, ’s capital diverges to

+c as the betting progresses through the successive strings w 6 {0, }*.
Thus, the condition #(NP E2) 0 asserts the existence of a fixed 2q(n)-time-bounded

algorithm for betting successfully on membership of strings in all languages in NP. If NP _c

MEASURE AND THE DENSITY OF HARD LANGUAGES 765

DTIME(2r(n)) for some fixed polynomial r, it is easy to devise such a strategy, so #(NP
E2) 0. (In fact, #(DTIME(2r(n)) E2) 0 [18].) Conversely, if #(NP E2) 0,
then NP is "nearly contained in some fixed DTIME(2q(n)), in the sense that there is a fixed
2q(")-time-bounded algorithm cr for successfully betting on all languages in NP.

There does not appear to be any a priori reason for believing that such a strategy o- exists,
i.e., there does not appear to be any a priori reason for believing that
#(NP E2) 0. Similarly, there does not appear to be any a priori reason for believing
that #(NP E) 0. The hypotheses #(NP E2) 0 and/z(NP E) - 0 are thus reasonable
relative to our current knowledge. (The hypothesis that the polynomial-time hierarchy sepa-
rates into infinitely many levels enjoys a similar status. It may be false, but if it is false, then a
very remarkable algorithm exists.) Lutz has conjectured that the conditions/z(NP E2) 7 0
and #(NP E) - 0 may be true.

It should be noted here that the conditions #(NP E2) - 0 and #(NP E) : 0 are merely
the negations of #(NP E2) 0 and/z(NP E) 0, respectively. For example, a resource-
bounded extension of the classical Ko!mogorov zero-one law 15] implies that exactly one of
the following three conditions must hold:

(i) #(NP E2) 0.
(ii) #(NP E2) 1, i.e., #(Npc E2) 0.
(iii) NP is not measurable in E2, i.e., the expression #(NP E2) has no value.
The condition #(NP E2) 0 thus means that (ii) or (iii) is true. It does not mean

that/z(NP E2) has some positive value. The analogous remark applies to the condition
#(NP E) -: 0.

At this time, we are unable to prove or disprove the widely believed conjectures P : NP,
NP : E2, and E NP. This, together with the known implications [18]

#(NP E2) - 0 == P -: NP,
#(NP E) : 0 == P - NP,

#(NP E2) 0 =:::, NP -: E2,

/z(NP E) 0 ==:, E NP,

means that we are currently unable to prove or disprove the statements #(NP E2) - 0 and
#(NP E) : 0.

Thus, at present, we are interested in the conditions #(NP E2) - 0 and #(NP E) : 0,
not as conjectures, but rather as scientific hypotheses, which may have more explanatory
power than traditional complexity-theoretic hypotheses such as P - NP or the separation
of the polynomial-time hierarchy. Until such time as mathematical proof or refutation is
available, the reasonableness (or unreasonableness) of such hypotheses can be illuminated
only by investigation of their consequences. Such investigation may indicate, for example,
that the consequences of #(NP E2) : 0 form, en masse, a credible state of affairs, thereby
increasing the reasonableness of this hypothesis. On the other hand, such investigation may
uncover implausible consequences of #(NP E2) - 0, or even a proof that #(NP E2) 0.
Either outcome would contribute to our understanding of NE

Our Main Theorem implies that, for all o < 1,

#(NP E2) 0 NP P,,,,_tr(DENSEc)

and

(1.6) #(NP E) - 0 ===> NP g P,,_rt(DENSEC).

766 JACK H. LUTZ AND ELVIRA MAYORDOMO

(This is Theorem 16.) That is, each of the hypotheses #(NP E2) 0 and #(NP E) :/: 0
implies that every <P -hard language for NP is dense This conclusion which is credible--it

and consistent with all observations to date, is not known to follow from P - NP or other
traditional complexity-theoretic hypotheses.

Recent investigation has also shown that the hypotheses #(NP E2) 0 and #(NP
E) 0 imply that NP contains P-hi-immune languages [21 and that every _<P,-hard language
for NP has an exponentially dense, exponentially hard complexity core 10]. Taken together,
such results appear to indicate that these are reasonable hypotheses that may have considerable
explanatory power.

The proof of our Main Theorem is based on a very general result, the Weak Stochasticity
Theorem proven in 3. In very brief terms, this result says that almost every language in E,
and almost every language in E2, is "weakly stochastic," in the sense that it is statistically
unpredictable by feasible deterministic algorithms, even with linear nonuniform advice. (See
’3 for precise definitions.) This result enables us to prove our Main Theorem, that

#(Pn_tt(DENSEC) E) #(Pn._tt(DENSEC) E2) 0

for all c < 1, by a simple combinatorial technique, without reference to measure-theoretic no-
tions. Specifically, in 4, this combinatorial technique--the sequentially mostfrequent query
selection--is introduced and used to prove that no language in P,,,_tt(DENSEc) is weakly
stochastic. The Main Theorem follows immediately from this by the Weak Stochasticity
Theorem.

This use of weak stochasticity in E and E2 is analogous to earlier uses of space-bounded
Kolmogorov complexity in the complexity class ESPACE DSPACE(21inear). It is known
[18], [11] that almost every language in ESPACE has very high space-bounded Kolmogorov
complexity. Using this fact, a variety of sets Xhave been shown to have measure 0 in ESPACE,
simply by proving that every element of X has low space-bounded Kolmogorov complexity
[18], [17], [19], [1 1]. Informally, we say that high space-bounded Kolmogorov complexity is
a "general-purpose randomness property of languages in ESPACE." This expression, which
is heuristic, means the following two things.

(a) Almost every language in ESPACE has the property (high space-bounded Kolmogorov
complexity).

(b) It is often the case that, when one wants to prove a result of the form
#(X ESPACE) 0, it is convenient to prove that no language in X has the property
and then appeal to (a).

It is natural to hope that high time-bounded Kolmogorov complexity would be, in the
analogous sense, a general-purpose randomness property of language in E and E2. Unfortu-
nately, however, the strongest known lower bounds on time-bounded Kolmogorov complexity
in these classes 18] are far too weak to provide a useful time-bounded analogue of condition
(a) above. Moreover, improving these bounds appears to require a major breakthrough in
complexity theory.

Our results suggest that, even without such a breakthrough, weak stochasticity may be
a "general-purpose randomness property of languages in E and E2." This would entail the
following two heuristic conditions.

(a’) Almost every language in E (respectively, in E2) is weakly stochastic.
(b’) It is often the case that, when one wants to prove a result of the form

#(X E) 0 (respectively, #(X E2) 0), it is convenient to prove that no language
in X is weakly stochastic and then appeal to (a’).

The Weak Stochasticity Theorem gives us condition (a’) immediately. The proof of our
Main Theorem gives us the instance X Pn,_tt(DENSEc) of condition (b’). It appears

MEASURE AND THE DENSITY OF HARD LANGUAGES 767

likely that more such instances will arise, i.e., that weak stochasticity is a general-purpose
randomness property of languages in E and E2 that will be useful in future investigations.

2. Preliminaries. In this paper, [Jell denotes the Boolean value of the condition , i.e.,

if,
[[]]

0 if not .
All languages here are sets of binary strings, i.e., sets A

{0, }*. We identify each

language A with its characteristic sequence XA {0, } defined by

XA [[SO All[[Sl As2 A
where so ,k, s 0, $2 1, s3 00 is the standard enumeration of {0, }*. Relying on
this identification, the set {0, }, consisting of all infinite binary sequences, will be regarded
as the set of all languages.

For w e {0, }* and x {0, }* U {0, }, we say that w is a prefix of x and write w

_
x,

if x wy for some y {0, }* t.) {0, }. The cylinder generated by a string w {0, }* is

Cw {x {0, 1} w x}.

Note that Co is a set of languages. Note also that Cx {0, 1}, where ,k denotes the empty
string.

As noted in 1, we work with the exponential time complexity classes E DTIME(2linear)
and E2 DTIME(2PIynmia). It is well known that P g E ; E2, that P

_
NP _c E2, and

that NP - E.
We let D {m2 m 6 Z, n 6 N} be the set of dyadic rationals. (These are rational

numbers whose standard binary representations have finite length.) We also fix a one-to-one

pairing function (,) from {0, }* x {0, }* onto {0, }* such that the pairing function and its
associated projections, (x, y) w- x and (x, y) - y, are computable in polynomial time.

Several functions in this paper are of the form d N’ x {0, }* --+ Y, where Y is D or

[0, co), the set of nonnegative real numbers. Formally, in order to have uniform criteria for
their computational complexities, we regard all such functions as having domain {0, }* and
having codomain {0, }* if Y D. For example, a function d N2 x {0, }* -- I) is formally
interpreted as a function {0, 1}* --+ {0, 1}*. Under this interpretation, d(i, j, w)
r means that ((0i, (0j, w))) u, where u is a suitable binary encoding of the dyadic
rational r.

For a function d N x X --+ Y and k 6 N, we define the function dk X Y by
d(x) d(k, x) d((0, x)). We then regard d as a "uniform enumeration" of the functions

do, d, d2 For a function d N x X Y (n >_ 2), we write d.. (dk), and so on.

For a function 3 {0, }* --+ {0, }* and n N, we write 3" for the n-fold composition
of 3 with itself.

Our proof of the Weak Stochasticity Theorem uses the following form of the Chernoff
bound.

LEMMA 5 [4], [8]. IfX XN are independent O-1-valued random variables with the

uniform distribution, S- X1 +... + XN, and > O, then

Pr S- -- > -- < 2e-2

In particular, taking 2/(j + 1), where j N,

Pr S- > < 2e-
-j+l

768 JACK H. LUTZ AND ELVIRA MAYORDOMO

Proof See [8].

3. Measure and weak stochasticity. In this section, after reviewing some fundamentals
of measure in exponential-time complexity classes, we prove the Weak Stochasticity Theorem.
This theorem will be useful in the proof of our main result in 4. We also expect it to be useful
in future investigations of the measure structure of E and E2.

Resource-bounded measure 18], 15] is a very general theory whose special cases include
classical Lebesgue measure, the measure structure of the class REC of all recursive languages,
and measure in various complexity classes. In this paper we are interested only in measure in
E and E2, so our discussion of measure is specific to these classes. The interested reader may
consult 3 of [18] for more discussion and examples.

Throughout this section, we identify every language A

_
{0, }* with its characteristic

sequence XA {0, 1}, defined as in 2.
A constructor is a function 3 {0, }* -- {0, }* such that x 6(x) for all x 6 {0, }*.

The result of a constructor 3 (i.e., the language constructed by 3) is the unique language R(6)
such that 3" (,k)

_
R(3) for all n 6 N. (Recall that this means that each string 6" ()) is a prefix

of the characteristic sequence of R(3).) Intuitively, 6 constructs R(3) by starting with ,k and
then iteratively generating successively longer prefixes of R(3). Given a set A of functions
from {0, }* into {0, }*, we write R(A) for the set of all languages R(3) such that 6 6 A and
6 is a constructor.

We first note that the exponential-time complexity classes E and E2 can be characterized
in terms of constructors.

Notation. The classes p p and P2, both consisting of functions f {0, }* {0, }*,
are defined as follows.

P P {flf is computable in polynomial time},

P2 {fir is computable in n (lgn)’’ time}.

LEMMA 6 16]. (1) R (p) E. (2) R (P2) E2.
Using Lemma 6, the measure structures of E and E2 are now developed in terms of the

classes Pi, for 1, 2.
DEFINITION. A density function is a function d {0, }* --+ [0, cx) satisfying

(3.1) d(w) >
d(wO) + d(wl)

for all w {0, 1}*. The global value of a density function d is d()). The set covered by a

densityfunction d is

(3.2) S[d]- U C,,,.
,,,{0,1}*
d(u’)E

(Recall that Cw {x {0, 1}[w

x} is the cylinder generated by w.) A densityfimction

d covers a set X c_C_ {0, }o if X c_ S[d].
Consider the random experiment in which a sequence x 6 {0, } is chosen by using an

independent toss of a fair coin to decide each bit of x. Taken together, parts (3.1) and (3.2) of
the above definition imply that Pr[x 6 S[d]] _< d()) in this experiment. Intuitively, given a

set X c_ S[d], a density function d simply "asserts" that d00 is an upper bound for Pr[x 6 X]
and then "verifies" this assertion by providing additional details in the form of values d(w)
satisfying conditions (3.1) and (3.2).

MEASURE AND THE DENSITY OF HARD LANGUAGES 769

More generally, we will be interested in "uniform systems" of density functions that are
computable within some resource bound.

DEFINITION. An n-dimensional density system (n-DS) is a function

d" N" {0, 1}* --+ [0,

such that d is a density function for every k E Nn. It is sometimes convenient to regard a
densityfunction as a O-DS.

DEFINITION. A computation ofan n-DS d is afitnction’" N"+1 {0, }* ---, D such that

Ir:,r (w) d(w) < 2-"

for all k N", r,6 N, and w {...0, }*. For 1, 2, a pi-computation of an n-DS d
is a computatio d of d such that d pi. An n-DS d is pi-computable if there exists a

pi-computation d ofd.
Ifd is ann-DS suchthatd N"x {0, }* -+ Dandd 6 Pi, thend is trivially pi-computable.

This fortunate circumstance, in which there is no need to compute approximations, occurs
frequently in practice. (Such applications typically do involve approximations, but these are
"hidden" by invoking fundamental theorems whose proofs involve approximations.)

We now come to the key idea of resource-bounded measure theory.
DEFINITION. A null cover of a set X c_ {0, } is a 1-DS d such that, for all k N, d

covers X with global value di(Jk) < 2-/. For 1, 2, a pi-null cover ofX is a null cover of
X that is pi-computable.

In other words, a null cover of X is a uniform system of density functions that cover X
with rapidly vanishing global value. It is easy to show 15] that a set X

_
{0, }oo has classical

Lebesgue measure 0 (i.e., probability 0 in the above coin-tossing experiment) if and only if
there exists a null cover of X.

DEFINITION. A set X has pi-measure 0, and we write #p, (X) O, if there e.rists a pi-null
cover of X. A set X has pi-measure 1, and we write #p; (X) 1, if #pi (Xc) O.

Thus a set Xhas p;-measure 0 if Pi provides sufficient computational resources to compute
uniformly good approximations to a system of density functions that cover X with rapidly
vanishing global value.

We now turn to the internal measure structures of E R(p) and E2 R(p2).
DEFINITION. A set X has measure 0 in R (pi), and we write bt(X

R (pi)) O. A set X has measure in R (pi), and we write #(X R (pi)) 1, if lZ (X
R (pi)) 0. /f bt (X R (pi)) 1, we say that almost every language in R (pi) is in X.

The following lemma is obvious but useful.
LEMMA 7. For every set X <_ {0, },

#p(X) O Up,.(X) O

#(XIE) 0 #(XIE2) 0,

= Pr[x eX]--O

where the probability Pr[x e X] is computed according to the random experiment in which a

sequence x {0, }oo is chosen probabilistically, using an independent toss ofa fair coin to

decide each bit ofx.
Thus a proof that a set X has p-measure 0 gives information about the size of X in E, in

E2, and in {0, 1 }.
It was noted in Lemma 7 that #p(X) 0 implies #P2 (X) 0. In fact, more is true.

770 JACK H. LUTZ AND ELVIRA MAYORDOMO

LEMMA 8 [14]. Let Z be the union of all sets X such that #p(X) O. Then lZp,(Z)
#(Z]E2) 0.

Lemma 8 is also called the Abundance Theorem, because it implies that almost every
language A E E2 is p-random, i.e., has the property that the singleton set {A does not have
p-measure 0. The proof ofLemma 8 makes essential use of the fact that P2 contains a universal
function for p. It is not the case that #p(Z) 0.

It is shown in 18] that these definitions endow E and E2 with internal measure structure.
Specifically, for 1,2, if2- is either the collection 2-p; of all pi-measure 0 sets orthe collection

2"Rp,) of all sets of measure 0 in R(pi), then 2" is a "pi-ideal," i.e., is closed under subsets,
finite unions, and "pi-unions" (countable unions that can be generated with the resources of
pi). More importantly, the Measure Conservation Theorem of 18] says that the ideal 2"Rp;) is
a proper ideal, i.e., that E does not have measure 0 in E and E2 does not have measure 0 in E2.
Taken together, these facts justify the intuition that, if #(XIE) 0, then XN E is a negligibly
small subset of E (and similarly for E2).

Our proof of the Weak Stochasticity Theorem does not directly use the above definitions.
Instead we use a sufficient condition, proved in [18], for a set to have measure 0. To state this
condition we need a polynomial notion of convergence for infinite series. All our series here

-’n=0 a,, is a function m N --+ N suchconsist of nonnegative terms. A modulus for a series
that

Z an < 2-j

n.=-m(j)

for all j E N. A series is p-convergent if it has a modulus that is a polynomial. A sequence

aj,k (j O, 1,2
k=0

of series is uniformly p-convergent if there exists a polynomial m N2 -- N such that, for
each j 6 N, mj is a modulus for the series =0 aj,k. We will use the following sufficient
condition for uniform p-convergence. (This well-known lemma is easily verified by routine
calculus.)

LEMMA 9. Let aj,k [0, Cx)for all j, k N. If there exist a real e > 0 and a polynomial
_k

g" N --+ N such that aj,k < e for all j, k N with k > g(j), then the series

aj,k (j O, 1, 2
k=0

are uniformly p-convergent.
The proof of the Weak Stochasticity Theorem is greatly simplified by using the following

special case (for p) of a uniform, resource-bounded generalization of the classical first Borel-
Cantelli lemma.

LEMMA 10 18]. Ifd is a p-computable 2-DS such that the series

dj,k()) (j O, 1,2
k=0

are uniformly p-convergent, then

.p =o.
=0 t=0 k=t

MEASURE AND THE DENSITY OF HARD LANGUAGES 771

If we write Sj ["It=0 U=, S[dj,,] and S Uj=0 sj, then Lemma 10 gives a sufficient
condition for concluding that S has p-measure 0. Note that each Sj consists of those languages
A that are in infinitely many of the sets S[dj,,].

We now formulate our notion of weak stochasticity. For this we need a few definitions.
Our notion of advice classes is standard 12]. An advicefunction is a function h N --+ {0, }*.
Given a function q N N, we write ADV(q) for the set of all advice functions h such that
Ih(n)l < q(n) for all n N. Given a language A

{0, 1}* and an advice function h, we

define the language A/h ("A with advice h") by

A/h {x {0, 1}* (x,h(lxl)) A}.

Given functions t, q N --> N, we define the advice class

DTIME(t)/ADV(q) {A/h A DTIME(t), h ADV(q)}.

DEFINITION. Let t, q, v N ---> N and let A c_ {0,1}*. Then A is weakly (t,q,v)-
stochastic if for all B DTIME(t)/ADV(q) and all C DTIME(t) such that]C=,,I > v(n)
for all sufficiently large n,

I(A / B) n C=nl
lira

Intuitively, B and C together form a "prediction scheme" in which B tries to guess the
behavior of A on the set C. A is weakly (t, q, v)-stochastic if no such scheme is better in the
limit than guessing by random tosses of a fair coin.

Our use of the term "stochastic" follows Kolmogorov’s terminology [13], [29] for prop-
erties defined in terms of limiting frequencies of failure of prediction schemes. The adverb
"weakly" distinguishes our notion from a stronger stochasticity property considered in 14],
but weak stochasticity is a powerful and convenient tool.

The following lemma is central to this section because it captures the main technical
content of the Weak Stochasticity Theorem.

LEMMA 11. Fix c N and 0 < ?’ R, and let

WS,, {A c_ {0, 1}*IA is weakly (2Cn, cn, 2vn)-stochastic}.

Then lzp(WSc,) 1.

Proof. Assume the hypothesis. Let U 6 DTIME(2(C+)n) be a language that is universal
for DTIME(U") x DTIME(Un) in the following sense. For each 6 N, let

Ci {x {0, 1}*1(0i, 0x) U},

Di {x 6 {0, 1}*1(0i, Ix) U}.

Then DTIME(U") DTIME(U) {(Ci, D)li N}.
Our objective is to use Lemma 10 to prove that WS the complement of WS. hasc,"

p-measure 0. In order to do this, for all i, j, k 6 N, we define the set Y.,j, of languages as
follows. If k is not a power of 2, then Yi,j, 0. Otherwise, if k 2", where n 6 N, then

Yi,j,k Yi,j,k,z,
z{0,1

772 JACK H. LUTZ AND ELVIRA MAYORDOMO

where each

Yi,j,k,z-{ A c {O, 1}* l(Ci)=,,[>_2n

and
I(A

I(C,)-nl 2 j + /

(The notation Di/z here denotes Di/h, where h N --+ {0, 1}* is the constant function
h(n) z.) The point of this definition is that, if a language A c_ {0, }* is not an element
of WSc.,, then the definition of weak stochasticity says that there exist i, j 6 N such that
A Yi,j,k for infinitely many k. That is,

rVSc, c UU n Uh.,._
i=0 j=0 m=0 k=m

It follows by Lemma 10 that it suffices to exhibit a p-computable 3-DS d with the following
two properties.

(I) The series Y=0 di,j,k(,k), for i, j 6 N, are uniformly p-convergent.
(II) For all i, j, k 6 N, Yi,j,k C_ S[di,j,k].
Define the function d N {0, }* [0, x) as follows. If k is not a power of 2, then

di,j.k (to) 0. Otherwise, if k 2n, where n 6 N, then

di,j,.(w)= Pr(Yi,j,k,zlCw),
zE{0,1}

where the conditional probabilities Pr(Yi,j,k,.,ICo) Pr[A 6 Yi,j,,,zlA C] are computed
according to the random experiment in which the language A

{0, 1}* is chosen proba-

bilistically, using an independent toss of a fair coin to decide membership of each string in
A.

It follows immediately from the definition of conditional probability that d is a 3-DS.
Since U DTIME(2C+)’) and c is fixed, we can use binomial coefficients to compute
(exactly) di,j,k(w) in time polynomial in + j + k + Iwl. Thus d is p-computable.

To see that d has property (I), note first that the Chernoff bound, Lemma 5, tells us that,
for all i, j, k 6 N and z 6 {0, }-<c’ (writing k 2" and N k 2"),

Pr(Yi,j,.,z) < 2e-N/z(J+I)’,

whence

di,j,k(,k)-

_
Pr(Yi,j,k,z)

z_{O, }s"

< 2cn+l 2e-N/2(j+l)Z

< eCn+2-N/2(j+ 1)2.

Let a [], let 6 , and fix k0 6 N such that

k2a >ka+clogk+2

for all k > k0. Define g" N -+ N by

g(j) 4a (j + 1)4a --I- ko.

MEASURE AND THE DENSITY OF HARD LANGUAGES 773

Then g is a polynomial and, for all i, j, n 6 N (writing k 2 and N k’ k4’),

N k2’k2’

k > g(j) == >_ [4 (j %-)4a]26 (k q’- c log k + 2)
> 2(j+l)e(k+cn+2)

=== di,,. (.) < e-Thus di,j,kO) < e-ka for all i, j, k N such that k > g(j). Since > 0, it follows by Lemma
9 that (I) holds.

Finally, to see that (II) holds, fix i, j, k 6 N. If k is not a power of 2, then (II) is trivially
affirmed, so assume that k 2", where n 6 N. Let A Yi,j,k. Fix z {0, 1}<" such that
A Y,j,a-,z and let w be the (2"+ 1)-bit characteristic string of A<,. Then

di,y,a.(w) > Pr(Yi,y.k,,.lCw)= 1,

so A Cw c_ S[di,j,k]. This completes the proof of Lemma 11.
We now have the main result of this section.
THEOREM 12 (Weak Stochasticity Theorem). (1) For all c N and y > O, almost every

language A E is weakly (2’’, cn, 2v")-stochastic. (2) Ahnost ever3, language A E2 is, for
all c N and), > O, weakly (2c’, cn, 2")-stochastic.

Proof Part (1) follows immediately from Lemma 11 via Lemma 7. Part (2) follows from
Lemma 11 via Lemmas 8 and 7.

4. The density of hard languages. In this section we prove our main result, that for
every real ot < 1, the set P,,, _tt (DENSE) has measure 0 in E and in E2. We then derive some
consequences of this result. Some terminology and notation will be useful.

Given a query-counting function q N ---> Z+, a q(n)-queryfunction is a function f with
domain {0, }* such that, for all x {0, 1}*,

f(x) (f (x) fql.,.i)(x))

Each f(x) is called a quem. of f on input x. A q(n)-truth-tablefitnction is a function g with
domain {0, }* such that, for each x 6 {0, }*, g(x) is the encoding of a q(lx[)-input, 1-output
Boolean circuit. We write g(x)(w) for the output of this circuit on input w 6 {0, 1}ql:l).
A <P -reduction is an ordered pair (f, g) such that f is a q(n)-query function, g is aq(n)-tt
q (n)-truth-table function, and f and g are computable in polynomial time.

PLet A, B __. {0, 1}*. A <,)_tt-reduction of A to B is a <_q)_tt-reduction (f, g) such
that, for all x 6 {0, }*,

[Ix A]] g(x)(i[f(x) B]]... [Ifq(ixl)(x) 6 B]]).

(Recall that [[p]] denotes the Boolean value of the condition O.) In this case we say that A
<P -reducible to B and write A <P B if there<P B via (f, g). We say that A is _q(,,)_ttq(n)-tt q(n)-tt

exists (J g) such that A <P B via (f, g)-q(n)-tt
The proof of our main result makes essential use of the following construction.
Given an n-query function f and n 6 N, the sequentially mostfrequent query selection

(smfq selection) for f on inputs of length n is the sequence

(S0, O0, y0), (Sl, Q,, yl) (Sn,, Q,.,, yn)

defined as follows. Each S/,

_
{0, }". Each Q. is an ISl x n’ matrix of strings, with each

string in Qk colored either green or red. The rows of Q/, are indexed lexicographically by the

774 JACK H. LUTZ AND ELVIRA MAYORDOMO

elements of Sk. For x 6 Sk, row x of Q, is the sequence fl (x) f (x) of queries of f
on input x. If Q, contains at least one green string, then y/, is the green string occurring in
the greatest number of rows of Qt.. (Ties are broken lexicographically.) If Qt. is entirely red,
then y, 7- ("top," i.e., undefined). The sets Sk and the coloring are specified recursively.
We set So {0, }n and color all strings in Q0 green. Assume that S., Q., and y. have been
defined, where 0 _< k < n. If yk T, then (Sk+l, Q-+I, y-+) (S., Qk, y.). If y, -- T,
then Sk+l is the set of all x 6 Sk such that yk appears in row x of Qk. The strings in Qk+l
are then colored exactly as they were in Qk, except that all yk’s are now colored red. This
completes the definition of the smfq selection.

For 0 _< k < n’, it is clear that every row of Qt. contains at least k red strings. In particular,
the matrix Q,, is entirely red.

Our main results follow from the following lemma. Recall that WSc, is the set of all
weakly (2c’, cn, 2n)-stochastic languages.

LEMMA 13. For every real ot < 1, P,1_tt(DENSEc) C) WS3,1/2 91.

Pro@ Let c < and assume that A <P L via (f, g) where L ’ DENSE. It suffices--It

to show that A WS3,1/2. Fix a polynomial p such that [f(x)l <_ p(lxl) for all x 6 {0, 1}*
and _< < Ix[. Let e (1 c)/4, and fix no 6 N such that the following conditions hold
for all n > no"

(i) n >_ 2. nl-2,
(ii) nz-n_>2.

Let

K {n 6 NIn > no and IL<_p(n)l < 2’l}.

Note that K is infinite because L is not dense.
Define languages B, C, D and an advice function h N --+ {0, 1}* as follows. For all

n < no, we let C=n {0, 1}n, h(n) 1., and D,, (x, i.)]x 6 {0, 1}n }. For all n >_ no,
C=,,, h (n), and D, are defined from the smfq selection for f on inputs of length n as follows:
Let k k(n) be the greatest integer such that 0 <_ k < n’ and IS-I >_ 2"-kn’ (Note that k
exists because IS01 2’.) We then define

h(n) [[Yo L]... [[y,_ L]],

and we let D,, be the set of all coded pairs (x,z) such that x 6 Sk, z 6 {0,1}k, and
g(x)(b b,,) 1, where each

I

bi-
z[j]

I 0

iff(x)--yj, 0<j <k,

if f(x) ’ {Y0 Yk-}

Finally, we let D [..J=0 Dn and B D h. Intuitively here, B tries to predict A on C.
Specifically, for each n > no and each x C--, S-, the bit [Ix 6 Bll is a "guessed value" of
the bit [Ix All. The actual value, given by the reduction (f, g) to L, is

[Ix A]] g(x)([[w L]]... [[w,, L]]),

where to tOn are the entries in row x of the matrix Q. The guessed value [l-x 6 Bll
g(x)(b...b,,) uses the advice function h to get the correct bit bi [[wi Lll when the
string wi is red in Qk, and guesses that wi L when the string wi is green in Qk.

MEASURE AND THE DENSITY OF HARD LANGUAGES 775

It is easy to see that C, D 6 DTIME(23n) and B 6 DTIME(23n)/ADV(3n). (The bound
3n is generous here.) Also, by condition (i) in our choice of no,

C=n > 2"-n""’’ > 2"/2

for all n > no, whence IC=nl >_ 2 for all n N.
We now show that B does a good job of predicting A on C=,, for all n 6 K. Let n 6 K.

We have two cases.
(I) If k k(n) n, then all strings in Qk are red, so all the guesses made by

B are correct, so

I(A B) Cq C=I 0.

(II) If k k(n) < n’*, let r be the number of rows in Qk, i.e., r I&l IC-l.
By our choice of k, we have

I&+l < 2"-{k+)’2’ < 2-n2"r.

That is, no green string appears in more than 2-2’r of the rows of Qk. Moreover, since

IL<_p(n)l < 2n‘, there are at most 2"’ green strings w in Qa. such that w 6 L. Thus there are

at most 2n’ 2-n2’ 2n’-n2’r r rows of Qa. in which B makes an incorrect guess that a green
string is not in L; the guesses made by B are correct in all other rows! By condition (ii) in our
choice of no, then, B is incorrect in at most a r rows of Q,. That is,

I(A A B) (q C=nl _< ar.
In either case, (I) or (II), we have

I(A/x B) C C=nl <_ alC--nl,

Since this holds for all n 6 K, and since K is infinite,

I(A Z B) m C=,,I

Thus B and C testify that A is not weakly (23n, 3n, 2/2)-stochastic, i.e., that A ’W83,1/2. [3

Our main results are now easily derived. We start with the fact that most languages
decidable in exponential time are not <e _tt_reducible to nondense languages

THEOREM 14 (Main Theorem). For every real number ot < 1,

#(P,,_,t(DENSEC) E) #(Pn_,,(DENSEC) E2) O.

Proof This follows immediately from Theorem 12 and Lemma 13.
The Main Theorem yields the following separation result.
THEOREM 15. For every real t < 1,

E g; Pn_tt(DENSEC).

That is, every <P _tt-hard languagefor E is dense.

Proof. By the Measure Conservation Theorem [18], #(E E) -7/: 0, so this follows
immediately from Theorem 14. [3

776 JACK H. LUTZ AND ELVIRA MAYORDOMO

Note that Theorem 15 strengthens Theorem 2 by extending the number of queries from
O(log n) to n’, where ot < (e.g., ot 0.99).

It is worthwhile to examine the roles played by various methods. Theorem 14, a measure-
theoretic result concerning the quantitative structure of E and E2, yields the qualitative sep-
aration result Theorem 15. From a technical standpoint, this proof of Theorem 15 has the
following three components.

(i) The sequentially most frequent query selection (Lemma 13). This is used to prove
that every language in Pn_tt (DENSEc) is predictable, i.e., fails to be weakly stochastic (with
suitable parameters).

(ii) The Weak Stochasticity Theorem (Theorem 12). This shows that only a measure 0
subset of the languages in E are predictable.

(iii) The Measure Conservation Theorem [18]. This shows that E is not a measure 0
subset of itself.

Of these three components, (ii) and (iii) are general theorems concerning measure in E.
Only component (i) is specific to the issue of the densities of P,,,_tt-hard languages. That
is, given the general principles (ii) and (iii), the proof of Theorem 15 is just the sequentially
most frequent query selection, i.e., the proof ofLemma 13. The latter proof is combinatorially
much simpler than Watanabe’s direct proof of Theorem 2. This is not surprising, once it is
noted that our proof of Theorem 15 is an application of (a resource-bounded generalization
of) the probabilistic method [5], [25], [26], [6], [27],], which exploits the fact that it is often
easier to establish the abundance of objects of a given type than to construct a specific object
of that type. Much of our proof of Theorem 15 is "hidden" in the power of this method (i.e.,
in the proofs of the Measure Conservation and Weak Stochasticity Theorems), freeing us to
apply the sequentially most frequent query selection to the problem at hand.

An important feature of this general method is that it is uniformly constructive in the fol-
lowing sense. Taken together, the proofs of the Measure Conservation and Weak Stochasticity
Theorems give a straightforward, "automatic" construction of a language A 6 E C) WS3,1/2.
By Lemma 13, it follows immediately that A 6 E\P,,_tt(DENSEC). Thus one can apply
this complexity-theoretic version of the probabilistic method with complete assurance that the
resulting existence proof will automatically translate into a construction.

The primary objective of resource-bounded measure theory is to give a detailed account

of the quantitative structure of E, E2, and other complexity classes. The derivation of quali-
tative separation results, such as Theorems 15 and 2, is only a by-product of this quantitative
objective. (By analogy, the value of classical Lebesgue measure and probability far surpasses
their role as tools for existence proofs.) In the case of E, for example, the quantitative content
of Theorem 14 is that the set Pn"-tt (DENSEc) Cq E is a negligibly small subset of E.

As noted in the introduction to this paper, we are interested in the consequences of the
hypothesis that NP is not a negligibly small subset of exponential time. In this regard, our
main theorem yields the following result.

THEOREM 16. If#(NPIE) :/: 0 or #(NPIE2) =/= 0, then for all ot < ever)’ <P. -hard-tt

languagefor NP is dense, i.e., NP P,,,_tt(DENSEC).
<P, -hard language H that is not dense then Theorem 14 tells us thatProof If NP has a -n -tt

#(NPIE) #(P,,-tt(H)IE) 0 and #(NPIEz) #(Pn--tt(H)lE2) 0. 1

Note that the hypothesis and conclusion of Theorem 16 are both stronger than their

counterparts in Ogiwara and Watanabe’s result that

P - NP NP Pbtt(SPARSE).

Note also that our proof of Theorem 16 actually shows that

NP f)WS3,1/2 : NP P,,_tt (DENSEC).

MEASURE AND THE DENSITY OF HARD LANGUAGES 777

In fact, this implication and Theorem 16 both hold with NP replaced by PH, PP, PSPACE, or
any other class.

5. Conclusion. The density criterion in Theorem 14 cannot be improved, since for every
<P> 0 there is a language A 6 E that is _,,-hard for E2 and satisfies A_<, < 2"’ for all n. It is

an open question whether the query bound n can be significantly relaxed. A construction of
Wilson [32] shows that there is an oracle B such that EB c_ pg(n)_tt(SPARSE), so progress in
this direction will require nonrelativizable techniques. (The proof of Theorem 14 relativizes
in a straightforward manner.)

There are several open questions involving special reducibilities. We mention just one
example. Very recently, Arvind, K6bler, and Mundhenk [2] proved that

P - NP = NP Pb,,(Pa,(SPARSE)),

where Pctt refers to polynomial-time conjunctive reducibility. (This strengthens Theorem 4.)
Does the class Part (Pert (DENSEc)) have measure 0 in E?

As noted in the introduction, all known _<.-hard languages for NP are dense, i.e., our
experience suggests that NP Pr(DENSEC). This suggests two open questions. (See
Fig. 1.) Karp and Lipton [12] show that

Ogiwara
and
Watanabe

Karp
and
Lipton

NP z PT(SPARSEf

NP : Pbtt(SPARSE)

/

/ open,
g(NP E:) 4 0

open

this
paper

NP PT(DENSE)

NP Pntt(DENSE

Fig. 1. Two open problems.

’ # FI2 == NP PT(SPARSE).

Theorem 16 of the present paper shows that

#(NP E2) - 0 NP P,,,_tt(DENSEc)

for ot < 1. The first question, posed by Selman [24], is whether the strong hypothesis
/z(E\FI2p E2) -7- 0 can be used to combine these ideas to get a conclusion that NP
Pr(DENSEC). The second, more fundamental, question is suggested by the first. A well-
known downward separation principle [28] says that, if the polynomial time hierarchy separates
at some level, then it separates at all lower levels. Thus, for example, E’ :/: FIp implies that

778 JACK H. LUTZ AND ELVIRA MAYORDOMO

P - NP. Is there a "downward measure separation principle," stating that #(P:+\n’+
E2) :/: 0 #(E\I-I’ E2) - 0? In particular, does U(E’\II’ E2) # 0 imply that
#(NP E2) :)b_ 07

The hypothesis that/z(NPIE2) 0, i.e., that NP is not a negligibly small subset of E2,
was recently shown to have a number of credible consequences: If/ (NPIE2) :/: 0, then NP
contains p-random languages [14]" NP contains E-bi-immune languages [21]; every <P-hardm

language for NP has an exponentially dense, exponentially hard complexity core [10]; and
now, by Theorem 15, every <P _tt-hard language for NP (or < 1) is exponentially dense.
Further investigation of the consequences and reasonableness of #(NPIE2) 0 and related
strong, measure-theoretic hypotheses is clearly indicated.

Acknowledgments. The first author thanks Bill Gasarch and Alan Selman for helpful
discussions. Both authors thank two anonymous referees for several suggestions that improved
the exposition.

Note added in proof. Very recently, and independently, Fu [7] used resource-bounded
Kolmogorov complexity to prove results similar to Theorem 15 but for Turing reducibilities
instead of truth-table reducibilities.

REFERENCES

[1] N. ALON AND J. H. SPENCER, The Probabilistic Method, Wiley, New York, 1992.
[2] V. ARVIND, J. KOLER, AND M. MUNtHENK, Bounded truth-table and conjunctive reductions to sparse and tally

sets, Lecture Notes in Comput. Sci., 652, 1992, Springer-Verlag, Berlin, pp. 140-151.
[3] L. BERMAN AND J. HARTMANIS, On isomorphism and densit3., ofNP and other complete sets, SIAM J. Comput.,

6 (1977), pp. 305-322.
[4] H. CHERNOVr, A measure of a(C),mptotic efficienc3, for tests of a hypothesis based on the sttm of observations,

Ann. of Math. Stats., 23 (1952), pp. 493-509.
[5] E ERDOS, Some remarks on the theor3., ofgraphs, Bull. Amer. Math. Soc., 53 (1947), pp. 292-294.
[6] P. ERDOS AND J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.
[7] B. Ft, With qltasi-linear queries EXP is not polynomial time Turing reducible to sparse sets, Proceedings of

the Eighth Annual Structure in Complexity Theory Conference, San Diego, CA, IEEE Computer Society
Press, New York, 1993, pp. 185-191.

[8] T. HAGEIUP AND C. ROB, A guided tour of Chernoffboumls, Inform. Process. Lett., 33 (1990), pp. 305-308.
[9] L.A. HEMACHANDRA, M. OGIWARA, AND O. WATANABE, How hard are sparse sets?, Proceedings of the Seventh

Annual Structure in Complexity Theory Conference, Boston, MA, IEEE Computer Society Press, New
York, 1992, pp. 222-238.

[10] D.W. JUEDES AND J. H. LUTZ, The complexity and distribution ofhardproblems, SIAM J. Comput., to appear;
also in Proceedings of the 34th IEEE Symposium on Foundations of Computer Science, Palo Alto, CA,
IEEE Computer Society Press, New York, 1993, pp. 177-185.

11 Kohnogorov complexiO’, complexity cores, and the distribution of hardness, Kolmogorov Complexity
and Computational Complexity, O. Watanabe, ed., Springer-Verlag, New York, 1992. pp. 43-65.

[12] R. M. KARP AND R. J. LIPTON, Some connections between nonuniform and uniform complexity classes, Pro-
ceedings of the 12th ACM Symposium on Theory of Computing, Los Angeles, CA, 1980, pp. 302-309;
also published as Turing machines that take advice, Enseign. Math. 28 (1982), pp. 191-209.

[13] A. N. KOIMOGOOV aND V. A. USPENSKII, Algorithms and randomness, Theory of Probab. Appl., 32 (1987),
pp. 389-412.

[14] J.H. Luvz, Intrinsically pseudorandom sequences, in preparation.
15] Resource-bounded measure, in preparation.
[16] Categoo, and measure in complexit3., classes, SIAM J. Comput., 19 (1990), pp. 1100-1131.
17] An upward measure separation theorem, Theoret. Comput. Sci., 81 1991), pp. 127-135.

[18] ,Ahnost ever3.,where high nonuniform complexity, J. Comput. System Sci., 44 (1992), pp. 220-258.
19] J. H. LUTZ AND W. J. SCHMDT, Circuit size relative to pseudorandom oracles, Theoret. Comput. Sci. A, 107

(1993), pp. 95-120.
[20] S.R. MAHANEY, Sparse complete setsfor NP: Solution ofa conjecture ofBerman and Hartmanis, J. Comput.

System Sci., 25 (1982), pp. 130-143.

MEASURE AND THE DENSITY OF HARD LANGUAGES 779

[21 E. MAYORDOMO, Almost every set in exponential time is P-bi-immune, Theoretical Computer Science, to appear;
also in Seventeenth International Symposium on Mathematical Foundations ofComputer Science, Prague,
Czechoslovakia, Springer-Verlag, New York, 1992, pp. 392-400.

[22] A.R. MEVFR, 1977, reported in [3].
[23] M. OGIWARA AND 0. WATANABE, On polynomial bounded truth-ruble reducibility of NP sets to sparse sets,

SlAM J. Comput., 20 1991), pp. 471-483.
[24] A.L. SEt.MAN, personal communication, 1992.
[25] C. E. SHANNOn, A mathematical theory of communication, Bell System Tech. J., 27 (1948), pp. 379-423,

623-656.
1.26] , The synthesis oftwo.terminal switching circuits, Bell System Tech. J., 28 (1949), pp. 59-98.
[27] J. H. SpEnceR, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1987.
[28] L.J. S’rOCMZR, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.
[29] V.A. USPENSKII, A. L. SEMENOV, AND A. KH. SHEN’, Can an individual sequence ofzeros and ones be random?,

Russian Math. Surveys, 45 (1990), pp. 121-189.
[30] O. WAa’AYA, On the Structure ofhtractable Complexity Classes, Ph.D. thesis, Tokyo Institute of Technology,

1987.
[31] Polynomial time reducibility to a set of small density, Proceedings of the Second Structure in Com-

plexity Theory Conference, Ithaca, NY, 1987, pp. 138-146.
[32] C.B. WtsoN, Relativized circuit complexity, J. Comput. System Sci., 31 (1985), pp. 169-181.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 780-788, August 1994

() 1994 Society for Industrial and Applied Mathematics
006

FINDING k DISJOINT PATHS IN A DIRECTED PLANAR GRAPH*
ALEXANDER SCHRIJVER

Abstract. It is shown that, for each fixed k, the problem of finding k pairwise vertex-disjoint directed paths
between given pairs of terminals in a directed planar graph is solvable in polynomial time.

Key words, disjoint, path, directed, planar, graph, polynomial-time, algorithm, free group, homologous, coho-
mologous

AMS subject classifications. 05C20, 05C85, 68R 10

1. Introduction and statement of result. In this paper we show that the following prob-
lem, the k disjoint paths problemfor directed planar graphs, is solvable in polynomial time,
for any fixed k:

(1)

given a directed planar graph D (V, A) and k pairs (rl, S1) (rk, sk) of

vertices of D;
find k pairwise vertex-disjoint directed paths P P, in D, where/"i runs

from ri to si (i k).

The problem is NP-complete if we do not fix k (even in the undirected case; Lynch [2]).
Moreover, it is NP-complete for k 2 if we delete the planarity condition (Fortune, Hopcroft,
and Wyllie]). This is in contrast to the undirected case (for those believing NPCP), where
Robertson and Seymour [4] showed that, for any fixed k, the k disjoint paths problem is
polynomial-time solvable for any graph (not necessarily planar).

In this paper we do not aim at obtaining the best possible running time bound, as we
presume that there are much faster (but possibly more complicated) methods for (1) than the
one we describe in this paper. In fact, recently Reed, Robertson, Schrijver, and Seymour [3]
showed that for undirected planar graphs the k disjoint paths problem can be solved in linear
time, for any fixed k. This algorithm makes use of methods from Robertson and Seymour’s
theory ofgraph minors. A similar algorithm for directed planar graphs might exist but probably
would require extending parts of graph minors theory to the directed case.

Our method is based on cohomology over free (nonabelian) groups. For the k disjoint paths
problem we use free groups with k generators. It extends methods given in [5] for undirected
graphs on surfaces based on homotopy. Cohomology is in a sense dual to homology and can be
defined in any directed graph, even if it is not embedded on a surface. We apply cohomology
to an extension of the planar graph dual of Dmjust applying homology to D itself seems not

powerful enough.
We remark that in our approach free groups and (co)homology are used mainly as a

framework to formulate certain ideas smoothly; they give us a convenient tool for recording
shifts of curves over the plane. No deep group theory or topology is used. We could avoid free
groups and cohomology by adopting a more complex notation and terminology; that would,
however, implicitly mimic free groups and cohomology. The present approach also readily
allows application of the algorithm where the embedding of the graph in the plane is given
combinatorially, that is, by a list of the cycles that bound the faces of the graph.

*Received by the editors January 2, 1992; accepted for publication (in revised form) April 26, 1993.
Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands and Department

of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, the Netherlands.

780

FINDING k DISJOINT PATHS IN A DIRECTED PLANAR GRAPH 781

2. The cohomology feasibility problem.

2.1. Free groups. The free group Gk, generated by the generators gl, g2 gk, con-
sists of all words bib2.., bt where > 0 and bl bt {gl, g-l, gk, gl} such that

bibi+l gjg-l and bibi+ g-fgj for/= t- and j k. The product x y
oftwo such words is obtained from the concatenation xy by deleting iteratively all occurrences
of any gjg-y-1 and gf gj. (So in our notation x. y 7 xy in general.) This defines a group, with

unit element equal to the empty word 0. We call g, g- gk, g-I the symbols. The size
Ix of a word x is the number of symbols occurring in it, counting multiplicities.

A word y is called a segment of a word w if w xyz for certain words x, z. It is called a
beginning segment if x and an end segment if z 1. A subset F of a free group is called
hereditary if for each word y 6 F, each segment of y belongs to 1-’.

We define a partial order < on Gk by

(2) x < y x is a beginning segment of y.

This gives a lattice if we extend Gk with an element cxz at infinity. We denote the meet and
join by/x and v. So x/x y is equal to the longest common beginning segment of x and y.
Moreover, x v y cx except if x < y or y < x.

We make two easy observations.
LEMMA 2.1. Let ot be a symbol, and let x, z G,. If x < ot z and z < ot -1 x, then

x -1 "Ol "Z: orx =z: 1.

Proof Let y x- c z, and suppose that y - 1. Since x < ot z, it follows that
c.z xy’forsomey’, and hencey x-.c.z x-.(xy’) y’. Consequently
xy 6 G,; and since z < ot- x, it follows similarly that zy- Gk, that is, yz-I 6 Gk.
Since y - 1, this implies that xyz- Gk, and so ot x y. z- xyz-. In particular,

Io1--Ixl / lYl + Izl >_ Ix + + Izl. Therefore, x z 1. [3

LEMMA 2.2. Let x, y Gk. Ifx y, then the last symbol ofx is equal to the last symbol
ofy-1 .x.

Proof. Let z x/’, y. Write x zx’ and y zy’, where x’ -y: 1. Let c be the first
symbol of x’. Since z x/x y, we know oe 2 Y’. Hence (y,)-I x’ (y’)-x’ (i.e., no
cancellation). Consequently,

(3) y-1. X ((y’)-lz-l)" (ZX’) (y,)-I. X’ (y’)-lx’.

Hence, as x’ - 1, the last symbol of x is equal to the last symbol of y-1 X. [’]

2.2. The cohomology feasibility problem for free groups. Let D (V, A) be a weakly
connected directed graph, let r 6 V, and let (G, .) be a group. (We allow directed graphs to
have parallel arcs.) Two functions 4, p A ----+ G are called r-cohomologous if there exists
a function f" V ---+ G such that

(4)
(i) f(r)= 1;

(ii) ap(a) f(u) -1 (a). f(w) for each arc a (u, w).

One easily checks that this gives an equivalence relation.
Consider the following cohomologyfeasibility problemforfree groups:

(5)

given a weakly connected directed graph D (V, A), a vertex r, a function

4 A Gk, and for each a 6 A a hereditary subset F(a)ofGk;
find a function A -- Gk such that p is r-cohomologous to 4 and such that

p(a) 6 F(a) for each are a.

782 ALEXANDER SCHRIJVER

We show the following.
THEOREM 2.3. The cohomology feasibility problem for free groups is solvable in time

bounded by a polynomial in AI / cr + k.
Here r is the maximum size of the words 4(a) and the words in the F(a). (In fact we

can drop k and assume that G, is the free group generated by the generators occurring in the
qS(a) and the words in the F(a).)

Note that, by the definition of r-cohomologous, equivalent to finding a p as in (5) is
finding a function f V ---+ Gk satisfying

(6)
(i) f(r)= 1;

(ii) f(u)- ok(a), f(w) I’(a) for each arc a (u, w).

We call such a function ffeasible.
In solving the cohomology feasibility problem for free groups we may assume

(7)

(i) F(a) - 0 for each arc a;

(ii) 14(a)l _< for each arc a;

(iii) with each arc a (u, w) also a -1 (w, u) is an arc, with 4(a-1) 4(a)-and F(a-) 1-’ (a)-.
Here F(a) -1 := {x-lx 1-’(a)}. Condition (7)(ii) can be attained by replacing any arc
a (u, w) such that b(a) =/ .../t and >_ 2 by a u w path al...at with qb(ai) "= ii
(i t) and 1-’(a) l-’(a) and I"(ai) {1} (i 2 t). (Here and below we
indicate a path P by the string of arcs traversed by P (in the order traversed by P). If P
traverses an arc a in the backward direction, then we denote this in the string by a-. For
instance, P alaa3 means that P traverses first a in the forward direction, next a2 in the
backward direction, and finally a3 in the forward direction. The arcs need not be distinct.)

2.3. Pre-feasible functions. Let input D (V, A), r, b, I-" for the cohomology feasi-
bility problem for free groups (5) be given, assuming (7). We call a function f V ---+ Gk

pre-feasible if

(8)
(i) f(r)- 1;

(ii) for each arc a (u, w) with f(u)- ok(a), f(w)

_
F(a) one has f(u)

f(w) 1.

Define a partial order < on the set G" of all functions f V Gk by

(9) f < g f(v) < g(v) for each v 6 V. V1

It is easy to see that G forms a lattice if we add an element cx at infinity. Let/,, and /denote
the meet and join, respectively.

Pre-feasibility behaves nicely with respect to the lattice:
PROPOSITION 1. If f and f2 are pre-feasible, then so is f := f/x f2.
Proof. Clearly f(r) 1. Leta (u, w) be an arc such that y := f(u)- .d(a). f(w) q

F(a) while not f(u) f(w) 1. By Lemma 2.1 and by symmetry we may assume that

f(u) qb(a), f(w). Let x and x’ be such that ji (u) f(u)x and J(u) f(u)x’, and let
z and z’ be such that fl (w) f(w)z and ./(w) f(w)z’. Let t and j be the first and last
symbol, respectively, of y. Since z/ z2 1, we know/- ; z or/- : z’. Without loss
of generality,/3- : z.

FINDING k DISJOINT PATHS IN A DIRECTED PLANAR GRAPH 783

Since f(u) : q(a) f(w), by Lemma 2.2 the first symbol of f(u)-1 is equal to c. So
x, and hence

(10) f(u)-1 49(a) f(w) x-1 y. z x-yz.
So y is a segment of ji(u) -1 b(a) fl(w). By the heredity of F(a) this implies that
J] (u) -1 4(a) f (w) ’ 1-’(a). So, as f is pre-feasible, f (u) f (w) 1. Therefore

f(u) f(w) 1. [q

So for any function f V ---+ Gk there exists a smallest pre-feasible function sT- > f,
provided there exists at least one pre-feasible function g > f. If no such g exists, we set

:= cx. We observe the following proposition.
PROPOSITION 2. If]o is finite, then

(11)

(i) f(r) and If(v)l < 2crlVIfor each vertex v;

(ii) for each arc a (u, w) if f(u) -1 ok(a), f(w) q F(a), then f(u) <_ ok(a), f(w)
or f(w) < 4(a-1) f(u).

Proof. Clearly, f(r) _<]’(r) 1. Moreover, by induction on the minimum number of
arcs in any r v path one shows [j(v)l < 2o-t. Indeed, if a (u, v) is the last arc in the
path, then y "= (u)-1 q(a) (v) belongs to F(a) or is equal to 4(a) and, hence, has size
at most r. So

(12) Ij(w)l Ij(u). b(a)- Yl < Ij(u)! + Ib(a)i + r 2r(t 1) + + r < 2crt.

This implies If(v)l 5 Ij(v)l < 2rlVI.
To see (ii), suppose f(u) ok(a), f(w) and f(w) : ok(a-l) f(u). The first implies

(by Lemma 2.2) that the first symbol of f(u)-t 4(a) f(w) is equal to the first symbol of
f(u)- The second implies (again by Lemma 2.2) that the last symbol of f(u)-1 .ok(a). f(w)
is equal to the last symbol of f(w). Since f < s, it follows that f(u) -1 ok(a) f(w) is a
segment of]’(u)- .4(a). (w). So j(u) -1 .4(a). sT(w) ’ I(a). Hence, as j7 is pre-feasible,
](u) (w) 1, and therefore f(u) 1. This contradicts the fact that f(u) : ok(a), f(w).

2.4. A subroutine finding . Let input D (V, A), r, 4, 1-" for the cohomology feasi-
bility problem for free groups (5) be given, again assuming (7). We describe a polynomial-time
subroutine that outputs s for any given f" V ----+ Gk.

If f is pre-feasible, output]" f. If f violates (11), output 37 cx:. Otherwise choose
an arc a (u, w) satisfying f(u)-. (a). f(w) q l-’(a) and f(w)

_
4(a-l) f(u) (as f is

not pre-feasible and satisfies (11), such an arc exists by Lemma 2.1). Perform the following:

Iteration" Writeck(a).f(w) xy, with y 6 l-’(a) and lYl as large as possible, reset f(u) x,
and start anew.

PROPOSITION 3. In the iteration, resetting f increases If(u)l and does not change].
Proof Consider the iteration. Denote by f’ the reset f. As (1 l)(ii) holds, f(u) <

ok(a), f(w). Since f(u)-1. b(a) f(w) q F(a), f(u) is a segment of x with f(u) x. So
If’(u)l > If(u)l.

To see f’ s, we must show f’ < , that is, f’ (u) < sT(u) if j7 is finite. Suppose that
is finite and that f’(u) ; sT(u). Let/3 be the last symbol of x f’(u). As x ; s(u) and

as 4(a) f(w) xy, 3Y is an end segment of (u)- 4(a) f(w).

784 ALEXANDER SCHRIJVER

Since p(a) f(w)](u) (as x < dp(a), f(w)), by Lemma 2.2 the last symbol of
fC(u)-l, cp(a), f(w) is equal to the last symbol of q(a) f(w). Since p(a) f(w) f(u) (as
x < c(a) f(w) and f(u) < (u)), by Lemma 2.2 the last symbol of p(a) f(w) is equal
to the last symbol of f(u)-1 c(a) f(w). Since f(w) dp(a-1) f(u), by Lemma 2.2 the
last symbol of f(u) -1 cp(a), f(w) is equal to the last symbol of f(w). Concluding, the last
symbol of jT(u)- .b (a). f(w) is equal to the last symbol of f(w). Hence jT(u)-l .p (a). f(w)
is a beginning segment of jT(u)-I. 4(a) j(w). So fly is a segment of jT(u)-. 4)(a) jT(w),
and hence fly belongs to 1-" (a). This contradicts the maximality of y. El

Since at each iteration if(u)l increases for some vertex u, after at most 2crlVI2 iterations
either we get a prefeasible function f or (11) is violated. Thus the subroutine is polynomial
time.

2.5. Algorithm for the cohomology feasibility problem for free groups. Let input
D (V, A), r, q, F for the cohomology feasibility problem for free groups (5) be given. We
find a feasible function f as follows.

Again we may assume (7). For every a (u, w) A let fa be the function defined by
fa(u) .’: p(a) and fa(V) := for each v u. Let E be the set of pairs {a, a’} from A for
which fav fa’ is finite and pre-feasible. Let E’ be the set of pairs {a, a -1 with a A and
b(a) F(a).

We search for a subset X of A such that each pair in X belongs to E and such that X
intersects each pair in E’. This is a special case of the two-satisfiability problem and, hence,
can be solved in polynomial time.

PROPOSITION 4. If X exists, then the function f /axa is feasible. If X does not

exist, then there is no feasiblefunction.
Proof. First assume that X exists. Let f be as given. Since jT"a v]’a’ is finite and

pre-feasible for each two a, a’ in X, f is finite and f(r) 1. Moreover, suppose f(u)-cp(a), f(w) l-’(a) for some arc a (u, w). Let f(u) jca,(u) and f(w)]’a,,(w) for
a’, a" 6 X. As j, v jT,, is pre-feasible, jT,(u)= jT,,(w)= 1. So p(a) ’ F(a), and hence
a or a -1 belongs to X. By symmetry we may assume a X. Then

(13) ok(a) fa(u) <_]a(U) < f(u)= ffa’(U)= 1,

a contradiction.
Assume conversely that there exists a feasible function f. Let X be the set of arcs

a (u, w) with the property that b(a) < f(u). Then X intersects each pair in E’. For let
a--(u, w) beanarc satisfyinga ’ Yanda- X, that is, p (a ; f(u) and dp (a-) f(w).
Hence f(u)-. (a). f(w) f(u)-dp(a)f(w). So f(u)-. dp(a), f(w)contains p(a) as
a segment (as IP(a)l < 1). So q(a) F(a) and hence {a, a-1 ’ E’.

Moreover, each pair in X belongs to E. For let {a’, a"} be a pair in X. We show that
{a’, a"} 6 E, that is, f’ "= a, v jT,, is finite and pre-feasible. As a’ 6 X, we have
c(a’) < f(u)and hence fa’ < f, implying]’a’-< f. Similarly, a" < f. So f’ is finite and
if(r) 1. Consider an arc a (u, w) with y "= f’(u)- c(a) if(w) q F(a). We may
assume if(u) jT,(u) and if(w) jT,,(w) (since jT, and jTa,, are pre-feasible). To show
if(u) if(w) 1, by Lemma 2.1 we may assume f’(w) dp(a-) if(u).

First assume f’(u) : (a). if(w). Then by Lemma 2.2 the first and the last symbols of
y are equal to the first symbol of f’(u)- and the last symbol of if(w), respectively. Since

f’ _< f, this implies that y is a segment of f(u)- c(a), f(w) F(a). This contradicts the
heredity of I" (a) as y ’ F (a).

Second assume if(u) < ok(a) if(w). So 4(a) f’(w) f’(u)y for some y. Since
jTa,, (u) < f’ (u), it follows that y is an end segment of

FINDING k DISJOINT PATHS IN A DIRECTED PLANAR GRAPH 785

So j,,(u)- 4(a) j,,(w) ’ r’(a), since y ’ F(a). As ja" is pre-feasible, this implies
f,,,(u)]a"(w) 1; so f’(w) 1. Hence f’(u) <_ qb(a) and therefore, since y ’ F(a)
and 14(a)l 1, f’(u)= 1.

Thus we have proved Theorem 2.3.

3. The k disjoint paths problem for directed planar graphs.

3.1. Directed planar graphs, R-homology, and flows. Let input D (V, A),
r, sl rk, sk for problem (1) be given. In solving (1) we may assume that D is weakly
connected and that for each k, ri is incident with exactly one arc, which is leaving
ri, and si is incident with exactly one arc, which is entering si. We fix an embedding of D.
Let .T" denote the collection of faces of D and let R be the unbounded face of D.

Call two functions qb, A Gk R-homologous if there exists a function f .T"
Gk such that

(i) f(R) 1;

(15) (ii) f(F)- q(a) f(F’) O(a) for each arc a, where F and F’ are the faces

at the left-hand side and right-hand side of a, respectively.

The relation to cohomologous is direct by duality. The dual graph D* (.T’, A*) of D
has as vertex set the collection - of faces of D, while for any arc a of D there is an arc a* of
D* from the face of D at the left-hand side of a to the face at the right-hand side. Define for
any function 4 on A the function 4* on A* by q*(a*) := q(a) for each a A. Then 4 and
ap are R-homologous (in D) if and only if 4* and if* are R-cohomologous (in D*).

For any solution I-I (P Pk) of (1) let 7tn A ---+ Gk be defined by aPvx(a) := gi

if path Pi traverses a (i k), and Pr(a) := if a is not traversed by any of the P/.
Call a function qb A Gk a flow if for each vertex v 6 V with v {r,s

rk, sk} one has

(16) b(al)e .b (a2)e2 b (an)e"-- 1,

where a an are the arcs incident with v, in clockwise order, where E -- if ai has its
tail at v and E --1 if ai has its head at v (if ai happens to be a loop we take ei + and
g --1 at the corresponding positions in (16)), and if moreover for any arc a incident with

ri or si one has 4(a) gi (i k).
Clearly, if FI is a solution of (1), then Pn is a flow. Moreover, if 4 is a flow and 4; is

R-homologous to q, then also b’ is a flow.

3.2. Deriving a solution from a flow. We first show the next proposition.
PROPOSITION 5. There exists a polynomial-time algorithm that, for any flow qb, either

finds a solution 1-I of (1) or concludes that there does not exist a solution FI of (1) such that

n is R-homologous to q.
[Here polynomial-time means: polynomial-time in the size of D and the maximum size

of the b(a). Note that it is not required that if we find a solution FI of (1), then n is
R-homologous to b.]

Proof. Let p be a flow. Consider the dual graph D* (, A*) of D. We construct the
’extended’ dual graph D+ (, A+) by adding in each face of D* all chords. (So D+ need
not be planar.) More precisely, for any two vertices F, F’ of D* and any (undirected) F F’

786 ALEXANDER SCHRIJVER

path 7r on the boundary of any face of D*, extend the graph with an arc, denoted by a,, from
F to F’. Define 4+ A+ ----+ Gk by

(17)
(i) q+(a*) := 4(a) for each arc a of D;

(ii) 4+(aT) := 4(a)’ ((at)el for any path zr (a*l)e" (a]’)’ with

el et {+1,-1}.

(As before, (a/) -1 means that 7r traverses a[in the backward direction.) Moreover, let
1-’ (a*) "= 1, gl gk and 1-’ (aT) "= 1, g, g- gk g-I

By Theorem 2.3 we can find in polynomial time a function ap that is R-cohomologous to

4+ in D+, with 7t(b) 6 1-’(b) for each arc b of D+, provided that such a 7r exists. If we find
such a ap, let Pi be any directed ri si path traversing only arcs a satisfying (a*) gi (for

k). (Such paths exist since 4 is a flow.) Then P Pk form a solution to (1).
Indeed, P P, are vertex-disjoint, for suppose that there exist arcs a and b of D that are
both incident with a vertex v and ap(a*) g/, p(b*) gf, and - j. Consider a shortest
path rr along the face of D* corresponding to v such that zr contains arcs a* and b*. We may
assume that we have chosen a and b such that zr is as short as possible. Then IP (aT)l >_ 2, as

aP(aT) contains both g+i and gfl (neither of them can be cancelled, since a and b are chosen
so that 7r is shortest). This contradicts the fact that ap (aT) 6 I-" (aT).

If we do not find such a function p, we may conclude that there does not exist a solution
rI of (1) such that Pn is R-homologous to q, since otherwise the cohomology feasibility
problem has a solution, viz. 7t "= (pn)+.]

3.3. Enumerating homology types. In this section we show the following.
PROPOSITION 6. For each fixed k, we can find in polynomial time flows qhl qbN with

the property thatfor each solution FI of(l), aPn is R-homologous to at least one ofqb qbN.

Proof. Consider systems FI (P P) satisfying:

(i) P,. is an undirected path from ri to si, not traversing the same edge more

(18) than once, and not having any self-crossing (i k);

(ii) P/and Pj are edge-disjoint and do not have any crossing (i, j k; - j).

(An undirected path is a path that may traverse arcs in the backward direction.)
For any such system H, define Pn A Gk by Pn(a) := gi if P/traverses a in the

forward direction, Pn(a) := g-l if Pi traverses a in the backward direction (i k),
and 7rn(a) := 1 if a is not traversed by any Pi.

We will show that for each fixed k, we can find in polynomial time flows 41, N with
the property that

(19) for each FI satisfying (18), Pn is R-homologous to at least one of 1 N.

This is stronger than what we need to show.
Consider a nonloop arc a’ not incident with any ri or Si. Contract a’, yielding graph D’.

Let 4’1 4v be flows in D’ satisfying (19) with respect to D’. Then for each j there is a

unique flow 4j in D such that ckj(a) 4.(a) for each arc a a’. Moreover, if FI satisfies
(18) in D, then contracting a’ gives a system FI’ satisfying (18) in D’. Hence there exists a j
such that 4. is R-homologous to aPn, (in D’), implying that 4j is R-homologous to 7in (in D).

Concluding, we can obtain from a system of flows satisfying (19) for D’ a system of flows
satisfying (19) for D. Repeating this we obtain that we may assume that there is only one

FINDING k DISJOINT PATHS IN A DIRECTED PLANAR GRAPH 787

vertex v in V \ {ri, S1 rk, s,} and that each arc not incident with rl, Sl rk, s, is a loop
at v. We may assume that each loop is oriented clockwise (since presently we are interested
in undirected paths). For each loop let X be the set of vertices in rl, Sl rk, sk enclosed
by l. Call loops l, l’ parallel if Xt Xt,. Trivially, there are at most 22/ parallel classes. (By
Euler’s theorem, there are at most 4k parallel classes, but we do not need this stronger bound,
since k is fixed.)

If H satisfies (18), then there is a system I-I’ satisfying (18) such that 7in, is R-homologous
to On and such that the paths in H do not contain any loop with Xt 0 and do not contain
l’1-1 or 1-11’ for any two parallel loops l, l’. So we can restrict the systems H to systems
having this additional property.

For any such system H and any two subsets B, C c_ {a, a -1 la 6 A}, let xn(B, C) denote
the number of occurrences of bc in the paths in FI such that b 6 B, c 6 C. Then I-I is up
to R-homology fully determined by the system of numbers xn (B, C), where B and C range
over all sets

L, L -1 (L a parallel class of loops),
(20)

{(ri, 10)}, {1), Si} (i k),

with L -1 := {l-ill 6 L}. Since each such number xn (B, C)is at most IAI and since there are
at most 2(k+ 22k) sets among (20), for fixed k we can enumerate all possibilities in polynomial
time. [3

3.4. The disjoint paths problem.
THEOREM 3.1. For each fixed k, the k disjoint paths problemfor directed planar graphs

(1) is solvable in polynomial time.

Proof. By Proposition 3.3 we can find in polynomial time (fixing k) a list of flows

bl qN such that for each solution FI of (1), 7tr is R-homologous to at least one of the j.
Now for each j N we apply the algorithm of Proposition 3.2 to input qj. If

for some j we find a solution FI of problem (1), we are done. If for each of j N
it concludes that there is no solution H of (1) such that aPri is R-homologous to 4j, we may
conclude that (1) has no solution at all. [-1

Quite directly one can extend the method to the following problem:

(21)

given a directed planar graph D (V, A), k pairs (rl, s1) (rk, sk) of vertices

of D, and subsets A Ak of A;
find k pairwise vertex-disjoint directed paths P1 Pk in D, where P/runs

from ri to si and uses only arcs in Ai(i k).

The polynomial-time solvability of this problem (for fixed k) follows by restricting in the proof
of Proposition 3.2 each F (a*) to those gi for which A contains a.

Acknowledgments. am grateful to Coelho de Pina, Paul Seymour, and an anonymous
referee for carefully reading the manuscript, for pointing out some inaccuracies, and for giving
several helpful suggestions improving the presentation.

REFERENCES

S. FORTUNE, J. HOPCROFT, AND J. WYLLIE, The directed subgraph homeomorphism problem, Theoret. Comput.
Sci., l0 (1980), pp. 111-121.

788 ALEXANDER SCHRIJVER

[2] J. E LYNCH, The equivalence of theorem proving and the interconnection problem, (ACM) SIGDA Newsletter
5, 3 (1975), pp. 31-36.

[3] B. REED, N. RO3ERTSON, A. SCHRIJVER, AND E D. SEYMOUR, Finding disjoint trees in planar graphs in linear
time, in Graph Structure Theory, N. Robertson and E D. Seymour, eds., Contemp. Math. 147, Amer. Math.
Soc., Providence, RI, 1993, pp. 295-301.

[4] N. ROBERTSON AND P. D. SEYMOUR, Graph minors XIII. The disjoint paths problen, preprint, 1986.
[5] A. SCHRIJVER, Disjoint homotopic paths and trees in a planar graph, Discrete Comput. Geom., 6 (1991), pp.

527-574.

SIAM J. COMPU’r.
Vol. 23, No. 4, pp. 789-814, August 1994

() 1994 Society lbr Industrial and Applied Mathematics
007

FINITE AUTOMATA COMPUTING REAL FUNCTIONS*

KAREL CULIK II AND JUHANI KARHUM,,KI

Abstract. A new application of finite automata as computers of real functions is introduced. It is shown that
even automata with a restricted structure compute all polynomials, many fractal-like and other functions. Among the
results shown, the authors give necessary and sufficient conditions for continuity, show that continuity and equivalence
are decidable properties, and show how to compute integrals of functions in the automata representation.

Key words, weighted finite automata, fractals, image generation, data compression

AMS subject classifications. 68Q45, 68Q99, 68U05, 68Q10

1. Introduction. We study weighted finite automata that are finite automata with tran-
sitions (edges in a diagram) labeled by real numbers. Such automata have already been
extensively studied with various motivations; see, for example, [10] for a general definition
and theoretical properties.

Historically, such devices were originally studied as probabilistic automata [12], first
mainly as language acceptors like ordinary automata and later as devices defining a probability
distribution on E* with various application, for example, in learning theory [14]. As a quite
different approach, attempts to generalize and at the same time to unify results of classical
automata theory lead to the study of formal power series 13] that was based on weighted finite
automata.

Recently, a new and different application of weighted finite automata was introduced
in [3], where they were called probabilistic finite generators. They were used as a formal
specification of grey-scale images as an alternative to the more analytical approach of]. Our
theoretical work is motivated by these practical applications. The usefulness of this approach
is demonstrated in [3], [5], [4]. Recent work [6] indicates that weighted finite automata are
an excellent tool for data compression, especially in combination with wavelets.

We will concentrate mainly on weighted automata with special structures called level
automata and line automata. However, even this special subset of weighted automata is
powerful enough to generate all polynomials and many other interesting functions including
many fractal-type functions.

We give the basic definitions and propeies in 2. Our basic results, including the neces-
sary and sufficient condition for a function fA defined by level automaton A to be continuous,
are shown in 3. This result is then used to show that it is decidable whether a given level
automaton defines a continuous function. Further, we show that the problem whether two
level automata define the same real function is decidable.

In 4 we study in detail the line automata of degree one that are weighted automata with
two states that are interconnected in one direction only. Our main observation here is that
the only smooth functions defined by the line automata of degree one are the constant and
the linear functions but that such automata also define continuous fractal-type functions, that
is, functions with self-similar graphs, including for example a function with a dense (or even
uncountable) set of points where it does not have a derivative, and also functions that are not
continuous.

*Received by the editors December 13, 1991 accepted for publication (in revised form) May 12, 1993. This work
was performed during the first author’s stay at the University of Turku, Finland and was supported by the Academy
of Finland and partially supported by the National Sciences Foundation grant CCR-9202396.

1Department of Computer Science, University of South Carolina, Columbia, South Carolina 29208
(culik@cs. scarolina, edu).

tDepartment of Mathematics, University of Turku, Turku, 20500 Finland.

789

790 KAREL CULIK II AND JUHANI KARHUMJKI

Our main and surprising result in 5 is that all polynomials ofone variable and degree up to
n are defined by line automata with the same structure and weights (only the initial distribution
determines a particular polynomial). For polynomials of more variables an analogous result
holds for level automata that are weighted.automata having only loops of length one.

In 6 we consider average preserving weighted automata that are such automata that for
each node the sum of all weights at all transitions is equal to 2a where d is the dimension,
i.e., the space [0,]a is considered. We use the fact, shown in 3, that every weighted level
automaton can be converted into an average preserving level automaton defining the same real
function. Then we show a rather surprising result that for every level automaton A in one
dimension we can easily construct a level automaton B such that (x) f A(t)dt for
each x 6 [0, 1]. For automata defining smooth functions we cannot only integrate but also
mechanically compute derivatives.

2. Preliminaries. Let I2 be a finite alphabet and 12" the monoid generated by 12. El-
ements of E* are called words; in particular, the unit of 12" is called the empty word and
denoted by e. For a word u we denote its length by lul, its prefix of length k by prefk(u), and
the number of letters a in u by lull.

In this paper we are mainly concerned with (one-way) infinite words or co-words over 12.
Formally, they can be viewed as mappings 1N -+ 12 or, equivalently, as sequences a la2...
with ai or_ 12. The set of all infinite words over 12 is denoted by 12o. Clearly, the operator
prefk extends to 12,o as well. If there is no danger of confusion, we call infinite words simply
words.

As is well known, each infinite word can be interpreted as a real number in the interval

[0,]. We make use of this interpretation. When doing so we assume throughout this paper,
if not stated otherwise, that E is binary, say 12 {0, }. Hence, the infinite word

(1) to ala2.., with ai {0, 1}

is interpreted as the number

(2) E ai2-i"
i--1

Clearly, the only real numbers in [0, that have two representations (1) are those that have
a finite representation (2), i.e., the numbers that have a finite binary representation. For such
words the two representations are v 10 and v01’ for some finite v. We refer to the first one as

the standard representation of the considered number and may write instead of v 10 simply
v 1. It follows that the mapping

A Z [0, l, A(to) l

is one-to-one if and only if we restrict it to E E* o.
We also want to use infinite words to represent d-dimensional vectors in [0, 1]a. Then

we proceed as follows. First we present the ith component of the vector x (x xa) as

the binary co-word wi 6 E. Then we make use of the inclusion

(x) c_ (z)

and say that x is represented by the co-word

bib2.., with bj (alj aaj),

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 791

where aij is the jth symbol of wi. Consequently, the real vectors in [0,]d are represented by
co-words over the alphabet of size 2d and not by d tuples of binary co-words. From the point
of view of automata theory this is a clear advantage. The notion of the standard representation
obviously extends from numbers to vectors.

We now introduce our basic tool to define real functions, namely, that of a weighted finite
automaton. A weightedfinite automaton, (WFA, for short) is a five-tuple A (Q, I2, W, I, T),
where

Q is a finite set of states of the cardinality t,
2 is a finite alphabet,
W: Q x E x Q R is a weightfunction,
I Q --+ IR is the initial distribution,
T Q 1R is the final distribution.

Clearly, the weight function W decomposes in a natural way to functions Wa for a 6 E
and each Wa can be viewed as a x matrix over reals. We use the same notation W, for these
matrices. Consequently, if W (p, a, q) o, then the matrix Wa contains oe at the entry of the
row corresponding to the state p and of the column corresponding to the state q. As we shall
see it is natural to view I as a row vector and T as a column vector. Note that weighted finite
automata are called (R E)-automata in 10]. By the underlying automaton of a WFA A we
mean the nondeterministic automaton whose transitions consist of those triples (p, a, q) for
which W(p, a, q) O, and initial and final states are those that get nonzero value under I
and T, respectively. Hence, we can talk about initial and final states of a WFA as well. This
notion is used in the definition of our central notion of a level automaton.

As is well known, weighted finite automata can be used to compute functions E* R,
so-called R-rational functions, as follows; cf. [10], [2], [13]. First, the distribution defined
by u I2" on A, in symbols PA (u), is defined recursively:

PA () I,

PA(Va) PA(V)" W, for veZ*.

Then the rational function determined by A, in symbols F.4, is defined by

FA (u) PA (u) r.

Of course, the product here is the matrix product.
We want to use WFA to compute real functions on the interval [0, (or on the cube [0,]t).

This is achieved by extending the above word functions to infinite words corresponding to
reals or to real vectors. Consequently, we now assume that I2 {0, 1} (or {0, 1}, possibly
renamed). Then we say that A defines the co-wordfunction

(3) fA E,o_+ R, fA(W) (lirn PA(pref(w)). T

and the realfunction

(4) A [0, 11-- IR, A(X) fA(W),

where w is the standard representation of x.
The definitions of fA and fA tacitly assume the existence of the limit in (3). We do not

analyze this in detail here but instead study several special types of automata, which make
these definitions mathematically sound (cf. 3) and at the same time are suitable for our
results.

792 KAREL CULIK II AND JUHANI KARHUM,KI

We call a WFA A a level automaton if and only if the following conditions are satisfied:

(i) The only loops in the underlying automata of A are transitions of the form p p.
(ii) W(p,a,q) >Oforall p, q Q,a E.
(iii) For every p 6 Q the following holds. If there are q 6 Q, a 6 E, q -y: p such that

W (p, a, q) -7- 0 for some a, then W (p, a, q) < for every a 6 E and q 6 Q. If there are no
such q and a, then W (p, a, p) for every a 6 .

(iv) I 6

_
and T _.

(v) The underlying automaton of A is reduced that is does not have useless states.
By condition (i) we can associate with each state of a WFA A a number called its degree,

as follows:
A state that leads in the underlying automaton only to itself is of degree 0.
A state that is not of a degree smaller than and leads in the underlying automaton only to

states of degrees at most or itself is of degree i.
Finally, a level automaton A is a line automaton if and only if for each number 0 card(Q)
there exists exactly one state of this degree.

Several comments concerning the choice of conditions (i)-(v) are in order. Condition (i)
strongly restricts the family of considered WFA. This, however, is needed in order to be able
to handle WFA and, as we shall see, still gives a class large enough to yield interesting and
surprising results. Conditions (ii) and (iv) mean that the functions FA are It+-rational and not
only II-rational. The latter are more general than the former; cf. [2], [10], [13]. After (ii)
and (iv) condition (iii) is natural" it guarantees that j/’A is bounded, cf. Lemma 6. Finally,
condition (v) is a standard one in automata theory. Concerning the choice of I and T we make
the following conventions: If not otherwise stated, we assume that I (1,0 O) and
T (1, 1); however, as we shall see in the proof of Lemma 6 in a level automaton the
final distribution (1, 1) can always be replaced by (0 0, 1) without affecting the
function the automaton computes. In 5 we allow negative values of I in order to synthesize
polynomials with negative coefficients easily.

To conclude we define two particular classes of WFA. We say that WFA A over {0, is

O-faithful (respectively 1-faithfld) if and only if

Z W(p, 0, q) for allpin Q
q6Q

respectively , W(p, q) p Q].1, for all in
q6Q

Further, a WFA A over Ea, with E {0, }, is average preserving if and only if

Z W(p,a,q) 2d for allpinQ.
qQ,aE

These special classes ofWFA have nice properties assuming that we have our standard choice
T-- (1, 1).

LEMMA 1. Ifa WFA A is O-faithful, then

FA (v) f (vO) for all v in E*.

In other words, ifx [0, 1) has a finite binary representation v, then FA(V) c,(x).
Proof Straightforward by definitions. [q

A similar result holds for 1-faithful WFA as well.

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 793

LEMMA 2. Ifa WFA A is average preserving, then

(5) FA (v)
2‘/ FA (va) for all v G*.

aEd

Proof Again straightforward by definitions.
Functions satisfying the condition of Lemma 2 are called average preserving functions

(ap-functions, for short). The name is self-explanatory: its value at any point v (read: any
pixel) is the average of its values on points va (read: its subpixels).

Average preserving functions E* --+ II+ are closely related to measures, (cf.]), defined
on Borel subsets of the complete metric space (E‘/) or [0,]‘/, which are additive functions
mapping the whole space X to 1, i.e., # (E;d) I+ is a measure (called a normalized
measure in]) if for each countable I and pairwise disjoint collection Ai }ii of Borel subsets
of (za)

(6)

and

u((’)) 1.

Consequently, a measure function gives a weight (or greyness) for each (Borel) subset of X.
A WFA A satisfying

__
W(p,a,q) 1,

p,qQ,aZ,

defines a measure function #A on (Borel) subsets of (2‘/). Indeed, the automaton starting
with the distribution (1,0 0) redistributes in an additive way the total amount of ink
(equal to 1) to different pixels; the pixel addressed by the word v gets FA (v) amount of ink.

The connection between average preserving WFA and the measure defining WFA is
straightforward due to (5) and (6). If A is an average preserving WFA, then by dividing each
of its weights by 2‘/we obtain a WFA that defines a measure function. The converse transfor-
mation is equally easy: weights must be multiplied by 2‘/. However, this transformation does
not necessarily preserve level automata; therefore, the limit in (3) might not exist and ’(x)
might be undefined.

3. Basic results. In this section we prove several basic results on WFA, in particular, on
real functions defined by them. We state all the results for level automata only, although some
of them are valid in general as well.

We start with closure properties.
LEMMA 3. The family of real functions defined by level automata is closed under the

operation ofsum, product, and multiplication by a constant.

Proof. For the first two operations the ordinary constructions of automata to recognize
the union and the intersection work here as well. The closure under the last operation is due to
the fact that we can multiply the initial distribution by a constant (so that here also a negative
initial distribution must be allowed if the constant is negative). VI

Our next representation is a straightforward consequence of the definitions.
LEMMA 4. For each level automaton A there exists a finite number of line automata

A1 An such that f ,i’=1 fl.

794 KAREL CULIK II AND JUHANI KARHUMJKI

Our next lemma provides a normal form for level automata that turns out to be very
important in 6.

LEMMA 5. For each level automaton A there exists an average preseta,ing level automaton
Aap such that fA and fAap coincide.

Proof. We prove the lemma only in case {0, }; the general proof is similar. Since
each level automaton can be decomposed into a finite number of line automata, we may assume
that A is a line automaton. Let its degree be t. Consequently, for 0 t, there exists
exactly one state of degree i, say qi. Let us fix and set

(7) k
2- W (qi, 0, qi) W (qi, l, qi)

Zp#q m (qi, 0, p) + p#qi (qi, 1, p)

Now, we will modify A to obtain the automaton A’ as follows:
(i) The weight of each nonloop transition starting from qi is multiplied by k.
(ii) If < t, then the weight of each nonloop transition ending at qi is multiplied by

k- , otherwise I (qi) is multiplied by k-1

By (7), k is positive and chosen in such a way that the condition for qi to be average
preserving is satisfied.

We have to analyze the effects of the above modification to the computations of A. Let
w be an arbitrary co-word and wn its prefix of length n. Assuming as above that the states of
A and A’ are ordered from qt to q0, we define

an(j) PA(tOn)’rlj forj 0

and

a’n(j) PA,(tOn)’rlj forj 0 t,

where rl.j is the vector having as the jth component and 0 elsewhere.
Then it follows from the facts that A and A’ are level automata and from the modifications

(i) and (ii) that

an(j) a’ (j) forj >i,

an(i) a,f (i),

an(j) a,’,(j) forj <i.

Consequently (for details cf. (i)-(iii) in the proof of Lemma 6) we have

(8) fA (to) fA,(W)

Note, however, that FA(Wn) =/: FA(Wn) unless k 1.
Now, the result follows easily. Since the state of degree 0 satisfies, by the definition of a

level automaton, the average preserving condition, we first do the above modification to the
state of degree 1. Then we repeat the process in the new automaton for the state of degree
2 and so on. Observe that in the last stage when doing (ii) we change the initial distribution
from (1, 0 0) to (k-1, 0 0). The automaton Aap thus obtained is clearly average
preserving, and moreover by (8), fAp fA.

Lemma 5 deserves a few comments. On one hand, we have a normal form for functions
on E’, or equivalently on [0,]d, defined by level automata. On the other hand, Lemma 2

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 795

shows that average preserving automata define only the average preserving functions on
hence clearly not all the functions on Z;* defined by level automata.

The proof of Lemma 5 was based on the idea of multiplying certain weights by suitable
numbers in order to make a particular state to fulfill the average preserving condition. Another
technique would be to increase the weights of some transitions by adding a constant to these
weights. This addition can be compensated by changing the initial distribution at the state
considered. In fact, it may get a negative value. We leave the details to the reader. We only
note that by this method we can for any level automaton A find an average preserving level
automaton Aap defining the same real function as A. Similarly, we can show that any level
automaton can be replaced by a 0- or 1-faithful automaton defining the same real function.

The next three lemmas deal with the continuity of the functions A, where A is a given
level automaton.

LEMMA 6. The value fA (to) is defined (andfinite) for each to {0, 1}. Consequently,
is continuous at any point x having only an infinite binary representation.

Proof Let A be a level automaton of degree t. Since A can be decomposed into a finite
number of line automata of degree at most t, we can actually assume that A is a line automaton.
Further, we can assume that its initial distribution is (1,0, 0 0) and that the th component
of this vector corresponds to the state of degree + for + 1. Let i be the
(t + l)-dimensional column vector such that its ith component equals to and others to 0.

We define a new line automaton Amax of degree as follows. Let o equal the maximum
of the weights of the loops of the states having positive degree in A and/3 equal the total
maximum of weights of A. Then in Amax all the loops at the states of a positive degree have
the weight o, the loops at the state of degree 0 have the weights 1, and all the other weights
equal/3, in particular different from 0. Clearly, A,, is a well-defined line automaton and

(9) O< PA(U)" rli < PA (u)" oi, for/-- t+landue 2".

We prove that for any given w

(10) lim PA(prefn(to))’r/i 0 fori=

and

(11) lim PA(prefn(to)) r/t+1 exists.

This clearly implies the first sentence of the lemma (and shows also that we can instead of the
final distribution of the form (1 1) use the distribution r/t+1).

To conclude (10) it is, by (9), enough to prove this for the automaton Amax. This, in turn,
is seen as follows. Define, for +

an(i) PA (prefn(w)), ri forn > 0.

Clearly, for all n > 0, we have

a.+ (0) a,, (0),

an+(j) Oan(j) + fl(a(j 1) +... + an(0)),

an+(t + 1) an(t + 1) + fl(an(t) +"" +an(O)).

for j<t,

It follows that

796 KAREL CULIK II AND JUHANI KARHUM/KI

(i) lim,,_ a,, (0) 0,
(ii) lim,,__, a,, (j) 0 for j < t, and
(iii) the sequence (a,,(t + 1)),,>_0 is bounded.

Now, (10) follows from (i), (ii), and (9). To conclude (11) we first note that the sequence
(PA (pref,, (w)) tit+t),,>_0 is monotonous, and hence the limit exists by (9) and (iii).

The second sentence is a straightforward consequence of the first and its above proof. In
particular, the fact implied by (9) and (iii) that fA is a bounded function is needed. We leave
the details to the reader.

COROLLARY 1. Let A be a level automaton. Then is continuous if and only if it is
continuous at the points that have a finite binary representation.

Our next example shows that jA can be noncontinuous at all points having a finite binary
representation; cf. also Example 4 in 4.

Example 1. Consider the automaton A shown in Fig. 1. Observe that it slightly violates
condition (ii) in the definition of the level automaton.

FIG. 1. Automaton A of Example 1.

Assume that the state q2 is initial and q0 and q are final. Then

fA (V01) 2-1vl-1 f (V 10’) for each v in E*

and

fA(W) 0 for eachwinE.
Consequently, A is continuous exactly at those points that have only infinite binary repre-
sentations. The graph of JA is shown in Fig. 2.

Our next lemma shows that the obvious necessary condition for A to be continuous at

the point 1/2 is also sufficient.
LEMMA 7. Thefunction A is continuous at the point 1/2 ifand only if

fA(O o)) fA(O)).

Proof. The necessity is obvious. The sufficiency follows from the proof of Lemma 6, in

particular, that of the second sentence.
LEMMA 8. Let x (0, 1) have afinite binary representation, say, x is represented by the

co-words v 10 and v01 ’. Then CA is continuous at x if and only if A, is continuous at 1/2
where Av is the WFA A with the initial distribution PA (v).

Proof. Obvious by Lemma 7 and the identity

PA (VU) PA. (U) for all u in E*.

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 797

0.5

0.0

FIG. 2. The graph ofA ofExample 1.

By Lemma 8 we reduced the question of the continuity of a given A at a point with a
finite binary representation to the same question at the point 1/2 of another function that is
defined by the same automaton but different initial distribution. Typically, functions defined
by level automata are continuous at 1/2 if and only if they are continuous at points having
finite binary representations. However, this is not true in general as shown by the following
example.

Example 2. Consider any level automaton A with initial state qt and final state q0 defining
a noncontinuous function. Extend A to A’ by adding to A a new state qt+l and transitions

0,1 I,.’A (1)
qt+ -’-+ qt and qt+ qo.

Then clearly A’ with the initial and final states qt+l and q0, respectively, defines the function
that is continuous at 1/2 but not everywhere.

Our next example shows that even the very same level automata can define continuous
and discontinuous functions depending on the initial distribution.

0.1 0,1/2 0,1

1’7

I, I, I,i

FIG. 3. Line atttomaton A ofExample 3.

Example 3. Consider the line automaton A with the initial distribution (1, 0, 0) shown
in Fig. 3. As we shall see in 5, A(X) X2 and thus }’A is continuous. However, A
decomposes into two level automata, A and A2, shown in Fig. 4 in such a way that they

798 KAREL CULIK II AND JUHANI KARHUM,KI

0,1 0, 0,1/2 0,1

qo

1,1 1,1/4 1,- 1,1

Automaton A1 Automaton A

FIG. 4.

define noncontinuous functions at points having finite representations; cf. 4. Consequently,
the level automaton A3 shown in Fig. 5 is an example of such an automaton that with the
initial distribution (1,0, 0, 0, 0) defines a continuous function and with the initial distribution
(0, 1, 0, 0, 0, defines a noncontinuous function.

0,

0,1

/ 0,1

0 1

0,1/4 1,71,e 0,1

1, 1,1

FIG. 5. Automaton A3.

The above lemmas and examples show that although we can characterize the continuity
of ?m at the point having a finite binary representation (or, in fact, at any point) in terms of
the continuity of the very related function at the point 1/2, it is not possible to characterize
the continuity of ?A in terms of its continuity at the point 1/2. However, our results allow us
to prove the following important result.

THEOREM 1. For a given level automaton A with rational weights it can be decided
whether or not A is continuous.

Proof. Assume that A has states. Consider the set

Let B be a base of the vector space over IR generated by X. Clearly, its dimension is at most
t, and such a base can be found effectively as follows. Consider a lexicographic order of
E* u0 e, ul, u2 Check systematically whether PA(tli) is linearly independent of
the vectors PA (Uj), j < i, as long as for some k >_ 0 no ui, > k, is linearly independent.
Let the maximal set of linearly independent words thus obtained be v vs. Then we can
choose B {PA(Vi)li S}. For s let Ai be the automaton A with the
initial distribution PA (vi).

CLAIM. ?A is continuous if and only if each of the functions)’A, for s is
continuous at the point 1/2.

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 799

Proof of the claim. If A is continuous, then in particular it is continuous at points
represented by the words vi 10 for s. Now, the continuity of ’A, at the point 1/2
follows since fA (Vi W) fA, (W) for all s and w E {0, }o.

Conversely, assume that each of the functions ’A; is continuous at the point 1/2. By
Lemma 6, it is enough to show that JA is continuous at an arbitrary point x having a finite
binary representation, say, x is represented by v 10. Now, by the choice of B there exist
numbers ci, for s, such that

PA(V) PA(Vi),
i=1

implying that

fA (VW) 0 fA, (W).
i=1

This, however, by our assumption and Lemmas 7 and 8, proves that fA is continuous at the
point x. This completes the proof of the claim.

In order to finish theproof of Theorem 1, we have to show how to decide, for a given level
automaton A, whether fA is continuous at the point 1/2 or, equivalently, to decide whether
the following identity holds true:

f(oo) fA(O).

This can be equivalently stated as the question whether

lim (FA(IO’)- FA(O1") = 0

or whether

(12) lim rr (W0

where W0 and W1 are the matrices of A associated to letter 0 and 1, (R) is the zero matrix of
the appropriate size, rr is the vector whose first half is equal to the distribution 7rlW and the
second half to n’ W0, and r/is the vector whose both halves are equal to the final distribution
of A.

The validity of (12) is easy to test. Indeed, since the matrices involved are upper triangular,
their eigenvalues are directly visible and hence a formula for the number FA(01n) F(10n)
can be computed. It is of the form

Ei Pi(n)p,

where Pi’s are polynomials and pi’s are the weights of the loops of A. This completes the
proof of Theorem 1.

Observe that the claim in the proof of Theorem provides a characterization of the
continuity of.

As the second important result we prove the following.
THEOREM 2. /t can be decided whether two given level automata with rational weights

define the same realfunction.

800 KAREL CULIK II AND JUHANI KARHUMKI

Proof. For 0-faithful level automata this follows straightforwardly from the Equality
Theorem of Eilenberg [10]. Indeed, for such two automata A and A2 we have

(13) F,, (u) fA, (uO) for 1, 2,

and hence the problem to decide the equivalence of the functions)’A, and ’A2 on numbers
having a finite binary representation reduces, by the Equality Theorem, to the question of
testing whether

(14) F, (u) FA2 (u),

for words u of length at most the sum of the numbers of the states of A and A2. Of course,
this can be done. Finally, the same test reveals, by Lemma 6, whether the identity

fA, (W) fA,. (W)

holds true for all o-words w as well.
If A1 and A2 are not 0-faithful, then the above proof has to be modified as follows. Now,

we first decide whether

(15) fA (U0’) J2 (u0’) for all u 6 {0, }*.

This is reduced, as in the Equality Theorem, using the very same idea as in the proof of
Theorem 1, to test (15) on a finite number of words u only. Hence, the considerations at the
end of Theorem guarantee that we can decide whether (15) holds true, that is whether

(16) J/’A (X) A. (X) for all x having a finite representation.

But then as above, by Lemma 6, we can also test whether (16) holds true for all x in
[0,].

4. Line automata of degree one. In this section we investigate functions defined by
WFA of the form shown in Fig. 6, where all the weights are positive and the initial and final
distributions are (1,0) and (1, 1), respectively. We want A to define a bounded function

A [0, 1] --+ . Consequently, the weights c,/3, and 3 are at most 1. On the other hand,
if all of them are smaller than 1, then A defines the zero-function. Therefore, we assume that
0 _< or,/4, , 6 _< and some of them equal to 1. The most natural case is that e 1,
which corresponds to the case of line automata of degree 1. We shall analyze this case in
detail.

FI6. 6. A general WFA A of 4.

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 801

We propose two questions:
(I) Under which conditions is A continuous?
(II) Under which conditions is fm smooth, that is, have all derivatives?
In order to answer (I) we start to consider the continuity at point 1/2. Since 1/2 has the

representations 01 and 10,, we must have

(17) f(o) f(oo,).

;-,n-Now, PA (01 n) (cqn, o8 z..,i=0 + },) so that if fl < 1, we obtain

(18) f4(01) lim aefl + 0/8 /i -l-
n--, cxa

i=0

oeS -t- y.
1-/

Similarly assuming that a < we have

f(o) /

Hence, (17) yields the condition

(19) oeS
1-fl

+-g

or, equivalently,

(a + fi)(8(-a) (fi)) o.

It follows that under the assumption o, fl < the continuity of jA at 1/2 requires that one of
the following two conditions is satisfied:

(i) ot+fl 1,
(ii) 8(1 c) ?,(1 -/3).

These considerations can be reversed by Lemma 7 or straightforward calculations based
on the implication: If PA(v) (A, B), then PA(vO) (oeA, ?’A + CB) and PA(vl)
(flA, 8A + pB). Consequently, conditions (i) and (ii) (under the assumption o, fl < 1)
characterize the continuity of fA at the point 1/2.

The continuity of fA at the point x that has a finite binary representation vl can be
analyzed by considering instead of (17) the condition

(20) fA(VO’) fA(VO’).

Now, if PA(V) (A, B), then (19) can be written as

(21) A(a8-Pl-----t-Y) + B A(fly -P’-;" +y)+ B,

which is equivalent to (18), since clearly A > 0. Consequently, the continuity of)’a at x is

characterized by exactly the same conditions as that at 1/2, namely, (i) and (ii).
The continuity of fA at the point x that does not have a finite binary representation follows

from Lemma 6.
All in all, we have established the following.

802 KAREL CULIK II AND JUHANI KARHUMKI

THEOREM 3. The automaton A with 0 < or,/3 < 1, 0 <),, 6, and p defines a
continuousfunction cA ifand only if either (i) or (ii) holds true.

Observe that conditions (i) and (ii) are not exclusive and that the first condition does not
give any restriction for V and 3, while the second one fixes their ratio. We shall see in a moment
that (ii) gives only constant functions. Condition (i), in turn, gives both linear functions and
something that can be called fractal-type functions.

In order to complete the analysis of the continuity of jA we have to consider the excluded
cases c or/3 1. If/3 1, then in order to keep fA bounded, necessarily a 0 or
3 0. In the first case (19) can be rewritten as), ?’ + 3 so that 3 0, and hence ’A (1)
and ffA(X))’ for x < 1. In the second case (19) can be rewritten as), ?’(1 c) -1, so
that c 0, and we are back in the first case. Finally, if both and c 1, then, as above,
we have ?’ 3 0, and hence .A is the constant function fA 1.

In the above we completely answered question (I) (in the case p 1). Now, we turn
to consider question (II), and we can restrict our considerations to the case when c,/3 < 1.

Let us assume that A is smooth, in particular, that it has a derivative at the point 1/2.
This means that the limits

lim
n 2-(n+l)

fA(10o) fA (01"0o)

and

lira
n- 2-(n+l)

fA (10") fA(O1 o)

exist and are equal.
We already computed that

f(O1) o3 -+- V.1-/

Further, we obtain (cf. (18) and (21)).

fA(OlnOO)=cn_l(ol) n-_
1- fl - ?’ + ot i

i=0

Therefore, recalling that we are working under the assumption that A is continuous, we
obtain

(22) lim
n-oc 2-(n+ 1)

fA(lOo) fA (01n0o)

lim 2"+1 c6

0

4cr ((2- 2oe)i

0

undefined

if (i) is satisfied and/3 < 1/2,
if (i) is satisfied and/3 1/2,
if (ii) is satisfied,

otherwise.

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 803

Similarly,

(23) lim
noo 2-(n+ 1)

f (10,1 o) fA(O1 o)

0

4/(3 (2- 2/)V)
0
undefined

if (i) is satisfied and c < 1/2,
if (i) is satisfied and ot 1/2,
if (ii) is satisfied,

otherwise.

As in the case of continuity, the above considerations can be extended from point 1/2 to

any point having a finite binary representation. Then in formulas (4) and (23) the right-hand
sides are replaced by constant multiples of those in (4) and (23); cf. considerations in obtaining
(21). Whether fA has derivatives at the points that do not have a finite binary representation
is discussed later.

Now, we determine the existence of the derivative of jA at the point 1/2 (or equivalently
at any point with a finite binary representation). We have two main cases depending on which
of the continuity conditions (i) and (ii) is satisfied.

Case I. Condition (i) holds true. There are three subcases.
(a)/ < 1/2. Now, either (ii) is satisfied as well or u > 1/2 and the fourth alternative

of (23) takes place. The first possibility is treated in Case II. In the second possibility the
derivative (in fact, also the right derivative) of A at 1/2 is undefined.

(b)/ 1/2, and hence also ot 1/2. Now, the left and right derivatives of A at 1/2
equal 2(3 ?’) and hence

(24) ’(1/2) 2(3 ?,).

Observe that this is consistent with the possibility that (ii) also holds true. Namely, then

?’ 3 and so (8) yields j (1/2) 0 as it should by the third lines of (4) and (23). Now, the
automaton is of the form shown in Fig. 7.

0,0.5 0,1
07

1,0.5 1,1
FIG. 7. Automaton A .

Since (24) holds true not only at 1/2 but also at any point having a finite binary repre-
sentation, it strongly supports that f, is a linear function. This can be confirmed easily from
the form of the WFA, which at the same time proves that (24) holds true for all x in (0, 1).
Indeed, we claim that

,A(X) 2(3 ?’)x + 2?’ forx 6 [0, 1].

Let w a la2.., be the standard binary representation of the number x in [0,], i.e.,

x ai2-i withai {0,1}.
i=1

804 KAREL CULIK II AND JUHANI KARHUMKI

Then clearly,

ai ai --0

3E2-i+l y2-i+l ,E 2-i-t-1
ai=l ai=l i--I

23x 2yx + 2y,

which proves the claim.
(c)/3 > 1/2 and (ii) is satisfied. This is symmetric to the second possibility of Case I(a).
Case II. Condition (ii) holds true. Now, the automaton, say Az, is of the form shown in

Fig. 8, where the case of c 0 is allowed. Using the method of Case I(b) one easily concludes
that

’A_(X) 23 for allx in [0,1].

Observe that this again is consistent with our computed value of the derivative of A at 1/2.
As a conclusion of the above we have proved:

FIG. 8. Automaton A2.

THEOREM 4. The function CA defined by the WFA A of Fig. 6 is smooth ifand only if it
is linear. Moreover, such a function is not a constant ifand only if or =/3 1/2 and y 5/: 3.

Actually, we proved a stronger result, as seen in the following theorem.
THEOREM 5. The function A defined by the WFA A of Fig. 6 has the derivative at the

point 1/2 ifand only if it is a linear on the interval (0, 1).
We have completely characterized both continuous and smooth functions defined by au-

tomaton A. Most typically, such functions are not continuous like the one given in Example 4,
and they are smooth only in very exceptional cases as shown by Theorem 4. What is most

interesting is that there exist such functions that are continuous but not smooth. As we saw
such functions do not possess a derivative at any point having a finite binary representation.
We analyze such functions in more details in Example 5.

Example 4. The choice c 1/2,/ 1/4, y 1, and 3 0 in the automaton of Fig. 6
gives an example of a noncontinuous function, in fact, of the function that is not continuous
at any point having a finite binary representation. Its graph is illustrated in Fig. 9.

Example 5. Let us analyze the function defined by the automaton B shown in Fig. 10.
Let the initial and final distributions of B be the standard ones, (1,0) and (1, 1). Then

for any finite word u

(25) P(u) (a(u), b(u)),

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 805

0.0

0.0 0.5 1.0

FIG. 9. The graph ofthe WFA ofExample 4.

0.0.75

1,0 25

0.1

Fla. 10. Automaton B ofExample 5.

where

(26) a(u)
41"I

and b(u) is defined recursively on prefixes v of u as follows:

(27) b(e) 0

b(v)
b(vt)

b(v) + a(v)

if t=O,
if t--1.

By our general considerations ?’ is continuous; cf. Fig. 14 showing its graph. Moreover, the
above formulas show that it is monotonous and for any w

(28) e(w) lim b(w,,),

where w,, denotes the prefix of w of the length n.

806 KAREL CULIK II AND JUHANI KARHUM,,KI

We consider the derivability of .8 in two particular points"

Wl (01) and

//32 satisfying for each prefix u of//)2, [U[0 > 2lull.

The existence of the derivative at tbl is concluded as follows. First we calculate that

16 12f(w- }2,.=o (’ -1- 1-,

12)n-)__ 13fB((01)//-10) (1 (1 2 12]_6)n-13

j)((01)n- 1o) .3(112 -(6)//-1) + 4 l)n-I _12

__
16 l)n-I

Therefore, by the monotonicity of]’B, for any w (01)n-I tO’ we have

16)n-IIfs(wt)- f(w)l < y(

But these w’s are exactly those that satisfy Itb tbl _< 4.4 and hence)(/1) 0.
The nonexistence of the derivative at the point 2 is seen as follows. If w2 contains

ultimately only l’s, our earlier general considerations apply. Otherwise we consider the word
w2(n) that is obtained from w2 by changing the nth symbol from 0 to assuming that it is
originally 0. Then

Iw2(n)- u721 2-’.

Moreover, by formulas (25), (27), and (28), we conclude that

fB(w2(n))- j)(t02) >_ a(pref//_(w2)),

and hence, by (26) and the special form of//)2, we have

fB(tO2(t/) fB(t02) >_
32/3n

Consequently,

fB(L02(’I))- fB(t02)
tO2 (11) 1)2

V/ n> 2//(-- > (1,03)//

which proves our claim.
As a conclusion we note that .’ is an example of a continuous function that is not at all

smooth. Indeed, the set of points where it does not have a derivative is not only dense but also
uncountable. Observe also that our choice for the decomposition ot + fl is not essential.

5. Generation of polynomials. In the previous section we analyzed what it means for a
function defined by a WFA to have certain regularity properties. As a byproduct we concluded
that all linear functions (in the interval [0,]) are definable by very simple two-state WFA,
which is by the line automata of degree one. Here we take a synthesizing approach and show
that all polynomials in one or several variables can be defined as functions of WFA.

THEOREM 6. For each polynomial P(x) with nonnegative coefficients and of degree n
there exists a line automaton An of degree n such that fA,, (X) P(x) for all x in [0, 1].

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 807

The restriction of coefficients can be dropped if negative values in the initial distNbution are
allowed.

Pvof. We first prove the result for powers of x, that is, for polynomials of the form x".
For these we prove an even stronger result’

CLAIM. The polynomial x", for n > 0, can be defined by a line automaton A,, of degree n of
the following form’ The initial and final distributions of A, are (1,0 0) and (1, 1),
and denoting by {q,, q0} the state set of A,, the transitions are

j,2
(i) qi qi, forj 0,1andi 0 n,

1,q-;()
(ii) qi ---+ qi-t for n and i.

Proof of the claim. For n 0 the claim is trivial, and for n it was established in
the previous section. Indeed, function x is defined by the automaton shown in Fig. 11 with
standard initial and final distributions. Assume now inductively that the claim has been proved
for a fixed n. For n + the automaton A,,+l is of the form shown in Fig. 12.

0,0.5 0,1

0
1,0.5

1,0.5
FIG. 1. Line automaton A I.

FIG. 12. Line automaton A,.

By construction the automaton A,,+ has the following nice properties.

808 KAREL CULIK II AND JUHANI KARHUMi,KI

(i) For each 0 n + 1, the sum of weights of transitions starting from qi and
labeled by equals by the binomial formula. Therefore, fA, is 1-faithful.

(ii) Ai for < n is obtained from An+l by deleting states qn+l qi+l and transitions
connected to these.

Let x be an arbitrary number in [0, 1] and w its standard binary representation so that
x tb. By construction of An+l

fA,,+, (011))
2"+

fA,,+, (tO)

and

(w) + fA,,_, (w).fA,,+, (1 w)
2n+1 fA,,+,

+i=0

Since 0w x and w gx -t- , these equations can be rewritten, by induction assumption,
as

(29) A,,+ X 2n+

and

(30)),,+, x +J>A,,+, x + 2n+l ,+1
i=0

Moreover, by (i),

Formulas (29) and (30) hold true for all x in [0,]. So together with (31) they imply that

?A,,+, (Z) Z"+

for all z having a finite binary representation. Consequently, since the set of such points is
dense in [0,], the claim follows if we show that fA,,+, is continuous. This is seen as follows.

By induction hypothesis and the claim in the proof of Theorem 1, JA,,+ is continuous at points
having finite binarj representations if and only if it is continuous at the point 1/2. Therefore,
the continuity of fA follows from Lemmas 6 and 7 together with the equations

fA,,+, (10) 2,,+
fA(01’),

the first of which is obvious and the second one is due to (i). This completes the proof of the
claim. 71

After establishing the claim, Theorem 6 follows easily. Polynomial an+l xn+l -k- -k-
a0, with ai G]+, is obtained by using the automaton A,,+I with the initial distribution

(an+l a0). Obviously, the second sentence of the theorem follows as well.
In the above proof we constructed directly a WFA for a given polynomial. In this con-

struction there are several interesting phenomena. First, for any polynomial of degree n, or in
fact of degree at most n, we can use the same line automaton An, only with different initial
distributions. A related observation is that our WFA for x can be extended by introducing a
new state and transitions for it to a WFA for the function xn+l

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 809

Second, the structure of A,,+ is very interesting. For each state there are equally weighted
loops for both letters, the weights being inverses of powers of 2 2-’+, 2-" 2-1, 1.
All states connected by transitions are connected by transitions labeled by 1, and all states
are acyclically connected in this way. Moreover, for each state the sum of weights starting
from this state and labeled by equal 1, as already noted in (i). Consequently, our WFA is
l-faithful. Of course, it would be possible to change the roles of the input letters and make it
0-faithful. Now, with the initial distribution (1,0 0), we obtain functions that at 0 assume
value 0 and at value 1; by the change we would get functions that at 0 get value and at
value 0.

There is another way to find a WFA defining a given polynomial function P of degree n.

This is based on the closure properties of WFA. We can start from a WFA defining the linear
function x, such as A. Then for x" we get a WFA as an n-fold product of A l, and finally as a
sum we obtain a WFA automaton for P. Now, the resulting automaton is not a line automaton
but a level automaton of degree n (possibly with negative values in the initial distribution).
However, it also has several important properties of A,,. Indeed, for each state there are
equally weighted loops for both letters, and the weights are as in A,, powers of inverses of
two. Moreover, all the other transitions are labeled only by ’s with possibly different weights.
Finally, the automaton is 1-faithful, if the starting automaton is so, and no states except the
sink states are merged when summing the automata together.

Now, we turn to consider the generation of polynomials over several variables by WFA. In
addition to Theorem 6 we need one operation on automata that is quite natural but not widely
used, namely, their Cartesian product 11]. We formulate it here for WFA. For 1,2 let

Ai (Qi, Zi, Wi, Ii, Ti)

be a WFA. We define Cartesian product of A and A2 as a WFA

where

A A x A2 (Q x Q2, Zl x Z2, W,I,T)

I Q x Q2 I, I(ql, q2) (I(q), I:(q2));

T QI x Q2 --+ , T(q, q2) (T(q), T2(q2));

and

W(pl, p2, al,a2, ql,q2) Wl(pl,al,q)Wz(p2, a.,q2).

Consequently, A defines a function FA (El x Z2) - ItS, which is a rational function over the
alphabet of the Cartesian product of the original alphabets. For example, if Z]2 {0, },
this is exactly what we need in order to compute two-dimensional functions I2 I, since a
vector (u, v), with u, v 6 {0, }* and [u[Iv[, addresses a point in the square [0, x [0, 1].
Such a vector can be viewed, as we do, in a natural way as a word over the four-letter alphabet.
Of course, if we want to compute functions IR --+ IR we take the n-fold Cartesian product of
two WFA over {0, }, so that the alphabet Zt of the WFA has 2’ letters.

THEOREM 7. For each polynomial P(x x) with nonnegative coefficients anddefined
in [0,]’t there exists a WFA A defining it. Moreover, A can be chosen to have the level structure

of depth equal to the maximum of the powers of variables in P(x xt). The restriction
on coefficients can be dropped out ifnegative vahtes in the initial distributions are allowed.

810 KAREL CULIK II AND JUHANI KARHUM,KI

Proof. We consider first the case when P is of the form P(x, y) x ym. By Theorem 6,
we can find line automata An and Am such that

A,,(X) x and]’,,,(y) ym.
We claim that the Cartesian product A An x Am computes P, that is,

(32) fl’A (X, y) X
n ym

or, equivalently, denoting by ri(w) the ith projection of w 6 ({0, 1} x {0, 1})’, that is,

fA (tO) fAt (Trl (to)). f4z(Tr2(to))
with rrl (w) and rrz(w) representing x and y, respectively.

The proof of (32) is straightforward. Let ?, 6 ({0, x {0, })*, and denote u tel (?’)
and v rrz(},). As it is easy to see by induction, it follows from the construction of A that
the weight caused by w to the state (p, q) of A equals

top(lt) toq(l))

where top(lt) and Wq(V) define the weights of the states p of An and q of An, caused by the
words u and v, respectively. Consequently, for w 6 ({0, x {0, 1}) we can write

p6Q,qc=Qz

where un and Vn are the prefixes of length n of 7r (w) and 7r2(to), respectively. Since Q and
Q2 are finite, we conclude that

nlimc top(U,,), fA.(.TT2(to))
pQ

fA, (Trl (tO))" fA,. (Tr2(tO))

as claimed.
Now, the proof of the general case is easy. Each monomial of P is definable by a certain

product of line automata of depths equal to the power of the corresponding variable in the
monomial. Such a product is, as is obvious, a level automaton of degree of the highest power
of the variables. Hence, for any monomial of P we obtain a level automaton of an appropriate
depth and having a suitable initial distribution (determined by the coefficient of the monomial).
Moreover, it is a consequence of Theorem 6 that this level automata can be chosen the same
for each monomial. Hence, the polynomial is definable, with a suitable initial (not necessarily
positive) distribution, by a level automaton of degree the maximum of the powers of the
variables in P(x x,).

The above proof deserves two comments. Part of the proof of Theorem 7 was to show
a closure property of WFA automata. It was formulated for particular level automata (to
guarantee the existence of the limits) but actually holds in a much more general form. The
other point worth noticing is that, as in Theorem 6, also here we get all polynomials up to

certain degree from the same WFA having only different initial distributions. Moreover, this
WFA possesses the level (but not necessarily line) structure of the depth of the maximal degree
of variables in P. This property might have practical importance as well.

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 811

6. Integration. This section is devoted to prove the following result, where the integral
means ordinary Riemann integral.

THEOREM 8. For each level automaton A ofdegree n there exists a level automaton A
ofdegree n + such that

(34) CA,(X) fA(t)dt.

Moreover, given the automaton A the automaton A can be constructed by uniform rules.
Proof. Assume that A defining the function fA [0, --+ I is given. We first apply

Lemma 5 in order to find an average preserving level automaton Aap (of the same degree)
defining m. Next, we define a level automaton A of degree n + as follows:

(i) Its states are those of Aap together with one new state called t.
(ii) Its transitions contain transitions of Aap with weights divided by 2.
(iii) From each original state q of Aap there is a transition in A to the state labeled by

W (q, 0 p), where W is the weight function of Aap and Q is itsand with the weight EpQ
set of states.

(iv) The weight 1.
It remains to prove that (34) holds true. We do that in two stages.
CLAIM fA,(W) v -i

i=l Bin(i) 2 FA.p (prefi_ (w) 0), where w ala2.., with

ai {0, 1} and Bin(i) in the ith bit of w.

Proof of Claim 1. Let r/+ denote the (n + 1)-dimensional vector such that its last
component equals and the others equal 0. Then by the construction of A we have

PA; (e) r),,+ 0

and for all u 6 {0, }* we have

P, (uO) r,.,+l PA, (u) r,,+l,

P,(ul) rb,+ PA,(U) rl,,+ + 2-I’’1- F,,(uO).

Since A is a level autonaton, the value of f, is obtained in the last state only (although
the values of Fro,,,, are obtained by summing up the values of all states). Therefore Claim
follows from the above equalities.

OQCLAIM 2. f0 fA,,,(t)dt Y’-i= Bin(i)2-iFA,p(prefi_(w).0), where w aa2.., is
the standard representation of x 6 [0, 1] and Bin(i) is the ith bit of w.

Proof of Claim 2. We wrile w in the form

(35) w-ul0lw’ vlw’ for somek>0,

and denote by x and x2 the numbers having the representations u (or 0 if the shown k O’s
are at the beginning of w) and u 10 1, respectively. We show that

(36) I fA (t)dt F., (vO)p 2Iv01

By the definition of the integration

(37)
2"-’ (vOwiOW)

I lim
fA,,

i=0

812 KAREL CULIK II AND JUHANI KARHUM)i,KI

where Wi is the ith word in the lexicographic order ofthe words of length n. Now, by arguments
of the proof of Lemma 6 we conclude the existence of the function e 1 --+ I+ such that

(38) UAo(zO) FA.p(Z) (Izl), VZ e {0, 11"

and

(39) lim e(n) O.

Finally, since F,4,p is average preserving, we have

(40) 2 FA,.,(vOw) FA,,.(vO)
i-0

21v0w;I 2Iv01

Now, (36) follows straightforwardly from (37)-(40).
Observe that the rules (i)-(iv) to construct A from Aap are extremely simple. Note also

that Theorem 8 provides an alternate way to show that all polynomials can be defined by level
automata. Finally, we illustrate Theorem 8 by the following example.

Example 6. Consider the automaton B of Example 5. As we saw ’A is continuous but
does not possess derivatives at any point having a finite binary representation, nor at many
other points as well. Since B is already average preserving, we can apply directly the rules
(i)-(iv) and hence obtain the WFA B shown in Fig. 13. Of course, f, is continuous, and

’, (x) yT(x). However, , does not have the second derivative at many points. Observe
also that, as illustrated in Fig. 14,

ll)B, - - FB(O0) + - FB(0100) + F(01010).

3

FIG. 13. Automaton B].

Note that by the integration (rules (i)-(iv)) starting from a noncontinuous function defined
by a level automaton we obtain an automaton specifying a continuous function that, however,
is not smooth.

7. Recent work. Since the first draft of this paper, the investigations of WFA continued
intensively. We mention some recent results. In [4] it is shown that for each n >_ the
Daubechies wavelet W2, [7] can be implemented by a WFA with 2n + [log(2n 1)]
states. These WFA are the first natural examples ofWFA that are not level WFA. It is important
that all the discrete W2,, transforms of size 2’ can be computed by a WFA with 2’ + 0(k) nodes,

FINITE AUTOMATA COMPUTING REAL FUNCTIONS 813

4 16 32

FIG. 14. The graph of.
a fixed structure and weights, and only the initial distribution depending on the given vector
(function). This situation is similar to that of the polynomials of degree n considered in 5.

In [5] the first inference algorithm for WFA is given. Theoretically, for an infinitely
precisely given function (i.e., function on [0, 1]), this algorithm produces a WFA with a
minimal number of states that generates the given function if such a WFA exists. For a function

f given by a finite table (finite resolution image), it produces a WFA that approximates f
and has a relatively small number of states but possibly many edges (not very sparse weight
matrices).

The second inference algorithm for the discrete case is described in [6]. It produces a
WFA with highly sparse weight matrices, that is, a WFA with a relatively large number of
states but a relatively small number of edges. This algorithm gives an excellent tool for data
compression. For gray-scale images, it performs better than Daubechies W6 wavelets and in
combination with wavelets gives even higher compression rates with the same quality of the
regenerated images. In this case the WFA can be viewed as a sophisticated method for the
quantization of the wavelet coefficients [6].

Further theoretical results on WFA are shown in [8] and [9]. In [8] it is shown that the only
smooth functions (functions that have everywhere all the derivatives) defined by WFA are the
polynomials. In [9] a WFA is given that generates a function that is everywhere continuous
but does not have the derivative anywhere.

Acknowledgment. The authors are grateful to J. Kari for useful discussions. The research
reported here benefited from related work with him.

REFERENCES

[1 M.F. BARNSLEY, Fractals Everywhere, Academic Press, New York, 1988.
[2] J. BERSTEL AND CH. RIUTENAUER, Rational Series and Their Languages, Springer-Verlag, Berlin, 1988.

814 KAREL CULIK II AND JUHANI KARHUM,g,KI

[3] K. CULlK n AND S. DUBE, Rational and affine expressions for image description, Discrete Appl. Math., 41
(1993), pp. 85-120.

[4] hnplementing wavelet transfornl with atttomata and application to data compression, Proceedings of
STACS ’93, Lecture Notes in Comput. Sci., 665, Springer-Verlag, New York, 1993, pp. 343-353.

[5] K. CULIK 11 AND J. KARl, hnage compression using weighted finite automata, Computer and Graphics, 17
(1993), pp. 305-313.

[6] Image data compression using edge-optimizing algorithm for WFA inference, J. Inform. Process.
Management, to appear.

[7] I. DAUBECH1ES, Orthonormal basis of compactly supported wavelets, Comm. Pure Appl. Math., 41 (1988),
pp. 909-996.

[81 D. DERENCOURT, J. KARHUMAKI, M. LATTEUX, AND A. TERLUTTE, Or1 computational powerof weightedfinite
automata, Proceedings of MFCS 1992, Lecture Notes in Comput. Sci., 629, Springer-Verlag, New York,
1992, pp. 236-245.

[9] On Continuous Functions Computed by Finite Automata, manuscript.
10] S. ELENBERG, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.

[11] E GESCEG AND I. PECK, Algebraic" Theory ofAutomata, Akademiai Kiado, Budapest, 1972.
12] A. PAZ, Introduction to Probabilistic Automata, Academic Press, New York, 1971.
13] A. SALOMAA AND M. SOITTOLA, Automata-Theoretic Aspects ofFormal Power Series, Springer-Verlag, Berlin,

1978.
[14] W. G. TZENG, The equivalence and learning ofprobabilistic automata, The Proceedings of the 30th FOCS,

1989, pp. 268-273.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 815-833, August 1994

() 1994 Society for Industrial and Applied Mathematics
008

ON THE COMPLEXITY OF BILINEAR FORMS
OVER ASSOCIATIVE ALGEBRAS*

NADER H. BSHOUTY

Abstract. Let F be a field, and let q(c) qdl (or)...qdx. (ct) e F[c] be a polynomial of degree n, where
ql(ct) qx.(ot) are distinct irreducible polynomials. Let y(o), yl(o) yr(Ct), Xl(a) Xs(Ot) be (n l)-
degree polynomials with distinct nonscalar coefficients. The authors show the following: the number of nonscalar
multiplications/divisions required to compute the coefficients ofx (or)y(a) mod q (or) for s by straight line

algorithms is s(2n k). If H is a s x r- matrix with entries from F, then the number of nonscalar multiplications/
divisions required to compute the coefficients of (Xl () xs(et)) H(yl (c) yr(c)) r mod q(ot) by straight
line algorithms is equal to (2n k)rank(H). All the above systems satisfy the direct sum conjecture strongly. The
above results also hold for some other algebras that are direct sums of local algebras, such as commutative algebras
and division algebras.

Key words, associative algebras, bilinear forms, multiplicative complexity, direct sum

AMS subject classifications. 68C20, 68C25, 68Q05, 68Q25, 68Q40

1. Introduction. Is it always true that the multiplicative complexity (i.e., the number of
nonscalar multiplications) of multiplying one element x with many elements y Yn in an
algebra is equal to n times the multiplicative complexity of multiplying two elements in the
algebra? The answer is "no." One simple example is A42x2, the algebra of 2 x 2 matrices: to
multiply two 2 x 2 matrices we need seven nonscalar multiplications, and multiplying a 2 x 2
matrix X with n 2 x 2 matrices Y1 Yn requires 6n + 2 nonscalar multiplications.

In [5] and 13], it is proved that the answer to the above question is "yes" when the algebra
is a field. In this paper we study this property for other algebras and prove that it holds for
commutative algebras of minimal rank. In particular, it holds for simply generated algebras
(i.e., multiplication of two polynomials modulo a fixed polynomial). The technique used in
this paper can also be used to prove this property for clean algebras of minimal rank. A clean
algebra is an algebra .,4 where 4/rad 4 is a direct product of local algebras.

Let F be a field, and let x (xl xn) r be a vector of indeterminates. Let Qx
{xr Qlx xr Qmx} be a set of quadratic forms on Xl Xn over F, where the Qi are
n x n matrices with entries from F. A straight line algorithm that computes Qx is a sequence
of rational functions 1 L, where:
(1) for every < j < L we have oj Wj, 0 Wj,2, where o 6 x, +} and

wj, wj,2 F+ Fx + Fri \ F
i=1 i=1

or o +, wj,e F\{0}, and w,ze (F + ’i’=l Fx + F,/2 Fri)\F;
and
(2)

L

Qx c__. F + Fxi q- Fo’i.
i=1 i=1

Received by the editors December 7, 1990; accepted for publication (in revised form) May 19, 1993. This work
was supported by the NSERC of Canada.

Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel, and Department
of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N IN4
(bshouty@cpsc. ucalgary, ca).

815

816 NADER H. BSHOUTY

We call the operation o in (1) a nonscalar o. In this model we only count nonscalar
multiplications/divisions. The minimal L in (1) is denoted by L(Qx) or L F(Qx) and is called
the multiplicative complexity of Qx.

When Q,, is computed by an algorithm Crl cru, where rrj wj, x wj,2 and wj, l, wj,2

Y-,i=l Fxi\F, then we call the algorithm a quadratic algorithm. The minimal p, is denoted
by/z(Q,,) or/ZF(Qx) and is called the quadratic complexity of Qx. Strassen [17] proved that
for infinite fields F,

(1) LF(Qx) #F(Qx).

Let u (ul un) r be a vector of new indeterminates, and let

Q(x1) {xr Qlx xrQm,x} and Q2) {uvQm,+lu uvQm2u}

be two sets of quadratic forms. When the vectors of indeterminates x and u are distinct,
Q(x1) to Q(u2) is called the direct sum of Q(x) and Q(u2). It is also denoted by Q(xl) (Q). It is
obvious that

(2) #(QI) Q(u2)) < #(Q)) + #(Q2)).

Fiduccia and Zalcstein [9] Strassen [17], and Winograd [18] conjectured that for every two
sets of quadratic forms Q(xl) and Q(u2), we have

(3) p,(Q(xl) Q(u2)) p,(Q(l)) + #(Q(2)).

Furthermore, they conjectured that every minimal quadratic algorithm Crl cr for (Q) @
Qu2)) can be split into two minimal algorithms

(4) s (cri)ie and S2 (O’i)iEJ,

where I tO J {1 #}, I A J , and s and $2 are minimal quadratic algorithms for
Q(x) and Q(u2), respectively.

When (3) is satisfied, then we say that Q(xl and Q(u2) satisfy the direct sum conjecture in
the model of quadratic algorithms. We define DSCQA and DSCQ,(F) to be the set of all
pairs (Q(x1), Q(u2), such that Q(xl) and Q2) satisfy the direct sum conjecture in the quadratic
algorithms model. When (4)is satisfied for Q(x) and Q(u2), then, we say that Q(xl) and Q2)
satisfy the direct sum conjecture strongly in the model of quadratic algorithms. We define

DSCSQA or DSCSQA(F) to be the set of all pairs (Q(x1), Q(u2) such that Q(x) and Q2) satisfy
the direct sum conjecture strongly in the quadratic algorithms model. If for any set ofquadratic
form Q(u2) we have that (Q(xl), Q(u2)) G DSCSQA, then we simply write Q(l) DSCSQA.

Similarly, we define the classes DSCsLa and DSCSsL, for the straight line model. It is
obvious that

DSCSM c_ DSCM

for any model of computation, M. By the results of Strassen in [17] and Bshouty in [8], for
infinite fields F, we also have

(5) DSCsLA(F)-- DSCQA(F) and DSCSsLA(F)-- DSCSQA(F).

Let x (x x,) r and y (Yl Ym) r be vectors of indeterminates. Let Bx,y
be a set of bilinear forms {xr Bly xr Bky}, where the Bi are n x m matrices. A bilinear

COMPLEXITY OF BILINEAR FORMS 817

algorithm that computes Bx,y is a quadratic algorithm cr 0"8, where aj Wj, X Wj,2,

wj, _,i=1 Fxi\F and wj,2 _im=l Fyi\F. In a similar manner we define ;(Bx,r) to be
the bilinear complexity of Bx,y. Obviously, #(Bx,y) < 3(Bx,y). We also define DSCA and
DSCSA in a similar manner.

Let A be an associative algebra of dimension k with an identity element 1, and let
{al ak} be a basis of A. Let x (x xn) T and y (y yn)T be vectors
of indeterminates, and let x)-= xiai and y /k=l yiai. We denote by [xy]A
{xT Bly xT Bky}, the set of bilinear forms defined by the product of two elements in the
algebra A. That is,

i=l(XrBiy)ai-- xiai yiai
i=1 i=1

In a similar manner we also define [xly, x2y XnY]A and [XlYl "+- "k- Xnyn]A, or more
generally, [xTCy xVChy],, where x (x Xn) r An, y (y ym) r Am,
and where C C, are n xm matrices. Formally, letxi =, xi,jaj and yt Y=I yt,jaj
for j n and m, where xi,j and Yl,j are distinct indeterminates. Let
x (x x) v and y (yl ym) T. Then [xrCy xVChy]a is the set of bilinear
forms that is the set of the coefficients of x r Ci y, h.

Obviously, [XvCly xTChy]A depends on the chosen basis {a a}. Feduccia
and Zalcstein [9] proved that the complexity of [x vC y x r Ch Y]A does not depend on the
chosen basis.

In [4], Alder and Strassen proved that for any set of quadratic forms Q, we have

#([xylA Qu) >_ 2 dim A- I(A) +/z(Q,,),

where I (A) is the number of the maximal two sided ideals of A. This result was generalized
by Auslander and Winograd [5] and Hartman [13]. They proved that if A is a direct product
of division algebras, then

#([Xly, x2y XnY]A) > (2dim A-I(A))n.

If #([xiy, x2y xy]a) < (2dim A- I(A))n, then we call Aan algebra ofn-minimal
complexity, and if 3([xy, xzy XnY]A) <_ (2dim A- I(A))n, then we call A an algebra
of n-minimal rank. Obviously, if A is an algebra of 1-minimal complexity (rank), then it is an
algebra of n-minimal complexity (rank) for every n. In 10], De Groote proved that a division
algebra A over a field F is an algebra of 1-minimal complexity if and only if A is a field with

FI > 2 dim A. Other characterizations of 1-minimal rank algebras over closed fields can be
found in [12] and [15].

In this paper, we generalize all of the results in [4], [5], [6], [13], and [18]. We prove the
following:

THEOREM I. Let A A1 Ak be an algebra, where the Ai are local algebras and
there exists some di Ai such that the left annihilator ofthe radical/(rad Ai) {ala tad Ai
0} diAi. Thenfor any set ofquadraticforms C, we have

/z([xly xny]A @ C) > (2dimA k)n + lz(C).

IfA is an algebra ofn-minimal complexity, then

[Xly XnY]A DSCSsA.

818 NADER H. BSHOUTY

THEOREM II. Let A AI x Ak be an algebra, where the Ai are local algebras.
Thenfor any set ofbilinearforms B, we have

3([xly xnY]A 3 B) >_ (2dimA- k)n + 3(B).

IfA is an algebra ofn-minimal rank, then

[xly XnY]A E DSCSBA.

Notice that in Theorems and II, I (A) k.
THEOREM III. Let A be a commutative algebra, and let H be an n m matrix. Then

#([X THy]A) > (2dimA- l(A))rank(H).

lfA andA2 are commutative algebras ofrank(H)-minimal rank and rank(Hz)-minimal rank,
respectively, then

([x T HIy]A, [x T H2Y]A2) E DSCSsLA.

THEOREM IV. Let A A1 Ak be an algebra, where the Ai are local algebras,
and let H be an n m matrix. Thenfor any set ofbilinearforms B, we have

3([x r Hy]A B) >_ (2dimA k)rank(H) + 6(B).

IfA is an algebra ofrank(H)-minimal rank, then

[x T Hy]A DSCSBA.

Since, by the Artinian theorem, every commutative algebra is a direct product of local
commutative algebras, Theorems II and IV are true for commutative algebras. In this case we
have k I(A).

Theorems I, II, III, and IV imply the following results:
d dr.Let A F[ot]/(p(ot)), where p(ot) Pl (or)... Pk (or) F[c] is a polynomial of

degree n and pl Pk are distinct irreducible polynomials. Then [xy]A is the problem of
computing the product of two (n 1)-degree polynomials modulo p(c). By Theorems and
II, we have:

dl d.COROLLARY I. Let A F[ot]/(p(ot)), where p p pk pl p, are distinct

irreducible polynomials and lFI >_ 2 max<i<k deg pdi’ 2. Then for any set of quadratic
forms C and any set ofbilinearforms B, we have

/z([Xly XnY]A 3 C) (2deg p- k)n + Iz(C),

and

6([xy XnY]A B) (2deg p- k)n + 3(B),

[xly,... ,XnY]A DSCSsLA, DSCSBA.

COMPLEXITY OF BILINEAR FORMS 819

For a set of quadratic forms Q(xl) (respectively, bilinear forms Bx,y), let Algs.A(Q(l))
(respectively, AlgA (Bx,r)) denote the set of all minimal straight line algorithms that compute
Q(xl) (respectively, bilinear algorithms that compute Bx,y). We denote by Algs.(Q1))
AlgsLa (Q(u2)), the set of all straight line algorithms oq rt such that there exist sets I, J C
{1 t}, I U J {1 t} and I fq J 13; where (O’i)iE E Algs/.a(Q(xl)) and (O’i)iE J
algsa(O(u2)). Obviously, (Q(x1), Q(u2)) 6 DSCSsA if and only if AlgsA(Q(xl)(D Q(u2))
AlgsA(Q(x1)) (D AlgsLA(Q(u2)). By Corollary I, we have:

d dt-COROLLARY II. Let A F[ot]/(p(ot)), where p p pk p pk are distinct

irreducible polynomials and IFI >_ 2 max<i<k deg pai’ 2. Thenfor the basis {al an}
(ot)) ... F[ot]/(p(ot)), we havethat represents A as F[ot]/(p

AlgsLA([X y Xn y]A) AlgsI.A([x y XnY]F[ot]/(p, (c0)) ()

(D AlgsLA ([x y Xn Y] F[otl/(pak (ot))

and

(0/))) (AlgA([xy x, y]A) Algaa([xy,..., XnY]F[ot]/(pl
AlgaA([Xly XnY]F[u]/(pa’(u))).

This corollary shows that a classification of all the minimal straight line algorithms (re-
spectively, bilinear algorithms) for [xly xny]A, where A F[ot]/(pai’(ot)) in which

Pi (or) is irreducible, gives a classification for all the minimal straight line algorithms (respec-
tively, bilinear algorithms) for [X y xn Y]A, where A F[ot]/(p(c)), for any polynomial
p(ot). A classification of all minimal bilinear algorithms for the case of n is completely
studied in [2] and [3].

Theorems III and IV imply:
dl d,COROLLARY III. Let A F[o]/(p(ot)), where p Pl Pk Pl pk are distinct

irreducible polynomials and]FI > 2 max <i<k deg p/a,. 2. Then

#(IxTHy]A) (2deg p(c) k)rank(H),

andfor any set ofbilinearforms B,

3(Ix r HylA @ B) (2 deg p() k)rank(H) + 3(B)

and

[x T Hy]A DSCSBA.

As in Corollary II, we have
d d.COROLLARY IV. Let A F[ot]/(p(ot)), where p Pl Pk P pk are distinct

irreducible polynomials and [FI > 2 maxl<i<k deg pi
a 2. Then for the basis {al

that represents A as F[ot]/(pa (or)) x x F[ot]/(pa (or)), we have

AlgsLA([X T Hy]A) AlgsLA([X T HY]F[ul/(p)(a))) AlgsLA([X T Hy]F[ul/(p-(u)))
and

AlgaA([X r HylA) Alga([X r HylFIul/(p,[(u))) AlgBA([X T Hylv[I/(p.(u))).

820 NADER H. BSHOUTY

The technique we shall use in this paper can also be used to prove lower bounds for many
other bilinear systems over associative algebras.

This paper is organized as follows: In 2 we give some preliminary results from bilinear
and quadratic complexity theory and the theory of associative algebras. In 3 and 4 we study
the complexity of [Xly XnY]A and [x r Hy]A, respectively.

2. Preliminary results. In this section we give some preliminary results

2.1. Dual sets and equivalent sets.
DEFINITION 1. Let B B Bk be a set ofn x m matrices. We define the T-dual

and D-dual sets of B to be

er {1 [} ad = tc Cml,

respectively. Here BiT is the transpose of Bi and BD denotes the set of n x k matrices that
satisfy

c{J)= Oi) i=1 m; j=l k,

where Bj) is the jth column of Bi. That is,

Ci [B em,il Bkem,i],

where em,i is the th column unit vector oforder m.
We also define Be Br Dr, i.e., Be {D1 Dn }, where each

I TBllen,i

r "Ben,i

DEFINITION 2. Let B {B1 Bk} be a set of n x m matrices. Let M, N, and
K (Ki,j) be m x m’, n’ n, and k’ x k matrices, respectively. We define

NBM {NBM NBkM} and B[K] KI,jBj Kk,,jBj
j=l =

DEFINITION 3. Let B {B1 Bk} andC {C1 Ck,} besetsofn xm andn’ m’
matrices, respectively. We define

where

i (Bi Onxm’
On’xm On’xm’ /

in which Osr denotes the zero s r matrix.

Define

j (OnmOnxm’)On,xm Cj

B(R)C- {Bi(R)CI i-- k; j= k’},

COMPLEXITY OF BILINEAR FORMS 821

where (R) is the Kronecker product ofmatrices, lfk k’, then

diag(B, C) {diag(B, C1) diag(Bk, Ck)},

where

Bidiag(Bi, Ci On’m

The following properties, which were shown in [7], hold for these definitions:
LEMMA ([7]). Let A1, A2, and A be sets of kl, k2, and k matrices of size

n2 m2, and n m, respectively. Let N, M, and K be matrices ofappropriate size and Ir be
the identity matrix oforder r. Then:

(1) A rr A ADD A AEE A AE ArDr ADrD.
(2) A[K][J] A[JK] (NAM)[K] N(A[K])M.
(3) (NAM)r MrArNr (A[K]) r Ar[K].
(4)(NA)D NAD (AM) AD[Mr] (A[K])D=AKv

(5)(A, A2)T--AT1 AT2 (A A2)D A A.
(6)(A(R)A2)T=Ar(R)A, (A(R)A2)D=A9(R)A2.
(7) AI[K] A2 (AI) Az)[diag(K, Ik2)], NA1M A2

diag(N, In.)(Al) Az)diag(M, Imp).
(8) A[K](R)A2 (A (R)Az)[K(R)Ik.], NA1M(R)A2 (N(R)Inz)(Al (R)Az)(M(R)Imz).
(9) A (R) (A1 3 A2) (A (R) Al)) (A (R) A2).
If we add A I A, then the set {I, T, D, TD, DT, E} is a group that is isomorphic to

the symmetric group $3 {(), (1, 2), (2, 3), (1, 3, 2), (1, 2, 3), (1, 3)}.
DEFINITION 4. For two k-sets ofn x m matrices B and C we say that B is equivalent to

C and write B =_ C, if there exist nonsingular matrices N, M, and K such that

B N(C[K])M.

Obviously, this relation is an equivalence relation.
The following lemma gives some properties of the equivalece relation.
LEMMA 2 ([7]). Let A Aj; BI Bj be sets ofmatrices. Then:

T(1) If A1 B1, then A B and Arl =-- B
(2) B D Bg =-- B(l @’" B(j and B (R)... (R) Bj B((R)... (R) B(for

any permutation qb on 1, j}.
(3) If Ai =-- Bi, j, then A 9 Aj =_ B Bj and A (R)... (R) Aj =-
B (R)...(R)B.

2.2. Quadratic and bilinear complexity.
DEFINITION 5. Let A {At A be a set ofmatrices. We define

rowrank(A) rank[All... IA], colrank(A) rank[Al IAff],
and

dim(A) dim Span(A),

where Span(A) is the linear space spanned by the elements of A.
The following can be easily proved
LEMMA 3. Let A be a set ofmatrices. Then
(1) rowrank(A) dim(AE), colrank(A) dim(AD).

822 NADER H. BSHOUTY

(2) If A =-- B, then

rowrank(B)-- rowrank(A), colrank(B) colrank(A).

Let x (x xn) and y (y yn) be vectors of indeterminates. For a set of
n m matrices A {A A,}, we denote by #(A) (respectively, by 3(A)) the quadratic
complexity (respectively, bilinear complexity) of the bilinear forms {xT Ay xT Aky}. We
will call {xTAy xTAky} the set of bilinear forms defined by A {A Ak}.

From [8], [14], and [16] we have:
LEMMA 4. Let A and B be sets ofmatrices. We have:
(1)/(A) < 3(A) < 2/z(A).
(2) 6(A) 6(A T) 6(A z) 3(AE), #(A) #(AT).
(3) lf A B, then #(A) Ix(B).
(4) lz(A B) <_ Ix(A) + lz(B) and IX(It (R) A) <_/z(])l= A) <_ t#(A).
(5) l(A (R) B) < lz(A)tz(B).

3 (diag(A AT)).(6) #(A) >

(7) DSCsLA DSCQA and DSCSsLA DSCSQA.
(8) If A, B DSCSsLA, then A 3 B DSCSsLA.
(3), (4), (5), and (8) are also true for the bilinear complexity, 3.
From [6] we have:
LEMMA 5 ([6]). Let A be a set ofmatrices. Iffor every nonsingular matrix N there exist

A As A IN] such that

rowrank{A A > or colrank{A 1, "", A > t,

then

#(A)>dim A+t-s.

2.3. Complexity of a direct sum of sets.
DEFINITION 6. We denote by DS*(r) the collection ofsets ofmatrices A, such that there

exists a linear subspace A ofSpan(A) and integers s and t, where:
(1) For any nonsingular matrix N andfor any Bl (Span(A)\A1) f3 A[N] there exist

s matrices Be Bs (Span(A)\Al) N A[N] such that

rowrank{B Bs > or colrank{ B1 B > t,

and
(2)/z(A) dim(A) + s + r.
In [6], we proved the following two lemmas.
LEMMA 6. (1) If A DS* (0), then A DSCSSIA.
(2) If A DS*(1), then A DSCsLA.
(3) If A DS*(r), r > 1, thenfor every set ofmatrices B we have

#(A 3 B) >/z(A) + #(B) (r 1).

Notice that all the results in Lemmas 5 and 6 are also true for the bilinear complexity.
LEMMA 7 ([6]). A DSCSsA if and only if A D DSCSA if and only if A

DSCSBA.

COMPLEXITY OF BILINEAR FORMS 823

Using the results in 16] we prove another lemma that will be.used in this paper. For the
proof, we need the following

PROPOSITION ([6]). Let x and u be distinct vectors of indeterminates and let Qx1) and
Qu2) be two sets of quadratic forms. Then (Qx1), Q)) 6 DSCSsLA if and only iffor any
minimal quadratic algorithm rl rt for Qxl) Quz) we have cri F[x] U F[u] for all
l<i<t.

The proposition is also true for the bilinear complexity.
LEMMA 8. Let A {At Ak} and B B Bk, be sets ofmatrices. If
(1) (diag(A, At), diag(B, Br)) DSCSA

and
(2) 6(diag(A, Av)) 26(A) and 3(diag(B, Br)) 26(B),

then (A, B) DSCSsLA.
Proof. If (A, B) DSCSsc, then by Proposition 1, there exists a minimal quadratic al-

gorithm crl rt for {xv Ay xv Aky, uvBv uv Bk, v}, where ri0 6 Fix, y, u, v]\
(Fix, y] U Flu, v]) for some < i0 < t.

Let

i (ai, (X) q- ai,2(y) -k- ai,3(u) -t- ai,4(v))(bi,1 (x) -t- bi,2(y) -+- bi,3(u) -+- bi,4(v)).

It is known from [16] that the algorithm (i,j)i=l t, j---l,2, where

’i,1 (ai,1 (x) + ai,2(x’) -k- ai,3(u) - ai,a(u’))(bi, (y’) -t- bi,2(y) -t- bi,3(v’) q- bi,4(v))

and

i,2 (bi, (x) --I- bi,2(x,t) -[- bi,3(u) -t- bi,4(ut))(ai, l(y’) -t- ai,2(y) -I- ai,3 (v’) -+- ai,4(v)),

is a bilinear algorithm that computes the bilinear forms defined by D diag(A, A r)
diag(B, Br). Since

6(diag(A, A v) diag(B, BY)) 3(diag(A, AV)) + 6(diag(B, BY)) 26(A) + 26(B),

we have that {i,j}i=l t, j=l,2 is a minimal bilinear algorithm for D. Since

(diag(A, AT), diag(B, BT)) DSCSB

and since

8io,1 G Fix, x’, y, y’, u, u’, v, v’]\(F[x, x’, y, y’] t3 F[u, u’, v, v’]),

we have a contradiction to Proposition 1, which implies the result. S

2.4. Regular representation of algebras. In this subsection we will give the results of
[7] that will be used in the following sections.

Let A be an associative algebra with identity element 1, and let {a an} be a basis of
the algebra A. Let

aiaj Yi,j,kak,
k=l

with Yi,j,k F, j k n. Then for x .= xia and y n.i: yjaj we have

xY-- (xiai) (yjaj) (’i,j,kXiYJ) ak"
i=1 j:l k:l i:1 j:l

824 NADER H. BSHOUTY

Let aia --k=l cri,lcalc, and define Aa (O’i,k) to be a square n x n matrix. Then it is
known that RR(A) {Aala A} forms an algebra over F that is isomorphic to A under the
correspondence a Aa and that A, Aa,, is a basis for the algebra RR(A). Therefore,
we have: Az In; AaAt, Aab; Aa q- Ab Aa+b; Aa Az, for . 6 F; and if ab 1,
then A At,. The algebra RR(A) is called the right regular representation of A.

We define

where

B(A) B B,, },

xTBiy---y’i,j,kXiYj,
i=1 j=l

for x (Xl x,)r, y (y y,)r. That is, xr Biy is the ith coefficient of the product

xy- (i=lXiai) (i=lYiai).
Let C(A) {Aa Aa,,}. In [7] we gave the following connection between B(A) and

C(A).
LEMMA 9. We have

C(A) z) B(A).

Obviously, C(A) and B(A) depend on the chosen basis B {a a, }. When we want
to emphasize this dependency, we write C(A, B) and B(A, B).

The following two lemmas are also well known.
LEMMA 10. Let A1 and A2 be algebras. LetA (R) A2 be the tensorproduct ofthe algebras

A1 and A2, and let A1 A2 be the direct product ofA and A2. Then

C(AI x A2) C(A) C(A2), B(A1 A2) B(A) B(A2),

C(A1 (R) A2) C(AI) (R) C(A2), B(A1 (R) A2) --= B(A) (R) B(A2).

For the next lemma we need the following
DEFINITION 7. An algebra A is called a Frobenuis algebra ifthere exists a linearfunction

k A* whose kernel contain no left or right ideals differentfrom zero. For other definitions
of Frobenuis algebras see [19]. The following lemma can also be a definition for Frobenuis
algebras

LEMMA 11. Let A be an algebra, and let A- be the reciprocal algebra. Then A is a
Frobenuis algebra ifand only if

C(A-) B(A).

In [7] it is proved that
LEMMA 12. A local algebra A is a Frobenuis algebra ifand only ifthere exists an element

d A such that

l(radA) {ala radA 0} dA.

COMPLEXITY OF BILINEAR FORMS 825

Let A A An where each Ai is a local algebra. Then A is a Frobenuis algebra
ifand only if each Ai is a Frobenuis algebra.

Before we leave this subsection we shall prove the following.
LEMMA 13. Let A be a local algebra. There exists a basis {al ak, ak+l ark}for

A, such that al ak rad A, ak+l ark rad A,

(6) Aai ".. k,

0 Ai

where C(A/rad A) {Ai}i= k, and

Okk
,

(7) Aa, ".. k + rk.
0 Ok

Proof. Let A L i)F rad A, where L is a complementary subspace of rad A and

F is the direct sum of subspaces. Let {a ak} be a basis for L. Since A is local,
all the elements in L are invertible. Let io be the least integer such that (rad A)i - 0
and (rad A)i+1 0. We now prove that there exist bl, b2 bko (rad A)io, such that
bL F’’" IF bkoL (rad A)i. We first choose an element bl 6 (rad A)i. Since L contains
invertible elements, we have that b L _c (rad A)i. Suppose bl L F t)F bkL

_
(rad A)i

for some bl bk 6 (rad A)i. Let b,+l 6 (rad A)i\(bL F’’" tF bkL). Then bk+iL c_
(rad A)i. If bk+L (blL F t bkL) :/: O, then there exist a ak+ 6 L such that

-1bk+a+l bal + + bkak, which implies that bk+ baak+ + + bkakak+-bA +... + bkA bl(L F rad A) +...+ bk(L tF rad A) bL +... + bkL. This is a
contradiction. Therefore bl L tF F bk+l L c_ (rad A)i.

This proves that there exist b bk 6 (rad A)i such that {biaj}i=l -o is a basis for

(rad A)i and

Lio bL)F)F bkoL (rad A)i.

We now handle the set (rad A)i-l\(rad A)i. Let bko+ 6 (rad A)i-l\(rad A)i. Then

bko+L c_ (tad A)i-I\ (rad A)i and therefore bko+L Lio 0. Suppose bko+L F’’" @F
bkL C_ (radA)io-\(radA)io. Letbko+k+ 6 ((radA)io-\(radA)io)\ (bko+LF...@FbkL),
where bko+ bk 6 (rad A)i- \(rad A)i. If bko++ L f3 (bko+ L F’’" F bkL F L io)
{0}, then there exist al a+l 6 L and c Lio, such that bko+k+ak+ bko+a -4- +

-1b,o+,ak -4- c. Then bko++ bko+aak+ +... + b,o+ka,a-_ -4- ca-l+. Since the aia[_
are invertible, we have aiak- ci + wi, where 0 ci 6 L and wi rad A. As a result,

k bko+i uoi -t- ca;l+l Now, ik__l bko+l wi -1-- ca;q (rad A)ibo++ Z=l bo+C + Z=l
and ci L. Therefore bko+k+ 6 bko+l L +... + bko+k_l L + Lio, which is a contradiction. In
this way we can find bko+ b,, such that

Lio-1 bko+L t)F)F bk, L (rad A)i-l\(rad A)i.

Therefore (by induction) there exist elements b br such that

A L @F bL @F’’" tF brL

and such that if bi, (rad A)J’\(rad A)j’-, bi2 (rad A)J2\(rad A)j-I and i2 > i, then
jz <_ jl.

826 NADER H. BSHOUTY

We now find the regular representation C(A, B), where B {br-i+laj} ,=o and bo 1.
j=l

Let A A/rad A be a canonical projection. Then ci c])(ai), k, is a
basis of A/rad A. If

(8)
k

iCj Yi,j,lCl,
1=1

)then since (aiaj) cicj _,tk=l Yi,j,tc 1= Vi,j,la we have

Suppose

Now since

aiaj . ?li,j, lal -1- tOi,j,
/=1

for some toi, j E rad A.

bi (rad A)", \ (rad A)’ +1, rib, >_ and b0 ’ rad A.

k

(btai)aj)/i,j,lbtal -k- btwi,j
/=1

and since bttoi,j (rad A)n’\(rad A)n’+ forn’ > rib,, by (8) we have that A,. is a matrix with

the shape in (6), where A-j A.j in C(A/rad A, {cl c, }).
Since we have (brai)(bsaj) E be-lL F F bL for r, s > 0, e min(r, s), we also

have that Ab,aj is a matrix with the shape in (7). 71

2.5. Complexity of algebras. Let C {C Ck be a set of n x m matrices and let
A be an algebra. The quadratic complexity ofC over the algebra A is #(C (R) B(A)), i.e., the
complexity of {XrCly xrCky}, where x (Xl xn) r, y (y ym) and xi, yj
are elements in the algebra A. In the same manner, we can define the bilinear complexity of
C over the algebra A as 3(C (R) B(A)).

The following is proved in [7].
LEMMA 14. (1) 3(C (R) B(A)) 6(CD (R) C(A)).
(2) #(C (R) B(A)) =/x(Cr (R) B(A-)).
(3) IfA is a Frobenuis algebra, then l,(C (R) B(A)) #(C (R) C(A)).

3. Complexity ofx y xn y in algebras. In this section we investigate the complexity
of computing {Xl y xn y} in algebras that are direct product of local algebras. This problem
is equivalent to the complexity of ID {en, en,n over the algebra A, where e,,i is the
th column unit vector of order n and In {In} in which In is the identity n x n matrix.
Therefore,

/.z([xly Xny]) /z(lff (R) B(A)).

Since (ID (R) B(A))D I,, (R) C(A) {In (R) A,, I{a}i= , is a basis for A], we have

(R) B(A)- {[(In (R) Aa)enk,i 1... [(In (R) Aa,)enk,i][i =1 nk],
where k dim A.

For v 6 F"k, we denote by B(v) the matrix

(v> [(I. (R) A.,>I I(I (R) Aa)V].

COMPLEXITY OF BILINEAR FORMS 827

Since I (R) B(A) {B(en,,) B(en,,n,)} and

(9))B(vl) +).2B(1)2) B()iv + .21)2)

we have that

Span(I (R) B(A)) {B(v)lv Fnk}.

We will first investigate the complexity of division algebras.
LEMMA 15. Let A be a division algebra ofdimension k, and let {a ak} be a basis

for A. Let v Vl Fnk\{0} and

s--dim Span {(In (R) Aai)vj[i- k; j= l}.
Thenfor any nonsingular matrix N, there exist matrices B(toi2) B(tois/.)) in
{B(w) B(wl)} {B(v) B(v)}[N], such that

rowrank({B(w), B(toi,.) B(tOis/t.)}) s.

Proof By (9) we have that {wl L01} {v vt}[N] C Fnk. Since N is nonsin-
gular,

Span(w1 L0l) Span(vt vt),

and therefore

(10) dim Span {(In (R) Aa,)wj[i-- k; j 1} s.

If s k, then

rowrank({B(w), B(to2) B(wt)}) rank[B(w)lB(w2)l... IB(wt)]

(11) dim Span {(In (R) Aai)wjli k, j 1} s,

and the proof is completed.
If > s/k, then the set {(In (R) Aai)wjli k;j l} contains lk > s

vectors, and therefore there exists one vector that is dependent on the other. Assume that

(12)
k k

)i(In (R) Aai)l13jo i,J (In (R) Aai)Loj
i=1 i=1 J=

J#Jo

for some <_ jo <_ l, where not all the)i are zero. If all the i,j are zero, then 2/k=l i(In (R)

Aa,)Wjo O, and therefore

(13) Li(In (R) Aa,)Wjo In (R) .iAa, Wjo (In (R) Aa)wjo --O,
i=1 i=1

for a /= .iai 5 O. Since A is a division algebra, In (R) Aa is a nonsingular matrix and
(13) implies that Wjo 0. This is a contradiction. Therefore, not all of the i,j are zero. This

828 NADER H. BSHOUTY

implies that we can choose j0 - 1, such that (12) is satisfied. Then for a Ydk__l iai, we
obtain

which implies

k

(In (R) Aa)tOjo i,J (In (R) ,4ai)toj,
i=1 j=l

J#Jo

k k

i=1 j=l i--1 J=l
jTjo jTo

Now for every d k we have

k

(In (R) Aaa)Wjo y 3i,j,cl(In (R) Aa,)wj,
i=1 j=l

j#o

which implies that

dim Span {(In (R) Aa,)toj [i k; j 1; j : jo : 1} s.

Now, by induction it can be proved that there exist i 1, i2 i(s/k) such that

dim Span (In (R) Ai)Wiq li k; q s/k} s.

Then, as in (11), we have

rowrank({B(w), B(toi2) B(tOi,s/,))}) s. [-]

Let A be an algebra, and let {al ak be a basis for A. For 1) l) 6 Fnk we define

Z({v vz}) Span ({(I (R) A.,)vli- k; j-

The following theorem gives a lower bound for the complexity of a subset B

_
Span(lff (R)

B(A)).
THEOREM 1. Let A be a division algebra, V {v vt} c_ Fn dimA and B

{B(v) B(vt)}. Then

IX(B) > IXo dim Span(V)

(1) If IX(B) Ixo, then B DSCSsL,.
(2) IfIX(B) Ixo + 1, then B DSCsLA.

l)dimA
dim LA(V).

(3) If IX(B) > IXo + 1, then for any set ofmatrices C we have

IX(B C) > Ixo + + Ix(C).

Proof. We shall prove that B DS*. By Lemma 15, for any nonsingular x matrix
N and any B(Wl) G BIN], there exist r (dim LA({Vl vl})/dimA) matrices
B(w2) B(wr) BIN] such that

rowrank({B(w) B(tvr)}) > dim LA({Vl Vl}).

COMPLEXITY OF BILINEAR FORMS 829

Then by Lemma 5,

) dim LA(V)#(B) > dim(B) +
dimA

dim Span(V) +
dimA

dim L(V).

By Lemma 6, the results (1) through (3) follow. [3

THEOREM 2. Let A be a direct sum ofdivision algebras DI x x Dk. Thenfor any set

ofmatrices C,

#((I (R) B(A)) 3 C) > (2 dim A k)n + #(C).

Ifthe bound is tight, then In (R) B(A) 6 DSCSsLA.
Proof. By Theorem 1, we have for B In(R)B(Ai) that dim B n dim Di and

dim Loi (V) n dim Di, and therefore

#((lff (R) B(Di)) C) > (2dim(Di) 1)n + #(C).

Since by Lemma and (10), we have lff (R) B(A))iw___l(InD (R) B(Di)), the result
follows, lq

For a matrix S we denote the linear space spanned by the columns and the rows of S by
Lcol(S) and Lrow(S), respectively. We have:

LEMMA 16. Let A be a division algebra of dimension k. Then for any nonsingular
(nk nk) matrix N andfor any C1 (In (R)C(A))[N], there exist n matrices C2 Cn
(Iff (R) C(A))[N] such that

Lco[Cll ICn F"’.

Andfor any nonsingular (nk nk) matrix N andfor any C (In (R) C(A))[N], there exist

n matrices C2 Cn One (R) C(A))[N] such that

Lrow[Cl[... ICnl Fnk.

Proof Since A is a division algebra, A is a Frobenuis algebra, by Lemma 12. Therefore,
by Lemmas 11 and 2 and since B(A-) B(A)v,

I (R) C(A) =- I (R) B(A-) and lff (R) C(A) _= lff (R) B(A-) (I (R) B(A)) r.
Therefore, by Lemma 15, the result follows. 71

LEMMA 17. Let A be a local algebra of dimension k and S lff (R) C(A). There exists
a linear space S1 c_ Span(S) such that for any nonsingular (nk x nk) matrix N and any
CI S[N] N (Span(S)\S) there exist C2 C, S[N] f3 (Span(S)\S1), where

colrank{C C, n dim A.

This lemma is also true for S’ lff (R) C(A) with rowrank.

Proof We shall use the basis in Lemma 13. Let C(A) {Aal Aa., Aa.+ Aar. },
S I (R) Span{A,.+l Aa,..} and $2 (Span(S)\Sl). By Lemma 13, taking the first

k columns in Aai, k, we get [./rl0l,., 10], where C(A/rad A) {.i}.

830 NADER H. BSHOUTY

Taking the first k columns of A,,,, > k, we get [0kkl... 10kX-] r. Since A is local, A/rad A
is a division algebra, and therefore we can apply Lemma 16 to it.

Let N be any nonsingular (nk x nk) matrix Observing the first k columns ofthe matrices in

(InD (R)C(A))[N], we conclude by Lemma 16 that for any C1 6 (I,D (R)C(A))[N] fq $2 there exist
C2 Cn (In (R) C(A))[N] N 82, such that dim Lco(first k columns in C Cn) nk.
In fact, it can be easy to verify that

Lcol(first k columns in C C.)
{(1)1,0dimA-k, 1)2, 0dimA-k 1)n, 0dimA-k)Tl(1)l, 1)2 1)n) Fnk],

where 0j (0, jt).me.s, 0). Since [Cll IC,,] is of the form

C, C,n

0 CI,1 0 Cl,n
C2,1 * C2,n *

C2,1 C2,n

0 C2,1 0 C2,n

Cn,1 * Cn,n .
Cn,l Cn,n

it follows that

Cn,1 0 Cn,n

C, C,,,
Fnk"/.co, :.

Therefore,

Lco(ith set of k columns of C Cn)
{(*(i-1)k, 1)1, 0i(dimA-k), *(i-1)k, 1)2, 0i(dimA-k) *(i-1)k, Vn, Oi(dimA-k))TI

(1)1, 1)2 1)n) G Fnk},

where *(i-1)k represents (i 1)k entries with some possible nonzero elements from the field
Then obviously,

Lcol(C C,) Lco(first set of k columns of C C,,)3F
Lcol(Second set of k columns of C Cn)F

Leon(last set of k columns of C C,,) Fn dimA

This implies that colrank{C Cn} n dim A.
Lemma 17 implies the following theorem.

COMPLEXITY OF BILINEAR FORMS 831

THEOREM 3. Let A A1 Ak be an algebra where each Ai is local algebra. IfA
is a Frobenuis algebra, thenfor any set ofmatrices C we have

(14) #([xly Xny]A 3 C) >_ (2 dim A k)n + #(C).

IfA is an algebra ofn-minimal complexity, then (14) holdsfor equality and

(15) [xly Xny]A DSCSsLA.

Proof. We have, by Lemmas and 10, that

k

[xly xny] In (R) B(A) (I (R) B(Ai)).
i=1

Then by Lemmas 4 and 12 it is sufficient to prove the theorem for each of the local Frobenuis
algebra Ai.

Now since Ai is a Frobenuis algebra, by Lemma 14, /z(In (R) B(Ai))
#(In (R) C(Ai)). By Lemmas 5, 6, and 17 the result follows, l-1

THEOREM 4. Let A A1 x x Ak be an algebra where each Ai is a local algebra.
Then for any set ofmatrices C we have

(16) ([Xly xny]a 3 C) > (2dim A k)n + (C).

IfA is an algebra ofn-minimal rank, then (16) holdfor equality and

[xl y xn y]a DSCSBA.

Proof. As in the proof of Theorem 3, [xly Xn y] In (R) B(A) and

6((Iff (R) C(A-)) Crz) > (2dim A k) + 3(CrZ)).

Then, by Lemma 4, and since Inez lff, we have

3((I,e (R) B(A-)) Cr) > (2dim A- k) + 3(Cr).

And by Lemma 14 and since Iner Iff and B(A-) r B(A), we have

3((In (R) B(A)) C) > (2 dim A k) + 6(C).

IrA is ofn-minimal rank, then I(R)C(A) 6 DSCS,, and therefore, by Lemma 7, In(R)B(A) 6

DSCS. 3

4. Complexity ot’ one bilinear form over algebras. In this section we shall study the
complexity of one bilinear form over algebras.

Let H be an n m matrix, and let A be an algebra. Then:
LEMMA 18. /z({H} (R) B(A)) =/Z(Ir (R) B(A)), where r rank(H).
Proof Let N and M be nonsingular matrices such that NHM diag(/r, 0). Then

(N (R) h,)({H} (R) B(A))(M (R) I,) diag(Ir, {01) (R) B(A),

which implies the result.
The main results of this section are:

832 NADER H. BSHOUTY

COROLLARY 1. Let A A1 Ak be an algebra where each Ai is a local algebra.
Let H be an n m matrix. Thenfor every set ofmatrices C we have

3(Ix r Hy]A C) > (2 dim A- k)rank(H) + 3(C).

IfA is an algebra ofrank(H)-minimal rank, then

[X T Hy]A DSCSA.

Proof. Let r rank(H). In Lemma 17 we proved this theorem for Ir (R) C(A). Then by
Lemmas and 4 it is also true for

(Ir (R) C(A))D Ir (R) B(A) [XlYl -t-""" d- xnYn]A =-- [x r Hy]A.

THEOREM 5. Let A be a commutative algebra. Let H be n m matrix. Then

#([xrHy]A) > (2dim A-I(A))rank(H).

IfA1 and A2 are commutative algebras ofminimal rank, then

([X T HlY]A, [X T H2y]A.) DSCSsLA.

Proof. Let r rank(H). By Lemmas 4 and 18, we have

]([X T HylA) --/Z(Ir (R) B(A)) > ;(diag((Ir (R) B(A)), (Ir (R) B(A))T)).

Since A is commutative, we have B(A) v B(A), and by Theorem 5, we have

/z([x r Hy]A) > t](12r (R) B(A)) (2 dim A k)rank(H).
z

Now by Lemma 8, ([X T Hly]a,, [x r H2Y]A.) 5 DSCSsLA. [3

REFERENCES

A.A. ALBERT, Structure ofalgebras, Amer. Math. Soc. Colloq. Publ. 24, 1939.
[2] A. AVERBUCH, Z. GALIL AND S. WINOGRAD, Classification ofall the minimal bilinear algorithmfor computir/g

the coefficient ofthe product oftwo polynomials modulo a polyr/omial in the algebra G[u]/ (un), Theoret.
Comput. Sci., 86 (199 l), pp. 143-203.

[3] Classification ofall the minimal bilinear algorithmfor computing the coefficient ofthe product oftwo
polynomials modulo a polynomial in the algebra G[u]/ (Q(u)l), > 1, Theoret. Comput. Sci., 58 (1988),
pp. 17-56.

[4] A. ALDER AND V. STRASSEN, Or/the algorithmic complexity ofassociative algebras, Theoret. Comput. Sci., 15
(1981), pp. 201-211.

[5] L. AUSLANDER AND S. WINOGRAD, The multiplicative complexityof certain semilinear systems defir/ed by
polynomials, Adv. Appl. Math., (1980), pp. 157-299.

[6] N.H. BSHOUTY, On the extended direct sum conjecture, Proceedings 21st Annual ACM Symposium on Theory
of Computing, May 1989.

[7] On the regular representation ofalgebras, University of Calgary.
[8] On the direct sum conjecture in the straight line model, ESA ’93, October 1993.

[9] C.M. FEDUCCIA AND Y. ZALCSTEIN, Algebras having linear multiplicative complexity, J. Assoc. Comput. Mach.,

24 (1977), pp. 311-331.
[10] H. E GROOTE, Characterization of division algebras of minimal rank and the structure of their algorithm

varieties, SIAM J. Comput., 12 (1983), pp. 101-117.

COMPLEXITY OF BILINEAR FORMS 833

[11] H. E GrOOTE, Lectures on the complexity ofbilinear problems, Lecture Notes in Comput. Sci. 245, Springer,
Berlin, 1987.

[12] H. E Groo’rE ,Nt) J. HIN’rZ, Commutative algebra of minimal rank, Linear Algebra Appl., 55 (1983), pp.
37-68.

[13] W. HARTM,NN, On the multiplicative complexity ofmodules over associative algebras, SIAM J. Appl. Math.,
14 (1985), pp. 383-395.

14] J. Hor,cRovI" AND J. MUNSINSI, Duality applied to the complexity ofmatrix multiplication, SIAM J. Comput.,
2 (1973), pp. 159-173.

15] J. HEINTZ .D J. MO,GENSTER, On associative algebras ofminimal rank, Proc. of the AAECC-2 Conference,
Grenoble 1988.

[16] J. JAJA, On the complexity ofbilinearforms with coJnmutativity, SIAM. J. Comput., 9, 4, (1980), pp. 713-728.
[17] V. Sa’Assy, Vermeidung von Divisionen, J. Reine Angew. Math. 264, (1973), pp. 184-202.
18] S. WINOGRAD, On the number of multiplications necessary to compute certain functions, Comm. Pure Appl.

Math., 23 (1970), pp. 165-179.
19] C.W. CURTIS AND I. RIN, Representation theory offinite groups and associative algebras, John Wiley, New

York, 1988.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 834-851, August 1994

994 Society for Industrial and Applied Mathematics
009

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION:
TIGHT LOWER BOUND FOR A POLYGON TRIANGULATION PROBLEM*

PRAKASH RAMANAN

Abstract. A new technique for obtaining lower bounds on the worst-case time-complexity of optimization
problems in the linear decision tree model of computation is presented. This technique is then used to obtain a tight
f2(n logn) lower bound for a problem of finding a minimum cost triangulation of a convex polygon with weighted
vertices. This problem is similar to the problem of finding an optimal order of computing a matrix chain product. If
the lower bound technique could be extended to bounded degree algebraic decision trees, a tight f2 (n log n) lower
bound for this latter problem would be obtained.

Key words, optimization problem, time-complexity, algebraic decision tree model, lower bound, polygon
triangulation, matrix chain product

AMS subject classifications. 68Q25, 68Q20, 68Q05

1. Introduction. Let P be an optimization problem whose input instances are points
(x, x2 x,,) in (the positive orthant of) the n-dimensional real space Rn, for some

n >_ 1. Let S(P) be the finite set of solutions of P. Associated with each s E S(P) is a

polynomial cost function Cs(Y). P can be stated as follows:

Given E Rn, find s 6 S(P) such that cs () is as small as possible.

Suppose that each s 6 S(P) is the unique optimal solution for some instance 6 R". Then
IS(P)I is a lower bound on the number of leaves of any decision tree that solves P. The
following is well known.

THEOREM 1. Any decision tree that solves P has f2 (log IS(P)I) height.
For many problems, the lower bound obtained using the above theorem is unsatisfac-

tory. In 2, we present a new technique for obtaining a lower bound on the worst-case

time-complexity of P, in the linear decision tree model of computation. In 3, we use this

technique to obtain a tight f2 (n log n) lower bound for a problem of finding a minimum cost

triangulation of a convex polygon with weighted vertices. This problem is similar to the
problem of finding an optimal order of computing a matrix chain product. If we could extend
our lower-bound technique to bounded degree algebraic decision trees, we would have a tight
f2 (n log n) lower bound for this latter problem. In 4, we present our conclusions.

2. The lower-bound technique. The model of computation we refer to is the algebraic
decision tree model (see [1], [2]). An input instance is a sequence (x, x2 x) R.
An algebraic decision tree is a ternary tree. Each internal node v of the decision tree contains
a comparison of the form fv () 0, for some nonzero polynomial function fv of n arguments;
the three branches emanating from v are labeled with <, =, and >, corresponding to the three
possible outcomes of the comparison. Each leaf of the decision tree contains a solution

sol(l). For any input , the computation moves from the root down the decision tree, at each
internal node v testing and branching according to whether f() is < 0, 0, or > 0, until a
leaf is reached; then sol(l) is the output of the decision tree. The worst-case time-complexity
of the decision tree is its height. An algebraic decision tree is said to be of degree d if the
degrees of the polynomials fo are all at most d. An algebraic decision tree is said to be of

*Received by the editors October 29, 1990; accepted for publication (in revised form) May 15, 1993. This
research was supported in part by National Science Foundation grant CCR 88-03241, Lawrence Livermore National

Laboratory’s Institute for Scientific Computing Research grant ISCR 89-28, and by a Summer Research Fellowship
from the Liberal Arts and Sciences College of the Wichita State University.

Department of Computer Science, Wichita State University, Wichita, KS 67260-0083 (ramanan@cs.twsu.edu).

834

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 835

bounded degree if it is of degree d for some constant d independent of n. The linear decision
tree model is a special case, where each of the polynomials is restricted to be of degree one.

Let P be an optimization problem. For an instance 6 Rn, let sol() S(P) be the set
of all optimal solutions for . For s 6 S(P), let set(s) be the set of all instances Y" such that
s 6 sol(Y). Let D be a decision tree that solves P. When presented with an instance Y, D
needs to output some s 6 sol().

Suppose that for each s 6 S(P), the cost function cs () is a linear function of.; then P can
be solved by a linear decision tree. There exists a partition of R" defined by hyperplanes, into
convex polyhedral regions, such that each s S(P) is associated with a unique polyhedron;
so set(s) is a closed convex polyhedron. The solution associated with a polyhedron is uniquely
optimal for each instance in the interior of that polyhedron. For an instance on the boundary
oftwo or more polyhedra, sol() consists of the solutions associated with each of the polyhedra
which share that boundary. Consider the following problem of testing the optimality:

Given s 6 S(P) and 6 R", determine if s is optimal for instance Y’.

This is the problem of testing if is inside (or on the boundary of) the polyhedron set(s).
Let K {1, 2 k} for some positive integer k, and let C

R" be the convex

polyhedron defined by the set of linear inequalities {pi(Y) <_ 0[i 6 K}. For F K, let

CF {. Rnlpi (-) 0 for 6 F and Pi (,) < 0 for 6 K F}. If CF is nonempty, then
it is called a face of C (the face defined by F). The dimension of a face is the dimension of
the smallest affine space that contains the face (see [6]); note that if the dimension is at least
one, then the face is an open subset of this affine space. A zero-dimensional face is a vertex, a
one-dimensional face is an edge, and an (n 1)-dimensional face is called afacet. According
to our definition, a face cannot be contained in another (higher dimensional) face. Yao and
Rivest [7] proved the following.

THEOREM 2 [7]. Let C be a fixed convex polyhedron in Rn. Any linear decision tree that
gives Y R determines ifY C has 92 (log f) height, where f is the total number offaces
(ofall dimensions) of C.

We say that S’ c_ S(P) is a realizable optimal solution set (ross), if there exists an instance
Y such that S’ sol(); that is, if there exists an instance of P for which each s 6 S’ is an

optimal solution and no s (S(P) S’) is optimal. Each ross corresponds to a face in the
polyhedral subdivision of R" corresponding to P. Let ROSS(P) be the set of all ross’s of P.
We have the following.

THEOREM 3. Any linear decision tree that solves P has 92 (log IROSS(P)[) height.
We can prove this theorem using Theorem 2; we give a direct proof. We need the following

definitions and notations. Let D be a linear decision tree that solves P. For a leaf in D, let

t be the path from the root to l, and let set(1) be the set of all instances that follow this path.
For any s S(P), let L(s) be the set of all leaves in D such that sol(l)= s. Let

L’(s) {1 L(s)lt does not contain any branch labeled --}.

Let L (D) be the set of all leaves in D, and let

L’(D) {1 6 L(D)It does not contain any branch labeled =}.

For a set X Rn, let closure(X) denote the smallest closed set in Rn containing X; that is,
closure(X) X tO boundary(X).

Proof of Theorem 3. There is a natural one-to-one correspondence between ROSS(P)
and the set of faces in the polyhedral subdivision of R" corresponding to P; so, IROSS(P)I
is the total number of faces in the subdivision. Let D be a linear decision tree of height h that
solves P. We will prove that

836 PRAKASH RAMANAN

(o) IROSS(P)I < number of faces of closure(set(l)) <_ 22h.
I6L’(D)

This will imply the desired result.
Consider a leaf L’(s) for some s S(P). Clearly, set(l) and set(s) are open and

closed convex polyhedra, respectively, and set(l) c_ set(s); so, no face of set(s) can intersect
with a higher dimensional face of closure(set(l)). Because set(s) t3tt,s) closure(set(l)),
each face of set(s) must contain a face (of the same dimension) of closure(set(l)) for some

L’(s). So number of faces of set(s) < --4t’s) number of faces of closure(set(l)). Hence,
sCe) number of faces of set(s) < Y4t’z)) number of faces of closure(set(l)). Also,
IROSS(P)I < Y-ss’) number of faces of set(s). The latter two inequalities, together, imply
the first of the two inequalities in (0).

At each node v on the path set, let the comparison performed be of the form fv () 0. A
face of closure(set(l)) corresponds to some of these comparisons resulting in equality, and the
others resulting in strict inequality. Hence, closure(set(l)) has at most 2h faces. This, together
with L’(D)[< 2h, implies the second inequality in (0). I-1

Note that, with slight modifications, the above lower bound proof also holds for problem
P restricted to instances Rn A, where A is any set of measure zero. In particular, it holds
for problem P restricted to instances such that Isol()l 1. With slight modifications, it
even holds for the following problem of testing if the optimal solution is unique" Given " 6 R",
determine if Isol()l 1.

When c. (’) is nonlinear in for some s, the subdivision of R" corresponding to P need
not be a polyhedral subdivision. In this case, P cannot be solved by any linear decision tree,
and any lower bound based on Theorem 3 would be useless. It would be nice if the result of
Theorem 3 could be extended to bounded degree algebraic decision trees.

Now, we will extend the result of Theorem 3 (as well as any similar future results for
algebraic decision trees) to the case when the input is restricted to contain only integers.

R is said to be rational if each component of is rational. is said to be integral if each
component of is integral. Let PI be the integer version of problem P, that is, problem P
restricted to integral instances 6 I", where I" is the set of all n tuples of (positive) integers.
An algebraic decision tree that solves P could output a wrong solution when given an input
.,7 6 R" I" We now prove that for many problems P, the lower bound result of Theorem 3
also holds for P.

Let sign(u) be 1, 0, or -1 depending on whether the real number u is positive, zero,
or negative, respectively. A polynomial f() is said to be scale invariant if sign(f())
sign(f(ot)) for all 6 R and real ot > 0; if all the monomials in f() have the same
degree, then clearly f() is scale invariant. A set X

_
R is said to be scale invariant if

" 6 X -- ot 6 X, for all real c > 0. An optimization problem P is said to be scale
invariant if set(s) is scale invariant for all s 6 S(P); if c() c,() is scale invariant for all
s, s’ 6 S(P), then clearly P is scale invariant.

We need the following definitions from Yao [8]. For a polynomial f(), let ckf()
limz__,0)a f(/)), where d is the degree of f; ckf() is the sum of the degree d monomials in
f(), and so it is scale invariant. For an algebraic decision tree D, let 4 (D) be the decision
tree obtained from D by replacing at each internal node v, the comparison fv () 0 by the
comparison 4fo() 0. The node in 4)(D) corresponding to v 6 D will be referred to as 4 (v).
Using arguments similar to those of Yao [8, Lemma 3], we prove the following.

LEMMA 1. Let P be an optimization problem that is scale invariant. Let D be an
algebraic decision tree that solves PI. For R, if set(ck(l)) for some L(D), then
sol(4(/)) 6 sol(Y)" so there exists a set A c_C_ R of measure zero, such that (D) correctly
solves Pfor any R -A.

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 837

Proof. Let 6 set(4(/)) for some L’(D). Each connected component of set(4(/)) is
an open set of dimension n. So, we can pick an e > 0 such that

B {. R"lll- 11 < e} set(4(l)).

Let , 6 Be; then _; 6 set((l)). Because b(l) 6 L’(qb(D)), we have

sign(4)fv(-)) sign(4fv()) -7: 0

for all v 6 1. We pick _; to be rational. Let N be a positive integer such that N_ is integral.
Because bf() is scale invariant, we have

sign(bfo(N)) sign(qfo (_7)) - 0

for all v 6 t. We will pick N large enough such that

sign(qfo(N)) sign(fo(N,))

for all v 6 . Putting together all the preceding equalities, we have that

sign(f(N)) sign(4f())

for all v 6 t; so N 6 set(l). Because D correctly solves P1, sol(l) 6 sol(N). Because P
is scale invariant, sol(l) 6 sol(); this is true for any rational

An optimization problem corresponds to a subdivision of Rn into regions such that each
solution is optimal over some region; the boundaries between the regions are defined by
polynomial equations. Because sol(b(/)) sol(l) 6 sol() for any rational _7 6 Be, this
implies that sol(p(/)) 6 sol().

Finally, let A UIeL(D)-L,(D)set(qb(I)); A

{f 6 R’lbf() 0 for some v 6 D}, and

so A is of measure zero. 4)(D) correctly solves P for any R" A.
As a corollary, we have the following.
THEOREM 4. Let P be an optimization problem that is scale invariant. Any linear decision

tree that solves P1 has f2 (log IROSS(P)I) height.
Proof The proof follows from Lemma 1, Theorem 3, and the comment immediately

following the proof of Theorem 3.
Previously, there has been no natural problem for which a nontrivial lower bound has

been obtained using Theorems 2-4. In this paper, we present such a lower bound. As a simple
application of Theorems 3 and 4, consider the following problem:

(MIN) Given (x l, X2, Xn) E R", find i, _< _< n, such that xi min xj.
l<_j<n

We have S(MIN) 1, 2 n }. It is well known that n comparisons are necessary
and sufficient to solve (MIN), but the lower bound is based on ad hoc arguments. Theorem

yields only an f2(log n) lower bound. Note that any nonempty subset S’

_
S(MIN) is a

ross. Hence, an f2 (n) lower bound follows from Theorem 3. A similar lower bound can be
obtained using Theorem 2, but it is more tedious. Also, MIN is scale invariant. Hence, by
Theorem 4, MIN1 also has an f2 (n) lower bound.

3. Tight lower bound for a polygon triangulation problem. A convex polygon is

specified by a list (i.e., a sequence) of vertices, in cyclic order, around the boundary of the

polygon. Let SP (v, 1)2 1)n) be a convex polygon. An edge 1)i1)imodn+l, < <_ n, is
a straight line segment that connects the two adjacent vertices vi and 1)imodn+l of the polygon.

838 PRAKASH RAMANAN

An arc vi vj is a straight line segment that connects the two nonadjacent vertices vi and vj
of the polygon. Each vertex vi, < <_ n, has a weight wi > 0 associated with it. A
triangulation T (of the interior) of SP consists of n 2 triangles formed by the n edges and
n 3 nonintersecting arcs. The cost of a triangle vi vvk is c(wi, wj, wk). The cost of T,
denoted by cr(go), is the sum of costs of all the triangles in T. The triangulation problem we
are interested in is as follows.

(TP)
Given t (wl,//)2 tOn), find a triangulation T such that cr(ff)) is as small as possible.

There are Cn_2 triangulations of SP, where C, is the kth Catalan number, C, 2(*)

(see [3]). Hence, Theorem yields only a trivial lower bound.
We consider two different cost functions. In the sum case, c(wi, WJ, w,) wi +w / wk;

in the product case, c(wi, wj, w,) wiwjwk. These two versions of TP will be referred to
as TPS and TPP, respectively. Note that for TPS, for any two triangulations T1 and T2,

cr (t) cr2 (t) remain unchanged if the cost function is redefined as follows: The cost of an
arc viv9 is wi + w" cr (t) is the sum of costs of all the arcs in T. Also note that TPS can be
solved by a linear decision tree. TPP cannot be solved by any degree two decision tree; this
can be shown as follows: Let n 4 and w < w2 < w4 < w3; to find an optimal triangulation
of SP, we need to determine which of the two costs wl w3(w2 + w4) and 1.021/)4(1/) + 1,03) is
smaller. This cannot be determined by any degree two decision tree.

Hu and Shing [4], [5] considered the following matrix chain product problem.

(MCPP) Given integers (w, l/)2 ton), find an optimal order of computing the
matrix chain product M x M2 x x Mn-1, where Mi is of dimensions

wi x wi+ and the cost of computing the product of awi x wj matrix with a

wj x w, matrix is wi waw*.
They showed that this problem is equivalent to TPPI, and they presented an O (n log n)

algorithm for TPP. This algorithm can be easily modified to solve TPS. In 3.1, we present
a simpler exposition of their algorithm for TPS and TPP. In 3.2, based on this algorithm,
we identify n) ross’s for TPS and TPP. Note that TPS and TPP are scale invariant. So
an (n log n) lower bound for TPS and TPSI in the linear decision tree model follows from
Theorems 3 and 4, respectively. Note that any lower bound for TPP based on Theorem 3
would be useless, because TPP cannot be solved by any linear decision tree. If we could
extend the result of Theorem 3 to bounded-degree algebraic decision trees, we would have
a tight (n log n) lower bound for TPP and for TPPI =-- MCPP. In 3.3, we discuss the
similarity and the relationship between TPS and TPP.

3.1. The algorithm. Let SP (vl, v2 v,,) be a convex polygon. Without loss of

generality, let vl be a vertex of smallest weight in SP; that is, w min<i<, wi; such a vertex
is said to be a global minimum. A global maximum vertex is defined analogously. A vertex vi
is said to be a local minimum if wi < min(wi_, wi+). A local maximum vertex is defined
analogously. For the sake of simplicity, we make the following assumptions concerning SP:

(A 1) v is the unique vertex of smallest weight.
(A2) For < j such that wi wj, there exists k, < k < j, such that wk < wi.

Then the number of local minimum vertices and local maximum vertices are the same. SP is
said to be m-modal if it has m local minimum vertices.

We let w(v) denote the weight of a vertex v. An arc r vi vj, < < j < n, is called a

primary horizontal arc (ph-arc) if w, > max(w/, wj) for all k, < k < j (Hu and Shing [4]
called it a potential horizontal arc). If r is a ph-arc, SP(r) (vi, vi+ vj) is called the
upper subpolygon of SP that is bounded below by r.

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 839

An arc r vl vj, 2 < j < n, is called a secondary horizontal arc" (sh-arc) if either of the
following two conditions hold:

(a) wk > wj for all k, < k < j. In this case, SP(r) (vl, v2 vj) is called the
upper subpolygon of SP that is bounded below by r.

(b) w/ _> /L,j for all k > j. In this case, SP(r) (vl, vj, tlj+ On) is called the upper
subpolygon of SP that is bounded below by r.

An arc is called a horizontal arc (h-arc) if it is either a ph-arc or a sh-arc. Hu and Shing
[4] showed that, under assumptions (A1) and (A2), there are exactly n 3 h-arcs of SP, and
no two of them intersect; so they constitute a triangulation of SP. Hu and Shing also presented
a linear-time One-Sweep algorithm for finding all the h-arcs.

For two h-arcs r and r’ of SP, r is said to be below r’, denoted by r < r’ (equivalently,
r’ is above r, denoted by r’ > r), if all the vertices of SP(r’) are also vertices of SP(r). Two
h-arcs are said to be comparable if one of them is below the other; otherwise they are said to
be incomparable.

A subpolygon of SP is a polygon each of whose edges is either an edge or an h-arc of SP.
Note that the h-arcs of a subpolygon of SP are those h-arcs of SP that are in the subpolygon.

If ri, < < k, are pairwise incomparable h-arcs, we let SP(; r, r2 rk) denote the
subpolygon obtained from SP as follows. For each i, _< < k, remove from SP all the
vertices of SP (ri) except the endpoints of ri. This subpolygon is said to be boundedabove by ri,

<_ < k. If r is another h-arc such that r < ri, <_ < k, we let SP(r; r, r2 rk) denote
the subpolygon obtained from SP(r) in a similar manner, that is, SP(r; r, r2 rh-)
(SP(r))(; rl, r2 rk). This subpolygon is said to be bounded below by r and bounded
above by ri, < <_ k.

A fan of a (sub)polygon is a triangulation of the (sub)polygon in which a vertex v of
smallest weight is connected to all the other vertices; v is called the center of the fan. The
following lemma and its corollary are from Hu and Shing [5, Lemma 1]. For the sake of
completeness, we present their proof here.

LEMMA 2 [5]. Ifan optimal triangulation ofa polygon contains none ofthe ph-arcs, then
it must be afan of the polygon.

Proof The proof is by induction on the number of vertices in the polygon. For a polygon
with three vertices, a triangulation contains no arcs, and so the statement of the lemma is
vacuously true. For the basis step, consider the polygon (v, v2, v3, v4) with four vertices,
where v is a global minimum. There are only two different triangulations, each containing one
arc. The triangulation containing the arc vl v3 is a fan. So, let the triangulation containing the
arc v2 v4 be optimal; we will prove that v2 v4 is a ph-arc. For TPS, we have w2 + w4 _< w + w3.
For TPP, we have w2w4(w + w3) < w w3 (w2 + w4); dividing both sides of this inequality
by WltO2tO3L04, we get 1/wl + 1/w3 < 1/w2 -t- l/to4. For both TPS and TPP, because v is a
global minimum, the corresponding inequality implies that v3 is a global maximum. So vzv4
is a ph-arc.

For the induction hypothesis, let the statement of the lemma be true for all polygons with
fewer that n vertices. Let SP (v, v2 v,) be a polygon with n vertices, where vl is
a global minimum. Let T be an optimal triangulation of SP that contains no ph-arcs. If T
contains an arc v vj for some j, 2 < j < n, then consider the polygons SP1 (v, v2 vj)
and SP2 (Vl, vj, vj+ v,,); let Tl and T2 be their respective optimal triangulations
induced by T. Because v is a global minimum in SP, any ph-arc of SP1 or SP2 is also a
ph-arc of SP. Then, because T contains no ph-arcs of SP, T and T2 contain no ph-arcs.
Hence, by induction hypothesis, T1 and T2 must be fans of SP and SP2, respectively, with
center Vl. So, T must be a fan of SP with center Vl.

So, assume that T does not contain the arc Vl vj for any j, 2 < j < n; we will show
that this leads to a contradiction. T must contain the arc vzv,,; without loss of generality, let

840 PRAKASH RAMANAN

//)2 tOn. Let SP (v2, v3 vn), and let T’ be the optimal triangulation of SP’ induced
by T. We will consider two cases.

Case 1. v2 is a global minimum vertex in SP’. Then, any ph-arc of SP’ is also a

ph-arc of SP. Because T contains no ph-arcs of SP, by induction hypothesis, T’ must be
a fan of SP’ with center vz. Among the vertices vi, 3 < < n, let va be a vertex of
smallest weight (see Fig. la). Because v2vn is not a ph-arc of SP, we have Wa < wn. Let
SP" (Vl, v2, va, Va+l Vn), and let T" be the optimal triangulation of SP" induced
by T; T" consists of the triangle v v2vn and the fan of (v2, Va, Va+l ln) centered at v2.
Because w < w2 < wa < Wn, the fan of SP" with center v has lesser cost compared to T",
contradicting our assumption that T is optimal.

’/3 ’U

3d

1

(a) (b)

FIG. 1.

Case 2. v2 is not a global minimum vertex in SP’. Let l)a, 3 < a < n be a global
minimum vertex in SP’; we have wa < w2 < wn. We consider two subcases.

Subcase 2.1. T contains no ph-arcs of SP’ (Va, Va+ Vn, V2, V3, Va-) (see
Fig. la). By induction hypothesis, T’ must be a fan of SP’ with center Va. Then, in T, the
quadrilateral Vl v2 vo vn is triangulated by the arc v2 vn. If we replace this arc by the arc Vl v,
the resulting triangulation has lesser cost compared to T (because Wl < toa < w2 <

contradicting our assumption that T is optimal.
Subcase 2.2. T’ contains some ph-arcs of SP’ (va, va+ vn, v2, v3,..., Va-)

(see Fig. lb). Let r be any such ph-arc. Because T contains no ph-arcs of SP, the upper
subpolygon SP’(r) of SP’ must contain v2 and Vn. Because this is true for any ph-arc r
of SP in T’, these ph-arcs must be one above the other in SP’. Among these ph-arcs,
let r’ VdVe, d < e, be the topmost one (i.e., the one closest to v2vn). Let SP" denote
SP’(r’) (va, l)e, Ve+l l)n, v2, v3 va-1), and let T" be the optimal triangulation of
SP" induced by T. Because r’ is a ph-arc of SP’, va, or Ve (whichever is of smaller weight)
is a global minimum vertex in SP". By our choice of r’, T" contains no ph-arcs of SP". So,
by induction hypothesis, T" must be a fan of SP" with center va or re. We will consider three
subcases.

Subcase 2.2.1. {d, e} fq {2, n} 4. Without loss of generality, let T" be the fan of SP"
with center yd. Then, in T, the quadrilateral v v2vdvn is triangulated by the arc v2vn. If
we replace this arc by the arc v va, the resulting triangulation has lesser cost compared to T
(because w < wa < w2 < ton, and Wl < Wa < w2), contradicting our assumption that T is

optimal.

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 841

Subcase 2.2.2. e n. Because r’ l)dl)e is a ph-arc of SP’, we have wa < W2 < tOn.
Then, the proof is similar to that of Subcase 2.2.1.

Subcase 2.2.3. d 2. If We <_ w2, then the proof is similar to that of Subcase 2.2.1, with
Ve playing the role of va. If We > w2, then we have Wl < Wa < w2 < We < Wn; then the
proof is similar to that of Case 1.

COROLLARY 2.1. Let H be the set of h-arcs in an optimal triangulation of SP. If a
subpolygon of SP that is bounded by some of the h-arcs in H contains none of these h-arcs
in its interior, then afan is an optimal triangulation ofthe subpolygon.

Proof Let r vi vj be an h-arc of SP. Then vi or vj (whichever is smaller weight) is a
global minimum vertex in any subpolygon of SP that is bounded below by r. So, any ph-arc
of the subpolygon is also a ph-arc of SP. Then the proof follows from Lemma 2.

By Corollary 2.1, we only need to determine which of the h-arcs appear in an optimal
triangulation of SP. For this, we need to be able to efficiently compute the cost of a fan of
a subpolygon. For an h-arc r vivj, the weight of SP(r), denoted by W(r), is defined as
follows. For TPS, W (r) (weight(r), count(r)) where weight(r) is the sum of weights of
all the vertices in SP(r) except vi and vj, and count(r) is the number of vertices in SP(r)
excluding vi and vj; for TPP, W(r) y tOawb where the summation is taken over all the
edges v, vb of SP(r) except r. The modality and the local minima of a polygon can be easily
found in linear time. If we first find the local minima, then the One-Sweep Algorithm of Hu
and Shing [4] can be easily modified so that it also computes W(r) for each h-arc r. Note that
the cost of a fan of a subpolygon can be easily computed using the W (r)s of the h-arcs r that
bound the subpolygon.

The next concept we introduce is the cutoff value of an h-arc. For an h-arc r vi vj,
< j, let SP’ (r) be the polygon obtained from SP(r) by inserting a new vertex v between vi

and vj, that is, SP’(r) (v, vi, vi+ vj) (see Fig. 2). The cutoff value of r, denoted by
co(r), is defined to be the value of tO(v) for which the following holds: the minimum cost of
a triangulation of SP’ (r) that contains r equals the minimum cost of a triangulation of SP’ (r)
that does not contain r; that is, there exists an optimal triangulation of SP’(r) that contains r,
and there exists another optimal triangulation of SP’(r) that does not contain r (for TPS, such
a value of w(v) could be negative; for TPP, it is always nonnegative). Now, we prove that if
such a value of tO(v) exists, then it is unique and is at most min(tOi, wj). In 3.1.1 and 3.1.2,
we will show how to determine co(r) (thereby also proving that is exists).

FIG. 2.

The motivation behind the definition of cutoff values is as follows. Let T be an optimal
triangulation of SP; let r be an h-arc that is not in T. We say that an arc r’ (not an h-arc
of SP) in T cuts r if r’ has one endpoint in SP(; r) and another endpoint in SP(r), with

842 PRAKASH RAMANAN

neither endpoint being an endpoint of r. By Corollary 2.1, all the arcs in T that cut r must
have the same endpoint, say v, in SP(; r). Also, by the definition of co(r), we must have
w(v) < co(r).

LEMMA 3. Let SP’(r) be as defined above. If w(v) > min(wi, wj), then every optimal
triangulation of SP’(r) will contain r. So, ifa value of w(v) satisfies the definition ofco(r),
then it is at most min(wi, wj).

Proof Without loss of generality, let wi < wj. Let w(v) > wi, and let T’ be any
triangulation of SP’(r) that does not contain r; we will prove that T’ is not optimal. T’
must contain a triangle vvivk, for some k, < k < j, and a triangulation of the polygon
(v, vk, Vk+l vj) (see Fig. 2). Consider replacing these two items by the triangle vvivy
and an optimal triangulation of the polygon (vi, vk, vk+ vj). Because r is an h-arc,
Wk Wj; SO, C(W(U), Wi, Wk) __. C(W(V), Wi, Wj). Also, because w(v) > wi, the cost of an
optimal triangulation of the polygon (v, vk, Vk+l vj) is more that the cost of an optimal
triangulation of the polygon (vi, vk, Vk+l vj). The last two statements together imply that
T’ is not optimal.

LEMMA 4. Let SP’ (r) be as definedabove. For w v) equal to somefixed w < min(wi, wj),
let T(be a triangulation that is ofminimum cost among all triangulations ofSP’ (r) that contain
r (note that T(is independent of w). Let Tj be a triangulation that is ofminimum cost among
all triangulations of SP’(r) that do not contain r. Let Ctl (x) and C;(x) be the costs of(the
fixed triangulations) T(and T, respectively, as afunction ofw(v) x. Then Ct (x) C(x)
increases strictly as x decreases. So, if C’l(W) > C;(w), then Ctl(w’) > C;(w’) for all

Proof. For an h-arc rp, let T(rp) be an optimal triangulation of SP(rp), and let C(rp) be
its cost. T[consists of the triangle vvi vj and an optimal triangulation T (r) of SP(r). So

Ctl (x) c(x, wi, w./) + C(r).

For w(v) equal to (fixed) w < min(wi, wj), v is a global minimum vertex in SP’(r). By
Corollary 2.1, there exist h-arcs rq, < q <_ k, no two of which are comparable, such that T
consists of rq and T(rq), < q < k, and the fan of (Spt(r))(; r, r2 rk) centered at v
(see Fig. 3) (if T is the fan of SP’(r) centered at v, we have k 0). Let F’(x) be the cost of
this fan as a function of x w(v). Then

k

C;(x) F’(x) + C(rq).
q=l

So, we have

k

C (x) C2(x) C(r) C(rq) (F’(x) c(x, wi, wj)).
q=l

Because r is an h-arc, the weight of each vertex in SP(r) is at least max(wi, wj). It can be
easily verified that, for both TPS and TPP, F’(x) -c(x, wi, wj) is a strictly increasing function
of x. So, the result follows.

COROLLARY 4.1. Let Spt(r) be as defined above. There is at most one value of w(v)
that satisfies the definition of co(r). Suppose that such a value exists; then it is at most

min(wi, wj). Moreover, if w(v) < co(r), then no optimal triangulation of SP’(r) can

contain r. If w(v) > co(r), then every optimal triangulation of SP’(r) will contain r. If
w(v) co(r), then there exists an optimal triangulation of Spt(r) that contains r, and there
exists another optimal triangulation of SP’ (r) that does not contain r.

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 843

F1o. 3.

Proof Follows from Lemmas 3 and 4. [3

Hu and Shing [5] presented an O(n log n) algorithm for finding an optimal triangulation.
In 3.1.1, we will describe their linear-time algorithm for unimodal polygons. In 3.1.2,
we will describe its extension to an O(n log n) algorithm for general multimodal polygons.
Our description of the algorithm is substantially simpler than the one given in [5]. The
simplification is essentially due to the concept of cutoff values introduced above.

3.1.1. Algorithm for unimodal polygons. Let SP (v, U2 Un) be a unimodal
polygon, where v is the global minimum and Va is the global maximum (see Fig. 4). From
now onward, in our figures, we let the relative order of the y-coordinates of the vertices of
a unimodal (sub)polygon be the same as the relative order of their weights. Each ph-arc of
SP is of the form vivj, where < < a < j. In our figures, broken lines are used to

represent h-arcs. Any two h-arcs of SP are comparable" so, the n 3 h-arcs are one above the
other. Let the h-arcs be labeled r, r2 rn-3 from bottom to top. Let ri and ri

2 be the two
endpoints ofri such that to(r/l) _< to(ri2); ri and ri

2 will be referred to as the lower and upper
2endpoints of ri. Let E {2, n} be such that wt min(w2, wn); ro vl vt and rn-2 rn_3Va

are considered to be degenerate h-arcs. For _< _< n 2, ri and ri-1 share the endpoint ri
l"

that is, ri is either r_ or r_
We now describe a linear-time algorithm for finding an optimal triangulation of SP. The

algorithm performs a scan from top to bottom and processes the h-arcs one by one in the order
rn-2, rn-3 r, r0. When it processes ri, it constructs an optimal triangulation T(ri) of
SP(ri) and computes its cost C(ri) and co(ri). By Corollary 2.1, T(ri) can be represented by
a list L (ri) of the h-arcs that are in T (ri)" L (ri) contains these h-arcs in bottom to top order,
and its first element is ri. Note that the cutoff values of these arcs need not be in decreasing
order. After processing ri, the algorithm has two lists L (ri) and L2(ri). L2(ri) is defined
as follows. It is a sublist (i.e., a subsequence) of L (ri). Its first element is ri; an element of
L (ri) is in L2(ri) if and only if its cutoff value is less than that of all the preceding elements
in L (ri).

Now, we will show how to update L and L2 when the algorithm processes ri-1. Let v’
be the vertex in {ri_ 1, ri_l 2} {r/l}. L (ri_) is obtained from L l(ri) as follows. Remove
the longest prefix of elements (i.e., h-arcs) all of which have cutoff values greater than or equal
to w(v’), and then insert ri-1 at the front. Let rj be the second element of L (ri-). Then
the triangulation T(ri_) consists of T(rj) and a fan of SP(ri_; rj) centered at ri_l 1; its cost
C(ri- can be computed in constant time, using C(rj), W (rj) and W(ri-).

Before we can get L2(ri_), we need to compute co(ri_). We take co(rn-2) to be -o
for TPS, and 0 for TPP. For TPS,

844 PRAKASH RAMANAN

Va--

Va

rn-4

v2

)a+l

FIG. 4.

co(rn-3) vO(rn-3 l) + tV(rn-32) VOa tVa-I + Wa+l tOa.

For TPP,

cO(rn-3) W(rn-31)W(rn-32)Wa/[tOa(tO(rn-31) -+- tO(rn-32)) W(rn-31)W(rn-32)]

Wa_l WaWa+l/[Wa(Wa_ -4c- tOa+l) Wa_l Wa+l].

Before we can compute cO(rn_4), we need to know whether or not r,-3 will get "cutoff" at

cO(rn-4), that is, whether co(rn_4) <_ co(r,_3) or co(rn-4) > cO(rn-3).
For < n 4, co(ri_) is computed as follows. Recall, from Corollary 4.1, that

co(ri_l) <_ w(ri_ll). Let L2’(ri_l) be the list obtained from L2(ri) by removing the longest
prefix of elements all of which have cutoff values greater than to equal to w(ri_ll). We will
first locate co(ri_) to be either equal to the cutoff value of a particular element in L2’(ri-1),
to be greater than the cutoff value of the first element in L2’(ri_l), or to be strictly between
the cutoff values of a particular pair of adjacent elements in L 2’ (ri-). In the latter two cases,
co(ri-l) is obtained by solving an equation.

Let SP’(ri-l) be the polygon obtained from SP(ri-1) by inserting a new vertex v between
ri_l and ri_l

2 Let T’ l(ri-1) be the triangulation of SP’(ri-1) that consists of T(ri_) and
the triangle vri_llri_l 2. For any value of w(v), T[(ri-1) is of minimum cost among all
triangulations of SP’(ri-l) that contain ri-l. Note that T[(ri-l) is independent of w(v). Its
cost is

C (ri-l) C(ri_) + c(w(v), to(ri_l), w(ri-12)).

Let T(ri_) denote a triangulation that is of minimum cost among all triangulations of
SP’(ri_) that do not contain ri-. Clearly, T(ri-) depends on w(v).

We will let w(v) successively take the cutoff value of each of the h-arcs in L2’(ri_).
Suppose that we are currently considering co(rp) as the value of w(v), for some rp

_
L2’ (ri_);

let rq be the h-arc following rp in L2’(ri_). Let T,p(ri-1) be the triangulation of SP’(ri_)
that consists of rq, T (rq) and the fan of (SP’(ri-)) (; rq centered at v. By Corollary 4.1, when
co(rq) < to(v) <_ co(rp), T,p(ri-1) is ofminimum cost among all triangulations of SP’(ri_)

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 845

that do not contain ri-; its cost C,p(ri-1) can be computed (as a function of w(v)) in constant
time, using C(rq), W(rq) and W(ri_). For co(rq) < w(v) <_ co(rp), we take T(ri-1) to
be T,2,p(ri 1) its cost C2(ri_l) equals C’ (ri-) We compare C2(ri_) with C(ri_) at2,p
W(V) co(rp).

This process is repeated for each rp L2’(ri_l) sequentially from the front until, for
the first time, C(ri_) < C’(ri_) at w(v) co(rp). If the two costs are equal, then
co(ri_) co(rp); else, co(ri_) is greater than co(rp), but less than the cutoff values of all
the arcs that preceed rp in L2’(ri_l). In the latter case, by Corollary 4.1, rp would be the
first (i.e., bottom most) h-arc in Td(ri_), when w(v) is arbitrarily close to co(ri_). Then
co(ri_) can be computed in constant time, as the value of w(v) that satisfies the equation
C(ri_) C’ (ri-) (for TPS, this equation is linear in w(v) and t; for TPP, it is linear in
w(v) but cubic in t).

LEMMA 5. The algorithm outlined above correctly computes eo(ri_).
Proof Because T((ri_) is a fixed triangulation, C’ (ri-) is a continuous function of w(v).

For a fixed rp L2’(ri 1) T:,p(ri-1) is a fixed triangulation; so, C’2,p(ri_l) is a continuous
function of w(v). By the definition ofco(rp), C(ri-) is continuous at w(v) eO(rp), for each
rp L2’(ri_). So, C(ri_) is a continuous function of w(v). Hence, C’2(ri_l) C’ (ri-)
is a continuous function of w(v). At w(v) w(ri_), by Lemma 3, C(ri_) C’ (ri_) is
nonnegative. As w(v) decreases and approaches its limiting value of co(rn-2) (i.e., -cx for
TPS, 0 for TPP), C(ri_) C’ (ri-) becomes negative. So, there must be a value of w(v)
for which C(ri_) C’ (ri_); by definition, this value is co(ri_). It is clear that the above
algorithm correctly determines this value. [3

Finally, L2(ri_) is obtained from L2’(ri_) as follows. Remove the longest prefix of
elements all of which have cutoff values greater than or equal to co(ri_l) and then insert ri-i
at the front.

L (r0) contains the h-arcs in an optimal triangulation T(ro) of SP(ro) SP, and C(ro)
is the cost of T(ro). Obtaining L (ri_l) and L2(ri-1) takes time proportional to the number
of elements removed from L (ri) and L2(ri). Hence the above algorithm runs in linear time.
Note that the algorithm can compute C(ri-1), co(ri_), and L2(ri_) from L2(ri), without
using L (ri). So we can compute co(ri) and L2(ri) for varying from n 3 down to 0, in
linear time, without keeping track of L 1. After the cutoff values of all the h-arcs have been
found, we can determine L (r0) in linear time by performing a bottom to top scan of SP. Also
note that before terminating, the algorithm computes co(ro). Both these observations will be
of use in the next subsection.

3.1.2. Algorithm for muitimodal polygons. In this subsection, we describe the
O(n log n) algorithm for general multimodal polygons. First, we describe the algorithm for bi-
modal polygons. Let SP (v, v2 vn) be a bimodal polygon, where v is the global mini-
mum, v6 is a local minimum, and v,, and l)a2 are the local maxima, < a < b < a2 < n, and
w, < w6 (see Fig. 5). Then there exists a vertex vd, < d < a 1, such that wa < w6 < wu+;
alsothereexistsavertex ve, a2 < e < n, suchthatwe < w6 < We-. r,0 vv6, r2.o VbVe,

and r0 rave are h-arcs of SP (if d and e n, then ro v Vn is a degenerate h-arc).
SP(r,o), SP(r2,o), and SP(; ro) are unimodal polygons. The h-arcs of SP(; ro) will be
labeled as r, r2, from top to bottom. Without loss of generality, let w < We.

The definitions of r and r2 (the lower and upper endpoints of r), T (r), and C(r) for an
h-arc r of a multimodal polygon are the same as those in 3.1.1 for unimodal polygons. Note
that once the cutoff values of all the h-arcs have been found, we can determine the h-arcs in
an optimal triangulation of SP by performing a bottom to top scan in linear time.

The algorithm for finding the cutoff values for the above bimodal polygon SP works as
follows. First compute the lists L 12(r,0) and L22(r2,0) (analogous to the list L2 in 3.1.1) for

846 PRAKASH RAMANAN

)al

1"0

Vl

FG. 5.

unimodal subpolygons SP(rl,o) and SP(r2,o), respectively, using the algorithm in 3.1.1. Be-
cause wa < we, let L22’(r0) be the list obtained from L22(r2,0) by removing the longest prefix
of elements all ofwhich have cutoff values greater than or equal to wd. If r2,i is the first element
of L22’(r0), then T(ro) consists of T(rl,0), T(r2,i), and a fan of SP(ro; rl,0, r2,i) centered at

va" its cost C(ro) can be computed in constant time, using C(r,o), C(r2,i), W(ro), W(rl,0),
and W(rz,i). Let L2’(ro) be the list obtained by merging L 12(r,0) and L22’(r0) into a single
list such that the cutoff values of the elements in L2’(r0) are in decreasing order from left to

right. Using L2’(r0), we can compute co(ro) as explained in 3.1.1. Then L2(r0) is obtained
from L2’ (r0) as follows. Remove the longest prefix of elements all of which have cutoff values
greater than or equal to co(ro) and then insert r0 at the front. Then, we can perform a top
to bottom scan of SP(; r0); for > 1, co(ri), and L2(ri) can be computed from L2(ri_l) as
explained in 3.1.1. This completes our description of the algorithm for bimodal polygons.

In the above bimodal polygon, if r,i and rz,j are h-arcs of SP(r,o) and SP(r2.o), respec-
tively, then they are incomparable, but they are above r0. The h-arc r0 will be called a bridge.
In general, a bridge is an h-arc r whose endpoints are the lower endpoints of two other h-arcs
r’ and r"; r’ and r" will have the same upper endpoint. The preceding paragraph describes
a general procedure for obtaining L2(r) from L2(r’) and L2(r"). In general, an m-modal
polygon will have m bridges. It is easily seen how the above top-down algorithm for
bimodal polygons can be extended to general m-modal polygons. Unfortunately, we have no
control over the positions of the bridges or the relative order of the sizes of the two lists to
be merged. If we actually form the sorted list L2(r) for each bridge r, we cannot guarantee
O (n log n) time complexity. Note that the only operations we need to perform on the L2 lists
are the following"

INSERT: Insert an element into the list

DELETE: Delete an element from the list

MAX: Find the largest element in the list

UNION: Take the union of two lists

In fact, we only need to INSERT an element that is larger than all the other elements in the
list and to DELETE the largest element from the list. When we process an h-arc r, we will
maintain the unordered set of elements in L2(r) as a Mergeable Heap (see [1]). This data

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 847

structure allows each INSERT, DELETE, MAX, or UNION operation to be performed in
O(log n) time. Because we only need to perform O(n) such operations, the overall algorithm
runs in O(n log n) time. Note that apart from the heap operations mentioned above, all the
other operations performed by the algorithm require only linear time.

3.2. The lower bound. The algorithm in 3.1 finds an optimal triangulation of SP(r) for
each h-arc r. This seems wasteful, because we are only interested in an optimal triangulation
of SP. The natural question is whether it is possible to reduce the heap operations and find
an optimal triangulation of SP in o(n log n) time. We will prove that this is not possible for
TPS. We will show that there are n(’) ross’s for TPS and TPP. Then a tight f2(n logn) lower
bound for TPS will follow from Theorem 3. If we could extend our lower bound technique to
bounded degree algebraic decision trees, we would have a tight f2 (n log n) lower bound for
TPP.

Consider the following worst-case instance of the algorithm described in 3.1. Let m be
even, and let SP (Pro, Pro-2 P2, P0, ql,1, ql,2, q2,1, q2,2 qm,1, qm,2, Pl, P3
Pm-1) (see Fig. 6 for m 4). SP has n 3m + vertices. Let q0,2 P0, P-I qm,2

and P-2 ql,2. Let w(pi) > w(pi+l),-2 < < m, w(q,) > w(ql,2), and w(qj,) >

w(qj_,2) > w(qj,2), < j < m. Then SP is m-modal, Pm is the global minimum, qj,2, <

j < m are the local minima, and qj,, <_ j < m, are the local maxima.

PO q0,2

P2

P4

ql q4,1

q4,2 P-1

Pl

P3

FIG. 6.

ri Pi Pi-1, 1 < < m; ri Poqm+i,2, -(m 2) < < 0; rj qj-l,2qj,2, < j < m;
these are the h-arcs, r; Poqm+i,2, -(m 2) _< < 0, are the bridges, rm PmPm-1 is a
degenerate h-arc.

Let L (a, C2 m) be the list of rj, < j < m, in decreasing order of cutoff
values, aj r,(j)’ < j < m for some permutation zr of (1 2 m); we let L be denoted
by Lr. We will show that, for both TPS and TPP, all the m! [(n 1)/3]! permutations zr are

possible. We will also show that each 7r corresponds to a ross, and that no two 7r’s correspond
to the same ross. This will imply that there are at least m! ross’s for TPS and TPP. We have
the following.

LEMMA 6. Let 7r be any fixed permutation of (1, 2 m). Suppose that the weights
1 (tO1, ll)2 11).) ofthe vertices of SP are such that

(i) W(ql,2) W(qm-l,2) is arbitrarily small,
(ii) L, (ot, Ol2 Olm) is the list of rjs in decreasing order of cutoff values,
(iii) w(pi) < co(oti) < w(pi-) for < < m, and
(iv) co(ri_) w(pi) for <_ < m.

848 PRAKASH RAMANAN

Let " be the triangulation of SP consisting only of h-arcs (see Fig. 6). For 0 < k < m,
let Tk be the triangulation obtained from T as follows. Remove otj, < j < k, and ri,

-(m 2) < < k; the resultingfigure will have only one nontriangularface Fk, and pk will
be the smallest weight vertex in thatface; triangulate thatface as a fan. Note that To =- ’.
Let S: {Tkl0 < k < m}. The set sol(if)) of all optimal triangulations of SP is S; so S is
a ross.

Proof Let zr and t be such that conditions (i)-(iv) hold. By (i), for both TPS and TPP,
the cutoff values of the top m 2 bridges ri Poqm+i,2, --(m 2) <_ < 0, which are all
less than w(po), are very close to w(po). Because by (iv), co(m) w(p) < w(po), if an
optimal triangulation does not contain the bridge r0, then it cannot contain any of the other
bridges. Also by (iv), if an optimal triangulation does not contain rk for some k, _< k < m,
then it cannot contain any of the h-arcs ri, 0 <_ < k.

For an optimal triangulation T of SP, let k be the smallest integer, 0 < k < m, such that
T contains r. Then, by the arguments in the preceding paragraph and by (iii), T must be
Tk. Also, it is easily seen that each of the triangulations T,, 0 < k < m, is optimal. Hence
S: sol(t) is a ross. El

Note that zr serves as a "signature" for S:. Hence two different zr’s cannot correspond to
the same S. In 3.2.1, we will show that, for TPS, for each permutation zr of (1, 2 m), we
can find a t that satisfies the conditions of Lemma 6. In 3.2.2, we will prove the analogous
result for TPP.

3.2.1. Tight lower bound for TPS. Let zr be a fixed permutation of (1, 2 m). We
will find a t that satisfies the conditions of Lemma 6. Let Oi and O/i

2 denote the lower and
upper endpoints of oti, respectively; let ui denote the unique vertex of SP that lies between
oti and ui 2. Condition (iii) of Lemma 6 translates to the following" for < < m,

(1) to(pi) + W(bli) .< W(Oi 1) -Jr--W(Oi 2) < w(Pi-1)-1-W(bli).

Condition (iv) of the lemma essentially equates the costs of Ti- and T/, for < _< m.

T/_ and T/differ only in the triangulation of the face F,.. In Ti, the triangulation of F/ is a
fan centered at pi. In T_, the triangulation of F/consists of a fan of F,._ centered at Pi-1,

and the triangles eli 101i2Ui and Pi Pi-i Pi-2. So, condition (iv) translates to the following: for
l<i<m,

(2) (m+2i-3)w(pi_l)-4r-w(pi_2)Ww(otil)-k-w(oti 2) (m-+-2i-2)w(pi)+w(pi-3)+w(ui).

Solving (2) for w(ui), we get

(2’)
w(ui) w(oti) + w(ci2) + (m + 2i 3)w(pi-) (m + 2i 2)w(pi) + to(pi-2) to(pi-3).

Substituting (2’) in (1), we get

(1’) (m-t-2i-3)(w(pi_l)-w(pi)) < w(pi-3)-w(pi-2) < (m-t--2i-2)(w(pi_l)-w(pi)).

We can first choose w(pi), for varying from m down to -2, obeying (1’). Note that (1’) and
(2’) do not restrict w(qj,2), < j < m; so, we can choose them such that condition (i) of
Lemma 6 is satisfied, and w(qj-,2) > w(qj,2) for < j < m. Finally, we can compute the
w(ui)’s (i.e., w(qj,)’s) from (2’). Then, from (1’) and (2’), we are guaranteed that

Lo(o/1) --I--//)(oi 2) w(pi-1) <//)(b/i) <//)(o/i 1) + L0(o/i 2) to(pi)

or in particular that w(ui) > w(oti2). So we are guaranteed that w(q,) > w(q,2) and

w(qj,) > w(qj-,2) for < j < m. Hence we have shown that for each zr, we can find a t
that satisfies the conditions of Lemma 6. By Theorem 4, this leads to the following.

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 849

THEOREM 5. Any linear decision tree that solves TPSI has (n log n) height.
Note that by (1’), [w(p-2) w(p-)]/[W(pm-1) W(pm)] is of the order tnm. So our

lower bound proof requires that the input consist of a large number of bits.

3.2.2. Ross count for TPE Let rr be a fixed permutation of (1, 2 m). Let cti
,

cti 2, and ui be as defined in the preceding subsection. To simplify the arithmetic, we change
condition (iii) of Lemma 6 to

to(pi) --CO(Oli) "< to(Pi-1) for < < m.

Since w(pi) < to(pi-1), this is equivalent to replacing (iii) by

(iii’) w(pi) co(oti) for < < m.

For < k < m, let T be the triangulation of SP obtained from Tk by replacing the arc pku,

by the h-arc ctk. Let S S U {T[I _< k < m }. Let Lemma 6’ be the statement that results
from Lemma 6 when condition (iii) is replaced by (iii’), and S, is replaced by Sr. Proof of
Lemma 6’ is similar to that of Lemma 6.

We will find a t that satisfies the conditions of Lemma 6’. Condition (iii’) of Lemma 6’
translates to the following: for < _< m,

(3) u3(pi)ll)(Igi (ll)(Oti 1) -+- u)(ot/2)) to(oli)ll)(oti2) (to(pi + ll)(lgi)).

Solving (3) for w(ui), we get

(3’) 1/w(ui) 1/w(oti 2) + [1/w(oti 1) 1/w(pi)].

Because w(ci 1) > w(pi), the term in the square bracket is negative. So, as long as the right-
hand side is positive, w(ui) > w(oti2); that is, w(q,) > w(ql,2) and w(qj,) > w(qj-,2) for
l<j<m.

For 0 < _< m, let W’(Fi) denote w(v)w(v’) where the summation is taken over all
the edges vv’ around the face Fi (see Lemma 6 for the definition of Fk), except the edges

PiPi-1 and Pipi-2. Condition (iv) of the lemma essentially equates the costs of Ti_ and
Ti, for < < m. Ti-l and Ti differ only in the triangulation of the face F/. In T/, the
triangulation of Fi is a fan centered at Pi. In T/_ , the triangulation of F consists of a fan of
F,._ centered at pi- and the triangles oliloliZui and Pi Pi- pi-2. Because of condition (iii’),
condition (iv) translates to the following: for < < m,

(4) w(pi)w(pi_)w(pi_z)+w(pi-1)W’(Fi-) w(pi)w(pi_l)w(pi-3)+w(pi)W’(Fi-1).

Solving (4) for w(pi), we get

(4’) 1/w(pi) 1/w(pi_) + [w(pi-3) w(pi_z)]/W’(Fi_).

This guarantees that w(pi) < w(pi-1). We can first choose to(p_z) to(ql,2), to(qj,2), <

j < m, tO(qm,2) w(p-1), and w(po). Then we can compute the pair (w(pi), w(ui)) from
(4’) and (3’), for varying from to m.

Because W’(Fi_I) > w(pi-z)w(pi-3), (4’) implies that

(5) 1/w(pi)- 1/w(pi_) < 1/w(pi-2)- 1/w(pi-3).

By taking w(p-2) w(po) to be small, say 1/w(po) 1/w(p_2) 1/(2mw(po)), we can
guarantee, using (5) and a simple induction, that

1/W(pm) < (3/2)(1/W(pO)) <_ 2/w(p-2).

850 PRAKASH RAMANAN

Then it follows that the right-hand side of (3’) is positive for all i, < < m. Note that (3’)
and (4’) do not restrict w(qj,2), < j < m; so, we can choose them such that condition (i)
of Lemma 6’ is satisfied, and w(qj-,2) > w(qj,2) for < j < m. Hence, we have shown
that for each zr, we can find a t that satisfies the conditions of Lemma 6’. This leads to the
following.

LEMMA 7. [ROSS(TPP)I > [(n- 1)/3]!.

3.3. The relationship between TPS and TPP. The definitions of TPS and TPP are very
similar. In 3.1, we saw that the two problems can be solved by very similar algorithms. In 3.2,
we saw that we can obtain a good lower bound on the number of ross’s for the two problems
using very similar ideas. In this subsection, we will discuss an even deeper relationship
between the two problems. For an instance t (Wl, w2 wn) and a triangulation T
of SP, let crrPS(t) and crreP(ff)) be the costs of T in TPS and TPP, respectively. Let
solTPS(t) and solTee(t) denote the sets of all optimal solutions for t in TPS and TPP,
respectively. For any real number N, let N denote (N, N N) 6 Rn.

LEMMA 8. For any , there exists a positive real number No such that solVPS(t)
SO1TPP () -[- [), for all N > No.

Proof For a triangulation T of SP and fixed t,

cTTPP() + [) (t’l 2)N -+- N2cTTPS() -if- O(N).

(Note that the hidden constant in the O(N) term is a function of t.) Hence, for any two

tr_.iangulations T and T’ of SP, and for all sufficiently large N, if cv ree (if) +[) < cr, TPe(+
N) then cTTPS(I)) < cT, TPS()). Hence the result follows. [3

For a polynomial f(t), let pf(t) be the coefficient of the highest power of N in f(t +
N); note that apf(t) is a polynomial in t, and its degree is no more than that of f(t). For
an algebraic decision tree D, let ap (D) be the decision tree obtained from D by replacing at
each internal node v, the comparison f(t) 0 by the comparison pfo(t) 0. The node in
ap(D) corresponding to v D will be referred to as (v). We have the following.

LEMMA 9. Let D be an algebraic decision tree that solves TPP. For 7 Rn, if v
set((/)) for some L’(D), then sol(ap(/)) so1TPS()); SO there exists a set A c_C_ R of
measure zero, such that D) correctly solves TPSfor any if) R A.

Proof Let t 6 set(p(/)) for some L’(D). Then, for all sufficiently large N, we have

sign(fo(t + N)) sign(Ttfo(t)) :/: 0

for all v 6 l; so t + " 6 set(l). Because D correctly solves TPP, sol(l) 6 solvPP (t +)).
By Lemma 8 we have that sol(Tt(/)) sol(l) 6 solrPS(t).

Finally, let A tOtLD)-C,D)set(p(l)); A C_ {t 6 R"[0f(t) --0 for some v 6 D},
and so A is of measure zero. ap(D) correctly solves TPS for any t R A. [3

This leads to the following.
LEMMA 10. Let Hvps be a lower bound on the height ofany degree d algebraic decision

tree that solves TPSfor all but a measure zero set ofinputs. Then HrPS is also a lower bound
on the height ofany degree d algebraic decision tree that solves TPP.

4. Conclusion. We first presented a new technique for obtaining lower bounds on the
worst-case time-complexity of optimization problems, in the linear decision tree model of
computation. Then, we used this technique to obtain a tight f2 (n log n) lower bound for a

problem of finding a minimum cost triangulation of a convex polygon with weighted vertices.
This problem is very similar to the problem of finding an optimal order of computing a matrix
chain product. If we could extend our lower bound technique to bounded degree algebraic
decision trees, we would have a tight if2 (n log n) lower bound for this latter problem.

A NEW LOWER BOUND TECHNIQUE AND ITS APPLICATION 851

Acknowledgment. The author is very grateful to the referee, Prof. George Lueker, for
many valuable suggestions. In particular, the results in 3.3 were suggested by him.

REFERENCES

A. V. AHO, J. E. HOr’CrOFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.

[2] M. BEN-OR, Lower bounds for algebraic computation trees, Proc. 15th Ann. ACM Symp. on Theory of
Comput., May 1983, pp. 80-86.

[3] M. GArDNE, Catalan numbers, Scientific American, (234) June 1976, pp. 120-124.
[4] T. C. Hu AND M. T. SHING, Computation of matrix chain products, Part I, SIAM J. Comput., 11 (1982), pp.

362-373.
[5] Computation ofmatrix chain products, part II, SIAM J. Comput., 13 (1984), pp. 228-251.
[6] C. H. PP,DIMITIOU AND K. STGLITZ, Combinatorial Optimization: Algorithms and Complexity, Prentice-

Hall, New Jersey, 1982.
[7] A.C. Y,o aqD R. L. RvEsa’, On the polyhedral decision problem, SIAM J. Comput., 9 (1980), pp. 343-347.
[8] A. C. Y,o, Lower boundsfor algebraic computation trees with integer inputs, SIAM J. Comput., 20 (1991),

pp. 655-668.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 852-863, August 1994

() 1994 Society for Industrial and Applied Mathematics
010

ON "AXIOMATISING FINITE CONCURRENT PROCESSES"*

LUCA ACETO

Abstract. In his pioneering paper [Axiomatising finite concurrent processes, SIAM J. Comput., 17 (1988), pp.
997-1017], Hennessy gave complete axiomatizations of Milner’s observational congruence and of t-observational
congruence which made use of an auxiliary operation to axiomatize parallel composition. Unfortunately, those
axiomatizations turn out to be flawed due to the subtle interplay between Hennessy’s auxiliary parallel operator and
synchronization. The aim of this paper is to present correct versions of the equational characterizations given in
Hennessy’s paper. Some of the problems which arise in giving operational semantics to the auxiliary operators used
by Bergstra and Klop and Hennessy in the theory of congruences like Milner’s observational congruence are also
discussed.

Key words, concurrent processes, observational congruence, t-observational congruence, equational logic

AMS subject classification. 68Q55

1. Introduction. In his seminal paper [14], Matthew Hennessy gave complete axiomati-
zations oftwo behavioural congruences, namely, those associated with Milner’s weak bisimula-
tion equivalence 19] and t-observational equivalence [14] (also known as split-2 equivalence
[10] and timed equivalence [1]), over a simple language for concurrent processes. Hennessy’s
paper [14] evolved from an early preprint, entitled On the relationship between time and in-
terleaving, which dated back to 1981 and, in my opinion at least, did not receive the attention
it deserved at the time of its first circulation.

Hennessy’s On the relationship between time and interleaving and its published version
[14] have historically played an important role in the development of the theory of process
algebras for at least two reasons. First, the equational characterization of observational con-

gruence presented in these papers was, to the best of my knowledge, the first one to use
auxiliary operators in the axiomatization of CCS parallel composition [19]. At more or less
the same time, J. A. Bergstra and J. W. Klop were working on a finite axiomatization of strong
bisimulation equivalence over ACP which used two auxiliary operators [4], but extensions
of their ideas to a setting involving internal actions were first presented in [6]. Secondly,
Hennessy’s papers presented the first axiomatization known to the author of a noninterleaving
behavioural equivalence and its laws have helped shape the form of many axiomatizations
which followed. (See, e.g., [7], [8], [18], [15].)

Unfortunately, however, there are subtle problems with the axiomatizations published in

14]. In particular, two of the axioms given by Hennessy for his auxiliary parallel operation
are unsound due to the problems introduced by synchronization. In fact, the whole issue of
giving semantics to the auxiliary operations used in [4], [6], 14] to axiomatize various parallel
composition operators turns out to be rather subtle in the theory of behavioural congruences
associated with weak bisimulation-like equivalences, such as observational congruence and
t-observational congruence. The aim of this paper is to present correct versions of the axiom-
atizations given in [14]. In passing, shall also comment on some of the issues involved in

giving suitable operational semantics for the auxiliary operations of ACP in the setting of ob-
servational congruence and related congruences. hope that this will make this paper a useful
reference for researchers interested in complete axiomatizations of behavioural congruences.

The paper is organized as follows: 2 is devoted to a discussion of Hennessy’s axiom-
atization of t-observational congruence [14] and an example showing that it is unsound is

*Received by the editors Janaury 12, 1993; accepted for publication (in revised form) May 18, 1993.
School ofCognitive and Computing Studies, University ofSussex, Falmer, Brighton BNI 9QH, United Kingdom

(luca@cogs. sussex, ac.uk).

852

ON "AXIOMATISING FINITE CONCURRENT PROCESSES" 853

given. then present a sound and complete axiomatization for this congruence which uses the
auxiliary operations of ACE In 2.1, present an example showing that the axiomatization
of observational congruence in [14] is also unsound and give a correct sound and complete
axiomatization for this congruence. Finally, in 3, discuss the operational semantics of the
auxiliary operations of ACP in the setting of observational congruence.

2. An axiomatization of Hennessy’s t-observational congruence. assume that the
reader is familiar with [14] and the basic notions on process algebras and bisimulation equiv-
alence. The uninitiated reader is referred to the textbooks [19], [3] for extensive motivations
and background. As this is not an introductory paper, I shall feel free to refer the reader to the
motivations, definitions, and results given in [14]. Precise pointers to material in 14] will be
given whenever necessary.

The language P used by Hennessy in 14] is a simple extension of finite, restriction- and
relabelling-free CCS. It is given by the grammar

p’:=0l#.plp+ p lpllpl pip

where # ranges over the set ofactions Act. The set Act is assumed to have the form
where A is a given countable set of names,/ {d a 6 A} is the set of complement names,
and r is a distinguished action. As usual, we assume that complementation is symmetric, i.e.,

a. We use VAct to denote A U A, the set of visible actions, and a, b to range over it.
The operational semantics for the language P given by Hennessy in 2.1 of [14] is

based on the idea that visible actions have a beginning and an ending. Moreover, these
distinct events may be observed and are denoted by S(a) and F(a), respectively. Let E
{S(a), F(a) a VAct} t2 Act; in the terminology of [14], this is the set of events and shall
use e to range over it. The operational semantics is given in terms of a set of next-state relations
=, one for each e 6 E. As explained at length in [14], the relations := are defined over the
set of states S, a superlanguage of P obtained by adding new prefixing operators as to the
formation rules for P. I shall use s, s’, s, s2 to range over the set of states S. The relations

:= are defined to be the least ones over S that satisfy the rules in Fig. 1. Comments on these
rules may be found in 2.1 of [14].

The relation of t-observational equivalence "r is now defined as the largest symmetric
relation on states which satisfies

S1 -T $2 if and only if for every e 6 E, s == s’ implies

$2, or(i) e=rands r

for some such that(ii) s2 :: s2 s2 s ’r s2.

Following Hennessy, shall only be interested in r as it applies to the language of processes
P. The interested reader is referred to 2.1 of 14] for examples of equivalent and inequivalent
processes with respect to "v. Here, I shall only remark that t-observational equivalence is a
noninterleaving equivalence, in whose theory the concurrent execution of actions is discrimi-
nated from their arbitrary interleaving by means of information about the structure of actions.
For example, the processes a.0 b.0 and a.b.O + b.a.O are inequivalent with respect to v
because the former can start an a action and subsequently start a b action, whilst the latter
cannot.

The equivalence "r is not a congruence over P for the usual reasons associated with the
operators + and [. For example, it is easy to see that 0 r r.O, but

0 a.O r 0 rr.a.O T z’.O [a.O.

854 LUCA ACETO

a.p s) as.p F)as.p p #.p= p

S1 -+-$2 Stl $2 + SI =: S

S1 : S

sl IIs2 == s’111s2
S :: S

$2 Ilsl $2 IIs’ S 5’2 := S!I s2

d> s2SI :: S $2

s111s2 == s IIs2
s2S1 z S1, $2

S $2 =: S!I s

:=S2S1 S 1, S = S2S : S S

SI :: $2 S1 :: $2

FIG. 1. Operational rulesfor =.
One of the main results in [14] is a complete equational characterization of the largest con-
gruence rc contained in :r over the set of processes. (See Theorem 2.1.2 in [14].) For ease
of reference, Hennessy’s equations for are collected in Fig. 2.

Unfortunately, however, the axiomatization presented in Fig. 2 is incorrect. This is due
to the fact that axiom (B2), which plays a vital role in the reduction of terms to simpleforms
(see the proof of Proposition 2.2.3 in [14]), is unsound as the following example shows. (A
similar example may be found on page 142 of [7].)

Example. Consider the terms p (a.c.O b.O) [.d.O and q a.c.O (b.0ll/.d.0).
claim that p Cvq. In fact, using the rules in Fig. 1, it is easy to see that b.011G..0 = 0110.
This allows one to derive that q = 011 (0110). On the other hand, p cannot initially perform a
c action.

The problem in the equational characterization of Hennessy’s auxiliary operator derives
from the fact that, although simpler than II, still captures two conceptually distinct features
of parallel composition. One of them is the asynchronous behaviour due to one of the parallel
components; the other is synchronization between processes. In their work on ACE Bergstra
and Klop have used two auxiliary operators, namely, left-merge and communication merge
I, to give a finite equational axiomatization of the parallel composition operation. Intuitively,
the left-merge operation is used to capture the behaviour of parallel composition due to one
of the parallel components and the communication merge is used to capture the behaviour
deriving from synchronization. In the remainder of this section, shall present an equational
characterization ofcr over P which will make a fundamental use of a noninterleaving variation
on Bergstra and Klop’s auxiliary operations. All my attempts to find a sound and complete
axiom system for P without the introduction of Bergstra and Klop’s auxiliary operators have
been to no avail.

1Bergstra and Klop’s left-merge operation satisfies axiom (NLM2) in Fig. 4, whilst the left-merge operation
shall use in this section does not.

ON "AXIOMATISING FINITE CONCURRENT PROCESSES" 855

A1
A2
A3
A4

B1
B2
B3
B4

I1
I2
NI3

X1
NX2
NX3

(x+y)+z x-+-(y+z)
x+y y+x
x+x x
x+O x

(x+ y) Iz x[z+ y[z
(x[y)[z x[(yl[z)

x[O x
O[x 0

x + r.x r.x

#.r.x #.x
xf(y+r.z) x[(y+.z)+x[z

xlly x[y+ y[x
r.x[y r.(xlly)
x[r.y x[y

C a.xl ((t.x2 [y) at- z) a.x ((a.x2 y) -t- Z) -1- r. (X [IX2 Y)

FIG. 2. Hennessy’s equationsfor ,.
Let Pext denote the language obtained by extending the grammar for P with the following

formation rule:
if p, q Pext, then p q 6 Pext and p]q Pext.

The set of states Sext associated with the extended language Pext is defined in exactly the same
way as S. The operational semantics for the language of extended states Sext is obtained by
adding the following rules for the new operators to those in Fig. 1:

a
$2SI : S S1 =: S1,$2

s LL sz s’ IIs2 Sl Is2 = s’111s;
The notions of t-observational equivalence and t-observational congruence can now be

conservatively extended to the language Pext and, as in Lemmas 2. I. and 2.2.1 in 14], the
following results hold.

LEMMA 2.1. For all p, q Pext,
(1) pCr q ifand only ifp + a.Or q + a.Ofor some a VAct not occurring in p and q"
(2) p r q ifand only if p q or r.p cr q or p r.q.
A standard, useful corollary of the characterization given in statement (1) of the above

lemma is that if p q, then p and q must have matching T-transitions. (See, e.g., [14, p.
1010].)

shall now address the problem of giving a sound and complete axiomatization of t-
observational congruence over the language Pext and, hence, over its sublanguage P. First of
all, note that sound versions of equations (B 1)-(B4) may be given by replacing Hennessy’s
with the left-merge operator. In particular, the following variation on equation (B2) holds in
the quotient algebra Pext/,"

(x y) [k z x (yllz).

856 LUCA ACETO

The key to the soundness of the above equation is the fact that the left-merge operation does
not allow for synchronization between its operands. For example, the reader can easily adapt
the aforementioned example showing the unsoundness of axiom (B2) to prove that a version
of the above equation in terms of the communication merge is not valid in Pext/CT i.e., that
there are processes p, q, r 6 Pext such that

(plq) r cTpl (qllr).

Synchronization between processes is described by the communication merge operator.
In fact, left-merge and communication merge together allow one to describe equationally the
behaviour of parallel composition and of Hennessy’s operator. The relevant equations are

()

(2)

(x y) xll y + xly,

xlly xll y + yll x + xly.

Equation (1) was given in [5] in a setting without internal actions, while equation (2) is the
key to the finite axiomatizations of bisimulation congruences presented in many papers in the
literature on ACE (See, e.g., [6].) Note that, in the presence of left-merge and communi-
cation merge, Hennessy’s merge operator is no longer necessary to axiomatize CCS parallel
composition.

The communication merge operator satisfies, among other laws, the following version of
axiom (C):

r.(xllYllwllz)(a.x y) (b.w z)
0

ifa =b,
otherwise,

where have taken the liberty of omitting a cumbersome use of parentheses because parallel
composition is commutative and associative modulo. An equation expressing a fundamen-
tal property of the communication merge operator in the theory of t-observational congruence
is the following:

v.xly-xly.

This law was first presented in [6], where it was shown to be sound with respect to a graph model
for Milner’s observational congruence (or rooted r-bisimulation equivalence, in Bergstra and
Klop’s terminology). It expresses the subtle interplay between internal r-actions and synchro-
nization in the theory of observational congruence-like relations.

The set ’ of equations which make up the axiomatization of t-observational congruence
over Pext is given in Fig. 3. The main result of this paper may now be stated.

THEOREM 2.2. For all p, q E Pext, P cr q ifand only if p q.
I shall now sketch the steps involved in the proof of Theorem 2.2. The presentation will

closely follow 2.2 in [14] and the interested reader is referred to that reference for many
details.

The first step in the proof of Theorem 2.2 is to show that all the equations in g are indeed
satisfied by ,cv. This is the import of the following result, whose proof is straightforward but
rather tedious.

PROPOSITION 2.3 (Soundness). For all p, q Pext, k- p q implies p ,cr q.
The proof of the completeness of the equations in with respect to t-observational con-

gruence follows the general outline of that of Theorem 2.1.2 in [14]. As usual, shall rely
on the existence of normal forms for processes. These are very similar to Hennessy’s simple

ON "AXIOMATISING FINITE CONCURRENT PROCESSES" 857

A1 (x+y)+z x+(y+z)
A2 x + y y+x
A3 x +x x
A4 x+0 x

LM1 (x + y)ll z x z + yll z
LM2 (x[l_y) z xll (y]lz)
LM3 xl] 0 x
LM4 Oil x 0

I1 x+r.x r.x
I2 /z.r.x #.x
ILM1 x[l_(y+r.z) xll (y+r.z)+xll z
ILM2 r.xll y r.(x[[y)
ILM3 x_r.y xll y

CM1 (x+ y)[z xlz+ y[z
CM2 x [y y Ix
CM3 x 10 0

r.(xllyllwllz)CM4 (a.x ll y) (b.w [l z) 0
CM5 r.x [y x [y

ifa =/,
otherwise

PAR xlly xll y + yll x +x y
HM x[y xlly+xly

FIG. 3. Complete equationsfor . over Pext.

forms. (See Definition 2.2.2 in 14].) As usual in the literature on process algebras, the nota-
tion

_
{pi I} is used as a shorthand for Pil +"" + pi,, where I {i i,,}. If I 0,

then {pi 0} =--O.
DEFINITION 2.4. The set ofnormal forms NF is the least subset of Pext such that

Z {ai.pill p;[i I} +-’ {r.qj j J} NFifI, Jarefiniteindexsetsandeach
Pi, p, q NF.

PROPOSITION 2.5 (Normalization). For every process p Pext, there exists a normalforln
/3 NF such that p .

Proof The proof of this result is standard and many similar ones may be found in the
literature. Detailed proofs for closely related languages may be found in, e.g., [7], [18].
Equations (A3), (I1), (I2), (ILMI), and (ILM3) are not needed in the proof. V1

Following Hennessy, the proof of completeness of the set of equations ,5" relies on estab-
lishing so-called "derivation lemmas." As in 14], shall only be interested in derivations with
respect to r-actions and S(a)-actions.

LEMMA 2.6 (Derivation lemma). Let p Pext. Then
(1) p :: q implies t-- p p + z-.q;

(2) p s) as.p p2 implies . t-- p p + a.pt [1 P2.
Proof By Proposition 2.5, it is sufficient to prove the above statements for normal forms.

Assume then that p is of the form E {ai.pi p I} +], {r.qj j J}.

858 LUCA ACETO

(1) Then by induction on the length of the derivation p =_

Base case: q =_ qj for some j 6 J. Then g 1-- p p + r.q follows immediately by
using equations (A1)-(A4).

hductive step: qj q for some j 6 J. By the inductive hypothesis, it follows that- qj qj + r.q. By equations (I1) and (A1)-(A4), it is easy to derive that ,,q’ t- r.qj

"r.qj nt- r.q, from which ,5" - p p + r.q follows immediately.
(2) This statement is proven exactly as Corollary 2.2.5 in [14].
The key to the proof of the completeness theorem is an important decomposition result

proven by Hennessy in [14] for the language P. The extension of Hennessy’s result to the
language Pext is immediate, and, in fact, his proof carries over unchanged to this language.

PROPOSITION 2.7 (Hennessy). For all p, p’, q, q’ Pext, as.P[lp’ "r as.qllq’ implies
p "r q and p r q.

Pro@ See the proof of Proposition 2.2.8 in [14] and those of the lemmas leading up to
it.

The above results are all that is needed in the proof of the completeness result to follow.
THEOREM 2.8 (Completeness). For all p, q Pext, P cr q implies p q.
Proof. This is just a reworking of Hennessy’s proof of Theorem 2.2.9 in [14] using

the results given above. The interested reader will have no difficulty in filling in the details
following Hennessy’s proof.

2.1. An axiomatization of observational congruence. As mentioned in the introduc-
tion, Hennessy’s axiomatization of Milner’s observational congruence in 14] was the first to

use an auxiliary operator to give an equational characterization of parallel composition. For
the sake of clarity and in order to support the discussion to follow, shall now recapitulate the
definitions of weak bisimulation equivalence and its associated congruence.

The relation of weak bisimulation equivalence , is defined as the largest symmetric
relation over P which satisfies

p q if and only if for every # . Act, p = p’ implies
(i) # r and p’ :r q, or

(ii) q = q’ for some q such that p’ v q’.
As usual, is not a congruence over P. The largest congruence relation contained in

will be denoted by c and will be referred to as observational congruence.
The key to the axiomatization of observational congruence presented in Theorem 1.3.4 of

[14] is a version of Milner’s interleaving law in terms of Hennessy’s [. This is the following
conditional equation schema:

y- {,kj.y./ j J} (J a finite index set)
(X2)

This equation schema plays a vital role in the reduction of process terms to the sumforms
used by Hennessy and Milner in [16] and Hennessy in [14]. Unfortunately, however, it is not
sound with respect to observational congruence as the following example shows.

Example. Consider the instance of the above equation obtained by taking # ----- a, x --- 0,
and y r.6.0. Then (X2) allows us to derive that a.0 r.6.0 a.(01lr.6.0). However, this

equality does not hold in the quotient algebra p/C as a.0 r.6.0 :: 0110, whilst obviously
a.(01lr.6.0) has no comparable transition.

The reader will have noticed that, once again, the unsoundness of axiom (X2) derives
from the fact that Hennessy’s allows for communication between its arguments. The above

ON "AXIOMATISING FINITE CONCURRENT PROCESSES" 859

problem with the axiomatization presented in [14] can be solved by resorting to Bergstra
and Klop’s auxiliary operators. In fact, it is possible to extend conservatively observational
congruence to the language Pe,,t and give a sound and complete equational axiomatization of
equality in the quotient algebra Pext/c. In fact, all that is needed for. this purpose is to add
the following equations to those presented in Fig. 3:

(3) a.x y a.(xlly),

(4) a.(x + r.y) a.(x + r.y)+ a.y.

Equation (3) is the one that essentially expresses the fact that observational congruence
induces an interleaving semantics on processes. Together with the other equations for left-
merge and communication merge it allows for the derivation of Milner’s expansion theorem.
(See, e.g., [6] for a detailed proof of this fact.) Equation (4) is Milner’s "third r-law." As it is
well known (see, e.g., [14], p. 1010), this equation does not hold for cr because it strongly
depends on the assumption of atomicity of action occurrences.

In the presence of (3), several of the equations in Fig. 3 are not necessary to give a com-
plete equational characterization of observational congruence over the language Pext. (Note,
however, that those equations lead to more powerful axiomatic systems for what concerns
provability of equivalences between open terms over sublanguages of Pext. The interested
reader is referred to [20], [13] for more on this issue.) Moreover, axiom (CM4) may be
simplified to

r.(xlly) ifa-/,
a.x b.y- 0 otherwise.

A complete set of axioms for ,c is given in Fig. 4. Let g’ denote the set of equations in
Fig. 4.

THEOREM 2.9. For all p, q Pext, P c q ifand only if g’ - p q.
Proof. This is just a reworking of many similar results in the literature (see, e.g., [16],

[6], [19]), following the outline of the proof of Theorem 1.3.4 in [14, p. 1008].

3. Remarks on the operational semantics ofBergstra and Klop’s auxiliary operators.
The reader familiar with the literature on bisimulation semantics for CCS will have already
noted that the operational semantics for the language Pext given in the previous section is
slightly nonstandard. The rules in Fig. and those for Bergstra and Klop’s auxiliary operators
define the so-called weak transition relations over the language Pext in one step, so to speak.
This is in contrast to the developments in, e.g., 19], where the operational semantics of CCS
is defined first in terms of single-step transition relations. These concrete transition relations
are then used in the definition of the weak transition relations, which capture the intuition
that r-labeled transitions correspond to invisible events. For easy reference, the defining rules
of the one-step transition relations, -f-, for the language Pext are collected in Fig. 5. The
associated transition relations that abstract from internal r-transitions are then usually defined
by

S S ,z} aSI,S2 S "-*S "- S2 &*St,
where _5_>* denotes the reflexive and transitive closure of the relation -.

The process of abstraction from r-labeled transitions is instead built in the definition of
the transition relations =: by means of the rules

::$2=: S2 S1 = S 1, SS1 S S

860 LUCA ACETO

A1 (x+y)+z x+(y+z)
A2 x + y y+x
A3 x+x x
A4 x+0 x

LM1 (x + y)LLz x[Lz + yll z
NLM2 #.x 13_ y #.(x IlY)
LM4 0 L[. x 0

I1 x+r.x r.x
I2 #.r.x #.x
I3 a.(x + r.y) a.(x + r.y) + a.y

CM1 (x + y) z x z + y lz
CM2 x Y y lx
CM3 x l0 0

r.(x IlY)NCM4 a.x b.y 0
CM5 r.x y x ly

ifa b,
otherwise

PAR xlly xll y + yll x + x Y
HM x [y xll y+x y

FIG. 4. Complete equationsfor ,c over Pext.

It is easy to see that, for processes in Pext not containing occurrences of the communication

merge and of Hennessy’s [, the weak transition relations : and are in complete agreement,
i.e., for all such s,

In particular, this implies that observational congruence and t-observational congruence over
the sublanguage of Pext consisting of these terms can be defined using either of these two
transition relations.

This agreement does, however, break down for terms having the communication merge
operator or Hennessy’s as head operator. Consider, for example, the term p --- r.a d.b.O.

Then, using the defining rules for ::, it is easy to derive that p 0]10. However, p has no

outgoing transition according to , as rule

1’ $2 2

SI $2 - St IIs
is not applicable to it. This fact has disastrous consequences in the theory of congruences that,
like observational congruence and t-observational congruence, satisfy axiom

(I1) x+r.x r.x.

In fact, the communication merge operation and Hennessy’s would not preserve any such

congruence, if their operational semantics were given in terms of .

ON "AXIOMATISING FINITE CONCURRENT PROCESSES" 861

S(a) F(a) 12
a.p --+ as.p as.p -- p #.P -+ P

S -- S SI S

S1 + $2 " S $2 + S1 -’ S

s- s s-L s s- Sl s & s

sll s2 s’ IIs2 s2 IIs s2 IIs’ s [1_ s2 s’ IIs2 s s2 s’ s2

S1 " S1’$2 2 S1 _a..> s1, $2 $2

s s2 s lls2

S -- S $2 S2

s[s2sillsz

FIG. 5. Operational rulesfor --..

Example (in terms ofobservational congruence). Consider the terms r.a.0 and a.0+ r.a.0.
As c satisfies axiom (I1), one has that r.a.0 c a.0 + r.a.0. However, if the semantics of
the communication merge operator were given in terms of the rules in Fig. 5, it would be the
case that

p r.a.0 d.b.O C(a.O + r.a.0) d.b.O =- q.

b
In fact, q 0110, whilst, as remarked above, p has no outgoing transitions with respect to .

The outcome of this discussion is that a suitable operational semantics for the communica-
tion merge operator and Hennessy’s in the theory of congruences that, like those axiomatized
in this paper, satisfy axiom (I 1) can only be given by defining the weak transition relations in
one step2, as in Fig. 1. believe that this observation was already implicit in the denotational
semantics for ACP in terms of process graphs presented by Bergstra and Klop in their seminal
paper [6], but, probably because of the denotational nature of the semantics presented in that
reference, it seems to have gone unnoticed in several papers in the literature. (A notable
exception is [9], where an interesting operational semantics for ACP along the lines of that in
Fig. has been presented.)

Indeed, contrary to what happens for the basic CCS combinators, the operational semantics
of the auxiliary operators used in the axiomatization of parallel composition is highly sensitive
to the kind of behavioural congruence one wants to impose on terms. A full discussion of
this point would lead me too far from the main aim of this paper. Thus, shall just end by
giving a short "recipe book" for giving semantics to the auxiliary operators discussed in this
paper in the setting of some of the best-known semantic theories for processes, with pointers
to references where they are discussed in detail. These may be found in Fig. 6. hope that they

2The point here is that one is really interested in the identifications induced by the chosen congruence over the
basic language, e.g., CCS, used to write specifications of concurrent systems. Auxiliary operators are only added
for axiomatization purposes and as an aid in algebraic manipulations of terms. Hence, one should like to add these
operations conservatively, that is to say that their presence should not influence the equalities over the basic language.
This, of course, requires that these new operations preserve the chosen behavioural congruence.

862 LUCA ACETO

Behavioural Congruences Suitable Transition Relations

Observational congruences satisfying (I l)

Branching bisimulation congruence 12]

Testing and failures congruences

Define the semantics of the auxiliary operators by
giving rules that give the weak transition relations in
one step, as in Fig. 1.

Define the semantics of the auxiliary operators by
giving rules that give the one-step transition relation,

as in Fig. 5. See, e.g., [3].

As remarked in [11], for these congruences the left-
merge operator causes just as many problems as the
other auxiliary operators. A possible solution, based
on the use of the nondeterministic operators from
CSP [17} in lieu of the CCS/ACP combination of
sum and r and on the possibility of giving a suitable
one step transition relation for the modified language,
may be found in [2].

FIG. 6. A menagerie ofsuitable semanticsfor the auxiliary operators.

will be a useful reference for researchers interested in complete axiomatizations of behavioural
congruences.

Acknowledgments. thank Matthew Hennessy for his encouragement to write this paper.

REFERENCES

[1] L. ACETO AND M. HENNESSY, Towards action refinetnent in process algebras, Inform. and Control, 103 (1993),
pp. 204-269.

[2] L. ACETO AND A. ING(3LFSDf3TTIR, A theory of testing for ACP, in Proceedings CONCUR 91, Amsterdam,
J. Baeten and J. Groote, eds., Lecture Notes in Comput. Sci. 527, Springer-Verlag, New York, 1991,
pp. 78-95.

[3] J. BAETEN AND W. WEIJLAND, Process algebra, Cambridge Tracts Theoret. Comput. Sci. 18, Cambridge Univ.

Press, London, 1990.
[4] J. BERGSTRA AND J. KLOP, Fixedpoint semantics in process algebras, Report IW 206, Mathematisch Centrum,

Amsterdam, 1982.
[5] Process algebra for synchronous communication, Inform. and Comput., 60 (1984), pp. 109-137.
[6] Algebra ofcommunicating processes with abstraction, Theoretical Comput. Sci., 37 (1985), pp. 77-

121.
[7] I. CASTELLANI, Bisimulations.[’or Concurrency, Ph.D. thesis, Report CST-51-88, Department of Computer

Science, University of Edinburgh, Scotland, April 1988.
[8] I. CASTELLANI AND M. HENNESSY, Distributed bisimtdations, J. Assoc. Comput. Mach., 36 (1989), pp. 887-911.
[9] R. v. GLABBEEK, Boltnded nondeterminism and the approximation induction principle in process algebra,

in Proceedings STACS 87, E Brandenburg, G. Vidal-Naquet, and M. Wirsing, eds., Lecture Notes in
Comput. Sci. 247, Springer-Verlag, New York, 1987, pp. 336-347.

[10] R.v. GLABBEE; AYt F. VAAYDRAGEP,, Petri net modelsfor algebraic theories of concurrency, in Proceedings
PARLE conference, Eindhoven, Vol. II (Parallel Languages), J. D. Bakker, A. Nijman, and R Treleaven,
eds., Lecture Notes in Comput. Sci. 259, Springer-Verlag, New York, 1987, pp. 224-242.

[11] Modular specification ofprocess algebras, Theoret. Comput. Sci., 113 (1993), pp. 293-348.
[12] R. v. GLABBEEK AND W. WEIJLAND, Branching time and abstraction in bisimulation semantics (extended

abstract), in Information Processing 89, G. Ritter, ed., North-Holland, Amsterdam, 1989, pp. 613-618;
full version available as Report CS-R9120, CWI, Amsterdam, 1991.

[13] J. GROOTE, A new strategy for proving co-completeness with applications in process algebra, in Proceedings
CONCUR 90, Amsterdam, J. Baeten and J. Klop, eds., Lecture Notes in Comput. Sci. 458, Springer-
Verlag, New York, 1990, pp. 314-331.

14] M. HENNESSY, Axiomatising finite concurrent processes, SIAM J. Comput., 17 (1988), pp. 997-1017.
15] A proofsystemjbr weak ST-bisimulation over afinite process algebra, Computer Science Report 6/91,

University of Sussex, June 1991, submitted for publication.

ON "AXIOMATISING FINITE CONCURRENT PROCESSES" 863

16] M. HENNF,SSY AND R. MILYER, Algebraic lawsfor nondeterminism and concurrency, J. Assoc. Comput. Mach.,
32 (1985), pp. 137-161.

[17] C. HOARE, Communicating Seqttential Processes, Prentice-Hall International, Englewood Cliffs, NJ, 1985.
[18] A. Kly, Distributed bisitnulationsforfinite CCS, Tech. report 7/89, University of Sussex, United Kingdom,

1989.
[19] R. MIR, Communication and Concurreno,, Prentice-Hall International, Englewood Cliffs, NJ, 1989o
[20] E Mot,t,r, Axioms for Concurrency, Ph.D. thesis, Report CST-59-89, Department of Computer Science,

University of Edinburgh, Scotland, 1989.

SIAM J. COMPUT.
Vol. 23, No. 4, pp. 864-894, August 1994

() 1994 Society for Industrial and Applied Mathematics
011

THE COMPLEXITY OF MULTITERMINAL CUTS*

E. DAHLHAUSt, D. S. JOHNSON:l:, C. H. PAPADIMITRIOU, E D. SEYMOUR, AND M. YANNAKAKIS

Abstract. In the multiterminal cut problem one is given an edge-weighted graph and a subset of the vertices
called terminals, and is asked for a minimum weight set of edges that separates each terminal from all the others.
When the number k of terminals is two, this is simply the mincut, max-flow problem, and can be solved in polynomial
time. It is shown that the problem becomes NP-hard as soon as k 3, but can be solved in polynomial time for planar
graphs for any fixed k. The planar problem is NP-hard, however, if k is not fixed. A simple approximation algorithm
for arbitrary graphs that is guaranteed to come within a factor of 2 2/k of the optimal cut weight is also described.

Key words. NP-completeness, network flow, partitioning, planar graphs

AMS subject classifications. 68Q25, 90B 10

1. Introduction. The multiterminal cut problem can be defined as follows. Given a
graph G (V, E), a set S {s, s2 sk} of k specified vertices or terminals, and a
positive weight w(e) for each edge e 6 E, find a minimum weight set of edges E’ _c E such
that the removal of E’ from E disconnects each terminal from all the others.

When k 2 this problem reduces to the famous "min-cut/max-flow" problem, a problem
of central significance in the field of combinatorial optimization because of its many appli-
cations and the fact that it can be solved in polynomial time (e.g., see [7], [17], [18], [20]).
The "k-terminal cut" problem for k > 2 has been a subject of discussion in the combinatorics
community for years (closely-related variants were proposed as early as 1969 by Hu 17, p.
150]). A variety of applications have been suggested, most having to do with the minimiza-
tion of communication costs in parallel computing systems. In [23], Stone points out how the
problem of assigning program modules to processors can be formulated in this framework.
Other applications involve partitioning files among the nodes of a network, assigning users
to base computers in a multicomputer environment and partitioning the elements of a circuit
into the subcircuits that will go on different chips. It is known that such problems can become
NP-hard even for k 2 if there is a constraint imposed on the size of the components into
which the graph is cut [9], 10]. In this paper we ask whether the problem might be tractable
without such a constraint (as it is for k 2).

Our first results concern the planar case. The restriction to planar graphs, besides its basic

graph-theoretic significance, has potential relevance in the circuit partitioning application.
THEOREM 1.
(a) For k 3, the planar multiterminal cut problem can be solved in time O(n3 log n).
(b) For any fixed k > 3, the planar multiterminal cut problem is solvable in polynomial

time.

The algorithms of Part (b) are, unfortunately, exponential in k. (Specifically, they are
O((4k)kn2- log n).) That such exponential behavior is likely to be unavoidable follows
from the next result.

Received by the editors January 27, 1992; accepted for publication (in revised form) May 18, 1993. A preliminary
version of this paper appeared as "The complexity of multiway cuts" in Proc. 24th AnnualACMSymposium on Theory

of Computing, Association for Computing Machinery, New York (1992), pp. 241-251.
University of Bonn, Romerstrasse 164, D-5300 Bonn 1, Germany, Current Address, Basser Department of

Computer Science, University of Sidney, New South Wales 2006, Australia. Department of Computer Science.

AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (dsj @research.att.com).
Department of Computer Science and Engineering, University of California at San Diego, 0014, 9500 Gilman

Drive, La Jolla, California 92093-0114.
Bell Communication Research, Morristown, New Jersey 07960.

864

THE COMPLEXITY OF MULTITERMINAL CUTS 865

THEOREM 2. Ifk is notfixed, the multiterminal cutproblemforplanar graphs is NP-hard
even if all edge weights are equal to 1.

For the multiterminal cut problem in arbitrary graphs, NP-hardness sets in much earlier.
THEOREM 3. The multiterminal cut problemfor arbitrary graphs is NP-hardfor allfixed

k > 3 even if all edge weights are equal to 1.
This theorem is proved using a "gadget" that has interesting properties on its own (as

a counterexample to a conjecture about the possible submodularity of 3-terminal cut). The
theorem’s negative consequences are partially mitigated by technical lemmas that may yield
substantial reductions in the sizes of instances encountered in practice.

Finally, we have the following two approximation results, one positive and one negative.
THEOREM 4. There is an O(knm log(nZ/m)) approximation algorithm for the multiter-

minal cutproblem thatfor arbitrary graphs and arbitrary k is guaranteed tofind cuts that are
within 2(k / k ofoptimal.

THEOREM 5. For any fixed k > 3, the k-terminal cut problem is MAX SNP-hard (and
hence cannot have a polynomial time approximation scheme unless P =NP [1], [21]).

The results presented here can be contrasted to those of [13], [16], [22], which concern
what might be called the k-Cut problem. In this problem we are given G, k, and w as above (but
not S) and are asked merely for a minimum weight set of edges E’ whose removal separates
the graph into at least k nonempty connected components. Although this problem is NP-hard
for arbitrary k, it is solvable in polynomial time for each fixed k > 2, even for arbitrary graphs
[13]. The running time is o(nk2/2-k+ll/2). Thus the k-cut problem is significantly easier than
the problem we study here. Note, however, that this may not hold true in the case of planar
graphs. At present there is no known general method for exploiting planarity in the k-cut
problem, in contrast to our results for planar multiterminal cut. Thus for fixed k > 6, our
planar multiterminal cut algorithm currently provides the best method for solving the planar
k-cut problem: Simply run our algorithm for all possible sets S of k terminals and take the
least-weight solution found. A factor proportional to nk is added to our running time, but the
resulting time bound is still O(n3-1 logn), which beats O(nkz/z-k+ll/2) when k > 6. (For
k 3 and unweighted planar graphs, the O(n7) of the general k-cut result has been beaten
more directly, first by an O (n2) algorithm in 16], and subsequently by an O (n log n) algorithm
in 15]). Reference [22] concerns approximation results for the k-cut problem, showing that
the bounds we obtain in Theorem 4 for multiterminal cut can be obtained for k-cut directly,
without having to apply our multiterminal result to all possible sets of k terminals.

To avoid bibliographic confusion, we should mention that, with the exception of Theorem
5, the results in the current paper were first announced in 1983 in an unpublished but widely
circulated extended abstract [4]. The abstract has since been widely cited, both in the above-
meioncd work on k-Cut and in follow-up work on the multiterminal cut problem itself. In
I2i, !?,eI:,r: ’.nd I,,,.,o observe, as we failed to do in our original abstract, that for trees and

" ,.:::.;, I,;:, n,t k-Iirminal Cut problem can be solved in linear lime by a straightforward
:i.?,,,.ic ?ogramming algorithm, (This can be generalized to grapls of bounded tree-width
for :ny tixcd bound, by standard techniques.) The facets of the multiterminal cut polyhedron
are studied in [2], [31. An interesting generalization of the multiterminal cut problem, about
which we shall have more to say in our concluding section, is studied in [5], [6]. The 1983
abstract did not contain our proofs; these are presented here for the first time. (The 1983
abstract also used the less-descriptive term multiway cut for what we now call a multiterminal
cut. The new terminology was introduced in [3] and we adopt it here for added clarity.)

The paper is organized as follows. In 2 we cover the positive results for the planar case
(Theorem a and lb). The corresponding negative result for the planar case (Theorem 2) is

866 E. DAHLHAUS ET AL.

covered in 3. 4 covers our results for general graphs (Theorems 3, 4 and 5 and associated
technical lemmas). A concluding 5 discusses additional variants and generalizations of
multiterminal cut to which our techniques can apply and points out some of the remaining
open problems in the area.

2. Algorithms for the planar case. Our main result for planar graphs (Theorem 1) says
that for all fixed k, the multiterminal cut problem is solvable in polynomial time. This is in
contrast to Theorem 3 that says that for arbitrary graphs the problem is NP-hard for any fixed
k > 3. The key advantage we gain from planarity lies in the existence of a planar dual to
our given graph G. We will assume without loss of generality that our graph G (V, E) is
connected and that we have fixed an embedding of it on the plane. We will use a superscript
D to denote a dual object. Thus Gz is the dual graph of G. If F is a subset of the edges of
G, F/) is the corresponding set of edges of G9. (Note" Fz) is not the dual of the subgraph
(V, F) of G.)

We start with Theorem a and the case of k 3 and then show how our proof techniques
can be generalized to cover the case of general fixed k (Theorem lb).

2.1. Planar 3-terminal cuts. A key concept in all that follows is the idea of an isolating
cut.

DEFINITION. For a given terminal si, an isolating cut for si is any set of edges that cuts
all paths between si and all the other terminals.

Note that a minimum weight isolating cut for si can be constructed by merging all the
terminals other than si into a special vertex so, and then finding a minimum si so cut in
the resulting graph by a standard 2-terminal minimum cut algorithm. Note also that any k-
terminal cut induces isolating cuts for each of the k terminals. An optimal k-terminal cut need
not induce optimal isolating cuts however, because of the savings that can be obtained when
the induced isolating cuts share edges. As we shall see, when G is planar, the sharing of edges
has a convenient interpretation in terms of paths in the dual graph G o.

For the purpose of introducing some terminology, let us for simplicity first look at the
dual in the case when there is no sharing of edges. From now on in this section, we shall
assume k 3. Figure shows a graph G with a 3-terminal cut C, together with the duals G z)

and Cz) of each. The thicker edges in the figure are those of C and Cz), respectively. Note
that the edges of Cz) partition the geometric embedding of G z) into three regions. (In the case
of Fig. 1, two of these regions are single faces of GZ, but the other is the union of several
faces.) Let us say that a vertex of G is in a given region if the face of G z) to which the vertex

corresponds is part of that region. Then observe that in the figure, each of the terminals of G is
in a separate region of C9. This is clearly a general property: C is a 3-terminal cut of a graph
G if and only if the terminals Sl, s2, s3 are in different regions of Cz. (The boundary of the
region containing xi is the dual of an isolating cut for xi.) If C is an optimal 3-terminal cut,
CZ) has exactly three regions, each one containing a distinct terminal. Furthermore, removing
any edge from C must merge two regions, as otherwise the corresponding edge of C is not
needed in the cut.

For a general instance of the 3-terminal cut problem, there are two topologically distinct
possibilities for an optimal cut C. See Fig. 2, where {i, j, k} 1, 2, 3 }.

Cut type I. C consists of two edge-disjoint cycles. (See Fig. 2a,b.) Note that the cycles
may have one vertex in common and/or one cycle may lie inside the other, as in Fig. 2b. They
cannot have more than one vertex in common, however, as this would imply that CZ) had more
than three regions.

Cut type II. Each pair of regions of C shares an edge. (See Fig. 2c.)
We shall now describe how to find an optimal 3-terminal cut. We provide procedures that

THE COMPLEXITY OF MULTITERMINAL CUTS 867

s
S S

(a) (b)

FIG. 1. A planar 3-terminal cut (a) and its dual (b).

Sk Sk a sk

(a) (b) (c)

FIG. 2. Types of3-terminal cuts: type I (a) and (b), type II (c).

work for each type of cut. Each procedure either returns the best cut of the corresponding type
or else reports (correctly) that any optimal cut is of the other type.

Our procedure for Type cuts is straightforward. We simply compute the three minimum
weight isolating cuts for s, s2, and s3, respectively. Note that a minimum weight Type I cut
must have weight at least as large as the sum of the weights of the two smallest of these
three isolating cuts. If the two smallest are edge-disjoint, then their union is optimal among
all 3-terminal cuts of Type I. If the two smallest are not edge-disjoint, then their union is a
3-terminal cut that has strictly smaller weight (because all edge weights are by assumption
positive). Consequently, the best 3-terminal cut is not of Type I.

Our procedure for Type II cuts is significantly more complicated. Suppose we have an
optimal 3-terminal cut that is of Type II. Look again at Fig. 2c. The cycle that bounds each
region corresponds to an isolating cut for the terminal contained in that region, but these
isolating cuts are not necessarily optimal, as they overlap. Consider the two vertices that are
of degree 3 in Cz and are labeled a and b in the figure. The following lemma allows us to fix
one of the three paths connecting a and b in G

LEMMA 2.1. Suppose that the dual of an optimal 3-terminal cut C is of Type H and a
and b are the two vertices of degree 3 in Cz. Let P be any shortest path from a to b in G
Then there is an optimal 3-terminal cut Co that is of Type II, has a and b as its two vertices of
degree 3 in C, and such that P is one of the three paths thatjoin a to b in C.

Proof Consider all optimal 3-terminal cuts Ct such that Ct is of Type II with a and b
as specified. Among these cuts, pick Co to be the cut Ct for which Ct contains the longest
possible initial segment of P starting at a. We will show that Cff contains all of P.

Assume that P is not one of the three paths connecting a to b in Cff. As we traverse P
from a to b, let x be the first vertex of P such that the edge leaving x in P is not in C. Let y
be the first vertex of P after x that is in Cff. Note that it is possible that x a and/or y b,
or that x and y are consecutive vertices of P but the edge {x, y} is not in C. Let Q, Q2, Q3

868 E. DAHLHAUS ET AL.

be the three a b paths in C0z). The path P initially follows one of these paths, say Q1 without
loss of generality, leaves it at vertex x, and then hits a path again at vertex y. We distinguish
two cases depending on whether y is on the same path Q1 as x (Fig. 3a) or on a different path,
say without loss of generality Q2 (Fig. 3b). In both cases the portion of P between x and y
lies entirely in one region ofC (by planarity), and partitions that region into two subregions.
One of these two subregions contains the terminal that was contained in the original region,
and the other contains no terminals at all.

a a

X X
3 3

QI Q1

Y’

b b

(a) (b)

FIG. 3. Possibilitiesfor the P[x, y] in the proofofLemma 2.1.

Case 1. Vertices x and y are both on Q. (This includes the cases when x a or y b.)
Let us denote the portion of a path Q between two of its vertices u and v as Q[u, v]. Let us
assume without loss of generality that P[x, y] lies in the region of C bounded by Q and
Q2, as illustrated in Fig. 3a.

Subcase 1.1. The subregion bounded by Q[x, y] and P[x, y] contains no terminal.
Consider the path from a to b that follows P (and Q) from a to x, follows Q from x

to y, and then follows P from y to b. It must be at least as long as P because P is a shortest
path from a to b. Therefore w(Q[x, y]) >_ w(P[x, y]), where if F is a set of edges, we
take w(F) to be eFtO(e). If we modify C so that Ql[X, y] is replaced by P[x, y], we
will obtain a path Q’ that is no longer than Q, agrees with a longer initial segment of P and
remains disjoint from Q2 and Q3 (except at their endpoints). Because the subregion bounded
by Q1 [x, y] and P[x, y] contained no terminals, the union of Q’ with Q2 and Q3 will still
constitute the dual of a 3-terminal cut. This thus contradicts our definition of Co, and so the
subcase cannot apply.

Subcase 1.2. The subregion bounded by Q [x, y] and P[x, y] contains the terminal that
lies in the region of C bounded by Q1 and Q2 (and hence the region bounded by Q2 and the
path consisting of Q1 [a, x], P[x, y], and Q1 [y, b] contains no terminal).

In this case, we propose to modify C0z) by deleting the path Q2 and adding the path
P[x, y]. Given the location of the terminal that was in the region of C bounded by Ql and
Q2, this will still be the dual of a 3-terminal cut. Thus all we must do now is argue that such a
cut would violate the definition of Co. First, observe that because P is a shortest path between
its endpoints, all subpaths of P must themselves be shortest paths between their endpoints. In
particular, we must have w(P[x, y]) < w(Ql[y, b])+ w(Q2) + W(Ql[a,x]). Ifeither x - a
or y - b, we would then have w(P[x, y]) < w(Q2), because all edge weights are positive by
definition. Thus our modified 3-terminal cut would be strictly lighter than Co, contradicting
its definition. Therefore we must have x a, y b, and the current 3-terminal cut contains

THE COMPLEXITY OF MULTITERMINAL CUTS 869

no edges from P. Note, however, that by our choice of P we have w(P) < to(Q2), and so
we can replace Q2 by P and obtain a new 3-terminal cut whose weight is at least as small.
The new cut is hence also optimal and contradicts our assumption that no optimal cut could
contain a longer subpath of P (starting from a) than does the cut containing Q2. Thus this
subcase cannot hold either, and Case is ruled out.

Case 2. Vertex x is on Q1, x - a, and vertex y is on Q2, y - b.
Subcase 2.1. The region bounded by Q[a, x], P[x, y], and Qz[a, y] contains no termi-

nal.
In this case, replacing Qz[a, y] by P[x, y] in C0 will yield the dual of a 3-terminal cut.

We argue that this new 3-terminal cut must have strictly smaller weight than Co, contradicting
the definition of Co. Consider the path from a to b consisting of Qz[a, y] and P[y, b]. It must
be at least as long as P, so we must have w(Qz[a, y]) > w(P[a, y]). Consequently, because
a - x, we must have w(Qz[a, y]) > w(P[x, y]), and the new cut indeed has smaller weight.

Subcase 2.2. The region bounded by Ql [x, b], P[x, y], and Qz[y, b] contains no termi-
nal.

In this case we replace Qz[y, b] by P[x, y] and obtain a contradiction analogous to the
one of Subcase 2.1.

Thus Case 2 as well as Case is ruled out. Consequently, P is contained in Co, and the
optimal 3-terminal cut called for by Lemma 2.1 exists. Iq

In light of Lemma 2.1, our procedure for Type II cuts can work by repeatedly calling a
subroutine, once for each potential pair a, b of degree-3 vertices in C. The subroutine either
constructs a minimum weight 3-terminal cut C that is of Type II and has a and b as the two
degree-3 vertices in C, or reports (correctly) that no minimum weight 3-terminal cut has that
form. The subroutine proceeds as follows.

First, construct a shortest path P between a and b in G o. By Lemma 2.1 we may assume
that P is contained in C. Delete the edges in G corresponding to the edges of P, obtaining
a new graph H. In the embedding of this new graph induced by our original embedding of
G, all the regions of G corresponding to vertices on P in G o are merged into a single region.
This corresponds in H to coalescing all the vertices along the path P from a to b into a single
vertex v,. This coalescence turns C from a Type II cut into a Type I cut like the one in Fig.
2b in which the two edge-disjoint cycles share a common vertex, in this case v,. (The two
cycles need not however be nested as they are in the figure; they can have disjoint interiors.)

We can now apply our previously described procedure for Type I cuts to H, obtaining a
Type I cut C/4, or a report that the best 3-terminal cut for H is not of Type I. In the latter case,
an optimal 3- terminal cut for G could not have been ofType II with the pair a, b as its degree-3
vertices, and we report this fact. In the former case, the cut C/ will, when augmented with
the edges of G corresponding to the edges of P in G, be a 3-terminal cut for G. It cannot
be an optimal cut, however, unless C has the desired form of two edge-disjoint cycles with
vp as a single common vertex. Otherwise the edges corresponding to P can be deleted and
a valid (and lighter) 3-terminal cut for G will remain. Thus if C does not have the desired
form, we once again report that no optimal 3-terminal cut for G is of Type II with a, b as its
two degree-3 vertices.

Our overall algorithm for finding an optimal 3-terminal cut can thus proceed as follows.
Procedure 3-terminal.
1. Perform the Type procedure on G.

If a valid Type cut is found, put it on the list of potential optima.
2. Construct the dual graph G and perform an all-pairs shortest path computation for
G o. For each pair a, b of vertices in G o, do the following"

870 E. DAHLHAUS ET AL.

2.1. Let P be the shortest path in G9 between a and b as constructed in step 2 and let
H be the graph obtained from G by deleting the edges corresponding to edges of
P.

2.2. Perform the Type procedure on H.
2.3. Let vt, be the coalesced vertex in Hz corresponding to the path P. If a valid

Type I cut C/4 for H is found and has a dual consisting of two edge-disjoint cycles
having v, as their unique common vertex, do the following:
2.3.1 Let Ca be the 3-terminal cut for G consisting of C/-/ together with the edges

of G corresponding to the edges of P in G
2.3.2 Add Ca to the list of potential optima.

3. Output the lightest 3-terminal cut on the list of potential optima.
THEOREM a. Given aplanargraph G with specified terminals Sl s2, and s3, Procedure 3-

terminal outputs an optimal 3-terminal cut and can be implemented to run in time O(n log n),
where n is the number of vertices in G.

Proof. The fact that Procedure 3-terminal outputs an optimal cut follows from the above
discussion. To analyze the running time, note that the bulk of the time is spent in the all-pairs
shortest path computation of Step 2 and the isolating cut computations needed for each of the

() invocations of the Type procedure in Step 2.2. The all-pairs shortest path computations
takes place in a planar graph and so can be implemented to run in time O(n2) using the
techniques of [8]. The isolating cut computations reduce as noted to 2-terminal minimum cut
computations and so can be performed using standard 2-terminal cut algorithms.

For planar graphs, such algorithms run in time O(n log n), again using techniques from
[8]. Unfortunately, if we use the techniques we originally described for computing isolating
cuts, the graphs to which the 2-terminal cut algorithm is applied will not necessarily be
planar. (Recall that our original proposal was to apply the 2-terminal cut algorithm to graphs
constructed from G by coalescing pairs of terminals and note that those pairs need not be
adjacent in G.) Thus without a further idea, we might be forced to use a general algorithm,
and the running time would grow to O (n2 log n). (This can be obtained for instance by using
the O(nm log(n2/m)) 2-terminal cut algorithm of [12] and taking advantage of the fact that
although our graphs need not remain planar, they do remain sparse.) This would force our
overall running time up to O(n4 log n). Fortunately, we can get around this obstacle as follows.

Recall that our goal in the Type procedure is to find the two lightest among the isolating
cuts for s, s2, and s3. For :/: j 6 1, 2, 3}, let c(i) denote the weight of a minimum isolating
cut for si and c(i, j) denote the weight of a minimum (2-terminal) cut separating si from sj.
Clearly, both c(i), c(j) >_ c(i, j). Now note that in any cut separating si from sj, the third
terminal will be disconnected from at least one of si, sj, and therefore the cut must isolate
either si or sj. Thus either c(i) < c(i, j) or c(j) < c(i, j). Combining this with the previous
inequality, it follows that c(i, j) min{c(i), c(j)}. We compute the best two isolating cuts
as follows.

Compute a minimum 2-terminal cut C1,2 separating Sl from s2 in G. This will be an
isolating cut for one of the two terminals, say s without loss of generality. At this point we
have c(1, 2) c(1) < (2). Now compute a minimum 2-terminal cut C2,3 separating s2 (the
nonisolated terminal) from s3 in G. If this second cut isolates s2 we have c(2, 3) (2) < c(3)"
if it isolates s3 we have c(2, 3) c(3) < c(2). In either case C1,2 and C2,3 are the two lightest
isolating cuts as desired, and both were computed in the original planar graph G.

Step 2.2 thus involves 2() n2 planar 2-terminal cut computations, for an overall time
of O(n log n). Because this is the dominant component of the running time, it also provides
a bound on the overall running time of Procedure 3-terminal, which thus obeys the claimed
running time bound.

THE COMPLEXITY OF MULTITERMINAL CUTS 871

2.2. Planar multiterminal cuts. In this section we turn to the case of k-terminal cuts
where k > 3. The algorithm we present will work for all k > 3 and will have a running
time that, although exponential in k, is polynomial whenever k is fixed. It can be viewed as
a (major) generalization of the algorithm of the previous section for the k 3 case. For our
discussion here, it will be convenient to assume that no two subsets of edges have the same
total weight. (We can make sure that the assumption is satisfied in various ways. For instance,
if A is the weight of the lightest edge and the edges are ordered el, e2 era, we could use
the revised edge weights vo’(ei) w(ei) + A/2i.) The key consequence of the assumption
is that optimal cuts, shortest paths, etc. are unique, so that we can refer to the optimal cut,
etc. A less desirable consequence is that the cost of doing additions and comparisons of edge
weights may go up by a factor of n, given the large number of bits needed to represent them,
but given that our main goal here is to show that running times are O (nCk) for some c, a factor
of n will not make a significant difference.

In the k 3 case, we observed that the dual Co of the optimal cut was a subgraph of Go

that partitioned the embedding of Go into three regions, each containing a distinct terminal.
We then reduced the problem to the computation of 2-terminal cuts and shortest paths by
first guessing (i.e., trying all possibilities for) some information about C In particular, we
guessed the topology (whether the cut consisted of two edge-disjoint cycles or not) and (in the
latter case) the identity of the two degree-3 nodes a and b in C.

For general k >_ 3, we follow the same approach. Assume as before that we have
previously decided on some fixed embedding of G. Suppose C is the optimal k-terminal
cut, and once again let C be the dual of C viewed as a subgraph of a predetermined planar
embedding of G o. Then Co must partition the embedding of Go into precisely k regions, each
containing a distinct terminal. Our notion of a topology for C is derived as follows. Consider
the connected components ofC and call such a component complex if it contains more than
one vertex that has degree three or more in C. Let C, C2 Cq be an enumeration of

the complex components of C, and for each i, _< _< q, let Ni be the set of vertices with

degree three or more in C/. (Note that we must have q _< k 1, because every connected
component of C must enclose at least one terminal, and the infinite region of C contains
one terminal.) Let N Uqi= Ni. The topology of C is simply the (unordered) partition of
N given by the sets N, N2 Nq. See Fig. 4 for an example of a C and its topology,
consisting of two sets N and N2. In the figure the vertices in N are highlighted. Note that
the degree-6 vertex v6 does not participate in the topology because its connected component
contains only one vertex of degree three or greater.

v6

V12 V23 1;5

N {v2,v3,v4,v7,v9,v12} N2 {vi,v5,v6,v8,v13,v17,v19,v22,v23}

FIG. 4. The dual cD ofan optimal cut C and its topology {Nl, N2 }.

872 E. DAHLHAUS ET AL.

LEMMA 2.2. If G is a connected planar graph with n vertices, let C be an optimal k-
terminal cutfor G, and let Ct) be the planar dual of C, viewed as a subgraph of G t). Then
the number ofdistinct possibilitiesfor the topology of Ct) is O((2n)Zk-4).

Proof Let an arc of Ct) be any maximal path, all of whose interior vertices have degree
two in Ct). Note that a cycle of Ct) may be an arc, so long as the cycle contains at most one
vertex of degree three or greater. Consider the graph whose vertex set is N and whose edge
set is the arcs of C t) with both endpoints in N. This graph is planar, and has q connected
components. Let m be the number of arcs it contains and k’ < k, the number of regions. By
Euler’s formula, we have NI m + k > q + 1. Because all vertices of this graph have degree
three or more by definition, we have m > 31N1/2. Thus INI < 2(k q 1).

Now let V t) denote the set of vertices of G t) and consider the set of sequences
Xl, X2 X2k_4, with each xi being either a member of Vt) or the special symbol I. Such
a sequence corresponds to a collection of subsets S, $2 of V t) in a natural way. Let us
pretend our sequence is augmented by placing one copy of the special symbol at the begin-
ning and one at the end. Then Si is simply the set of vertices that occur in between the th
and i+ 1st occurrences of in the sequence. Note that every topology can be represented
in this way, because all we need is INI + q symbols, where N and q are as above, and

NI + q < 2k q 3 < 2k 4 by the remark at the end of the preceding paragraph.
Thus the total number of topologies is bounded by the total number of such sequences, which
is (IVDI / 1)2k-4. (Note that this is a gross overcount on the topologies, because a given
topology will be represented many times, and most sequences will not represent topologies at
all. It probably represents the correct order of magnitude, however; for k 3 it is O(I V
and we did have to consider (R)(1V t)12) topologies in the k 3 case.)

To complete the proof of the lemma, we must bound IV o[in terms of n, the number of
vertices in the original graph G. But note that each vertex in V t) corresponds to a region in
the embedding of G, and (again by Euler’s formula) the number of such regions is at most
2n 4. Thus the total number of topologies is O((2n)2k-4) as claimed.

Our algorithm for the general k-terminal cut problem will work by considering in turn each
of the possibilities for the topology of the optimal cut. For each we will invoke a subroutine
analogous to those used in our 3-terminal cut algorithm. The subroutine will either output the
shortest cut that has the given topology, or else report (correctly) that the optimal cut cannot
have the given topology. To specify the subroutine, we will need to know some structural
results relating the optimum cut and its topology.

So suppose we are given a topology N, N2 Nq. If this is the optimal topology, then
C t) contains connected components C, C2 Cq,, q’ _>. q, where for < < q, Ni is

the set of vertices with degree three or more in C/), and for q < _< q’, C contains at most
one vertex with degree three or more. The analogue of Lemma 2.1 for this general k case
is that for each C/), _< q, we can efliciently identify’ a st:btrec TiD of C/) that spans all the
vertices of Ni. This was the case in Lemma 2.1, whcrc |Er N {a, b} (Fig. 2c), we identified
a path between the two degree-3 vertices a and b by doing a shortest path computation. For
the general case, we shall need both shortest paths and minimum spanning trees.

For a given topology, the trees Tit), _< q, are constructed as follows. We treat the sets

Ni, < q, in turn. (Order is not important.) Given N;, we construct an auxiliary weighted
complete graph Hi with Ni as its vertex set and with the weight of the edge linking u and v

being the length of the shortest path in G t) between u and v. Compute the minimum spanning
tree T[Hi] of Hi, and let Tit) be the subgraph of G formed by replacing each edge in T[Hi]
by the corresponding shortest path in G t). We shall call Tit) the minimum spanning tree of Ni
(although note that it may not even be a tree if Ct) does not have the given topology). Figure 5
portrays the Ct) of Fig. 4 with the trees T/t) (chosen according to the correct topology) high-

THE COMPLEXITY OF MULTITERMINAL CUTS 873

lighted. (For future reference, the figure also indicates which terminal is contained in which
region of CO.) The next lemma establishes the key properties satisfied by Tfl when C has
the given topology.

$17

FIG. 5. The dual CD with the trees TiP highlighted and the locations of terminals indicated.

LEMMA 2.3. Let C be the optimal k-terminal cut and C be its planar dual, viewed as
a subgraph of G o. Let Ci, <_ <_ q, be the complex connected components of C, and
let Ni be the set of vertices with degree three or greater in Ci, < < q. Then (a) each

Ci, < <_ q, contains the minimum spanning tree Ti for Ni, and (b) no two ofthe paths in

Tfl corresponding to edges of T[.] intersect except at a common endpoint (and hence Tfl
is indeed a tree).

Proof Let us assume that the edges of T[H/] are labeled F, F2 FIN, I_ in order of
increasing weight. Thus if we let TJ[Hi], 0 < j < m, be the graph consisting of the first j
edges of T[Hi], then for0 _< j < m, Fj+ is the shortest edge joining two different connected
components (subtrees) of TJ[Hi]. Suppose _< j _< m, let Fj {u, v} and let S and T
be the subtrees of Tj-1 [Hi] containing u and v, respectively. Let P be the shortest path in
G between u and v. Because of our assumption that no two sets of edges have the same
aggregate weight, we can prove the desired properties of P directly, without the induction that
was needed in the proof of Lemma 2.1. We shall prove three claims, from which the current
lemma follows. Claims 2 and 3 correspond to parts (a) and (b) of the lemma, respectively.
Claim is used in the proof of each of the latter two.

Claim 1. P contains no vertex of Ni other than u and v.
Note that if P contained such a vertex w, then either w is not in S or w is not in T. If to

is not in S, then the edge {u, w} in connects two different subtrees and has length at most
P[u, w], which is strictly less than the length of P. This contradicts our assumption about the
ordering of edges in T[H/]. A similar argument applies to the path P[w, v], if w is not in T.
This gets us part of the way toward proving that no two paths of Tfl intersect and will also be
useful in Case 3 below.

Claim 2. P is entirely contained in C/.
Suppose P is not entirely contained in C/. As we traverse P from u to v, let x be the

first vertex such that the edge leaving x is not included in C/. Let y be the first vertex after
x that is again included in Ci. As in the 3-terminal case, it is possible that x u and/or

y v, or that x and y are consecutive in P but {x, y} is not in C. It is also possible that
some portions of P[x, y] hit components of C other than Ci. In any case, from planarity,
P[x, y] must be contained in one region of C, which it divides into two regions. Let B
denote the boundary of that region, and let B1 and B2 be the two (closed) parts into which B
is divided by P[x, y]. Call the region itself RB. Then let R be the region of C (as opposed
to just C/) that is bounded by B together possibly with edges from connected components of
C other than C/, if such are contained in RB. The region R is divided by P[x, y] into (at

874 E. DAHLHAUS ET AL.

least) two subregions R1 and R2. The boundary of Ri, 6 1, 2} consists of Bi, P[x, y], and
possibly edges from other components. At least one of these two subregions of CZ) contains
no terminal; without loss of generality we may assume R contains no terminal.

If we add P[x, y] to C and remove a subpath of B1 that contains no vertex of Ni as
an interior point, the region R1 will be merged with a single adjacent region. Because R1
contains no terminal, the new subset of edges of Go will still be the dual of a k-terminal cut.
We will show that we can always find such a subpath of B1 having higher weight than P[x, y].
This will mean that the replacement yields a k-terminal cut of lesser weight, contradicting the
optimality of C. In the three cases below, we use "contains" as a shorthand for "contains as
an interior vertex."

Case 1. B1 contains no vertex of Ni.
This corresponds to Subcase 1.1 of Lemma 2.1 (see Fig. 3a). Because P is a shortest

path in G o, P[x, y] must be the shortest path between x and y in G o. Thus it is shorter than
B. Because the latter contains no vertex of Ni, we can replace all of B by P[x, y], thereby
obtaining a shorter cut, in contradiction of the assumed optimality of C.

Case 2. B contains vertices of Ni that are in different subtrees of TJ-[Hi].
This corresponds to Subcase 1.2 of Lemma 2.1 (see Fig. 3a). Because B1 contains vertices

from Ni from different subtrees, it has two consecutive such vertices, say a and b. By our
ordering of the edges Fh of T[H/], w(P[x, y]) < w(P) < W(Bl[a, b]). Thus we can replace
B [a, b] by P[x, y], obtaining a shorter cut and hence another contradiction.

Case 3. B contains at least one vertex of Ni, and all such vertices are in the same subtree
of TJ-[Hi].

This corresponds to Case 2 of Lemma 2.1 (Fig. 3b). Suppose first that none of the vertices
from Ni contained in B are in the subtree S of Tj_ that contains u. Let z be the first vertex
of Ni encountered as we traverse B from x to y. Note that z cannot be x by Claim 1. Consider
the path from u to z that follows P from u to x and then B1 from x to z. It connects vertices of Ng
in different subtrees, and so w(P[u, x]) + w(B[x, z]) > w(P) > w(P[u, x]) + w(P[x, y]).
Consequently, we must have w(B[x, z]) > w(P[x, y]), and we can replace B[x, z] by
P[x, y] for a shorter cut and a contradiction. An analogous argument holds for the case when
none of the vertices from Ni contained in B are in the subtree T containing v.

This exhausts the possibilities, so the path corresponding to Fj must be included in C/.
Claim 3. P does not intersect any of the other paths in Ti corresponding to edges of

T[. except at common endpoints.
Suppose P intersects another path P’ of T at a vertex other than a common endpoint.

We shall derive a contradiction, using the fact that Claims and 2 hold for P’ as well as for
P. Of all the nonendpoint vertices the two paths share, let w be the closest one to u in P.
Because all the edges of both P and P’ are included in C/ by Claim 2, w must have degree
three or greater in C/, and hence by definition of topology, w must be included in Ni. This,
however, contradicts Claim 1, which says that no interior vertices of P are in Ni. Thus Claim
3 holds, and the Lemma is proved. 1

Lemma 2.3 treats the connected components C/ of C in isolation. Let us now look
at how they interact. First note that the trees Tf are all vertex disjoint, because each is a
subgraph of a different connected component of C. Thus they constitute a subforest of C.
Let T z) represent this subforest, the union of all the edges in the T/, and let T be the subset
of edges in G whose planar dual is T. By Lemma 2.3, the optimal cut C for G will consist
of T plus some additional edges, assuming we chose the correct topology for C. To find those
additional edges, we delete T from G to obtain a new graph that we shall call G [0]. Assuming
we have the correct topology, the optimal cut for G[0] will be C[0] C T.

Let G[0] be the embedded dual of G[0] obtained by coalescing all the edges of each T,.
in G o to a single point. Note that G[0] D remains connected and has lost none of the regions

THE COMPLEXITY OF MULTITERMINAL CUTS 875

from GZ because only trees were coalesced. Assuming that we have the optimal topology,
C[0] D will be a collection of k simple cycles in G[0] z), each of which is a biconnected
component of C[0] z). That is, a connected component of C[0] z) may consist of more than one
cycle, but all such cycles must share a single common vertex. (In particular, the coalesced
vertices corresponding to the TD will be such common vertices, although there may be others
that were already present in CO.) See Fig. 6.

S17

FIG. 6. The graph C[0]D obtained by coalescing the spanning trees TiP in CD.

Note that in the embedding of G[0] z), some of the cycles of C[0] z) will contain others.
An innermost cycle will constitute the complete boundary of a region in C[0], whereas other
regions may have boundaries made up of the edges of several cycles. We shall show that if
one treats the cycles in an appropriate "inside out" order, each of these cycles can be viewed
as a minimum isolating cut in an appropriately constructed graph. Let us identify each region
with the terminal si it contains and construct a partial order < on the terminals as follows.

si < sj if and only if the outermost cycle bounding si’s region is contained in the outermost
cycle bounding sj’s region. (By convention, we assume that "the outermost bounding cycle"
for the infinite region contains all other cycles, so that the terminal contained in the infinite
region is > all other terminals.) Note that by this definition, the outermost bounding cycle for

si must separate si from all terminals s) > si.
Let zr be an ordering of the terminals that is consistent with this partial order, that is, if

si <_ sj, then zr(i) _< zr(j). For instance, for the C[0] z) depicted in Fig. 6, such an ordering
would be s6, s1, $4, $7, $5, $2, Slo, $3, Sll, s12, $8, s15, s13, $9, s16, s14, s17. We define a sequence
of graphs and isolating cuts as follows. For < < k- 1, let A/z) be the set of edges in

G[0] z) making up the outer boundary cycle for the region containing terminal s(i). Let Ai be
k-1the corresponding set of edges in G[0]. Note that C[0] Lli= Ai. Now let G[i] be the graph

Ajobtained from G[0] by deleting the edges of Uj=
LEMMA 2.4. For < < k 1, Ai is a minimum isolating cutfor terminal sr(i) in graph

G[i- 1].
Proof. Suppose not, and assume j is the lowest index for which the Lemma is violated.

Let Bj be the minimum isolating cut for s(j) in G[j]. Note that Aj is also an isolating cut
for sn(j) in G[j 1]: by the minimality of j, all terminals s(i), < j, are already isolated
in G [j], and by our ordering of the terminals, all terminals of higher index are separated
from. sr(j) by the outermost bounding cycle for sr(j), that is, A. Because the minimum

weight isolating cut Bj is unique (by our assumption about edge weights) Aj does not equal
it, w(Bj) < w(Aj). But then the set (C[0] Aj) U Bj will have lower weight than C[0]. The
set will also be a k-terminal cut for G[0]. Removing the edges of A from C[0] will merge

’Ss(j) region with exactly one other, and the terminal for the region must have higher index,

876 E. DAHLHAUS ET AL.

by our ordering of the terminals. But Bj separates srr(j) from all higher-indexed terminals.
Thus C[0] was not the optimum cut for G[0], a contradiction.

Given Lemmas 2.3 and 2.4, the following procedure will handle any given topology
N1, N2 Nq appropriately, either outputting the minimum weight cut with that topology
or reporting correctly that the optimal cut cannot have that topology. Assume that as a prepro-
cessing step we have constructed our standard embedding of the dual graph Go and computed
all shortest paths between vertices of G o.

Procedure check topology (N1, N2 Nq).
1. For < < q, do the following.

1.1. Construct the auxiliary graph /-/i, the minimum spanning tree T[/-/,.], and the
subtree Tiz.

1.2. If any two paths in T/ corresponding to edges of T[H/] share a vertex other than
a common endpoint, reject the topology.

2. If any two subtrees Ti share a common vertex, reject the topology.
Otherwise, let T be the union of the edge sets Ti, let G[0] be the graph obtained
from G by deleting all edges in the dual set T.

3. Let W* cxz (our initial estimate of the optimal cut weight).
For all possible permutations s), s2) s,) of the terminals, do the following.
3.1. SetC=T.
3.2. For < < k- do the following:

3.2.1. Find a minimum isolating cut Ai for s,ri) in G[i 1].
3.2.2. Set C C t3 Ai, and let G[i] be the graph obtained by deleting the edges

of Ai from G[i- 1].
3.3. If w(C) < W*, set W* w(C) and C* C (the current best cut with this

topology).
4. Output C*.
It should be clear from the above discussion that this subroutine has the desired properties.

Its running time is dominated by that for the minimum isolating cut computations occurring
at Step 3.2.1. As discussed, each such computation can be performed using a standard 2-
terminal minimum cut algorithm in time O(n2 log n), assuming a machine model in which
additions, subtractions, and comparisons take constant time. Given our proposed method for
imposing the restriction that all sets of edges have unique weights, however, such a model is

inappropriate. Even given the standard assumption that the original instance has edge weights
that fit into a single computer word, our method for insuring the subset weight uniqueness
restriction gives rise to weights whose binary representations involve (R)(n) bits. With such
large numbers, the time bound for the isolating cut computations grows to O(n log n). We
perform k such computations for each of the k! permutations of the terminals, yielding a
total of O(kk) for each topology.

The overall algorithm then consists of performing Procedure Check Topology for each
possible topology, of which there are O((2n)2k-4) by Lemma 2.2, and outputting the best cut

found for any nonrejected topology. Thus we have our claimed result for general fixed k,
stated here in slightly more precise form than given in the introduction.

THEOREM lb. Given a planar graph G with n vertices and k specified terminals, a

minimum k-terminal cut can be constructed in time O((4k)kn2- log n).
Note that if we specialize this result to the previously considered case of k 3, the time

bound is O (n5 log n), substantially larger than the O (n3 log n) of Theorem a. This is a result
of two factors" (1) A factor of n because we can’t in general find the needed isolating cuts

using planar 2-terminal cut algorithms, as we could when k 3, and so have to use general
2-terminal cut algorithms. (2) A factor of n because we needed to operate with (R)(n)-bit
weights to insure that every subset of edges had a unique weight.

THE COMPLEXITY OF MULTITERMINAL CUTS 877

It may well be that more efficient algorithms can be derived by careful algorithmic design
and analysis, but the bounds we have presented adequately fulfill our goal of showing that
the k-terminal cut problem can be solved in polynomial time for fixed k and planar graphs.
Moreover, as the NP-completeness result of the next section implies, it is likely that any
algorithms for the general problem will have exponential (or at least super-polynomial) running
times.

3. Complexity of planar multiterminal cut for arbitrary k. We saw in the previous
section that the Multiterminal Cut problem is solvable in polynomial time for planar graphs
and fixed k. In this and the next section we shall show that the problem becomes NP-hard if
we allow either general graphs or general k. In this section we consider the case of planar
graphs and general k. As is traditional for complexity results, we concentrate on a decision
problem version of our problem. By proving it NP-complete for planar graphs, we imply that
the corresponding optimization is NP-hard.
MULTITERMINAL CUT
INSTANCE: Graph G (V, E), subset {s, s2 sk} c_ V of terminals, for each edge e a
positive integer weight w(e), and a bound B.
QUESTION: Is there a subset E’

_
E such that w(E’) <_ B and G’ (V, E E’) contains

no path linking two distinct terminals?
We shall prove that MULTITERMINAL CUT is NP-complete, even if restricted to

bounded-degree planar graphs with all edge weights equal to 1. Note that this is a stronger
result than that quoted in the introduction, where for simplicity the question of degree bounds
was not raised. We actually prove two separate results. The first allows weights to differ, but
restricts vertex degrees to be 3 or less. (Note that the problem becomes trivial if vertex degrees
must all be 2 or less.) The second result covers the equal-weight case and follows by a slight
modification of the proof of the first.

THEOREM 2a. MULTITERMINAL CUT is NP-complete for planar graphs, even if edge
weights are bounded and the maximum vertex degree is 3.

Proof That planar MULTITERMINAL CUT is in NP is immediate. To complete
the proof, we need to provide a polynomial transformation to it from some known NP-
complete problem. The source problem we choose is PLANAR 3-SATISFIABILITY [9],
[19] (PLANAR 3-SAT for short). In the 3-SATISFIABILITY problem we are given a set
X {xl, x2 xn} of variables and a collection C {c, c2 Cm} of 3-element clauses,
that is, subsets of the set of literals for X, where if xi is a variable, the corresponding literals
are xi and 2i. The question is whether there exists a satisfying truth assignment for X and
C, where a truth assignment for X is a subset T of the literals for X that contains precisely
one of xi,-i for each i, _< _< n, and T satisfies C if for all clauses cj C, cj N T b.
(If xi T, we say xi is true; if i (T, we say xi is false.) A natural graph to associate
with this problem is the bipartite graph Gx,c that has X k) C as its vertex set and has an edge
between the vertices xi and cj if cj contains either of the literals xi or -i. PLANAR 3-SAT is

3-SATISFIABILITY restricted to those instances (X, C) for which Gx,c is planar.
For our transformation to planar MULTITERMINAL CUT we shall actually use a re-

stricted variant of PLANAR 3-SAT, one in which we allow clauses of size two as well as

three, but require that each variable have degree exactly three in Gx,c, with one of its literals

occurring in two clauses and the other in one. We can prove this variant NP-complete by
a simple local-replacement transformation from ordinary PLANAR 3-SAT. Let X, C denote
an instance of ordinary PLANAR 3-SAT, as specified above. First note that we may assume
without loss of generality that both xi and -i are contained in Umj=icj for every variable xi.

If i does not occur in any clause, we may assume without loss of generality that xi goes in

878 E. DAHLHAUS ET AL.

our truth assignment, and hence all the clauses containing X are always satisfied. Thus, we
might as well delete those clauses (and the variable xi) from our instance. Similarly if xi is
not contained in any clause, we might as well delete the variable xi and all clauses containing
2i. We may also assume that no clause contains both xi and 2i, as such a clause is always
satisfied and so could also be deleted. Thus every variable occurs in at least two clauses, and
all variable vertices in Gx,c have degree at least two.

Our method for converting such an instance X, C to an instance X’, C’ of our restricted
PLANAR 3-SAT variant involves replacing the old variables, adding some new clauses, and
modifying the old clauses. First, we replace each variable xi by a set of degree(xi) new
variables xi,1, xi,2 Xi,degree(xi along with degree(xi) new clauses. Together, these form a
length-(2degree(xi)) cycle in Gx,,c,, as illustrated in Fig. 7 for the case where degree(xi) 5.
The added clauses insure that all the new variables must have the same truth value in any
satisfying truth assignment. Note that we make this replacement even for variables with
degrees two and three in Gx,c. These replacements together determine the structure of our
new graph G x’,c’. The construction of X’, C’ is completed by modifying the old clauses so as
to make the new instance consistent with the new graph. For each literal occurrence xi (Y,.) in
a clause cj, there must be an edge in Gx,.c, between cj and a new variable xi.k. We replace
the literal Xi(i) by the new literal Xi,k(-i,k). It is not difficult to verify that the new instance
has the desired format and is satisfiable if and only if the original instance was.

Xi,4, Xi,5

T Xi,4

FIG. 7. Reducing the number ofoccurrences per variable in PLANAR 3-SAT.

To complete our proof of Theorem 2a, we now show how to transform an instance X, C
of restricted PLANAR 3-SAT into an instance of planar MULTITERMINAL CUT in which
all weights are five or less and all vertices have degree three or less. We use the "component
design" approach of [9]. Figure 8 shows the components we shall use to represent variables
and clauses, with each edge labeled by its weight.

A variable x is represented by one of the two structures at the top of the figure, the first if
the literal xi occurs in two clauses, the second if 2i occurs in two clauses. (By our definition
of restricted PLANAR 3-SAT one of these two possibilities must hold, and the other literal
must occur exactly once.) The terminals in these structures are the vertices labeled xi and
2;. The connector triangles of these structures are the three triangles whose edge weights are

1,1,2 or 1,1,4. The connector bases are the weight-2 and weight-4 edges in these triangles, the
connector edges are the weight- edges, and the connector vertices are the degree-2 vertices of
the triangles. Each connector triangle, base, edge, and vertex will be thought of as representing
the literal labeling the terminal nearest to it in the structure. Note that each literal is represented
by precisely the same number of connector triangles as it has occurrences in clauses.

THE COMPLEXITY OF MULTITERMINAL CUTS 879

xi A
e5-4-5_

4 5

+.
oCJ0,,,,,5-4-5-4-

FIG. 8. Variable and clause components in the proofof Theorem 2.

A clause cj is represented by one of the two structures at the bottom of the figure, the first
if icj] 3, the second if Icl 2. Here the terminals are the vertices labeled c- and c)-. The
connector triangles are the triangles whose edge weights are 1,1,4, and the connector bases,
connector edges, and connector vertices are again the weight-4 edges, weight-1 edges, and
degree-2 vertices of these triangles. Note that there are precisely as many connector triangles
as there are literals in the clause. We shall assume that each connector is assigned to represent
a distinct one of those literals.

Note that all the structures of Fig. 8 have maximum degree three. To complete our
construction of the MULTITERMINAL CUT instance graph G[X, C], we have only to hook
together the clause and variable structures so as to maintain this property and yield a planar
graph. This is done by adding link edges of weight 2 between variable connector vertices
and clause connector vertices as indicated in Fig. 9. (Each clause connector vertex is linked
to a variable connector vertex that represents the same literal.) By the definition of restricted
PLANAR 3-SAT, there will be precisely the right number of connector vertices for this to be
done in a one-one fashion, with all connectors incident on precisely one weight-2 linking edge,
implying that the maximum vertex degree in the resulting graph G[X, C] is three. Moreover,
it is not difficult to convince oneself that G [X, C] is indeed planar, given that G x,c was.

The only thing remaining to be specified is the upper bound B on the weight of the desired
multiterminal cut. This is given by B On +4m, where n and m are the numbers of variables
and clauses, respectively, in our restricted PLANAR 3-SAT instance.

The construction just described can clearly be accomplished in polynomial time. To
complete the proof that it is a polynomial transformation, we need to show that the following
two statements are equivalent.

(1) The PLANAR 3-SAT instance X, C has a satisfying truth assignment.
(2) There is a set E’ of edges in G[X, C] whose total weight is B or less and whose

deletion would disconnect all 2n + 2m terminals from each other.
First suppose that the desired truth assignment T exists. Then the desired multiterminal

cut is easy to construct. For each clause cj pick a literal in cj fq T (one must exist because T is a
satisfying truth assignment) and delete all three edges of the corresponding connector triangle
from the structure representing cj in G[X, C]. For each variable, delete all three edges from
each connector triangle representing the literal not in T. Finally delete each linking edge that
is not adjacent to an already deleted connector triangle. Let E’ be the set of deleted edges.

First, we note that E’ has the desired cut properties. By our choice of when to delete link
edges, we know that at least one endpoint of each remaining link edge must have degree one
in the graph after E’ is deleted. Thus no path between terminals can pass through a link edge.

880 E. DAHLHAUS ET AL.

FIG. 9. Hooking up the components in the proofofTheorem 2.

Consequently, if there is any path linking terminals, it must either link a pair of terminals Xi, -i
in the same variable structure, or a pair c, c in the same clause structure. In the former case,
all such paths must pass through connector triangles representing both literals, and so must
be broken, given that we deleted all connector triangles representing one of the literals. In the
latter case, any such path must go through all the connector triangles of the cj structure, and
so must be broken because we deleted one of them.

We now claim that w(E’) 10n + 4m B, and so E’ obeys the weight bound and is
the desired cut. To see this, let us for accounting purposes divide up the edges of G[X, C] in
a slightly different fashion. In particular, let us group each weight-2 link edge with the four
weight-1 edges from connector triangles to which it is incident, and call the 5-edge ensemble
a link structure. See Fig. 10, where edges {a, c}, {b, c}, {c, d}, {d, e}, and {d, f} constitute a
link structure joining the structures for clause cj and variable xi. (Note that the base edges of
the connector triangles, {a, b} and {e, f}, are still viewed as being part of the corresponding
clause and variable structures.)

To C[orC
To xi or xi

To Xi or xi

FIG. 10. A typical connection between a clause and a variable component.

THE COMPLEXITY OF MULTITERMINAL CUTS 881

We claim that for any link structure, the total weight of deleted edges is exactly 2. This
is clear if the weight-2 link edge is deleted, because that happens if and only if none of the
weight-1 edges were deleted. Suppose one of the pairs of weight-1 edges was deleted. If it
is the pair from the clause connector triangle, this means that the corresponding literal must
be true. If it is from the variable connector triangle, this means that the corresponding literal
must be false. Because both cannot happen simultaneously, only two of the weight-1 edges
can be in E’. Thus the total weight of edges deleted from the link structure is two, and the total
overall weight of edges deleted from link structures is twice the number of such structures,
i.e., 6n.

Now consider the clause and variable structures. We deleted one edge of weight 4 from
each of the former, for a total weight of 4m. From the latter, we deleted either one edge of
weight 4 or two of weight 2, for a total weight of 4n. This exhausts the possibilities, so we
conclude that w(E’) 6n + 4m + 4n B, as desired.

Conversely, suppose a set E’ exists with the specified properties. We shall show that X, C
has a satisfying truth assignment. We begin with a sequence of "normal form" lemmas. In
what follows, we assume E’ is a minimum weight set satisfying the specified properties.

LEMMA 3.1. Suppose e is an edge incident on a degree-3 vertex v. Ife has weight greater
than or equal to the sum of the weights of the other two edges incident on v, we may assume
that e is not in E’.

Proof Suppose e 6 E’, and consider the result of removing e from E’ and replacing
it by all the other edges incident on v and not already in E’. This will clearly not increase
the weight of E’. It also cannot cause any two terminals to become linked by a path in the
residual graph. If it did, that path would have to contain e. Because v now has degree one in
the residual graph, v would consequently have to be one end of the path, and so would have to

be a terminal. This is impossible since, as can be seen from Figs. 7 and 8, no degree-3 vertex

in our construction is a terminal.
As a consequence ofLemma 3.1, we shall assume in what follows that none of the weight-

5 edges in any clause structure are in E’, and none of the weight-5 and weight-3 edges in any
variable structure.

LEMMA 3.2. Ifany edge in a cycle of G[X, C] is in E’, then at least two are.

Proof. If e is the only edge from a given cycle in E’, then removing e from E’ will
decrease w(E’) without adding any new connections, contradicting our assumption that E’
was a minimum weight cut.

LEMMA 3.3. At most one connector base (weight-4 edge) in any clause structure is in
Et"

Proof Suppose the structure for cj had two weight-4 edges in E’. Let us consider the
total clause structure, including all the connector edges, as in Fig. 8. By Lemma 3.2, we

may assume that E’ contains at least one connector edge adjacent to each connector base it
contains, and hence the total weight of edges from the clause structure that are in E’ is at
least 10. Consider the following modification to E’. Remove one of the two connector bases
and add in all the remaining connector edges (there can be at most four). This modification
obviously does not increase the weight of E’. Nor can it create any new interterminal paths
in the residual graph. Because all the connector edges are now deleted, such a created path
could only link cf and cf, but those terminals remain separated since one of the weight-4
edges remains in E’.

LEMMA 3.4. For each variable xi, E’ either contains the connector base(s) representing
the literal xi or the base(s) representing the literal -Yi, but not both.

Proof. Let us consider the total variable structure, including all connector edges, as

depicted in Fig. 8. Because no weight-3 and weight-5 edges are in E’ by Lemma 3.1, we

882 E. DAHLHAUS ET AL.

must either delete the weight-4 base or both weight 2 bases if we are to disconnect terminal
x; from terminal 2i. By Lemma 3.2, if we delete one of the weight-2 bases, we must delete
both. So the only possibility we need to rule out is the situation in which we delete all
three base connectors. Should we do this, we will also have to delete at least one connector
edge from each connector triangle by Lemma 3.2. Thus the total weight of edges from the
structure that would be in E’ would be at least 11. Consider the following modification
of E" remove the two weight-2 bases and add in all the remaining connector edges (there
can be at most three). This modification cannot create any new paths in the residual graph,
because xi remains separated from -i and no path involving a terminal other than these two can
traverse the structure. Moreover, it decreases the weight of E’ (the total weight of edges from
the xi-structure that are in E’ is now 10). Again we have a contradiction of the minimality
of E’.

LEMMA 3.5. For each link structure, E’ contains edges of weight totaling exactly two.

Proof. We first show that the total must be at least two. This will imply that it is exactly
two, because by Lemmas 3.3 and 3.4, E’ contains connector bases of total weight at least
4m + 4n. This leaves at most 6n weight for the edges of link structures, and there are 3n such
structures. So look again at the generic link structure pictured in Fig. 10. By Lemmas 3.1,
3.3, and 3.4, the vertices a and b remain connected to clause terminals in the residual graph,
and the vertices e and f remain connected to variable terminals. But this means that there
will be a path in the residual graph from a variable terminal to a clause terminal unless we
either delete the weight-2 link edge or two weight-1 edges from the same connector triangle.
In either case the weight of the two deleted edges is at least two.

We can now prove our claim that a satisfying truth assignment T must exist. For each
variable xi, put the literal whose connector base is not in E’ into T. By Lemma 3.4, this is
a valid truth assignment. We claim that it satisfies all the clauses. Consider a clause C, and
let z be the literal corresponding to its broken connector base. By Lemma 3.3, a unique such
z exists. Now consider the link structure joining the structure for cj. to the variable structure
for z. Note that by our choice of z, the edge (a, b) is in E’. If z were net in T, then the
edge (e, f) would also be in E’. Thus by Lemma 3.2, at least one connector edge from each
connector triangle must be in E’. But note that if no other edges from the link structure are in
E’, there will still be a path from one of a, b to one of e, f within the structure. By Lemmas
3.1, 3.3, and 3.4, this would mean there is a path from a variable terminal to a clause terminal,
a contradiction. Thus T is the desired truth assignment, and we have indeed constructed a
polynomial transformation, and Theorem 2a is proved.

THEOREM 2b. MULTITERMINAL CUT is NP-complete for bounded degree planar
graphs even if all weights are equal.

Proof This is a fairly immediate corollary of the previous proof. Note that our construc-
tion would still have worked if we had replaced each edge of weight w by w parallel paths,
each consisting of two weight-1 edges. Because no vertex in our construction had incident
edges of total weight exceeding 11, this would yield a graph with maximum degree 11, and
all edges with weight equal to 1. (The degree bound of 11 is not the best possibility. Using a

slight variant on the construction and considerably more complicated arguments, we believe
it can be reduced at least to 6.)

4. Complexity of multiterminal cut for fixed k >_ 3 and arbitrary graphs. In this
section we prove Theorem 4, which says that MULTITERMINAL CUT is NP-complete for
all fixed k >_ 3 when arbitrary graphs are allowed. Note that it suffices to prove the problem
NP- complete for k 3, because the problem for higher values of k can trivially be derived
from that for k 3" simply add k 3 additional terminals with no edges incident on them.
Thus we shall concentrate on the k 3 case. In addition to proving this case NP-complete, we

THE COMPLEXITY OF MULTITERMINAL CUTS 883

shall also present results that may be of assistance in coping with the NP- completeness. We
present efficient algorithms that should allow us to reduce significantly the number of vertices
and edges in 3-terminal (and multiterminal) cut instances that arise in practice, and we show
how to get within a factor of 4/3 of the optimal 3-terminal cut (and 2 2/k of the optimal
k-terminal cut) with a relatively simple heuristic.

First, however, a brief digression into what at first seemed like a promising algorithmic
approach to the 3-terminal cut problem, on the basis of results on submodular set functions
by Gr6tschel, Lovfisz, and Schrijver [14]. The key "gadget" in the NP-completeness proof
we shall be presenting also serves as a counterexample to the applicability of this approach.
(Indeed, before we discovered the gadget, we already had a proof that either 3-terminal cut was
solvable in polynomial time by the submodular set function approach or it was NP-complete
by a construction like the one given here.)

4.1. Submodular set functions: algorithms and counterexamples. To understand the
results of [14], we first need some definitions. Let U be a finite set. A function f defined
on the subsets of U is submodular if for any two subsets X and Y of U, f(X) + f(Y) >

f(X f) Y) + f(X tO Y). Gr6tschel, Lovisz, and Schrijver [14] show that if a submodular set
function f can be computed in polynomial time, then f can also be minimized, that is, a set Y
with f(Y) min{f(X) X

U} can be found, in polynomial time. (The algorithm involves

an appropriate application of the ellipsoid method.)
A paradigmatic example of a submodular set function involves the usual (2-terminal)

minimum cut problem. In this case, U is the set of nonterminal vertices V {s, s2}, and
f(X) is the total cost of the edges that have precisely one endpoint in the set X tO {sl }. The
submodularity of this function is easy to verify, as is the fact that min{f(X) X c__ U} is
the weight of a minimum 2- terminal cut. We of course already know how to minimize this
function f in polynomial time without resorting to the ellipsoid method, but the formulation
is suggestive. Could it be possible that 3-terminal cuts might also be computable as minima
of a submodular set function?

It is easy to define a set function for 3-terminal cuts that is analogous to the one above for
the 2-terminal case. Let U V {s, $2, $3} be the set of nonterminal vertices, and for any
subset X of U, let f(X) be the minimum cost of a 3-terminal cut that leaves no vertex in X
connected to s2 or s3 (and no vertex in U X is connected to s or a vertex in X). It is easy to
see that the minimum value for this function equals the minimum weight for any 3-terminal
cut. Moreover, we can use a polynomial-time algorithm for the 2-terminal cut problem to

evaluate f in polynomial time. Given a subset X of U, find a minimum weight cut separating
s2 from s3 in the graph obtained by deleting s and all the vertices in X from G. Add to the
weight of this cut the weight of all edges with precisely one endpoint in XtO {s }. Therefore, if

f were submodular (for all graphs), we could solve the 3-terminal cut problem in polynomial
time.

Unfortunately, this is not the case. Consider the 9-vertex graph C depicted in Fig. 11.
Note that in addition to the three terminals sl, s2, s3, the graph contains two specified vertices
x and y. The 12 edges incident on the terminals have weight 4, as indicated in the figure.
The other 6 edges, unlabeled in the figure, have weight 1. Let c* be the cost of an optimal
3-terminal cut for C. For each i, j, < i, j < 3, let an i, j-cut be a 3-terminal cut that leaves
vertex x connected to si and vertex y connected to sj, and let c(i, j) be the cost of a minimum
i, j-cut. The sets X and Y that cause f to violate submodularity are defined as follows:

Let Xbe the set of vertices connected to s in an optimal 1,2 cut. (Note that by definition of
i, j-cut, x is in Xand y is not.) Let Y be the set of vertices connected to s in an optimal 2, cut.

(Note that y is in Y and x is not.) By definition, we have f(X) c(1, 2) and f(Y) c(2, 1).
We also must have f(XtO Y) >_ c(1, 1) and f(Xfq Y) > min{c(2, 3), c(3, 2), c(2, 2), e(3, 3) }.

884 E. DAHLHAUS ET AL.

4 4

S3

FI(?. 11. Graph C: submodularity counterexample and NP- completeness gadget.

Thus if f were to be submodular, we would need to have c(1,2) + c(2, 1) > c(1, 1) +
min{c(2, 3), c(3, 2), c(2, 2), c(3, 3)}. In light of the following lemma, however, this claim is
false.

LEMMA 4.1. For the graph C ofFig. 11, thefollowing properties hold:
(a) c(1,2) c(2, 1) c*,
(b) c(i, j) > c* + for all other pairs i, j, and
(c) c(1, 1) c(2, 2) c* + 1.
Proof As depicted in Fig. 11, graph C has its vertices located at the nodes of a 3 x 3

grid. As an alternative naming convention for the vertices, let Vij denote the vertex in the row
i, column j, < i, j < 3. Thus the terminals are Sl Vll, s2 1)22, and s3 v33, and the
distinguished vertices x and y are v12 and v21, respectively.

We first claim that c(1, 2) c(2, 1) c* 27. Note that the set consisting of the nine
vertical edges in C is a weight-27 1,2 cut in which every vertex Vij is left connected with the
terminal si in its row, < < 3. Similarly, the set consisting of the nine horizontal edges
is a weight-27 2,1-cut in which every vertex 1)ij is connected to the terminal sj in its column.
Could there be a 3-terminal cut of less weight? Note that each of the six nonterminal vertices
1)ij is connected by weight-4 edges to both si and sj.. Thus in any 3-terminal cut at least six
weight-4 edges must be deleted, one for each nonterminal l)ij. If the weight of the cut is to
be 27 or less, no further weight-4 edges can be deleted, and so each nonterminal must remain
connected to one terminal by a weight-4 edge. In particular, vij must remain connected either
to si or s). Let us say that vii belongs to the terminal to which it remains connected.

Now consider the weight-1 edges. These all join nonterminal vertices, and together they
form a cycle of length six with alternating vertical and horizontal edges: Vzl (y)-v31-V32-V12 (X)-
V13-VZ3-V21. Suppose two consecutive edges of this cycle remain undeleted, say without loss
of generality vij, vik and vik, vtk }. Note that we must have :fi j, :/= k, j :/: k, :fi 1, and- k. In order to rule out any interterminal paths, vij, vik, and vtk must then all belong to the
same terminal. That terminal must be either si or sj, because those are the only two to which

vii can belong. Similarly, it must be either si or sk, because those are the only two to which
vik can belong. Thus, because j k, it must be i. But this is impossible, because vt, can only
belong to st or sk, and neither of these can equal i, as already observed. Thus the cut must
contain one of every two consecutive edges in the cycle of weight- edges, or at least three such
edges, for a total weight of at least 27. The only way that precisely three can be chosen is if we
take every other edge in the cycle, that is, either the three vertical edges or the three horizontal
ones, as was done in the horizontal and vertical cuts mentioned in the previous paragraph. We
now can conclude that those cuts were optimal, and hence c* c(1, 2) c(2, 1) 27. Thus
part (a) of the lemma holds.

THE COMPLEXITY OF MULTITERMINAL CUTS 885

For part (b), we shall show that any cut other than the horizontal and vertical cuts mentioned
above must have weight 28 or more. Assume there were such a cut of weight 27. As argued
above, its intersection with the cycle of weight-1 edges is either the set of three vertical edges
of the cycle or the set of three horizontal ones. By the symmetry of C, we may assume that it
contains the three vertical edges. Because it is not the vertical cut, it must thus fail to contain at
least one vertical weight-4 edge. For specificity (and again without loss of generality because
of the symmetry of C), we may assume that the missing vertical weight-4 edge is {s, v2 }.
But then, since the horizontal weight-1 edge {v2, v23} is also not in the cut, the vertex v23
is connected to the terminal s in the residual graph. This means that the cut must contain
both the edge joining v23 to s2 and the edge joining it to s3. Because, as remarked earlier,
the cut must contain at least one weight-4 edge incident on each of the six nonterminals, this
yields a total of at least seven weight-4 edges, and so the cut will have weight at least 28, a
contradiction. Thus part (b) is proven.

To prove part (c), we need to show that there exist 1,1- and 2,2-cuts of weight 28. It suffices
(again by symmetry) to consider the 1,1 case. A weight-28 1,1-cut is obtained by modifying
the weight-27 cut consisting of all vertical edges. Instead of deleting the vertical weight-4
edge {y, sl }, we delete the two horizontal edges incident on y: the weight-4 edge {y, s2} and
the weight-1 edge {y, v23}. It is easy to see that the result continues to be a 3-terminal cut,
although it now has weight 28, and y as well as x is connected to s. Thus the cut is a 1,1-cut
of the desired weight, and part (c) holds. 1

4.2. The NP-completeness of 3-terminal cut. We are now ready to prove Theorem 3,
which we restate in terms of the k 3 special case to which it reduces.

THEOREM 3. If arbitrary graphs are allowed, MULTITERMINAL CUTfor k 3 (i.e.,
3-TERMINAL CUT) is NP-complete even if all weights are equal to 1o

Proof. It is immediate that 3-TERMINALCUT is in NP. We shall show that 3-TERMINAL
CUT is NP-complete if weights and 4 are allowed. This will suffice to prove the theorem,
because a weight-4 edge could always be replaced by four parallel length-2 paths of weight-1
edges.

Our proof is by a polynomial transformation from the SIMPLE MAX CUT problem [9],
[10]. In SIMPLE MAX CUT, we are given a graph G (V, E) (without weights) and a
number K, and are asked whether there is a partition of the vertices of G into two sets V1
and V2 such that there are at least K edges between V1 and V2. Given (G, K), we construct a
corresponding instance (F, B) of 3-TERMINAL CUT as follows.

The graph F has three terminals s, s2, s3 and contains the vertices of G, but not the edges.
For each edge {u, v of G, the graph F instead contains a copy of our "gadget graph" C, with
the vertices sl, s2, s3 of C identified with their named counterparts in F, and with x and y
identified with u and v. The other vertices of different copies of C (i.e., the four nonterminals
other than x and y) are distinct. Thus the total number of vertices in F is 3 + IVI / 4[EI.
We claim that G has a cut of size K or greater if and only if F has a 3-terminal cut of weight
B 28[E[K or less. Given that F and B can clearly be constructed in polynomial time,
Theorem 3 will follow from this claim.

So suppose there is a cut V1, V2 for G of size K’ >_ K. Consider the 3-terminal cut induced
by the following assignment of the vertices of F to the terminals: First, vertices in V1 are
assigned to s, and vertices in V2 are assigned to s2. At this point, each copy of C has its x and
y vertices assigned to one ofs or s2, say si for x and sj for y. Assign the remaining nonterminals
of this copy of C to terminals according to a minimum weight i, j-cut for C. Note that the
contribution to our 3-terminal cut from edges in this copy of C will thus be c(i, j). In particular,
ifx and y were in the same set the contribution will by Lemma4.1 be 28; ifthey were in different
sets it will be 27. The overall weight thus becomes 281E[K’ < 28[E[K, as desired.

886 E. DAHLHAUS ET AL.

Conversely, suppose a 3-terminal cut of size B’ < 281EI K exists. Let Vi be the set
of vertices in V that are left connected to si, 1, 2, 3. For each edge {u, v} of G with
u Vi, v Vj, the cut removes edges of total weight at least c(i, j) from the corresponding
copy of C. By Lemma 4.1, c(i, j) > 28 unless {i, j’} {1, 2}, and so there must be at least
K edges between V and V2. Thus we can assign the vertices of V3 to the two sets V and V2
arbitrarily and still obtain the desired cut for G. Cl

Note that the graph constructed in our proof of Theorem 3 does not have bounded vertex
degrees. This is unavoidable, so long as we assume all edge weights are equal. If k is fixed, all
edge weights are equal, and there is a bound d on vertex degree, then multiterminal cut can be
solved in polynomial time! Observe that in this case the weight of a cut is simply the number
of edges it contains, and an optimal cut can contain no more than kd edges (because the cut
that simply breaks all the edges incident on each terminal is no bigger than this). But because
k and d are fixed, kd is a constant independent of n. Consequently, we can use exhaustive
search and still take time that is polynomially bounded in n.

Ifwe remove the restriction to equal-weight edges, however, the fixed- k problem becomes
NP-complete even if all vertex degrees are three or less. Simply replace each vertex v in our
construction that has degree(v) > 3 by a cycle of degree(v) vertices, each of which is adjacent
to one of the former neighbors of v, and let the weights of the cycle edges be sufficiently high
that they can’t be chosen for an optimal cut.

4.3. Reducing the instance size. The results of 4.1 and 4.2 effectively dash any hope
of finding optimal k-terminal cuts, k > 3, efficiently by means of 2-terminal cut (i.e., max
flow) algorithms. Such algorithms may still be useful, however, as we shall see in this and the
next section. Recall that an isolating cut for a terminal si is a set of edges that separates si from
the other terminals, and that minimum weight isolating cuts can be found in O(nm log(n2/m))
time by performing max flow computations in a modified graph. The following lemma implies
that the computation of minimum weight isolating cuts can be used to reduce the number of
vertices in an instance. Suppose G (V, E) is a connected graph with specified terminals
S1,$2, Sk.

LEMMA 4.2. Suppose 1, 2 k}, k > 3. Let Ei be a minimum weight isolating cut

for terminal si, and let Vi be the set of vertic.es that remain connected to si when the edges of
Ei are removedfrom G. Then there exists an optimal k-terminal cutfor G that leaves all the
vertices of Vi connected to si.

Proof. Without loss of generality, we may assume that 1. Suppose the lemma were
false for some k >_ 3, and let G be a minimal counterexample, that is, a counterexample
having the fewest vertices, and, among those counterexamples with that number of vertices,
the fewest edges. Let E* be a minimum weight k-terminal cut for G, and let Cl and c* be the
weights of E1 and E*, respectively. Label every vertex u of G with a pair (j, l) where j
or 2 depending on whether u is in V1 or not, and is the index of the terminal to which u is
left connected under E*. (This index is defined, because u must be left connected to some
terminal if E* is to have minimum weight.)

The above labelling partitions the vertices into 2k groups. We first claim that, by the
minimality of G, each group can consist of at most one vertex. Suppose u and v have the
same label, and consider the graph G’ in which we merge u and v. The cuts induced on G’
by E and E* will have the same weights as did the original cuts, and clearly no better cuts of
the corresponding types can exist. Thus G’ would be a counterexample with fewer vertices, a
contradiction of our minimality assumption.

Next we claim that if {u, v} is an edge of G and the labels of u and v are (j,,, l,) and
(j,, l) respectively, then it cannot be the case that both j,, - j, and 1, l. Suppose such
an edge e were in G, and note that e must be in both E and E*. Thus, consider the graph G’

THE COMPLEXITY OF MULTITERMINAL CUTS 887

obtained by removing e from G. The sets E {e} and E* {e} will continue to be isolating
and k-terminal cuts respectively for G’ and the weight of each will drop by w(e). Furthermore,
there cannot be a k-terminal cut E’ of weight less than c* w(e) (isolating cut E’ of weight
less than Cl w(e)) in G’, as otherwise we could get a k-terminal cut in G of weight less than
c* (isolating cut of weight less than cl) by simply adding e to E’ (to E11). Thus E {e} and
E* {e} continue to be optimal in G’, so that G’ would be a counterexample with fewer edges
and the same number of vertices, again a contradiction of our minimality assumption.

Thus for k 3 our minimal counterexample is a subgraph of the 6-vertex graph depicted
in Fig. 12, where the vertices of G are placed on a 2 x 3 grid, with the vertex in row and
column j (vij) being the one with label (i, j). For k > 3, we would have a 2 x k grid, with all
k vertices in the top row connected in a clique, as are all k vertices in the bottom row. Note
that for G to be a counterexample, at least one of the nonterminal vertices in the graph must be
present in G. The set V of vertices connected to s under E1 is simply the set of all vertices
in the top row that are present in G.

$2

Fla. 12. Schematic of the assumed minimal counterexample in Lemma 4.2 (ifk 3).

Now observe that because E consists of the vertical edges in this figure, these edges have
total weight Cl. Similarly, E* consists of the horizontal edges, and these edges consequently
have total weight C*. Thus the total weight of all the edges in G is cl + c*. Consider the set

’ of edges incident on s in G. This is clearly an isolating cut, and so W(l) >_ Cl. But
then consider the k-terminal cut v, consisting of all edges incident on s2 through sk. This
is disjoint from l, and so can have weight at most c* / c wE) < c*. Hence it has
weight precisely c* and is itself an optimal k-terminal cut. But note that it leaves sl connected
to all the vertices in V. Thus G actually satisfies the lemma statement, and there can be no
counterexample.

Using Lemma 4.2, we can reduce the number of vertices in our instance by Vi I.
Simply construct a new graph in which all the vertices of Vi are merged into the terminal si.

An optimal k-terminal cut for this shrunken graph will induce an optimal cut for the original
one.

To get the maximum effect from applying Lemma 4.2 in this way, we should start with
the minimum isolating cut for si such that Vi is as big as possible. Let us say that a set Vi is an
isolation set for a terminal si if it is the set of vertices left connected to si by some minimum
weight isolating cut. Let us call it an optimum isolation set for si if it has maximum cardinality
over all isolation sets for si. From observations made in [7, pp. 10-13], it can be seen that
the optimum isolation set for a given terminal is unique and contains all other isolation sets

for that terminal. It can be found by performing one maximum-flow computation followed

888 E. DAHLHAUS ET AL.

by some linear-time post-processing. A corollary of the following Lemma is that k optimum
isolating set computations suffice to shrink G as far as it can go.

LEMMA 4.3. Let Vi be the optimum isolation setfor si, <_ < k, and let G be the graph
obtainedfrom G by merging all the vertices of Vt into Sl. Then in G the optimum isolation
setfor st is {S }, and the optimum isolation setfor si is Vi Vt, 2 < < k.

Proof For 1,2 k, let wi and i denote the weights of a minimum
weight isolating cut for si in G and G, respectively. Let V; be the optimum isolation set for si
in G.

We begin with V 1. Note that the isolating cut for st that separates st from all other
vertices in G has weight wt by hypothesis, and we must have 1 < w. On the other hand,
V tO VI induces an isolating cut for s in G that has weight 1, so we must have Wl > Wl.
Thus equality holds and V1 U V1 is an isolation set for Sl in G. But this means that V U V1
is contained in V1, by the properties of maximum isolation sets mentioned above, and hence
V

_
Vt. Because the only member of V that exists in G is st, this implies that V1 {s },

as claimed.
Now consider V2. (The arguments for Vi, k > 2 are analogous and hence omitted.)

Let 1,2 V2 V1. We first show that 1’2 induces a minimum weight isolating cut for s2
in G (although 1’’2 will not be an optimum isolation set for s2 in G unless Vt fq V2 4).
Partition the vertices of V into the four sets A V1 V2, B V2 V1, C V (-] V2, and
D V (V tO V2). If X and Y are two disjoint subsets of the vertices of G, let E(X; Y)
denote the set of edges that link vertices in X with vertices in Y, and let w(X; Y) denote their
weight.

By hypothesis w w(A; B) + w(A; D) + w(B; C) + w(C; D) and w2 w(A; B) +
w(B; D) + w(A" C) + w(C; D). Thus w + w2 W + w(A; B) + w(C; D), where W
is the total weight of the edges that link vertices in different sets of our partition. Now
consider the isolating cuts for s and s2 induced by V1 V2 and V2 Vt, respectively, and
let tbt and /2 be their weights. Then tbl w(A; B) + w(A; C) + w(A; D) and /2
w(A" B) + w(B; C) + w(B; D), so that tbl +)2 m f- w(m; B) w(C; D) <_ 11) -- 11)2.

Because by hypothesis we must have wi < tbi, 6 1, 2}, this implies that equality must hold
in both cases, and so V2 V2 V1 must induce a minimum weight isolating cut for s2 in G.
Because none of the vertices of ff’2 were merged with s in the construction of , 1’2 must

consequently also induce a minimum_ weight isolating cut for s2 in G, and so/2 L02 =//32.

Thus V2 is an isolation set for s2 in G, and by the properties of optimal isolation sets, we must
have

On the other hand, because V2 induces an isolating cut of weight 2 //)2 for s2 in
G, it induces an isolating cut of the same weight in G, and so V2 is an isolation set for s2
in G. Thus we must have V2 c_ V2. Because the only vertices of V2 that remain in G are
those in V2 V, this implies that V2 V2 V, as claimed. This completes the proof of
the lemma.

Lemma 4.3 indicates both the efficiency with which we can apply Lemma 4.2 to reduce
the instance size, and the bounds on how much shrinkage can be obtained. In particular, k
optimum separation set computations suffice to yield all the shrinkage one can expect. Note
that the proof ofLemma 4.3 would apply just as well if we renamed the terminals in any order.
So let Go G, and inductively obtain Gi from Gi-i by performing an optimum isolation set
computation for si and merging all the vertices in the set obtained into the terminal si. Lemma
4.2 says that an optimal k-terminal cut in Gi induces one in Gi-1 (and, by induction, in G),
and Lemma 4.3 says that the optimum isolation set for si in Gi is {si (and by induction, the
optimum isolation set for Sh, < h < i, is {Sh }). Thus in Gk, the optimum isolation set for
each terminal consists of the terminal itself, but a minimum weight k-terminal cut still induces

THE COMPLEXITY OF MULTITERMINAL CUTS 889

one in the original graph G. Thus G/ is a maximally shrunken graph that can still induce an
optimal k-terminal cut.

4.4. Near-optimal multiterminal cuts. If one is willing to settle for cuts that are only
near-optimal, one can exploit a bit further our ability to construct optimum isolating cuts.
Consider the following straightforward heuristic.

Isolation heuristic.
1. For < < k construct a minimum weight isolating cut/i for terminal si.
2. Determine h such that ’h has maximum weight among all the i’s.
3. Let/ be the union of all cuts i except Eh.
4. Return ’.
Note that the Isolation Heuristic clearly outputs a k-terminal cut. Moreover, it can be

implemented to run in O(knm log(n2/m)) time by using the max flow algorithm of [12] to

compute each of the k required isolating cuts. This is the heuristic to which we referred in
Theorem 4 of the Introduction. A more precise statement of that theorem can now be given.

THEOREM 4. The Isolation Heuristic constructs a k-terminal cut whose weight is guar-
anteed to be no more than 2(k 1)/k times the optimal weight.

Proof. Let E be an optimal k-terminal cut, and let w (E). For < < k, let V be the
set of vertices left connected to si by E, and let E be the set of edges in E with__one endpoint
in Vi. Note first that for each i, the set Ei is an isolating cut for si. Hence w(Ei) > w(Ei).
On the other hand, each edge in is in exactly two different sets i and so Ek w(-i) 2-.i=1

Thus

k-1 k k-1 k k-1Lo(/) < 1/3(/7i) < l/)(-i)"-- 2 W
k k k

i=1 i=1

as claimed. 1
The bound given by Theorem 4 is tight. More precisely, for each k >_ 3 and any

e > 0, there exist instances for which the cut constructed by the Isolation Heuristic has
weight (2 e)(k 1)/k times the optimal. The generic construction contains 2k edges and
vertices, with the nonterminal vertices v, v2 vk linked in a simple k-cycle of weight-1
edges, and terminal si linked by a weight-(2 e) edge to vertex vi, < <_ k. See Fig. 13
for an illustration of the case for k 4.

Note that for each terminal si, the minimum weight isolating cut is unique and consists
of the edge of weight 2 e connecting it to vi. Thus the weight of the cut constructed by the
heuristic is (k 1)(2 e). An optimal cut, on the other hand, would consist simply of all the
k weight-1 edges in the cycle linking the nonterminals, for a total weight of k. The ratio thus
has the claimed value. (Note that if we are willing to assume that our heuristic always breaks
ties in the worst possible way, we can take e 0 in the above example and obtain a ratio that
precisely matches the upper bound of Theorem 4.)

For k 3, the ratio guaranteed by Theorem 4 is 4/3 and fairly close to 1. An interesting
question is whether there are any polynomial time heuristics that provide better guarantees. In
particular, is it conceivable that we could guarantee ratios arbitrarily close to ? Formally, is
there apolynomial time approximation scheme for 3-terminal cut i.e., a sequence ofpolynomial
time algorithms At, where At is guaranteed to find a 3-terminal cut of weight at most / /
times the optimal weight? (The algorithms need not be polynomial in t, only in the instance

size.)
There is significant evidence that the answer to this question is no. In particular, our proof

of Theorem 3 implies that the 3-terminal cut problem is what is known as MAX SNP-hard
[21], and this implies that 3-terminal cut cannot have a polynomial time approximation scheme
unless P NP. Let us explain.

890 E. DAHLHAUS ET AL.

VlT Tv2

FIG. 13. Worst-case graph for the Isolation Heuristic when k 4.

An optimization problem is in MAX SNP if the optimal value sought can be described
as maxs [{Y 4(Y, I, S)}I, where I is an instance, S is a relational structure such as a truth
assignment in the case of 3-SAT, x is the object being counted, such as satisfied clauses, and 4
is a first order logical expression. A second relevant example of a problem in the class MAX
SNP is Max Cut, the optimization version of the problem SIMPLE MAX CUT that we used to
prove that 3-TERMINAL CUT is NP-complete in 4.2. In the Max Cut problem, the instance
I is a graph, the structure S is a partition of the vertices into two sets, and the objects Y are
edges, where 4(Y, I, S) is true if and only if 2 does not have both its endpoints in the same
set of the partition S.

MAX SNP was introduced in [21], where it was observed that although each problem
in MAX SNP could be approximated to within some constant ratio in polynomial time, no
problem in the class was known to have a polynomial time approximation scheme. The concept
of MAX SNP-hardness was also introduced in [21] and defined in such a way that it could
be applied both to problems, such as MAX 3-SAT and Max Cut, that are in MAX SNP and
to problems, such as 3-Terminal Cut, that are minimization problems and hence by definition
not in MAX SNE Tiae key observation about MAX SNP-hardness in [21] was that no MAX
SNP-hard problem could have a polynomial time approximation scheme unless all problems
in MAX SNP had them. Arora et al. [1] have now shown that the latter event cannot occur
unless P NP. Consequently no MAX-SNP-hard problem can have a polynomial time
approximation scheme unless P NP.

Proofs of MAX SNP-hardness involve linear reductions, a generalization of the familiar
polynomial transformations used in NP-hardness proofs. Let A and B be two optimization
problems (either maximization or minimization). We say that A linearly reduces to B if there
are two polynomial time algorithms f and g and constants c,/ > 0 such that

1. Given an instance a of A, algorithm f produces an instance b f(a) of B such
that the cost of an optimal solution for b, opt(b), is at most c. opt(a), and

2. Given a, b f(a), and any solution y of b, algorithm g produces a solution x of a
such that Icost(x) opt(a)[<_ filcost(y) opt(b)l.

It can be shown [21] that linear reductions are transitive, that is, are closed under com-
position, and that if A linearly reduces to B and B has a polynomial-time approximation
algorithm guaranteed to produce solutions y with [cost(y) opt (b)l/opt (b) < e, then A
has a polynomial-time approximation algorithm that guarantees to keep the analogous ratio
bounded by c/3e. Thus if B had a polynomial time approximation scheme, so would A. A
problem is MAX SNP-hard if every problem in MAX SNP linearly reduces it to, or equiv-

THE COMPLEXITY OF MULTITERMINAL CUTS 891

alently, given the transitivity of linear transformations, if some single previously identified
MAX SNP-hard problem linearly reduces to it.

THEOREM 5. For anyfixed k > 3, k-terminal cut is MAX SNP-hard.
Proof. We prove the result for k 3. The extension to k > 3 follows immediately. Our

proof is by a linear reduction from the Max Cut problem described above, previously proved
MAX SNP-hard in [21]. For the reduction, we need only reinterpret the transformation from
SIMPLE MAX CUT to 3-TERMINAL CUT used in the proof of Theorem 3. Note that for
that construction we showed that if k is the size of the maximum cut in the original instance,
then the size of the optimal 3-terminal cut is 28]EI K. Now note that the maximum cut
must have size at least IEI/2, because a simple greedy heuristic will construct a cut that large.
(Start with two adjacent vertices as the nuclei of V and V2, and then assign the rest of the
vertices one at a time, choosing for each the set that maximizes the number of edges added to
the cut.) Thus if we let f(G) denote the instance of 3-Terminal Cut derived from an instance
G of Max Cut, we have OPT3-TerminalCut(f(G)) <_ 56 OPTMAXCUT(G), and our transformation
satisfies Property (a) of the definition of linear reduction with c 56.

For property (b), note that our proof of Theorem 3 implies that any solution y for f(G)
of weight 281E1 K can be easily converted to a solution x g(y) of size K for G. Thus for
any solution y of f(G) we have Icost(x) opt(a)l < Icost(y) opt(b)l, and so property
(b) holds with/3 1.

We conclude that the transformation used in the proof ofTheorem 3 was a linear reduction,
and so 3-terminal cut is MAX SNP-hard. [3

5. Related results and open problems. Our NP-completeness results in 3 and 4 can
be adapted to several related problems of interest. In 1969, Hu 17] raised the question of the
complexity of the following problem that we might call the multipair cut problem. Suppose
we are given a list of vertex pairs (ui, vi), <_ <_ k, and are asked to find a minimum
C(ul, u2 uk, v, v2 vk) cut, that is, a minimum weight set of edges separating each
pair of vertices ui, vi, < < k. This is just 2-terminal cut when k 1. The problem is also
polynomial time solvable when k 2, by using two applications of a 2-terminal cut algorithm
[24]. Our result for 3-terminal cut implies that it is NP-hard for arbitrary graphs when k 3,
even if all edge weights are equal" merely let the three pairs be (sl, s2), (s2, s3), and (s3, sl).
(If one wants all the u and vi to be distinct, the problem remains NP-hard, as can be proved
via a simple modification to the input graph.)

Note that for any fixed k the Isolation Heuristic of 4.4 can be used in the design of
a polynomial-time approximation algorithm for multipair cut. Consider partitions P of the
vertices ul, u2 u, v, v2 v into sets $1 Sip such that no pair (ui, vi) is in the
same set, and such that for every pair of sets Sh and Sj. there is some such that ui is in one set

and vi is in the other. Note that the latter constraint implies that IPI <+1, and so there are
at most (x/+ 1)2k /(x/+ 1)! such partitions. For any such partition P, let G , be the graph
obtained by merging all the vertices in the set Sj into a single terminal vertex sj, < j <_ PI.
Run the Isolation Heuristic on each such graph G ,, at a cost of O((x/+ 1)nm log(n2/m)) per
graph, and output the best cut found. Because the optimal C(u, u2 uk, v, v2 vk)
cut must induce one of the partitions P, and because no partition contains more than x/ +
sets, the weight of the cut we output is at most 2//(,,/+ I) < 2 times optimal by Theorem
4. The running time is

O((/)2k(l + l/x/)2k(x/ + l)nm
+ 1)!

O ((2k)knm lg(n2/m))

892 E. DAHLHAUS ET AL.

which is polynomial for fixed k. The question remains open as to whether there is a polynomial-
time approximation algorithm that works for arbitrary k and provides a constant guarantee,
although Garg et al. 11 have devised a polynomial-time algorithm that works for arbitrary k
and has worst-case ratio O(log k).

More recently, Erd6s and Sz6kely in [5], [6] proposed the following generalization of
multiterminal cut. Suppose you are given a graph G (V, E) with weighted edges, and
a partial k-coloring of the vertices, that is, a subset V’ c_ V and a function f V’ --1, 2 k}. Can f be extended to a total function such that the total weight of edges that
have different colored endpoints is minimized? The k-terminal cut problem is the special case
where IV’I k and f is 1-1, that is, each color is initially assigned to precisely one vertex.
It is easy to see that for general graphs, this problem is in fact equivalent to multiterminal
cut. Simply merge all the vertices with the same color, call the resulting merged vertices
"terminals," and find the minimum weight k-terminal cut for the resulting graph. For special
classes of graphs, however, the "Colored Multiterminal Cut" problem can be more general.
(The above merging trick need not for instance preserve planarity or acyclicity.) Nevertheless,
in the case of trees, the dynamic programming algorithm for multiterminal cut mentioned in
the Introduction extends in a natural way to the colored multiterminal cut problem, yielding
an O(nk) algorithm, as Erd6s and Sz6kely observe. This, is turn, implies that if G is such that
deleting all the terminals renders it acyclic, then multiterminal cut can itself still be solved
in O(nk) time. (Simply split each terminal si into degree(si) separate vertices, one for each
edge incident on si, assign color to all the derived vertices, and apply the abovementioned
algorithm for colored multiterminal cut on trees to the resulting graph [6]).

An obvious question is whether our algorithms for planar graphs also extend to Col-
ored Multiterminal Cut problem. The answer is no. Colored multiterminal cut is clearly
polynomial-time solvable if k 2, even for general graphs. For any fixed k > 3, however,
if remains NP-complete even for planar graphs and all weights equal to 1. The k 4 case
follows directly from our proof of Theorem 2. Simply use the four colors x, 2, c+, and c-,
and assign x to each terminal xi, Y to each terminal -i, c to each terminal cf, and c- to each
terminal cf. It is straightforward to verify that the proof still goes through. For k 3, the
result can be proved by a transformation from PLANAR 3-COLORABILITY [9], [10], using
a local replacement argument in which each edge is replaced by a partially colored structure
designed to make it expensive for the endpoints of the original edge to get the same color.
We leave the details to the enterprising reader. (Note that this last result provides us with an
alternate proof of the NP-completeness of 3-TERMINAL CUT for general graphs: once again
simply merge all vertices with the same color. The fact that such an operation may destroy
planarity is in this case irrelevant.)

Returning to the original multiterminal cut problem, in our opinion the most interesting
open problem is whether one can improve upon the approximation results of Theorem 4.
Although polynomial-time algorithms with worst-case ratios arbitrarily close to are unlikely
in light ofTheorem 5, can we do better than the 2(k- 1)/k guarantee we proved for the Isolation
Heuristic? Noga Alon (private communication, 1991) has observed that for the special cases
of k 4 and k 8 improvements can be obtained using a variant of our approach. For
k 4, the Isolation Heuristic provides a guarantee of 3/2. An improved guarantee of 4/3

can be obtained as follows. For each partition of the terminals into sets S, $2 of size two,
use max flow techniques to compute the minimum cut that separates the terminals in S from
those in $2. Output the union of the two best such cuts. The reader can readily verify that
this union is a 4-terminal cut whose weight is at most 4/3 optimal. Note that this approach
requires only three max flow computations versus the four needed by the Isolation Heuristic,
so it is faster as well. (Cunningham reports in [3] that Zhang has independently obtained this
k- 4 improvement.)

THE COMPLEXITY OF MULTITERMINAL CUTS 893

For k 8, the guarantee of our theorem can be improved from 7/4 to 12/7. Here one
computes minimum 2-terminal cuts on the basis of partitions of the set of terminals into sets
of size four. It can be shown that the average weight of these cuts is at most 4/7 times the
weight of an optimal 8-terminal cut, and that there exists a set of three of these cuts whose
union is an 8-terminal cut and whose total weight is no more than average. This yields the
claimed bound. Moreover, the running time is once again an improvement on the Isolation
Heuristic, which in this case would require eight max flow computations. This is because we
can show that it suffices to restrict attention to just seven of the 35 possible partitions of the
eight terminals into sets of size four (the seven being derived from the rows of a Hadamard
matrix).

Unfortunately, the above approach does not yield improvements over the Isolation Heuris-
tic for any values of k other than 4 and 8. Is there some general technique that will improve on
the Isolation Heuristic for arbitrarily large values of k? What about simply beating our bound
for the case of k 3 ?

Turning to our optimization algorithms for the planar case, the obvious question is whether
the running times can be improved, although for the case of general k the improvement would
have to be substantial to be interesting. For instance, although we would expect any algorithm
to be exponential in k, the exponent containing k might not have to be attached to n. Could
there be an algorithm whose running time was ckn, where c was independent of k?

Acknowledgment. The authors thank the anonymous referees for suggestions that im-
proved the performance of our approximation algorithm for the multipair cut problem and
more generally helped us clarify our presentation.

REFERENCES

S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and hardness ofapproximation
problems, in Proceedings 33rd Ann. Symp. on Foundations of Computer Science, IEEE Computer Society,
Los Angeles, Calif., 1992, pp. 14-23.

[2] S. CHOPRA AND M. R. RAO, On the multiway cut polyhedron, Networks 21 (1991), pp. 51-89.
[3] W.H. CUNNINHAM, The optimal multiterminal cutproblem, DIMACS Series in Disc. Math. and Theor. Comput.

Sci. 5 1991), pp. 105-120.
[4] E. DAHt.rAUS, D. S. JOrNSON, C. H. PAPADIMn’RIOU, P. D. SEYMOUR, AND M. YaNNAKAKS, The complexity of

multiway cuts, extended abstract, 1983.
[5] P.L. ERDOS AND L. A. SZKZLY, Evolutionary trees: An integer multicommodity max:flow rain-cut theorem, Adv.

in Appl. Math., to appear.
[6] Algorithms andmin-max theoremsforcertain multiway cuts, in Integer Programming and Combinatorial

Optimization, E. Balas, G. Cornu6jols, and R. Kannan, eds., Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1992, pp. 334-345.

[7] L.R. FORD, JR, AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
[8] G.N. FREDERiCk:SON, Fast algorithmsfor shortestpaths in planar graphs, with applications, SIAM J. Comput.,

16 (1987), pp. 1004-1022.
[9] M. R. GAREV aND D. S. JOHNSON, Computers and htractability: A Guide to the Theory ofNP-Completeness,

W. H. Freeman, New York, 1979.
10] M. R. GAREY, D. S. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete graph problems, Theor.

Comput. Sci., 2 (1976), pp. 237-267.
11 N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS, Approximate max-flow min-(multi)cut theorems and their ap-

plications, in Proceedings of 25th Ann. ACM Symp. on Theory of Computing, Association for Computing
Machinery, New York, 1993, pp. 698-707.

[12] A. V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum-flow problem, J. Assoc. Comput. Mach.,
35 (1988), pp. 921-940.

13] O. GOLDSCHMIDT AND D. S. HOCHBAUM, A polynomial algorithm for the k-cut problem for fixed k, Math. of
O.R., 9 (1994), pp. 24-37.

[14] M. GRI3TSCHEL, L. Lov,,sz, AND A. SCHRIJVER, The ellipsoid method and its consequences in combinatorial
optimization, Combinatorica, (1981), pp. 169-198.

[15] X. HE, On the planar 3-cutproblem, J. Algorithms, 12 (1991), pp. 23-37.

894 E. DAHLHAUS ET AL.

[16] D.S. HOCHBAUM AND D. B. SHMOYS, An O([V[2) algorithm for the planar 3-cut problem, SIAM J. Algebraic
and Discrete Methods, 6 (1985), pp. 707-712.

17] T.C. Hu, Integer Programming and Network Flows, Addison- Wesley Publishing Co., Reading, MA 1969.
[18] E.L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York,

1976.
[19] D. LICHTENSTEIN, Planarformulae and their uses, SIAM J. Comput., 11 (1982), pp. 329-343.
[20] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity; Prentice-

Hall, Inc., Englewood Cliffs, NJ, 1982.
[21] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, approximation, and complexity classes, J. Comput.

System Sci., 43 (1991), pp. 425-440.
[22] H. SARAN AND V. V. VAZmANI, Finding k-cuts within twice the optimal, in Proceedings 32nd Ann. Symp. on

Foundations of Computer Science, IEEE Computer Society, Los Angeles, CA, 1991, pp. 743-751.
[23] H.S. STONE, Multiprocessor scheduling with the aid ofnetworkflow algorithms, IEEE Trans. Software Engrg.,

SE-3 (1977), pp. 85-93.
[24] M. YANNAKAKIS, P. C. KANELLAKIS, S. C. COSMADAKIS, AND C. H. PAPADIMITRIOU, Cutting and partitioning a

graph after a fixed pattern, in Automata, Languages, and Programming, Lecture Notes in Comput. Sci.,
Vol. 154, Springer, Berlin, 1983, pp. 712-722.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 895-905, October 1994

() 1994 Society for Industrial and Applied Mathematics
001

DIAGNOSIS OF tl(t+I)-DIAGNOSABLE SYSTEMS*

A. DASt, K. THULASIRAMAN*, AND V. K. AGARWAL

Abstract. A classic PMC (Preparata, Metze, and Chien) multiprocessor system [E E Preparata, G. Metze, and
R. T. Chien, IEEE Trans. Electr. Comput., EC-16 (1967), pp. 848-854] composed of n units is said to be t/(t + l)
diagnosable [A. D. Friedman, A new measure of digital system diagnosis, in Dig. 1975 Int. Symp. Fault-Tolerant
Comput., 1975, pp. 167-170] if, given a syndrome (complete collection of test results), the set of faulty units can
be isolated to within a set of at most + units, assuming that at most units in the system are faulty. This paper
presents a methodology for determining when a unit v can belong to an allowable fault set of cardinality at most t.
Based on this methodology, for a given syndrome in a t/(t + 1)-diagnosable system, the authors establish a necessary
and sufficient condition for a vertex v to belong to an allowable fault set of cardinality at most and certain properties
of t/(t + 1)-diagnosable systems. This condition leads to an o(na’5)t/(t + 1)-diagnosis algorithm. This t/(t + 1)-
diagnosis algorithm complements the /(t + 1)-diagnosability algorithm of Sullivan [The complexity ofsystem-level
fault diagnosis and diagnosability, Ph.D. thesis, Yale University, New Haven, CT, 1986].

Key words, fault diagnosis, fault isolation, PMC models, test assignment, graph algorithms, vertex cover sets

AMS subject classifications. 68M 15, 68R10

1. Introduction. Several models have been proposed in the literature for diagnosable
system design. Of these, the now well-known PMC model introduced by Preparata, Metze,
and Chien has been extensively studied. In this model, each processor tests some of the
other processors and produces test results, which are unreliable if the testing processor is itself
faulty. The collection of all test results over the entire system is referred to as a syndrome.
The classic constraint used in the study of diagnosable systems is to assume that the number
of faulty processors in the entire system is upper-bounded by an integer t. A system is then
said to be diagnosable if given a syndrome, all processors can be correctly identified as
faulty or fault free, provided that the number of faulty processors present in the system does
not exceed t. Three problems of interest in this context are the t-characterization problem
to determine the necessary and sufficient conditions for the system test assignment to be
diagnosable, the t-diagnosability problem to determine the largest value of for which a given
system is diagnosable, and finally the t-diagnosis problem to locate the faulty units present
in a t-diagnosable system, using a given syndrome.

Hakimi and Amin [2] gave a solution to the t-characterization problem. An O(IEIn3/2)
algorithm for the t-diagnosability problem was presented by Sullivan [3]. Subsequently,
Raghavan [4] improved on this result by presenting an algorithm that runs in O(nt25) time.
Dahbura and Masson [5] published an O(n2"5) algorithm for the t-diagnosis problem; a

t-diagnosis algorithm with complexity O(IEI / 3) was presented by Sullivan [6].
The requirement that all the faulty processors in a multiprocessor system be identified

exactly is rather restrictive. Friedman [7] introduced the concept of t/s-diagnosability. A
multiprocessor system S is said to be t/s diagnosable if, given a syndrome, the set of faulty
processors can be isolated to within a set of at most s processors provided that the number
of faulty processors does not exceed t. Allowing some fault-free processors to be possi-
bly identified as faulty permits the system to have far fewer tests. It has been shown that
t/t-diagnosable systems with n*l(t + 1)/2] tests can be constructed [8]. t/t-diagnosable
systems have been studied extensively in the literature. Chwa and Hakimi [9] gave a char-
acterization of t/t-diagnosable systems, Sullivan [10] presented a polynomial time algorithm

*Received by the editors September 4, 1990; accepted for publication (in revised form) April 18, 1993.
fDepartement d’informatique et de recherche operationelle, Universit6 de Montr6al, Montreal, Quebec,

Canada.
Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada.
Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada.

895

896 A. DAS, K. THULASIRAMAN, AND V. K. AGARWAL

for the t/t-diagnosability problem, and Yang, Masson, and Leonetti [11 presented an O (n25)
algorithm for the t/t-diagnosis problem. Sullivan also presented in 10] a polynomial time
/ (t + 1)-diagnosability algorithm based on a characterization of / (t / 1)-diagnosable systems
also developed in [10].

The objective of this work is to develop an efficient diagnosis algorithm for t/(t + 1)-
diagnosable systems. The paper is organised as follows. In 2, we present certain basic
definitions, notations, and results. With the objective of determining an effecient test for a
vertex v to be in an allowable fault set of cardinality at most t, we then establish in 3 several
properties of allowable fault sets and present a methodology for determining when a unit v
belongs to an allowable fault set of cardinality at most t. Using these properties and certain
properties of t/(t + 1)-diagnosable systems, we develop in 4 a necessary and sufficient
condition for a vertex v to belong to an allowable fault set of cardinality at most t. This leads
to an O(n3"5) algorithm for diagnosis of a t/(t + 1)-diagnosable system. The work presented
here is a revised version of our earlier paper 12].

2. Preliminaries. A multiprocessor system S consists of n units or processors, denoted
by the set U {u , u2 un }. Each unit is assigned a subset of other units for testing. Thus
the test interconnection can be modeled as a directed graph G (U, E). The test outcome

aij, which results when unit ui tests unit uj, has value (respectively, 0) if ui evaluates unit

uj to be faulty (respectively, fault free). Since all faults considered are permanent, the test
outcome aij is reliable if and only if unit ui is fault free. The collection of all test results over
the entire system is referred to as a syndrome. If aij 0 (respectively, 1) then ui is said to
have a 0-1ink (respectively, 1-1ink) to uj and uj is said to have a 0-1ink (respectively, 1-1ink)
from ui.

Given a syndrome, the disagreement set Al(ui) of ui U is defined as

Al(Ui)-- {uj[aij 1 or aji 1}.

For a subset W

U,

Given a syndrome, the set of O-descendents of ui is represented by the set

Do(ui) {uj there is a directed path of 0-1inks from u to Uj

and for a set W __C_ U, the O-ancestors of W denote the set

Ao(W) {ui Ztuj W such that uj Do(ui)}.

For U U, no(ui) corresponds to the set Ao(ui) 1.3 {ui}.
DEFINITION [5]. Given a system S and a syndrome, a subset F c_ U is an allowable

fault set (AFS) ifand only if
1. ui (U- F)and aij 0 imply uj (U- F), and
2. ui (U- F)andaij imply uj F.
In other words, F is an AFS for a given syndrome if and only if the assumption that the

units in F are faulty and the units in U- F are fault free is consistent with the given syndrome.
A minimum allowablefault set (MAFS) is an allowable fault set of minimum cardinality.

DEFINITION 2 [5]. Given a system S and a syndrome, the implied-fault set L(ui) ofui U
is the set of all units of S that may be deduced to be faulty under the assumption that u is

faultfree.

DIAGNOSIS OF t/(t + 1)-DIAGNOSABLE SYSTEMS 897

It follows that

L(ui) Al(Do(ui)) UAo(Al(Do(ui))).
Note that if uj L(ui) then there exists a 1-1ink (uk, ut) or (ut, uk) such that there is

a directed path of 0-1inks from u to Uk and a directed path of 0-1inks from uj to ut. This
observation motivates the definition of an implied-fault path between u and uj.

DEFINITION 3. Given a system S and a syndrome, a path P between u and uj is an
implied-fault path if there exist units u and ut on P such that thefollowing are satisfied.

(i) All the links of P that lie between ui and u constitute a directed path of O-links

from u to Uk.

(ii) All the links of P that lie between uj and ut constitute a directed path of O-links

from Uj to ut.

(iii) Either (u, ut) or (ut, uk) is a 1-1ink on P.
Given two sets Xi and Xj, Xi Xj denotes the symmetric difference of Xi and Xj.

That is,

X [Xj (X Xj)U(Xj Xi).

If ui L(u) then clearly the unit u is faulty. Such a unit will be in every AFS. Without
loss of generality, we assume in this paper that ui L(ui) for any ui U.

The following lemmas determine a few properties of AFSs and implied faulty sets.
LEMMA [5]. Given a system S and a syndrome, each ofthefollowing statements holds.
(1) For ui, uj U, ui L(uj) ifand only if uj L(ui).
(2) For Ui, Uj U, if aij 0 then L(uj) C_ L(ui).
(3) If F c_ U is an AFS, then Uu,eU-F L(ui) c_ F.
LEMMA 2 [10]. Given a system S and a syndrome, if F1 and F2 are AFSs then so is

(F, U F2).
LEMMA 3. Given a system S and a syndrome, let F c_ U be an AFS containing U - U.

Then Ho(ui) F.
Proof Suppose that uj Ho(ui) is not a member of F. Since uj Ho(ui) there exists a

directed path of 0-1inks from uj to ui. Since uj U F and u F, there exists an 0-1ink
from U F to F on this path, contradicting the assumption that F is an AFS. [3

For what follows, let G’ (U’, E’) denote a general, undirected graph.
DEFINITION 4. A subset K c U’ is called a vertex cover set (VCS) [13] of G’ if every

edge in G’ is incident on at least one vertex in K. A minimum vertex cover set (MVCS) is a
VCS ofminimum cardinality in Gt.

DEFINITION 5. A subset M c__ E’ is called a matching [13] if no vertex in U’ is incident
on more than one edge in M. A maximum matching is a matching of maximum cardinality
in G.

A bipartite graph, with bipartition (X, Y), is one whose vertex set can be partitioned into
two subsets Xand Y such that every edge is incident to a vertex in Xand a vertex in Y. Finally,
for ui U’, N(ui) denotes the set of all vertices that are adjacent to ui.

3. Basic properties of allowable fault sets. In this section we establish certain proper-
ties of allowable fault sets with respect to a given syndrome. Our study is directed toward
investigating conditions for a vertex v to be in an allowable fault set of cardinality at most t.

For this purpose we use the notion of implied-fault set and the implied-fault graph used by
Dahbura and Masson [5] in their study.

Given a syndrome for a system S, define the implied-fault graph G* (U*, E*) to be
an undirected graph such that U* U and E* {(ui, uj) ui L(uj)}. For u a U, let G

898 A. DAS, K. THULASIRAMAN, AND V. K. AGARWAL

denote the subgraph of G* obtained after all units in Ho(u) and all edges incident on these
units have been removed from G*. Let Ku represent an MVCS of Gu* and let G Ho(u)
denote the subgraph of G where all vertices in Ho(u) along with all edges incident on these
vertices have been removed from G. Finally, we define G*(F) to be the subgraph of G* such
that all edges that connect vertices entirely inside F have been deleted.

Recall that we have assumed that ui L(ui) for any ui U. This means that G* has no
self-loops.

The results of the following lemma can be found in [5]. We present this lemma for the
sake of completeness.

LEMMA 4. Given a syndromefor a system S, we have thefollowing.
(i) Every AFS ofG is a VCS of G*.
(ii) If F

_
U is a minimal VCS of G*, then F is an AFS of G.

(iii) F U is an MAFS ofG ifand only if F is an MVCS of G*.
Proof. (i) Let F be an AFS of G for the given syndrome. Assume F is not a VCS

of G*. Then there exist ui, uj U F such that (ui, uj) is an edge in G*. Since all edges
from U F into F in G are 1-1inks (F is an AFS of G) and an implied-fault path between
ui and uj can contain only one 1-1ink, all vertices that lie on an implied-fault path between ui
and uj must belong to U F. But this implies that there is a 1-1ink between two vertices in
U F, contradicting the assumption that F is an AFS of G. This shows that (i) holds.

(ii) Let F be a minimal VCS of G*. Assume (ii) does not hold. Then at least one of the
following conditions is satisfied.

(a) There exist ui, uj U F with aij 1.
(b) There exist uj F, ui U F with aij O.

Assume (a) holds. Then the edge (ui, uj) is in G*. But this contradicts the fact that F is
a VCS of G* since neither ui nor uj is a member of F.

Now assume (b) holds and (a) does not hold. Since F is a minimal VCS of G* there
exists a unit uk in U F such that (uj, uk) is an edge in G*; otherwise F- {uj} will be a
VCS, contradicting the minimality of F. Hence uj L(u). Since aij 0, it follows that
ui L(u) and so (ui, u) is an edge in G*. Since neither ui nor u is a member of F, this
contradicts the fact that F is a VCS of G*.

(iii) Statement (iii) follows from (i) and (ii).
LEMMA 5. F is an AFS in G of minimum cardinality containing unit v if and only if

H F Ho(v) is an MAFS ofG Ho(v).
Proof. We first prove necessity. We first show that H is an AFS of G Ho(v). Since

U F (U Ho(v)) H and F is an AFS of G, all edges within (U Ho(v)) H
are 0-1inks and all edges from (U Ho(v)) H into H are 1-1inks. Hence H is an AFS of
G Ho(v). To show that H is an MAFS of G Ho(v), assume H is an AFS of G Ho(v).
Clearly all edges with both vertices incident on vertices in (U- Ho(v)) H are 0-1inks and all
edges from U- Ho(v) H into H are 1-1inks. Now consider edges from (U Ho(v)) H
into Ho(v). These edges must all be 1-1inks, otherwise the vertices incident on these edges
would all belong to Ho(v). This shows that the set H Ho(v) is an AFS of G. Hence if

IHI < IHI then H Ho(v) is an AFS of smaller cardinality than F, contradicting the fact
that F is an AFS of minimum cardinality containing v. Hence HI >_ HI and H is an MAFS
of G Ho(v).

We will now prove sufficiency. If F- Ho(v) is an MAFS of G Ho(v) then, as we have
shown in the proof of necessity, F is an AFS of G. If F is not an AFS in G of minimum
cardinality containing v, then let F be an AFS of G containing v with FI < FI. But then

F Ho(v), from the necessity part, would be an AFS of G Ho(v) of smaller cardinality
than F- Ho(v), which is a contradiction.]

LEMMA 6. For v U, (G Ho(v))* G.

DIAGNOSIS OF / (t + 1)-DIAGNOSABLE SYSTEMS 899

Proof Since the vertex sets of both graphs are the same, we need only show that the edge
sets are identical. Clearly every edge in (G Ho(v))* is in G. Now assume that there is an
edge (ui, uj) in G that is not in (G Ho(v))*. Then every implied-fault path in G between
ui and uj must contain at least one vertex from Ho(v). But this implies that either ui or uj is a
member of Ho(v), contradicting the assumption that both vertices are members of G Ho(v).
Hence the two edge sets are also identical.

LEMMA 7. Given a syndrome for a system S, let F c_ U be an AFS containing v U.
Then F- Ho(v) is a VCS ofG.

Proof. Let F F Ho(v). From Lemma 3 and the proof of Lemma 5, it follows that
F is an AFS of G Ho(v). Then from Lemma 4, F is a VCS of (G Ho(v))*. Thus, by
Lemma 6, F is a FCS of G.

THEOREM 1. Given a syndrome for a system S, F is an AFS of minimum cardinality
among all allowable fault sets that contain unit v U ifand only if F Ho(v) is a MVCS
of6.

Proof. The proof follows from Lemmas 4, 5 and 6.
The condition given in the above theorem can be used to test whether a unit belongs

to an AFS of cardinality at most for a given syndrome. However, this condition requires
determining an MVCS for a general undirected graph, a problem known to be NP complete.
Therefore we would like to develop a test that requires determining an MVCS of a bipartite
graph. With this objective in mind, we first define a bipartite graph for each vertex v. This
bipartite graph is derived from G. We then relate an MVCS of this graph to an AFS containing
vertex v and establish certain properties of this AFS that will be used in the following section
to develop the appropriate diagnosis algorithm.

Given a system S and a syndrome, define B (U, Eo) to be the undirected bipartite
graph with bipartition (X, Y) where

X {Xl Xn }, Y {Y Yn

and

E {(xi, yj) ui L(uj) in S}.

For v 6 U, define the undirected bipartite graph By (Uv, Eo) with bipartition (Xo, Yv) to
be the vertex-induced subgraph of B such that

y {x’u U- Ho(v)}, Y, {y "u U- Ho(v)}.

For each vertex v in G, let

to Ino(v)l

and

uo u- Ho(v).

THEOREM 2. Given a syndromefor a system S, a unit v U does not belong to any AFS
ofcardinality at most if Bo has an MVCS ofcardinality greater than 2tv.

Proof Let the cardinality of an MVCS of Bo be greater than 2to. Assume v 6 U belongs
to an AFS F such that IF[< t. Let H F Ho(v). Since, by Lemma 3, Ho(v) F, it
follows that Inl IFI In0(v)l _< In0(v)l t. Define Bx(H) (Ux, Ex) to be the
vertex-induced subgraph of By, where

UX {xi’u H} t_J {Yi "ui U- H}.

900 A. DAS, K. THULASIRAMAN, AND V. K. AGARWAL

Br(H) (Ur, Er) is defined to be the vertex-induced subgraph of Bo, where

Uy {X Ui E U- H} to {Yi ui H}.

Clearly Fx {xi bli H} and Fr {yi ui H} are VCSs of Bx(H) and Br(H),
respectively. It follows that Fe Fx tO Fy is a VCS of Bx(H) tO Br(H). Since F is an AFS,
in G* there are no edges connecting vertices of U F. From this it follows that every edge in
Bo Bx(H) Br(H) connects vertices in Fe. Therefore Fe is a VCS of Bo, contradicting our
assumption that the cardinality of an MVCS of Bo is greater than to. Hence v is not contained
in any AFS of cardinality at most t.

In the following we use Fe(v) to denote an MVCS of Bo. For a given Fe(v) let

Fi {uilxi - FB(v) and Yi

and

Fv {uilxi - Fe(v) or Yi e Fe(v)}.

We now proceed to establish certain properties of Fo.
LEMMA 8. Fo tO Ho (v) is an AFS of G.
Proof Assume the contrary. Then at least one of the following conditions is satisfied.
(a) There exist ui, uj U Fo Ho(v) with aij 1.
(b) There exist uj Fo tO Ho(v) and ui U (Fo tO Ho(v)) with aij O.
Assume (a) holds. Then the edge (ui, uj) is in G. Hence (xi, yj) is an edge in Bo. But

this contradicts the fact that Fe(v) is a VCS of Bo since neither xi nor yj is a member of Fe(v).
Now assume (b) holds and (a) does not hold. Clearly uj ’ H0(v); otherwise ui would

also belong to Ho(v). Thus uj Fo. Hence either xj or yj is a member of Fe(v). Without
loss of generality, let xj Fe(v). Since Fe(v) is an MVCS of Bo, there exists y, in Bo with

Yk F(v) such that (xj, yk) is an edge in Bo. Hence uj L(uk). Since aij O, ui L(uk).
Hence (xi, yk) is an edge in Bo. Since neither xi nor y, is a member of Fe(v), this contradicts
the fact that Fe(v) is a VCS of Bo.

LEMMA 9. Given a syndromefor a system S, a unit v c:_ U, and an MVCS F(v) of Bo,
we have thefollowing.

(i) In G*, there is no edge (ui, uj) with ui U (Fo tO Ho(v)) and uj Fo FI.
(ii) In G, there is no edge (ui, uj) with ui U (Fo U Ho(v)) and uj Fo FI.

Proof (i) Assume the contrary. Let (ui, uj) be an edge from U (Fo U Ho(v)) into

Fo FI in G*. Then either xj or yj is not a member of Fe(v). Thus in Bo either the edge
(xi, yj) or the edge (xj, Yi) is not incident on any vertex in Fe(v), contradicting the fact that
F (v) is a VCS of

(ii) By Lemma 8, the set Fo tO Ho(v) is an AFS of G. Thus every edge from
U (Fo tO Ho(v)) into Fo FI in G must be a 1-1ink. So if such an edge (ui, uj) exists
in G, then (ui, uj) is an edge in G*. Thus from (i) it follows that there is no edge (ui, uj) in
G with U U (Fo U Ho(v)) and uj

LEMMA 10. Every AFS ofG contained in Fo to Ho(v) contains the subset FI.
Proof To show that every AFS of G contained in Fo to Ho(v) contains the subset Ft

it suffices to show that every VCS of G* contained in Fo tO Ho(v) contains FI. The above
assertion holds if every vertex in FI is incident on some vertex of U (Fo tO Ho(v)) in G*.
Assume the contrary. Let uk be a vertex in FI that is not incident on any vertex of the set
U-(Fo tO Ho(v)). Then let We(v)= {xilui Fo} tO {yilui Fi {uk}}. From Lemma 9(i)
and the construction of Bo it follows that in Bo, there is no edge (xi, yj) with u
Ho(v)) and uj Fo FI. So We(v) is a VCS of Bo. But IW(v)l IF(v)l- 1. This

DIAGNOSIS OF / (t + 1)-DIAGNOSABLE SYSTEMS 901

contradicts the assumption that FB(v) is an MVCS of By. Thus every vertex in FI is incident
on some vertex of U (Fv to Ho(v)) in G*. This implies that every VCS of G* contained in
Fo to Ho(v) contains the subset FI. By Lemma 4, it follows that every AFS of G contained in

Fo tO Ho(v) contains the subset FI. [-]

4. O(n3"5) algorithm for diagnosis of a tl(t+l)-diagnosable system. In this section we
present a necessary condition for a system S to be ! (t + 1) diagnosable. We then establish that
in the case of a t/(t + 1)-diagnosable system, the condition of Theorem 2 is both necessary
and sufficient for a vertex v to be in an AFS of cardinality at most t. This will lead to
an O(n3"5) diagnosis algorithm to isolate all faulty units to within at most + units in a

/ (t + 1)-diagnosable system.
Recall (1) that a system S is said to be t/(t + 1) diagnosable if, given a syndrome, the

set Of faulty processors can be isolated to within a set of at most + processors provided
that the number of faulty processors does not exceed t.

It should be observed that a system is trivially / (t + 1) diagnosable if n + 1. Thus it
is required that 0 < < n 1. It should be noted that under these conditions n > 2t +
for / (t + 1)-diagnosable systems.

THEOREM 3. If S, a multiprocessor system with test interconnection G (U, E), is

t/(t + 1) diagnosable thenforall Xi, Xj U with IXil > t, Xj Xi, and IXil -t- IXjI _< 2t,
there exists a testfrom U Xi Xj into Xi Xj.

Proof. Assume S is t/(t + 1) diagnosable but the condition does not hold. Then there
exist Xi, Xj

_
U with Sl > t, Xj Si, Xil / Sjl <_ 2t such that there is no test from

U- Xi Xj into Xi 3 Xj.
Since IXl > and Xj : Xi, IXi tO Xjl > + 1, we construct two sets F and F2 from

Xi and Xj by moving elements from Xi Xj into Xj Xi until F and F2 have cardinality
at most t. Thus we obtain two sets F and F2 with levi _< t, Fzl _< such that there is no test
from U F F2 into F F2. Now consider the following syndrome (see Fig. 1) where for
each edge (uk, ut) E the outcome is defined as follows.

Case 1. ut U- (F to F2); then set akt O.
Case 2. ut . F to F2.

2.1. ut F fq F2; then set akt 1.
2.2. uk, ut F1 F2; then set akt O.
2.3. uk, ut F2 F then set akt O.
2.4. u, 6 FIN Fz; then set akt 1.
2.5. uk 6 F F2 and ut F2- F; then set akt 1.
2.6. u, 6 F2- F and ut F F2; then set akt 1.

Both F and F2 are allowable fault sets of cardinality at most for the given syndrome
and IF to F21 > + 1. This contradicts the assumption that S is t/(t + 1) diagnosable. [3

Recall from the previous section that FB(v) is an MVCS of Bo and Fv and FI are sets
derived from F (v).

THEOREM 4. Given a syndrome for a t/(t + 1)-diagnosable system S, a unit v
_
U

belongs to an AFS ofcardinality at most ifand only if lF(v)l <_ 2tv.
Proof If IF(v)l > 2tv then, by Theorem 2, G does not contain an AFS of cardinality at

most containing the unit v.
Now assume IF(v)l _< 2to. If Fo to Ho(v) contains an AFS of G of cardinality at most

containing the unit v then we are through. So assume IF(v)l _< 2to and Fv to Ho(v) does
not contain any AFS of G of cardinality at most containing the unit v. From Lemma 8,
Fo tO Ho(v) is an AFS of G containing the unit v. If Fv FI then IFo to H0(v)l < since

IF(v)l _< 2to. So we further assume that Fv FI. Since G* does not contain any units with

902 A. DAS, K. THULASIRAMAN, AND V. K. AGARWAL

0 1 1

0

FIG. 1. Two allowablefault sets generating a common syndrome.

self-loops and Fv :/: FI, the subset IFv FII > 2. Let F be an AFS of smallest cardinality
containing unit v such that F Fv to Ho(v). Clearly levi > t.

By Lemma 10 every AFS of G contained in F to Ho(v) contains the subset Ft, and since
v 6 F,, it follows that F1 to Ho(v)

_
Fa.

We next show that F :/: F to Ho(v). Let ui e_ Fo F1. Then W Fv {ui} is a VCS
of G because, by Lemma 9(i), in G there is no edge (ui, uj) with ui U (F to Ho(v))
and uj a_ Fu FI. Hence by Lemma 6, W is a VCS of (G Ho(v))*. This means that, by
Lemma 4(ii), W contains an AFS of G Ho(v). Thus W to Ho(v) has an AFS of G containing
unit v and of cardinality less than that of Fo to Ho(v). Now let Fa F (Ho(v) to FI), Fb
(F to Ho(v)) F), and Ft Fb to Ho(v) to FI. Since F is an AFS of smallest cardinality
containing v such that F c_ Fv to Ho(v), it follows that IFbl I(Fo to Ho(v)) Fl > 0 and

Ft Fa (see Fig. 2).
Now

-4-IFI 21Fzl + 21Ho(v)l + IFI + FI
--IF,(v)l + 21Ho(v)l

< 2tu + 21H0(v)l < 2t

(see also Fig. 2).
Since U F F U- (F to Ho(v)) and F Fu Fv FI, it follows from

Lemma 9(ii) that in G there is no edge (ui, uj) with ui - U (Fv tO Ho(v) and uj Fv Ft.
Thus we have FaI > t, F# Fa, [FuI + [Ft[_< 2t, and there is no test from U

into Fu Ft. This, by Theorem 3, contradicts our assumption that the system S is t/(t + 1)
diagnosable.

Given a valid syndrome for a t/(t + 1)-diagnosable system S and a unit v in S, we have
shown that the bipartite graph Bo has an MVCS of cardinality at most 2to if and only if G has
an AFS of cardinality at most containing the unit v. Since an MVCS of a bipartite graph has

DIAGNOSIS OF /(t + 1)-DIAGNOSABLE SYSTEMS 903

F Ho(v)

Ho(V) u F:i:

Fa F, Ho(v) F

FI FbJ Ho(v) F

FvFaJF b wF!

FaF Ho(V w F

Fa F=FwF
FIG. 2. Illustration forproofofTheorem 4.

the same cardinality as a maximum matching of the bipartite graph [13], it follows that Bo
has a maximum matching of cardinality at most 2to if and only if G has an AFS of cardinality
at most containing the unit v. Thus Theorem 4 can be stated in an equivalent manner
as follows.

THEOREM 5. Given a syndrome for a t/(t + 1)-diagnosable system S, a unit v U
belongs to an AFS of cardinality at most if and only if Bo has a maximum matching of
cardinality at most 2to.

The above theorem suggests the following t/(t + 1)-diagnosis algorithm.

ALGORITHM. Diagnosis of a t/(t + 1)-diagnosable system
Step 1. Given a t/(t + 1)-diagnosable system S and a valid syndrome, construct the

bipartite graph B (U, E) with bipartition (X, Y).
Step 2. Set F b; for all v U, label v unmarked.
Step 3. While there exists an unmarked v U

begin
3.1. Label v marked.
3.2. Set to -In0()l.
3.3. Construct Bo from B.
3.4. Compute a maximum matching Ko of Bo using the Hopcroft/Karp al-

gorithm 14].
3.5. If lKol < 2to then add v to F.
end

Step 4. F is the required set.

904 A. DAS, K. THULASIRAMAN, AND V. K. AGARWAL

The proof of correctness of the above algorithm is as follows.
Essentially the algorithm proceeds as follows. Given a syndrome, for each unit v U

the algorithm tests if the cardinality of a maximum matching of By is at most 2tv. If unit
v satisfies this requirement, then v is added to the set F. When the algorithm terminates
we have

F {v v U and Bo has a maximum matching of cardinality at most 2to }.

Given a valid syndrome, in t/(t + 1)-diagnosis we are required to isolate all faulty units to
within a set of cardinality at most + 1. In other words, we need to determine the set of all
units that are likely to be faulty under the given syndrome. By the definition of a ! (t + 1)-
diagnosable system, a unit v is likely to be faulty if and only if it belongs to an AFS of
cardinality at most t. It then follows from Theorem 5 that a unit v is likely to be faulty if and
only if Bo has a maximum matching of cardinality at most 2tv. The set F determined by the
algorithm is therefore the required set consisting of all units that are likely to be faulty. By the
definition of a t/(t + 1)-diagnosable system, this set has cardinality at most + 1. Thus F is
the required set isolating all the faulty units to within a set of cardinality at most + 1. This
completes the proof of correctness of our t/(t / 1)-diagnosis algorithm.

The bipartite graph in step can be constructed in O(n2"5) operations [5]. Step 2 requires
O (n) operations. The computation within step 3 is dominated by the computation of a maxi-
mum matching that requires O(n25) operations [14]. Since step 3 is performed for each unit
in U, the complexity of the entire algorithm is O(n35).

5. Conclusions. In this paper we have studied the problem of diagnosing t/(t + 1)-
diagnosable systems. We presented a diagnosis for t/(t + 1)-diagnosable systems that runs
in O(n3"5) time. This algorithm is based on the structure of allowable fault sets (3) and on
certain properties of t/(t + 1)-diagnosable systems (4).

REFERENCES

E P. PREPARATA, G. METZE, AND R. T. CHmN, On the connection assignment problem ofdiagnosable systems,
IEEE Trans. Electr. Comput., EC-16 (1967), pp. 848-854.

[2] S.L. HAKIMI AND A. AMIN, Characterization ofthe connection assignment ofdiagnosable systems, IEEE Trans.
Comput., C-23 (1974), pp. 86-88.

[3] G. E StLLIVAN, A polynomial time algorithmforfault diagnosability, in Proc. 25th Annual Symp. Foundations
Comput. Sci., Orlando, FL, (1984), pp. 148-156.

[4] V. RAGHAVAN, Diagnosability issues in multiprocessor systems, Ph.D. thesis, University of Minnesota, Min-
neapolis, MN, 1989.

[5] A.T. DAHBURA AND G. M. MASSON, A practical variation ofthe O(n2"5) fault diagnosis algorithm, in 14th Int.
Symp. Fault-Tolerant Comput., 1984, pp. 428-433.

[6] G.F. StJLLIVAN, An O(t + IEI)fault identification algorithm for diagnosable systems, IEEE Trans. Comput.,
Pans, C-37 (1988), pp. 388-397.

[7] A.D. FRIEDMAN, A new measure ofdigital system diagnosis, in Dig. 1975 Int. Symp. Fault-Tolerant Comput.,
(1975), pp. 167-170.

[8] A. KAVIANPOUR AND A. D. FRIEDMAN, Efficient design ofeasily diagnosable systems, in Proc. 3rd USA-Japan
Comput. Conf., 1978, pp. 251-257.

[9] K. Y. CHWA AND S. L. HA:IMI, On fault identification in diagnosable systems, IEEE Trans. Comput., C-30
(1981), pp. 414-422.

10] G. SULLIVAN, The complexity ofsystem-levelfault diagnosis and diagnosability, Ph.D. thesis, Yale University,
New Haven, CT, 1986.

[11] C. L. YANG, G. M. MASSON, AND R. A. LEONEa’T, On fault identification and isolation in tl/tl-diagnosable
systems, IEEE Trans. Comput., C-35 (1986), pp. 639-643.

12] A. DAS, K. THULASRAMAN, V. K. AGARWAL, AND K. B. LAKSHMANAN, t/s-diagnosable systems: A character-
ization and diagnosis algorithm, in Proc. 15th International Conference on Graph-Theoretic Concepts in
Computer Science, Rolduc, Holland, 1989, pp. 34-45.

DIAGNOSIS OF /(t + 1)-DIAGNOSABLE SYSTEMS 905

[13] J. A. BONDY AND U. S. R. MURTHY, Graph Theory with Applications, Elsevier North-Holland, Amsterdam,
1976.

[14] J. E. HOPCROFT AND R. M. KARP, A n2"5 algorithm for maximum matching in bipartite graphs, SIAM J.
Comput., 2 (1973), pp. 225-231.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 906-933, October 1994

1994 Society for Industrial and Applied Mathematics
0O2

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW*

RAVINDRA K. AHUJAt, JAMES B. ORLIN:, CLIFFORD STEIN, AND ROBERT E. TARJAN

Abstract. In this paper, network flow algorithms for bipartite networks are studied. A network G (V, E)
is called bipartite if its vertex set V can be partitioned into two subsets VI and V2 such that all edges have one
endpoint in V1 and the other in V2. Let n IVI, nl IVII, n2 1I"21, m IEI and assume without loss of
generality that n < n2. A bipartite network is called unbalanced ifn << n2 and balanced otherwise. (This notion is

necessarily imprecise.) It is shown that several maximum flow algorithms can be substantially sped up when applied
to unbalanced networks. The basic idea in these improvements is a two-edge push rule that allows one to "charge"
most computation to vertices in Vl, and hence develop algorithms whose running times depend on n rather than
n. For example, it is shown that the two-edge push version of Goldberg and Tarjan’s FIFO preflow-push algorithm
runs in O(nlm + n3) time and that the analogous version of Ahuja and Odin’s excess scaling algorithm runs in
O(nlm + n2 log U) time, where U is the largest edge capacity. These ideas are also extended to dynamic tree

implementations, parametric maximum flows, and minimum-cost flows.

Key words, network flow, bipartite graphs, maximum flow, minimum-cost flow, parametric maximum flow,
parallel algorithms

AMS subject classifications. 90B 10,68Q25,68R10

1. Introduction. In this paper, we study network flow algorithms for bipartite networks.
A network G (V, E) is called bipartite if its vertex set V can be partitioned into two subsets
V1 and V2 such that all edges have one endpoint in V1 and the other in V2. Let n IV l,
n V l, n2 IV21, rn EI, and assume without loss of generality that n < n2. We call
a bipartite network unbalanced if n << n2 and balanced otherwise. We show that several
maximum flow algorithms can be substantially sped up when applied to unbalanced networks.
At first glance, it may appear that unbalanced networks are of limited practical utility. This is
not true, however. Gusfield, Martel, and Fernandez-Baca [21 have compiled a list of many
practical applications of unbalanced networks. Further applications of unbalanced networks
appear in 14].

Specialized bipartite flow algorithms for unbalanced networks were first studied by Gus-
field, Martel, and Fernandez-Baca [21]. They developed modifications of the algorithms of
Karzanov [25] and Malhotra, Pramodh Kumar, and Maheshwari (MPM)[27] for the maximum
flow problem that improved their running times from O(n3) to O(nn2). For the bounded
degree case, i.e., when the degree of each vertex in V2 is bounded by a fixed constant, they

*Received by the editors May 20, 1991; accepted for publication (in revised form) June 4, 1993.
Department of Industrial and Management Engineering, Indian Institute of Technology, Kanpur 208016, India.

This author’s research was supported in part by Presidential Young Investigator grant 8451517-ECS of the National
Science Foundation, by grant AFOSR-88-0088 from the Air Force Office of Scientific Research, and by grants from
Analog Devices, Apple Computers, Inc., and Prime Computer.

Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Re-
search partially supported by Presidential Young Investigator grant 8451517-ECS of the National Science Foundation,
by grant AFOSR-88-0088 from the Air Force Office of Scientific Research, and by grants from Analog Devices, Apple
Computers, Inc., and Prime Computer.

Department of Computer Science, Dartmouth College, Hanover, New Hampshire 03755. Some of the results in
this paper were part of this author’s undergraduate thesis at Princeton University. Some of the work was done while
this author was a graduate student at the Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139. Research partially supported by a graduate fellowship from AT&T. Additional
support provided by Air Force contract AFOSR-86-0078 and by a National Science Foundation PYI grant awarded
to David Shmoys, with matching funds from IBM, Sun Microsystems, and the United Parcel Service.

Department of Computer Science, Princeton University, Princeton, New Jersey 08544, and NEC Research
Institute, Princeton, New Jersey 08540. Research at Princeton University partially supported by the National Science
Foundation grant DCR-8605952, and the Office of Naval Research contract N00014-9l-K-1463.

906

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 907

developed a further modification of the MPM algorithm that runs in O(nm + n) time.
We suggest several algorithms for the maximum flow problem on unbalanced networks that
improve the running times of Gusfield et al. for all classes of unbalanced networks.

Gusfield [20] has shown that on a particular bipartite network in which each vertex in V2
has constant degree, an algorithm similar to the FIFO preflow-push maximum flow algorithm
of Goldberg and Tarjan [15],[16] runs in O(nlm + n) time. Further, he observes that this
result extends to parametric maximum flow; he solves a series of n maximum flow problems
in O(nlm + n) time. We have similar results, which were obtained independently and apply
to a more general class of networks.

We begin with the observation of Gusfield, Martel, and Fernandez-Baca [21 that the time
bounds for several maximum flow algorithms automatically improve when the algorithms
are applied without modification to unbalanced networks. A careful analysis of the running
times of these algorithms reveals that the worst-case bounds depend on the number of edges
in the longest vertex-simple path in the network. We call this the path length of the network
and denote it by L. For a general network, L may be as large as n 1; but, for a bipartite
network, L is at most 2nl + 1. Hence for unbalanced networks the path length is much less
than n, and we get an automatic improvement in running times. As an example, consider
Dinic’s algorithm [10] for the maximum flow problem. This algorithm constructs O(L)
layered networks and finds a blocking flow in each one. Each blocking flow computation
performs O(m) augmentations and each augmentation takes O(L) time. Consequently, the
running time of Dinic’s algorithm is O(L2m). Thus, when applied to unbalanced networks,
the running time of Dinic’s algorithm improves from O(n2m) to O(n]m). Column 3 of Table
1.1 summarizes these improvements for several network flow algorithms.

We obtain further running-time improvements by modifying the algorithms. This modifi-
cation applies only to preflow-push algorithms [2], [3], [14]-[17]; we call it the two-edge push
rule. According to this rule, we always push flow from a vertex in V1 and push flow on two
edges at a time, in a step called a bipush, so that no excess accumulates at vertices in V2. This
rule allows us to charge all computations to examinations of vertices in V1, though without
this rule they might be charged to vertices in V2. As an outcome of this rule, we develop
algorithms whose running times depend on n rather than n. We incorporate the two-edge
push rule in several maximum flow algorithms, dynamic tree implementations, a parametric
maximum flow algorithm, and algorithms for the minimum-cost flow problem. Column 4 of
Table 1.1 summarizes the improvements obtained using this approach.

In the presentation to follow, we assume some familiarity with preflow-push algorithms
and we omit many details, since they are straightforward modifications of known results. The
reader interested in further details is urged to consult the appropriate paper or papers discussing
the corresponding result for general networks or the book or the survey paper 18].

2. Preliminaries.

2.1. Network definitions. Let G (V, E) be a directed bipartite network. We associate
with each edge (v, w) in E a finite real-valued capacity u(v, w). Let U max{u(v, w)
(v, w) E}. Let source s and sink be the two distinguished vertices in the network. We
make the assumption that s 6 V2 and 6 V. We further assume, without loss of generality,
that if (v, w) is in E then so is (w, v), and that the network contains no parallel edges. We
define the edge incidence list I(v) of a vertex v 6 V to be the set of edges directed out of
vertex v, i.e., I(v) {(v, w) (v, w) E}.

2.2. Flow. Aflow is a function f E -- R satisfying

(2.1) f(v, w) <_ u(v, w) (v, w) E,

908 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

TABLE 1.1
A summary of the results discussed in this paper. Column 2 contains previously known results for general

graphs. Column 3 gives bounds on bipartite networks based on the improved bound on L. Column 4 gives our new
results based on the two-edge push rule.

Algorithm

Maximum Flows

Dinic 10]

Karzanov [25]

MPM [27]

FIFO preflow-push

[15], [16]

Highest label

preflow-push [7]

Excess scaling [2]

Wave scaling [3]

FIFO w/dynamic trees

[15],[16]

Parallel excess scaling [2]

Parametric Flows

GGT [14]

GGT w/

dynamic trees 14]

Min-Cost Flows

Cost scaling 17]

Cost scaling w/

dynamic trees 17]

Running time,
general network

n2m
n

n

n

nm+ n log U

nm + nZ/U

nm log(-

n log U log(-),

[m/n processors

n

nm log(-k-

n log(nC)

nm log()
log(nC)

Running time,
bipartite network

n21 m
nn[21]
nn[21]
n21 n

nlm + nln log U

ntm +nnvU

nlm log(-)

n n log U log(-ff),

[m/n processors

nln

nlm log()

n21n log(n C)

nlm log(-)
log(n C)

Running time,
modified version

does not apply

nm + n2
does not apply

nlm + n
nlm

+ min{n, n/-}
n m + n2 log U

nlm + n2 IU
nm log(+ 2)

n log U log(),
[m/n processors

nlm log(+ 2)

n m + n31 log(n C)

nlm log("-+2)
log(n C)

(2.2) f(v, w) -f(w, v) V(v, w)
_
E,

(2.3) Ef(v’w)=O Yw 6 V-{s,t}.
vEV

The value of a flow is the net flow into the sink, i.e.,

Ifl f(v, t).
vEV

The maximumflow problem is to determine a flow f for which Ifl is maximum.

2.3. Preflow. A preflow is a function f E --+ R that satisfies conditions (2.1), (2.2),
and the following relaxation of condition (2.3)"

Ef(v’w) >0 Yw_ V-{s}.(2.4)
vV

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 909

The maximum flow algorithms described in this paper maintain a preflow during the
computation. For a given preflow f, we define, for each vertex w V, the excess e(w)
vz f(v, w). A vertex other than with strictly positive excess is called active.

2.4. Residual capacity. With respect to a preflow f, we define the residual capacity
uf(v, w) of an edge (v, w) to be uf(v, w) u(v, w) f(v, w). The residual network is the
network consisting only of edges that have positive residual capacity.

2.5. Distance labels. A distance function d V -- Z+U{cx} with respect to the residual
capacities uf(v, w) is a function mapping the vertices to the nonnegative integers. We say
that a distance function is valid if d(s) 2nl, d(t) 0, and d(v) < d(w) + for every edge
(v, w) in the residual network. We call a residual edge with d(v) d(w) + eligible. The
eligible edges are exactly the edges on which we push flow.

We refer to d(v) as the distance label of vertex v. It can be shown that if the distance
labels are valid, then each d(v) is a lower bound on the length of the shortest path from v to
in the residual network. If there is no directed path from v to t, however, then d(v) is a lower
bound on 2n plus the length of the shortest path from v to s. If, for each vertex v, the distance
label d(v) equals the minimum of the length of the shortest path from v to and 2nl plus the
length of the shortest path from v to s, then we call the distance labels exact.

3. The generic preflow-push algorithm on bipartite networks. All maximum flow
algorithms described in this paper are preflow-push algorithms, i.e., algorithms that maintain
a preflow at every stage. They work by examining active vertices and pushing excess from
these vertices to vertices estimated to be closer to t. If is not reachable, however, an attempt
is made to push the excess back to s. Eventually, there will be no excess on any vertex other
than t. At this point the preflow is a flow, and moreover it is a maximum flow 15], 16]. The
algorithms use distance labels to measure the closeness of a vertex to the sink or the source.

The generic preflow-push algorithm consists ofa preprocessing stage followed by repeated
application of a procedure called push/relabel. These two procedures appear in Fig. 3.1.

procedure preprocess
begin

f=O;
push u(s, v) units of flow on each edge (s, v) 6 I(s);
compute the exact distance label function d by

backward breadth-first searches from and from s
in the residual network;

end
procedure push/relabel(v)
begin

if there is an eligible edge (v, w)
then

begin select an eligible edge (v, w);
push d min{e(v), uf(v, w)} units of flow from v to w

end
else replace d(v) by min{d(w) + (v, w) I(v) and uf(v, w) > O}

end

FIG. 3.1. Two proceduresfor the generic preflow-push algorithm.

Increasing the flow on an edge is called a push through the edge. We say a push of 3
units of flow on edge (v, w) is saturating if 6 uf(v, w) and nonsaturating otherwise. A
nonsaturating push at vertex v reduces e(v) to zero. We refer to the process of increasing the
distance label of a vertex as a relabel operation. The purpose of the relabel operation is to
create at least one eligible edge on which the algorithm can perform further pushes.

910 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

Not specified in Fig. 3.1 is an efficient way to choose edges for pushing steps. We assume
the same mechanism as that proposed by Goldberg and Tarjan [15], [16]. The algorithm
maintains the incidence list I(v) for each vertex v, and a pointer into each such list indicating
a current edge. Initially the current edge of each incidence list is the first edge on the list. To
perform push/relabel(v), the current edge pointer for v is moved through the list I (v) until it
indicates an eligible edge or it reaches the end of the list. In the former case, a push is done
on the current edge. In the latter case, a relabel of v is done and the pointer is reset to indicate
the first edge on I(v). Figure 3.2 contains the algorithm preflow-push, which combines the
two subroutines of Fig. 3.1. At the termination of the algorithm, each vertex in V {s, t} has
zero excess; thus the final preflow is a flow. It is easy to establish that this flow is maximum.
We shall briefly discuss the worst-case time complexity of the algorithm. (We refer the reader
to the paper of Goldberg and Tarjan 16] for a complete discussion of the algorithm.)

algorithm preflow-push
begin

preprocess;
while the network contains an active vertex do
begin

select an active vertex v;
push/relabel(v

end
end

FIG. 3.2. Algorithm preflow-push.

We begin by stating two lemmas from 15] and [16].
LEMMA 3.1 [15], [16]. The generic preflow-push algorithm maintains valid distance

labels at each step. Moreover, each relabeling ofa vertex v strictly increases d(v).
LEMMA 3.2 15], 16]. At any time during the preflow-push algorithm, for each vertex v

with positive excess, there is a directed pathfrom vertex v to vertex s in the residual network.
Now we can derive the necessary results specific to bipartite networks.
COROLLARY 3.3. For each active vertex v, d(v) < 4n.
Proof. When a vertex v is relabeled, it has positive excess, and hence the residual network

contains a path P from v to s. Since the vertices on this path are alternately in V and V2, the
maximum possible length of the path is 2n. Since d(s) 2n and, for every edge (w, x) on
P, d(w) < d(x) + 1, it must be the case that d(v) < d(s) + 2n 4n. U

COROLLARY 3.4. The number of relabel steps is O(nn). Further, the time spent per-
forming relabels is O(nm). The time spent scanning edges while finding eligible edges on
which to pushflow is also 0(n m).

Proof. The first statement follows directly from Lemma 3.1 and Corollary 3.3. The second
statement follows from the fact that in order to relabel a vertex v, we must look at all ofthe edges
in I(v). Hence, wecan bound the total relabeling time by O((vv II(v)l)(4n)) O(nm).
The same bound holds for the time spent finding edges on which to push flow. [3

COROLLARY 3.5. The preflow-push algorithm performs O(nm) saturating pushes.

Proof. Between two consecutive saturating pushes on an edge (v, w), both d(v) and d(w)
must increase by 2. By Lemma 3.1 and Corollary 3.3, only O(n 1) saturating pushes can be
done on (v, w). Summing over all edges gives the bound.

LEMMA 3.6. The preflow-push algorithm performs 0 (n2m nonsaturating pushes.

Proof Omitted. (Analogous to the proof of Lemma 3.10 in 16].) [3

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 911

procedure bipush/relabel(v
begin

if there is an eligible edge (v, w)
then

begin select an eligible edge (v, w);
if there is an eligible edge (w, x)
then

begin select an eligible edge (w, x);
push d min{e(v), uf(v, w), uf(w, x)} units of flow

along the path v to x
end

else replace d(w) by min{d(x) + (w,x) I(w) and uf(w,x) > 0}
end

else replace d(v) by min{d(w) + (v, w) I(v) and uf(v, w) > 0}
end

FIG. 3.3. The procedure bipush/relabel.

The results in column 3 of Table 1.1 for preflow-push algorithms all follow from the
known results by using Corollaries 3.4 and 3.5 to replace certain O(n) bounds in the general
case with O(n) bounds in the bipartite case. Since all these results are straightforward to
obtain and are dominated by those in column 4, we omit their derivations and move on to the
more interesting results in column 4.

4. The bipartite preflow-push algorithm. The basic idea behind the bipartite preflow-
push algorithm is to perform bipushes from vertices in V. A bipush is a push over two
consecutive eligible edges; it moves excess from a vertex in V to another vertex in V. This
approach has all the advantages ofthe usual approach, and the additional advantage that it leads
to improved running times. This approach ensures that no vertex in V2 ever has any excess.
Since all the excess resides at vertices in V, it suffices to account for the nonsaturating bipushes
emanating from vertices in V. Since Vl _< V2l, the number of nonsaturating bipushes is
reduced.

The bipartite preflow-push algorithm is a simple generalization of the generic preflow-
push algorithm. The bipartite algorithm is the same as the generic algorithm given in 3 except
that the procedure bipush/relabel appearing in Fig. 3.3 replaces the procedure push/relabel in
the original algorithm. The algorithm identifies eligible edges emanating from a vertex using
the current edge data structure described earlier.

We call a push of units on the path v w x a bipush. The bipush is saturating
if/ min{uf(v, w), uf(w, x)} and nonsaturating otherwise. Observe that a nonsaturating
bipush reduces the excess at vertex v to zero. The following lemma is an easy consequence
of the two-edge push rule implemented in bipush/relabel.

LEMMA 4.1. During the execution of the bipartite preflow-push algorithm, all excess
remains on the vertices in V.

Proof. The first thing the algorithm does is to saturate all edges leaving s. Since s 6 V2,
the claim is true immediately after this step. All the other pushes in the algorithm are done
using the procedure bipush/relabel, which pushes from a vertex in V through a vertex in V2
to another vertex in V, never leaving any excess on a vertex in V2. No other operations create
excess at any vertex. [3

As in the original preflow-push algorithm, the bipartite preflow-push algorithm always
pushes flow on eligible edges and relabels a vertex only when there are no eligible edges
emanating from it. Hence Lemma 3.1 holds for this algorithm too. Lemma 3.2 also holds.
Corollary 3.3 holds for vertices in V, but a modified version holds for vertices in V2: if
v V2, then either d(v) < 4nl + or d(v) cx. Corollary 3.4 holds as stated. Corollary 3.5

912 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

translates into a bound of O(nlm) saturating bipushes. The Lemma 3.6 bound of O(nm) on
nonsaturating pushes becomes a bound of O(nm) on nonsaturating bipushes. Thus we get
the following result.

THEOREM 4.2. The bipartite preflow-push algorithm runs in O(n2m time.

We now define the concept of a vertex examination. In an iteration, the generic bipar-
tite preflow-push algorithm selects an active vertex v and performs a saturating bipush or a
nonsaturating bipush or relabels a vertex. In order to develop more efficient algorithms, we
incorporate the rule that whenever the algorithm selects an active vertex v V1, it keeps
pushing flow from that vertex until either its excess becomes zero or it is relabeled. Conse-
quently, there may be several saturating bipushes followed either by a nonsaturating bipush
or a relabel operation; there will in general also be relabelings of vertices in V2. We associate
this sequence of operations with a vertex examination. We shall henceforth assume that the
bipartite preflow-push algorithm follows this rule.

5. Specific implementations ofthe bipartite preflow-push algorithm. The bottleneck
in the bipartite preflow-push algorithm is the time spent doing nonsaturating bipushes. There
are two orthogonal approaches to reducing this time. One approach is to reduce the number
of nonsaturating bipushes by selecting the vertices for bipush/relabel operations cleverly. We
shall consider several such selection rules in 5.1-5.4. The second approach is to reduce the
time spent per nonsaturating bipush. The idea is to use a sophisticated data structure in order to
push flow along a whole path in one step, rather than pushing flow along a single pair of edges.
We shall study this approach in 5.5. Finally, in 5.6 we study a parallel implementation of
one version of the bipartite preflow-push algorithm.

5.1. The first-in first-out (FIFO) algorithm. The FIFO preflow-push algorithm exam-
ines active vertices in first-in, first-out (FIFO) order. The algorithm maintains a queue Q of
active vertices. It selects a vertex v from the front of Q and performs pushes from v while
adding newly active vertices to the rear of Q. The algorithm examines v until either it be-
comes inactive or it is relabeled. In the latter case, v is added to the rear of Q. The algorithm
terminates when Q is empty. Goldberg and Tarjan 17] showed that the FIFO algorithm per-
forms O(n3) nonsaturating pushes. We show, using a similar analysis, that the number of
nonsaturating bipushes in the bipartite case is O(n).

For the purpose of the analysis, we partition the sequence of vertex examinations into
several passes. The first pass consists of examining the vertices that become active during the
preprocess step. For k >_ 2, the kth pass consists of examining all vertices that were added to
the queue during the k st pass.

LEMMA 5.1. The number ofpasses over Q is O(n).
Proof Let max{d(v)lv is active}. The initial value of is at most 4n. Consider

the effect that a pass over Q can have on . If, during the pass, no vertex in V is relabeled,
then the excess at every vertex is pushed to a vertex with a distance label smaller by at least
two, and consequently decreases by at least two. If some vertex in V is relabeled during
the pass, however, then can increase or remain the same. In such a case the increase in
is bounded by the largest increase in any distance label. Hence, by Corollary 3.3, the total
increase in over all passes is at most 4n2. Consequently, the total number of passes is

o(,).
Now observe that any pass examines each vertex in V at most once and each vertex

examination performs at mostone nonsaturating bipush. Consequently, the algorithm performs
O(n) nonsaturating bipushes. We noted in the previous section that all other operations take
0(n m) time. Thus we obtain the following result.

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 913

THEOREM 5.2. The bipartite FIFO preflow-push algorithm runs in O(nlm -!- n) time.

We note that this bound is also achieved by Karzanov’s algorithm [25] if it is implemented
using the two-edge push rule. A modification of Karzanov’s algorithm by Tarjan [36], which
he calls the wave algorithm, also has the same time bound. The analysis of both of these
algorithms is straightforward and hence omitted.

5.2. The highest-label preflow-push algorithm. The highest-label preflow-push algo-
rithm always pushes from an active vertex with highest distance label. This rule can be
implemented using a simple bucketing approach so that the overhead for vertex selection is

O(n). The nonsaturating bipushes performed by the algorithm can be divided into passes.
A pass consists of all bipushes that occur between two consecutive relabel steps of vertices
in//’1. Within a pass, vertices in//’2 can possibly be relabeled several times. Notice that in
this algorithm, excesses that are most distant from the sink are pushed down two levels at a
time. Consequently, if the algorithm does not relabel any vertex during n consecutive vertex
examinations, all excess reaches the sink and the algorithm terminates. Since the algorithm
performs O(n) relabel operations on vertices in 1/’1, we immediately obtain a bound of O(n)
on the number of vertex examinations. As each vertex examination entails at most one non-
saturating bipush, this gives a bound of O(n3) on the number of nonsaturating bipushes and
a bound of O(nlm + n3) on the running time of the algorithm.

Cheriyan and Maheshwari [7] showed by a clever argument that the highest label preflow-
push algorithm performs O(n2dr-) nonsaturating pushes for general networks. Modifying
their argument to fit the bipartite case, we obtain a running time of O(nlm + min{n, n}).
This improves the above bound of O(nlm + n) if < nl. We shall give a potential-based
argument that is slightly different from the analysis of Cheriyan and Maheshwari.

We focus on the set of edges that are both current and eligible; we call these edges live.
Recall that an edge (v, w) is eligible if it has positive residual capacity and d(v) d(w) + 1;
(v, w) is current if the current edge pointer for vertex v indicates (v, w). Each vertex has at
most one outgoing live edge, and the live edges form no cycles since d(v) > d(w) if (v, w) is
a live edge. Thus the set of live edges defines a forest, which we call the live forest. We call
an active vertex maximal if it has no active proper descendant in the live forest. For a vertex
v, let desc(v) be the number of descendants of v in the live forest, including v itself, that are
in V1. Let p be a positive integer parameter whose value we shall choose later. For a maximal
active vertex v, we define the uncounted cost c(v) of v to be min{0, desc(v) p}. For any
vertex v that is not maximal active, we define c(v) 0. We use the sum ’’vz c(v) to help
bound the number of nonsaturating bipushes.

We wish to count nonsaturating bipushes. Our strategy is to charge nonsaturating bi-
pushes against changes in current edges, relabelings, increases in the total uncounted cost,
and certain other events. We shall obtain an overall bound of O(nlmp + n3/p) on the num-
ber of nonsaturating bipushes. Choosing p max{l, [n/dr-]} then gives a bound of
O(min{nlm + n, n/-}) on the number of nonsaturating bipushes.

Define a pass of the algorithm to be a maximal interval of time during which all vertices
selected for bipush/relabel steps have the same distance label. A pass terminates either when
a relabeling occurs or when all excess at vertices with maximum distance label is moved to
vertices of distance label lower by two.

LEMMA 5.3. The total number ofnonsaturating bipushes is O(nmp + n/p).
Proof. An argument like that in Lemma 5.1 shows that the total number of passes is

O(n). Consider the nonsaturating bipushes that occur during a pass. Every vertex from
which a bipush occurs is maximal active. For a vertex v, call a nonsaturating bipush from v
large if c(v) 0 before the bipush and small otherwise. Two vertices v and w from which

914 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

algorithm bipartite excess scaling
begin

preprocess;
A 2rlg u];
while A > do
begin

while the network contains a vertex v Vl
with excess greater than A/2 do

begin
among vertices with excess exceeding A/2,

select a vertex v with smallest distance label;
perform bipush/relabel(v)

(modified to ensure that no excess exceeds A)
end;

end
end

FIG. 5.1. Bipartite excess scaling algorithm.

nonsaturating bipushes occur during the pass have disjoint sets of descendants in the live forest.
If a large bipush occurs from a vertex v, v has at least p V-descendants before the bipush.
Since the total number of vertices in V is n 1, there can be at most n 1/P large bipushes during
the pass.

The following argument shows that every small nonsaturating bipush causes an increase
of at least one in the total uncounted cost. Consider such a bipush from a vertex v to a vertex
x. The bipush causes vertex v to become inactive and may cause vertex x to become maximal
active; no other vertex can become maximal active. If x becomes maximal active, the total
uncounted cost increases by at least one, because desc(x) > desc(v) and desc(v) < p. If x
does not become maximal active, then the total uncounted cost still increases by at least one,
since the negative term desc(v) p is removed from the total uncounted cost.

We conclude that there are O(n/p) nonsaturating bipushes (the large ones) plus those
accounted for by increases in the total uncounted cost. It remains to bound the sum of all
increases in the total uncounted cost. The total uncounted cost remains between -pnl and
zero. A nonsaturating bipush cannot decrease the total uncounted cost. A saturating bipush or
a relabeling or a change in a current edge can reduce the total uncounted cost by at most O(p),
since any such operation affects only O (1) maximal active vertices. We conclude that the sum
of all decreases in the total uncounted cost is O(nmp), and so is the sum of all increases in
the total uncounted cost. The lemma follows. [3

THEOREM 5.4. The highest labelpreflow-push algorithm runs in 0 (n m+min{n, n24})
time.

Proof. Immediate from Lemma 5.3 by choosing p max{ 1, [n/v/-- }. [3

5.3. The excess scaling algorithm. The excess scaling algorithm, due to Ahuja and
Orlin [2], incorporates scaling ofthe excesses into the generic preflow-push algorithm, thereby
reducing the number of nonsaturating pushes from O(nZm) to O (n2 log U). The basic idea is
to push flow from active vertices with sufficiently large excess to vertices with sufficiently small
excess while never letting the excesses become too large. We shall develop an adaptation of
the excess scaling algorithm for bipartite networks, which we call the bipartite excess scaling
algorithm. This algorithm, in contrast to the algorithms in 5.1 and 5.2, requires that the
edge capacities be integral.

Fig. 5.1 describes the bipartite excess scaling algorithm. The algorithm uses the same
bipush/relabel step as the generic bipartite preflow-push algorithm but with one slight differ-

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 915

ence. If x t, instead of pushing 8 min{e(v), Uf(l), tO), Uf(tO, X)} units of flow, it pushes
8 min{e(v), uf(v, tO), uf(tO, x), A e(x) units, where A is a positive excess bound main-
tained by the algorithm. This change ensures that the algorithm permits no excess on an
active vertex to exceed A units. Since A is integral until the algorithm terminates, all excesses
remain integral, which implies that on termination only s and can have nonzero excess. This
implies that the algorithm is correct.

LEMMA 5.5. The bipartite excess scaling algorithm maintains thefollowing three invari-
ants:

1. No vertex in V2 ever has positive excess.

2. Any bipush that does not saturate an edge moves at least A /2 units offlow.
3. No vertex ever has excess greater than A.

Proof. Invariant is satisfied because the bipartite excess scaling algorithm is a special
case of the generic algorithm and the generic algorithm satisfies it. For invariants 2 and 3, see
[2] and [3]. [3

We can use these invariants to establish a bound on the number of nonsaturating bipushes.
We define a scaling phase to be a maximal period of time during which A does not change.

LEMMA 5.6. The bipartite excess scaling algorithm performs O(n log U) nonsaturating
pushes and runs O(nlm + n log U) time.

Proof As in [3], we consider the potential function Yvv ev)dv) which by invariantA

is the same as Yvev ev)dO)A By invariant 3, at the beginning of a scaling phase, -< 4n21.
The actions of the algorithm consist of bipushes and relabels. We consider the two cases
separately.

Case 1. A relabel occurs. If a vertex in V2 was relabeled, remains unchanged. If a
vertex in V1 was relabeled, increases by at least one. By Corollary 3.3, such increases sum
to O(n2). (This bound actually applies to the whole algorithm, not just one scaling phase.)

Case 2. A bipush occurs. This must decrease . If the bipush is nonsaturating, then by
invariant 2, it moves at least - units of flow to a vertex with distance label two units lower, so

decreases by at least 1. As the initial value plus the total increase to are O(n), can
decrease by O(n) per scaling phase, which means there are O(n2) nonsaturating pushes per
scaling phase.

Observe that originally A < 2U, where U is the maximum capacity in the network, and
that when A decreases below 1, the algorithm terminates. In each scaling phase, A decreases
by a factor of 2, so there are O (log U) scaling phases. Thus the total number of nonsaturating
pushes is O(n2 log U).

The running time of the algorithm is O(nlm + n2 log U) plus the time required to select
the smallest distance vertices forpush/relabel steps. The bucket-based data structure described
in [3] makes the total time for vertex selection O(nlm + n log U). [3

5.4. Variants ofexcess scaling. Ahuja, Orlin, and Tarjan [3] have developed two variants
of the excess scaling algorithm that achieve improved time bounds. The faster of these, called
the wave scaling algorithm, runs in O(nm + n2v/log U) time. The idea of bipushes can
easily be incorporated into both of their algorithms, thereby improving the running times for
bipartite networks. The following theorem states the running time of the bipartite wave scaling
algorithm.

THEOREM 5.7. The bipartite wave scaling algorithm runs in O(n m + nv/iog U) time.

The derivation of this time bound is similar to that of the excess scaling algorithm. The
analysis of the original algorithm uses arguments based on potential functions defined over the
vertex set V. For bipartite networks, we define the potential functions over the set V1 and are

916 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

able to replace n by n in the running time. The detailed proof of this theorem is quite lengthy
but contains no new ideas; therefore we omit it. A similar improvement can be obtained in
Ahuja, Orlin, and Tarjan’s less efficient algorithm, called the stack scaling algorithm.

5.5. Dynamic trees. In the previous four sections, we reduced the time needed to com-
pute a maximum flow by reducing the number of nonsaturating pushes. In this section, we
consider a different approach: we reduce the time spent per nonsaturating push. The idea is to
use a sophisticated data structure in order to push flow along a whole path in one step, rather
than pushing flow along a single edge. The dynamic tree data structure of Sleator and Tarjan
[34], [33], [37] is ideally suited for this purpose.

The dynamic tree data structure allows the maintenance of a collection of vertex-disjoint
rooted trees, each edge of which has an associated real value. We adopt the convention that
tree edges are directed towards the root. We denote the parent of v by p(v) and regard each
vertex as an ancestor and descendent of itself. We call a dynamic tree trivial if it contains only
one Va-vertex and nontrivial otherwise. The data structure supports the operations in Fig. 5.2.
It is shown in [34] that if the maximum number of vertices in any tree is k, we can perform an
arbitrary sequence of tree operations in O (l log k) time.

make-tree(v)
find-root(v)
find-size(v)
find-value(v)

find-min v

change-value(v, z)
link(v, w, x)

cut(v)

Make vertex v into a one-vertex dynamic tree.
Return the root of v’s tree.
Return the number of vertices in v’s tree.
Return the value of the tree edge from v to its parent.

Return cz if v is a root.
Return the ancestor w of v with minimumfind-value(w).

In case of a tie, choose the w closest to the root.
Choose v if v is the root.

Add z to the value of every edge from v to find-root(v).
Combine the trees containing v and w by making w the parent

of v and giving edge (v, w) the value x. Do nothing if v and to are
in the same tree or if v is not a root.

Break v’s tree into two trees, by deleting the edge joining
v and v’s parent. Do nothing if v is a root.

FIG. 5.2. Dynamic tree operations.

In maximum flow algorithms, the dynamic tree edges are a subset of the current edges.
The value of a tree edge is its residual capacity. We maintain the invariant that every active
vertex is a dynamic tree root. For this section, we relax the invariant that all excess is on
vertices in V and allow excess to accumulate on vertices in V2.

The key to the dynamic tree implementation is the tree-push/relabel operation in Fig. 5.3.
The operation is applied to an active vertex v. If there is an eligible edge (v, w) then the
operation adds (v, w) to the forest of dynamic trees, pushes as much flow as possible from
v to the root of the tree containing w, and then deletes from the forest all edges which are
saturated by this push. Otherwise, v is relabeled and its children are cut off. We refer to the
operation of pushing flow from a node of a dynamic tree to the root as a tree-push.

The first dynamic tree algorithm we consider is just the generic preflow-push algorithm
with the push/relabel operation replaced by the tree-push/relabel operation of Fig. 5.3. We
modify the initialization so that each vertex is in its own one-vertex dynamic tree and we add
a post-processing step which extracts the correct flow on each edge that remains in a dynamic
tree. We call this algorithm the generic bipartite dynamic tree algorithm.

The correctness of this algorithm is straightforward to verify (see [15] and [16]). We
show that this implementation yields an efficient algorithm.

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 9 17

procedure tree-push/relabel v
begin

if there is an eligible edge (o, w)
then

begin link(v, w, uf(v, w))
p(v) -- w, -- min{e(v),find-value(find-min(v))
change-value(v, -,

(*) while v find-root(v) andfind-value(find-min(v)) 0 do
begin z find-min(v)

(**) cut(z)
end

end
else begin replace d(v) by min{d(w) + (v, w) I(v) and uf(v, w) > 0}

(]t) for all children y of v do
(:) cut(y)

end
end

FIG. 5.3. The tree-push/relabel operation.

LEMMA 5.8. The number of tree-push/relabel operations done by the generic bipartite
dynamic tree algorithm is 0 (n m).

Proof. Each tree-push/relabel operation either relabels a vertex or pushes flow along a
tree path. If it pushes flow then it must either saturate an edge or decrease the number of tree
roots by one. By Corollaries 3.4 and 3.5 a relabeling or an edge saturation can occur at most

O(nlm) times. Furthermore the total increase in the number of tree roots caused by such
operations is O (n m). Thus a push which decreases the number of tree roots by one can occur
at most O(nlm -t- n) times, which is the sum of the number of times the number of tree roots
can increase by one plus the number of initial tree roots, rq

Recalling the assumption about vertex examinations that bounds the time spent deciding
which vertex and edge to process, we get the following theorem.

THEOREM 5.9. The generic bipartite dynamic tree algorithm runs in O(nlm log n) time.

Proof Each call to tree push/relabel does O (1) dynamic tree operations and then executes
the while loop in line (*) or the for loop in line (f) a number of times. Each execution of
the while loop takes O(1) dynamic tree operations, and the while loop is executed at most
O (n m) times over the course of the whole algorithm, since each cut in line (**) corresponds to
a saturating push. Similarly the cuts in line (:) correspond to edges looked at while relabeling
and by Corollary 3.4 there are only O(nlm) of these. Thus the algorithm performs O(nlm)
dynamic tree operations. Since the maximum tree size is n, the algorithm takes O(nlm log n)
time. [3

Note that we have used the fact that the number of links, the number of cuts, the number
of saturating pushes, and the relabeling time are all O(nlm).

5.5.1. Further improvements. While for many values of n, n 1, m, and U, the bound
given by Theorem 5.9 is an improvement over those of the algorithms in the previous four
sections, it is possible to use dynamic trees in a more sophisticated manner to achieve a running
time of O(nlm log((n21/m) + 2)). In order to realize this bound, we must overcome a few
obstacles. First, as in [3], [15], and [16], we need to limit the tree size. Moreover, we need to
make the tree size bound solely a function of n rather than n. Finally, we must deal with the
fact that a cut can make a V2-vertex a tree root. This leaves open the possibility that a V2-vertex
will become active, thus violating one of the invariants we have previously maintained. We

918 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

see no way to avoid this--instead we control how this happens and use a fairly complicated
analysis to show that we can achieve the desired time bounds.

To ensure that the tree size is a function of n and not n, we use the following.
LEMMA 5.10. Ifall the leaves in a nontrivial dynamic tree are Vl-vertices, then the number

ofvertices in the tree is at most twice the total number of V1-vertices in the tree.

Proof. Since no V2-vertex is a leaf, all V2-vertices have at least one child. The graph is
bipartite, which means that all these children must be Vl-vertices. Therefore, the total number
of V1 vertices in the tree must be at least as large as the total number of V2-vertices. q

We will use two rules to enforce this invariant. First, if a link operation could make a

Ve-vertex a leaf, we do not perform that link. This rule will be respected in all the procedures
that follow. Second, if a cut causes a V2-vertex to become a leaf, we immediately cut that
vertex from the tree. This idea is implemented in procedure bi-cut, which appears in Fig. 5.4.
Procedure bi-cut will be used in place of cut. Observe that procedure bi-cut performs at most
two dynamic tree operations.

procedure bi-cut(
begin

if v
then cut(p(v))
cut(v)

end

FIG. 5.4. The bi-cut operation.

We also want to maintain the invariant that no tree have more than k vertices (k will be
chosen later). As in [15] and [16] we achieve this by preceding each link operation by a
calculation of whether or not the result of the link will be a tree of greater than k vertices. If
so, we do not perform the link. Since trees only grow as the result of link operations, it is clear
that this maintains the desired invariant.

The main problem left to address is the complexity added by allowing excess to remain on

V2-vertices. In general, this yields slower running times. We maintain the following invariant,
however.

INVARIANT 5.11. Whenever a V2-vertex is relabeled, it does not have any excess on it.

As we shall see, this will allow us to get a good bound on the number of tree operations.
To maintain this invariant we need to ensure that we always have the flexibility to send all

the excess from a V2-vertex out over the current edge. The following lemma gives a condition
sufficient to guarantee this flexibility.

LEMMA 5.12. Let out-cap(v) be the residual capacity of the current edge of v. lffor all

V2-vertices v that are dynamic tree roots, we maintain that

(5.1) e(v) < out-cap(v)

and that the current edge of v is eligible, then lnvariant 5.11 can be satisfied with O(1)
additional work per tree-push or relabeling operation.

Proof The left side of (5.1) can change when we do a push that involves v, and the right
side can change when the current edge of v changes. We deal with these two cases separately.
When doing a tree-push that terminates at a root r that is a V2-vertex we must ensure that the
new excess does not exceed out-cap(r). To do this we simply push less flow. This idea is

captured in a new procedure called bi-send, which appears in Fig. 5.5. This procedure will be
used whenever we want to push flow along a path from a tree vertex to the root.

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 919

procedure bi-send(v)
begin

f .--find-root(v)
if r VI
then

+-- min{e(v),find-value(find-min(v))}
else

(*) min{e(v), find-value(find-min(v)), out-cap(r) e(r)
change-value(v, -3)
while v ’=find-root(v) andfind-value(find-min(v)) 0 do

begin z -- find-min(v)bi-cut(z)
end

end

FIG. 5.5. The bi-send operation.

Next we have to deal with the case when out-cap(v) changes. Let (v, w) be the current
edge of v. The value of out-cap(v) may change in two different ways. One way is that (v, w)
may become saturated. When this happens, invariant (5.1) implies that the push saturating
(v, w) rids v of all its excess. After the push, we advance the current edge pointer of v to
the next eligible edge, doing a relabeling if necessary. The second case is that w may be
relabeled, thus making (v, w) ineligible. The current edge pointer of v is advanced to the
next eligible edge; for this new edge, (5.1) may be violated, however. To handle this case,
we always push flow over edge (v, w) before relabeling w. This change is summarized in
procedure bi-relabel(w), which appears in Fig. 5.6. Observe that since all edges incident to
w must be inspected in order to relabel w, procedure bi-relabel runs in the same asymptotic
time as procedure relabel.

procedure bi-relabel(w)
begin

ifw V1
then for all v s.t. the current edge of v is (v, w) do

push e(v) units of flow over edge (v, w)
replace d(v) by min{d(w) + (v, w) I(v) and uf(v, w) > O}
for all children y of v do

bi-cut(y)
end

FIG. 5.6. The bi-relabel operation.

What we have shown is that whenever the current edge pointer of w V2 advances, there
is no excess at w. Since this pointer advances to the end of the list before arelabel, it must
be true that at the time of a relabel there is no excess on w. Further, the only algorithmic
changes are the change in line (*) of bi-send, which adds O(1) work per tree push, the change
in bi-relabel, which adds O(1) work per relabel, and a change in the current edge advancement
procedure, to make sure that current edges from V2-vertices are always eligible.

Given these building blocks we can give the procedure bi-tree push/relabel, which incor-
porates all of these ideas. The procedure appears in Fig. 5.7. The basic idea is similar to that
used in [3], [15], and [16], in that we do a tree-push, but only perform a link if the size of the
resulting tree is not too large. We also have the additional constraint of not performing a link
that will cause a V2-vertex to become a leaf. This leads to lines (T1) through (T2) of bi-tree
push/relabel which handle the case when we are pushing from a trivial dynamic tree. In this
case we first push flow over v’s eligible edge (v, w). Then we do a bi-send(w) and proceed as
if we had started at the root of w’s dynamic tree. We also make one technical change and use
a procedure called bi-send* instead of bi-send in line (TB). Procedure bi-send* differs from

920 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

bi-send in that it defers doing its cuts until line (**) of procedure bi-tree push/relabel. This is
done in order to avoid the case that the link performed in line (f) is linking a trivial dynamic
tree, as this would make a V2-vertex a leaf. (This is done purely for ease of presentation and
is not necessary.)

procedure bi-tree-push/relabe v
begin

if there is an eligible edge (v, w)
(T1) then begin if v is a trivial V2 tree

then begin push flow on edge (v, w)
r -- find-root(w)(TB) bi-send*(w)
if there is an eligible edge (r, q)
then begin v r

w--q
end

else bi-relabel(r)
(T2) end

iffind-size(v) +find-size(w) < k
(f) then begin link(v, w, uf(v, w))

p(v) +-- w
end

(*) else begin push flow on edge (v, w)
bi-send(w)

(**) Perform the cuts from line (TB) (there may be none)
end

end

else
end

bi-relabel(v)

FIG. 5.7. The bi-tree-push/relabel procedure.

We now use procedure bi-tree-push/relabel in a FIFO algorithm. We call this the FIFO
bipartite dynamic tree algorithm.

Since, by Invariant 5.11, whenever a V2-vertex is relabeled it has no excess, we can derive
a bound of O(n2) passes over the queue, by a proof similar to that of Lemma 5.1. Define a
vertex activation to be the event that either a vertex with zero excess receives positive excess,
or a vertex with positive excess is relabeled. This corresponds to a vertex being placed on the
queue. We will need to bound the number of times this occurs.

First, we give a lemma, the proof of which is simliar to that of Lemma 5.8 and Theorem
5.9, with the additional observation that the time spent in an iteration of bi-tree-push/relabel
is within a constant factor of the amount of work done by tree-push/relabel.

LEMMA 5.13. The FIFO bipartite dynamic tree algorithm runs in 0 (n m log k) time plus
O(log k) time per vertex activation.

All that remains is to bound the number of vertex activations. First we introduce some
terminology. We denote the tree containing vertex v by To. We call a tree large if the number
of nodes in the tree is at least k/2. As a consequence of Lemma 5.10, there are only 2nl
vertices in all the nontrivial dynamic trees, hence there are no more than 4nl/k large trees at
any time. In particular we will use the fact that there are O (n / k) large trees at the beginning
of a pass over the queue.

LEMMA 5.14. The number of vertex activations is O(nlm + n/k).
Proof. By Invariant 5.11, all Vz-vertices have zero excess when relabeled, thus the only

vertex activations due to relabelings are from V-vertices. There are at most O(n) of these.

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 921

There can be only O (nlm) vertex activations for which the corresponding bi-tree-push/relabel
executions perform a cut or link or a saturating push in line (*).

it remains to count the vertex activations for which the corresponding invocation of bi-
tree-push/relabel does neither a cut nor a link nor a saturating push. If this occurs then it must
be thatfind-size(v) +find-size(w) > k, i.e., either To or To is large. We consider the two cases
separately.

Suppose To is large. Vertex v is the root of To. Since the push is nonsaturating, it must
rid v of all its excess. If To has changed since the beginning of the current pass, we charge
the activation to the link or cut that most recently changed To. This occurs at most once per
cut and twice per link for a total of O(n m) time overall. If To has not changed since the
beginning of the pass, we charge the activation to Tv. There are at most O(n/k) large trees
at the start of a pass, hence this case counts for O(n/k) charges overall.

Suppose To is large. In this case the root r of To may be added to the queue. As before,
if To changed during the pass we charge the activation to the link or cut which caused it,
otherwise we charge it to the large tree.

We have ignored so far the possible activations in lines (T1) through (T2). It is easy to
verify that these only add a constant factor to the bounds mentioned above. The reason for
adding this case is to ensure that in every iteration either a link, cut, or saturation is performed,
or a large tree is involved. This additional case allows us to ensure this with no asymptotic
loss in the running time of the procedure.

Combining all these cases we get O(nm + n3/k) vertex activations.
THEOREM 5.15. The FIFO bipartite dynamic tree algorithm runs in O(nm log((n/m)

2)) time.

Proof Apply Lemmas 5.13 and 5.14 and choose k (n/m) + 2.

5.11. A parallel implementation. In this section, we give a parallel implementation
of the bipartite excess scaling algorithm. Our model of computation is an exclusive-read
exclusive-write parallel random access machine (EREW PRAM) [13]. Our algorithm runs in
O((nm)/d + n log U) log d) time using d [n’l processors, thus achieving near-optimal
speedup for the given number of processors. We assume familiarity with parallel prefix
operations [22] and refer the reader to [2], [16], [26], and [32] for examples of the use of
parallel prefix operations in network flow algorithms. Specifically, we use the fact that using
d processors and O (log d) time, we can execute the following parallel prefix operation:

Parallel Prefix Operation: Given/< d numbers f(v) f(vt), compute
the partial sums f(v), f(v) + f(v2) f(Vl) +... -+- f(Vl).

Our algorithm will be the same as the excess-scaling algorithm of 5.3 with a parallel im-
plementation of bipush/relabel and a few additional data structures. The same approach was
taken by Ahuja and Orlin [2] in developing a parallel version of their original excess scaling
algorithm.

The first step in our algorithm is to transform the input graph so that each vertex has out-
degree no greater than d. This transformation yields a graph with O(n) V-vertices, O(n2)
Vz-vertices and O(m) edges. We achieve this by repeating the following step until it is no

longer applicable:

splitting step: Pick a vertex v with out-degree k > d. Create two new ver-
tices v’ and v" andreplace edges (v, vk-a+)... (v, vk) withedges (v, v’), (v’, v"),
and (v", vk-a+)... (v", vk). Edges (v, v’) and (v’, v") have infinite capac-
ity, while each edge (v", vk) has its capacity set equal to u(v, vk).

922 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

The splitting step creates one new V-vertex, one new Vz-vertex, and 2 more edges. Let
o max{0, [(out-degree(v) d)/(d 1)]}. Each splitting step reduces by one. Initially

O(n 1) and > 0 when the algorithm terminates. Thus, we only need to perform the
splitting step O(n) times overall, adding O(n) vertices and O(n) edges. Similarly, we can
repeat the same step to reduce the in-degree of each vertex.

Further, we can perform this step in O(n log m) time on d processors. We explain
how to reduce the in-degree; the out-degree can be reduced in a similar manner. First, we
lexicographically sort the list of edges by their tails. This can be done on d processors in
O(n log m) time using Cole’s sorting algorithm [8] and Brent’s theorem [6]. Next, we assign
one processor to each of the last d edges on the list. In O (log d) time, we can determine if all
these edges have the same tail. If so, we perform the splitting step, which can be done in O (1)
time on d processors. We then delete these edges from the list and continue on the remainder
of the list. If they do not all have the same tail, then the last vertex on the list must have degree
< d. In this case we delete all edges which have the same tail as the last edge and continue on
the remainder of the list. In each iteration we either delete all the edges incident to a vertex

mor we process d edges. Hence there are O(n + 7) O(n) iterations, each of which can be
performed in O (log m) time on d processors.

For the rest of this section, we will assume, without loss of generality, that every vertex
in our graph has both in-degree and out-degree < d.

We first address the problem of implementing a bipush in parallel. In the bipush operation
for the maximum flow problem, it is necessary to scan the edge list for vertex v starting with
the current edge for vertex v until either an eligible edge is determined or until the edge list is
exhausted. In the parallel algorithm, we will scan these edges in parallel.

We begin by introducing some terminology. Let I(v) denote the set of vertices w such
that (v, w) is an edge, and let (v) denote the set of vertices w such that (v, w) is an eligible
edge. Let us assume that the vertices in I(v) are denoted v, 1)2 Ok, where k II(v)l.
Thus the jth edge emanating from vertex v is edge (v, vj).

For each vertex v 6 V2, we let (v) wo) r(v, w), and refer to (v) as the effective
residual capacity of vertex v. Note that we can always push all of the excess out of a vertex
v in V2 prior to a relabeling of v so long as the excess does not exceed the effective residual

capacity.
We define the effective residual capacity (v, w) of edge (v, w) as

0 if (v, w) is not eligible,
(v, w) r(v, w) if (v, w) is eligible and v 6 V2, w 6 V,

min{r(v, w), (w)} if (v, w) is eligible and v 6 V, w 6 V2.

In the algorithm, we will be performing pushes from one vertex in V at a time, and
we will subsequently push from several vertices in V2 in parallel. By defining the effective
residual capacity for edges (v, w) as we do, we will ensure that we never push more flow into

any vertex v 6 V2 than the effective residual capacity of v. Subsequently, all of the flow can
be pushed out prior to a relabel of v.

In order to achieve the speedup desired, we cannot assign one processor to each edge
of I(v) in a push from vertex v. Thus, we will have to more efficiently allocate processors
to edges on which we wish to push flow. In order to do so, we introduce the following four
procedures. In all these procedures v is a vertex from which we wish to push 6 units of flow.

We use Current(v) to denote v’s current edge and store the edge lists in arrays.
1. NextCurrent(v, 3)" if pushing 3 units of flow would saturate all of v’s admissible

edges, then output I(v)] + 1. Otherwise, output the index of the edge that will be current

after pushing 3 units of flow from v.

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 923

2. NewRelabel(v, 3)" output true ifNextCurrent (v, 3) II(v)l + and false otherwise.
3. NextIncrement(v, 3)" output the amount of flow that will be sent in edge

NextCurrent(v, 3) when pushing flow from v.

4. Requirement(v, 3)" output the number of edges scanned in order to send 3 units of
flow from v without a relabel. It is equal to NextCurrent (v, 3) Current (v) + 1.

LEMMA 5.16. There exists a data structure that allows us to implement each of these
operations in 0 (log d) time on one processor.

We defer the proof until later. Assume for now that such an implementation exists.

Using these procedures, we can implement the main operation, which we call parallel-
push(v, 3, S). This operation tries to push up to units of flow from vertex v using the set S
of parallel processors, and so that no relabel occurs. The implementation is straightforward,
and appears in Fig. 5.8.

procedure Parallel-push(v, 3, S)
begin

c Current(v). k NextCurrent(v, 3). s ISI
(*) For each from c to min(k 1, c + s 1) do in parallel

send (v, vi) units of flow in edge (v, vi), and update .
ifs > k-c + andk < II(v)l

then send Nextlncrement(v, 3) units of flow in edge (v, v-).
Current(v) NextCurrent(v, 3).
end

FIG. 5.8. The procedure parallel push.

LEMMA 5.17. Parallel-push can be implemented in O(log d) time on d processors.

Proof Step (*) can be implemented by a parallel prefix operation on d processors. By
Lemma 5.16 all the other steps can be implemented on processor in O (log d) time.

Part of the input to parallel-push is a set of processors. We use a procedure Allocate(v, D)
to implement this.

Allocate(v, D)
input: vertex v, and D, a d-dimensional vector of demands for processors from the

vertices in I (v). D(j) is the number of processors requested by vertex vj.
output: The vector Processors(), where Processors(j) is the set of processors allocated

to vertex vj.

It is straightforward to implement Allocate with a parallel prefix operation.
Now, we are ready to put all the pieces together to get an implementation of parallel

bipush/relabel. This simply consists of a parallel push from v, followed by a set of parallel
pushes from vertices w 6 V2 with excess, each of which is preceded by processor allocation.
The procedure concludes by relabeling the necessary vertices. The details appear in Fig. 5.9.
One detail deserves explanation. We always try to push exactly A/2 units of flow from a
vertex in V. This is necessary to maintain the invariant that no vertex ever accumulates more
than A units of excess.

To begin the analysis, we bound the number of iterations of this procedure.
LEMMA 5.18. There are O(n2 log U) calls to parallel bipush/relabel over the course of

the whole algorithm.

Proof Each parallel bipush/relabel in the first line either moves A/2 units of flow or
results in a relabeling. By a proof similar to that of Lemma 5.6, there are at most O (n2 log U)
such pushes over the whole algorithm.

LEMMA 5.19. Each call to parallel bipush/relabel takes 0(# of iterations of the while
loop log d+ time spent relabeling) time on d processors.

924 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

procedure parallel bipush/relabel(v)
begin

Parallel push(v, A/2, d)
while e(vj) = 0 for some vj I (v) do
begin

for each to d do in parallel
D(vj) Requirement(vj, e(vj)).

Allocate(v, D, d).
for to d do in parallel
begin

(*) push(vi, e(vi), processors(i)).
update data structures.

end
end
create a list L of indices j s.t. j V2 and NewRelabel(vj) true.
for each L do Relabel(vi).
if NewRelabel(v) true then relabel(v).

end

FIG. 5.9. Procedure parallel bipush/relabel.

Proof By Lemma 5.16 and the fact that Allocate takes O(log d) time, each step except
for the parallel push in line (*) takes O(log d) time. We know from Lemma 5.17 that a push
takes O (log d) time. It is easy to see that a set of pushes which use a total of d edges can also
be completed in O(log d) time; thus each iteration of the while loop takes O(log d) time. The
lemma follows. [3

It remains to bound the number of iterations of the while loop.
LEMMA 5.20. The while loop is executed O((n m/d) + n log U) times over the whole

algorithm.

Proof. First we observe that each vertex in I (v) may have at most one nonsaturating push
from it per execution of the while loop. Lemma 5.18 implies that the number of nonsaturating
pushes is at most O(nZd log U) overall. Let nsp be the number of nonsaturating pushes
that have occurred since the beginning of the algorithm. Consider the potential function F
v current (v) + nsp. Initially F 0 and at termination F (# of nonsaturating pushes)
O(nd log U). The only way for F to decrease is by a relabel. Each relabel decreases F by
at most II(v)l; the total decrease is O(nlm). So, the total increase in F over the algorithm
is O((nd log U + n lm)). A parallel push with k processors increases F by k or results in a
relabeling. Each iteration in a while loop except for the last one allocates d processors; hence
it increases F by d or results in a relabeling. Ignoring the last iteration of the while loop in each
call to parallel bipush/relabel, we find that there are at most O((nd log U+nlm)/d) iterations
of the while loop. To count the last iterations, we observe that there is one last iteration per

(nlmcall for a total of O(n log U) Thus, overall there are O,--d- + n log U) iterations 1

LEMMA 5.21. The total time spent relabeling is O(((nlm/d) + n log U) log d).

Proof We spend a total of O(n m) work relabeling. However, at each relabeling step
we look at d edges at a time, except for the last relabel step in a call to parallel bipush/relabel.

(nlmHence the total time is O -d-- + n log U) [3

Now we turn to the proof of Lemma 5.16.

Proof (of Lemma 5.16). Assume for now that k II(v)l is a power of 2 for each vertex.
We create a complete binary tree whose leaves are the indices of the vertices in I(v). The key
of each leaf j in the binary tree is (v, vj). The key of each internal vertex of the binary tree
is the sum of the keys of its descendent leaves.

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 925

Whenever a vertex v is relabeled, each vertex vj of I(v) is assigned a processor, and
its binary tree is updated. The assignment of processors takes O(log d) steps per relabel.
Moreover, each processor updates its binary tree in O (log d) steps.

When a push from vertex v is performed, the binary tree for vertex v must be updated.
If k processors are assigned then Current(v) is increased by < k, and the updating can be
accomplished with k processors in O(log d) time.

In order to compute NextCurrent (v,), we start at the root of the binary tree for v,
and we select the right child or the left child depending on whether 6 is less than or greater
than the key of the right child. We then recur on the selected child. We also can compute
NextIncrement in this manner. 71

Combining all the above results, we have the following theorem.
THEOREM 5.22. Algorithm Bipartite Excess Scaling with bipush/relabel replaced by

parallel bipush/relabel runs in O(((nlm/d) + n log U)log d) time on d processors on an
EREW PRAM.

Plugging in d [], we can restate the theorem as the following corollary.
COROLLARY 5.23. Algorithm Bipartite Excess Scaling with bipush/relabel replaced by

parallel bipush/relabel runs in O(n2 log U log) time on processors on an EREWPRAM.
The work done by this algorithm is within a logarithmic factor of the running time of the

sequential bipartite excess scaling algorithm.

6. Parametric maximum flow. A natural generalization of the maximum flow problem
is obtained by making the edge capacities functions of a single parameter .. This problem
is known as the parametric maximumflow problem. We consider parametric maximum flow
problems in which the capacities of the edges out of the sink are nondecreasing functions of
,k, the capacities of the edges into the sink are nonincreasing functions of ., and the capacities
of the remaining edges are constant. Although this type of parameterization appears to be
quite specialized, Gallo, Grigoriadis, and Tarjan [14] have pointed out that this parametric
problem has many applications, in computing subgraph density and network vulnerability and
in solving other problems, some of which are mentioned at the end of this section.

Let uz (v, w) denote the capacity of edge (v, w) as a function of ,k and suppose that we
wish to solve the maximum flow problem for parameter values 1 _< 2 < < ,l. Clearly,
for different values of ,k, a solution can be found using invocations of a maximum flow
algorithm. This approach takes no advantage of the similarity of the successive problems to
be solved, however. Gallo, Grigoriadis, and Tarjan [14] gave an algorithm for finding the
maximum flow for O(n) increasing values of . in the same asymptotic time that it takes to
run the Goldberg-Tarjan maximum flow algorithm once. If the capacities are linear functions
of ,k, it is easy to show that the value of the maximum flow, when viewed as a function of),
is a piecewise linear function with no more than n 2 breakpoints. In this case, they give an
algorithm for finding all of the breakpoints of this function in the same asymptotic time as it
takes to run the Goldberg-Tarjan maximum flow algorithm once.

In this section we give an algorithm which for increasing values of k finds all maximum
flows in O(ln + ln2 + n3 + nm) time. Using the dynamic tree data structure, this algorithm
runs in O(ln + nm log((ln + nZ)/m + 2)) time.

We begin by giving one iteration of the algorithm, i.e., determining the maximum flow
for parameter value ,ki, if the maximum flow for parameter value ,ki_ is given. The algorithm
appears in Fig. 6.1. First, we update the capacities. The capacity of an edge leaving the source
may have increased. If so, we saturate the edge, by setting its flow equal to its new capacity.
The capacity of an edge leaving the sink may have decreased. If it has decreased below the
flow on the edge, we decrease the flow so that it is equal to the capacity. Since 6 V1 by

926 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

assumption, this may create excess on vertices in V2. Therefore, we immediately push any
such excess to vertices in V, thus re-establishing the invariant that no excess is on vertices in

V2. The second step consists of running the bipartite FIFO algorithm in the network beginning
with the current f and d. This gives us a maximum flow for the parameter value

Step (Update preflow)
Let +
(s, v) 6 E with d(v) < 2Hi, let f(s, v) max{uzi (s, v), f(s, v)}.
(v, t) E, let f(v, t) min{ux; (v, t), f(v, t)}.
’v V2 while e(v) > 0, do push/relabel(v).

Step 2 (Find maximum flow) Run the bipartite FIFO algorithm on the network with capacities u beginning
with flow f and distance labels d.

Fl6. 6.1. Algorithm parametric bipartite flow.

Remark. In applications of the parametric maximum flow problem, it may happen that
s 6 V or 6 V2, contrary to our assumption. Such a possibility can be handled by making
minor changes to the algorithm, without affecting its running time.

Now we must prove that the algorithm is correct and efficient. We do this by means of
the following lemmas.

LEMMA 6.1. At the end of each step in the algorithm, there is no excess on any vertex
in V2.

Proof. It suffices to restrict our attention to Step 1, since Step 2 always maintains this
condition. Since by assumption s 6 V2, increasing the flow on edges out of s can increase the
excess only on vertices in V. Since 6 V2, decreasing the flow on edges into may create
excesses on vertices in V2. This excess is immediately removed from vertices in V2 by the
procedure push/relabel, however. [3

LEMMA 6.2. Throughout all iterations ofthe parametric bipartite flow algorithm, distance
labels are nondecreasing.

Proof. We first show that updating the residual capacities and the preflow between itera-
tions maintains the validity of the distance labels. Increasing the flow on an edge (s, v) may
create a new residual edge (v, s), but since d(v) < 2nl, the labeling is still valid. Decreasing
the flow on edges into does not create any new residual edges, so the distance labels are
still valid. We noted earlier that procedures push/relabel and bipush/relabel maintain a valid
labeling. The lemma follows.

A consequence of Lemma 6.2 is that, over all iterations of the algorithm, each vertex
is relabeled O(nl) times, and the total relabeling time is O(nlm). Furthermore, the total
number of saturating pushes over the whole algorithm is O (nm). We bound the number of
nonsaturating bipushes in the next lemma.

LEMMA 6.3. The algorithm performs a total of O(ln + n) nonsaturating bipushes over
all iterations.

Proof. As in the bipartite FIFO algorithm, consider the following potential function:
max{d(v)lv is active}. The potential function increases due to relabelings, and this

increase has already been shown to be at most 4n2. The potential function may also increase
in Step when the preflow is updated. But this increase is at most O(nl) per iteration, and
O(nl) over all iterations. Thus the total number of passes over the queue is O(ln + n21) and
the total number of nonsaturating bipushes is O(ln2 + n). [3

THEOREM 6.4. A total of iterations of the parametric bipartite flow algorithm take
O(ln + nm + ln + n3) time.

Proof. Each execution of Step takes O(n) time to update the residual capacities and
flows. Getting rid of the excesses at vertices in V2 by performing push/relabel steps takes

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 927

O(n) time per iteration plus the time to perform saturating pushes, which is O(n m) time
overall. Hence executions of Step take O(ln + nlm) time. The executions of Step 2 take
a total of O(nlm + ln2 + n) time, as was shown previously. The theorem follows.

The dynamic tree data structure can be incorporated into the parametric maximum flow
algorithm to improve its computational complexity. Using the ideas described in 5.5, it can
be shown that the dynamic tree implementation of the parametric maximum flow problem
runs in O(ln + nlm log((lnl + nZ)/m + 2)) time.

Often applications of the parametric maximum flow problem require that the minimum cut
be determined for each of the parameter values .l,)2 ,l. Obviously each such minimum
cut can be determined by a breadth-first search of the network, requiring O (m) effort per cut.
Overall this time would be O(ml) and for larger values of would be a bottleneck. In order to
achieve a faster time bound we maintain exact distance labels of vertices as explained in 16].
Maintaining exact distance labels requires some additional effort but no more than O(n
time over all iterations. While using this method, the minimum cut (Xi, Xi), at the end of
iteration/is defined as X {1) E V d(v) > 2nl} and X {1) V d(v) < 2nl}. It may
also be pointed out the minimum cuts in the parametric maximum flow problem are nested,
i.e., for Zl < 2 < .3, with corresponding cuts (X1, X1), (X2, X2), (X3, X3), we have that
X1 c_ X2 __. X3 12]. This property allows us to store all cuts in O(n + l) space, and recreate
any one cut in O (n) time.

While we have only given an algorithm for the case where the ’s are given in increasing
order, actually we can solve a more general problem. Let x(X), the min-cut capacityfunction,
be the capacity ofthe minimum cut as a function of,k. If the edge capacities are linear functions
of X, then x(.) is a piecewise-linear concave function with at most n 2 breakpoints. We can
actually compute all of these breakpoints in O(n2 + nlm log((nnl/m) + 2)) time, and can do
even better if we know a priori that o(n). This result directly follows from the results of
[14] and the details appear in [35].

We conclude by noting that the bipartite parametric flow problem has many applications
including multiprocessor scheduling with release times and deadlines [21], [24], 0-1 integer
programming problems [29], [30], maximum subgraph density [21], finding a maximum-size
set ofedge-disjoint spanning trees in an undirected graph [28], [29], [30], network vulnerability
[9], 19], partitioning a data base between fast and slow memory [11], and the sportswriter’s
end-of-season problem [23], [31]. For all these problems we improve on or match the best
known bounds.

7. Minimum-cost circulation. In this section we examine the minimum-costflow prob-
lem on bipartite networks. We consider the recent cost-scaling minimum-cost flow algorithm
of Goldberg and Tarjan 17], and describe the improvement in its running time that can be
obtained when it is adapted for bipartite networks. We shall be very sketchy in our description,
since all the results are analogous to the results in 5.

The minimum cost flow problem is a generalization of the maximum flow problem. In
this problem, each edge (v, w) has a cost c(v, w). We formulate the problem as a circu-
lation problem, since it is equivalent to other formulations. (See [1] and [18].) We as-
sume that the costs are antisymmetric, i.e., c(v, w) -c(w, v) for each edge (v, w). Let
C max{c(v, w) (v, w) 6 E}. The minimum-cost circulation problem can be formulated
as follows:

Minimize c(v, w)f(v, w)
(v,w)E

subject to

928 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

(7.1) f(v, w) < u(v, w) (v, w) E,

(7.2) f(v, w) -f(w, v) (v, w) E,

(7.3) f(v, w) =O Yv 6 V.
wEV

A circulation is a function of satisfying constraints (7.1), (7.2), and (7.3). A pseudoflow
is a function f satisfying only constraints (7.1) and (7.2). For any pseudoflow f, we define
the excess of vertex to to be

(7.4) e(w) f(v, w).
v:(v,w)EE

The excess at a vertex may be positive or negative. A vertex v is called active if e(v) > O.
The residual network is defined as for the maximum flow problem. We associate with each
vertex v a real-valued price p(v). The prices correspond to linear programming dual variables.
In the analysis, the prices play a role similar to that played by the distance labels in the maximum
flow algorithm. The reduced cost of an edge (v, w) with respect to the price function p is
denoted by Cp(V, w) and is defined by Cp(V, w) c(v, w) + p(v) p(w).

7.1. The cost-scaling algorithm. The cost-scaling algorithm of Goldberg and Tarjan
[17], relies on the concept of approximate optimality. A circulation f is said to be e-optimal
for some e > 0 if f together with some price function p satisfies the following condition:

(7.5) uf(v, w) > 0 =, Cp(V, w) >_ -e ==, (e-optimality).

We refer to this condition as the e-optimality condition. Let be the number of edges on
the longest simple cycle in the network. It can be shown that any feasible flow is e-optimal
for e > C and any e-optimal feasible flow for e < 1/l is an optimum flow [4]. Since in a
bipartite network every other vertex on a cycle must be a vertex in V1, any e-optimal feasible
flow for e < 1/(2nl) is an optimum flow.

The cost-scaling algorithm treats e as a parameter and iteratively obtains e-optimal flows
for successively smaller values of e. Initially, e C; on termination, e < / (2n). The algo-
rithm performs repeated cost-scaling phases, each of which consists of applying an improve-
approximation procedure that transforms a 2e-optimal circulation into an e-optimal circulation.
After + [log(2nlC)] cost scaling phases, e < 1/(2nl), and the algorithm terminates with
an optimal circulation. To get the algorithm started, an initial circulation can be found by
using any maximum flow algorithm, such as one of those discussed in 5. A more formal
description of this algorithm appears in Fig. 7.1.

Recall that in the maximum flow algorithm, we maintained the invariant that all excess
was on V-vertices. This will be our goal in the minimum cost circulation algorithm also. The
procedure improve-approximation given in Fig. 7.2 first converts the 2e-optimal circulation it
receives as input into a 0-optimal pseudoflow (lines (*) through (**)). This may leave positive
excess on Vz-vertices. So we execute the while loop at line (f), which applies push
operations to these vertices until they are rid of all their excess. Now we have established
the invariant that the only vertices with positive excess are V-vertices. We will maintain this
invariant for the rest of procedure improve-approximation. The remainder of the procedure
moves flow from vertices with positive excess to vertices with negative excess. As vertices

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 929

algorithm cost scaling
begin

p=0; C;
let f be any initial circulation;
while > do2n

begin e/2
improve-approximation(f, p,);

end
end

FIG. 7.1. Algorithm cost scaling.

procedure improve-approximation(f, p, E)
begin
(*) if Cp(V, w) < 0

then begin f(v, w) u (v, w);
f(w,v)=-f(v,w)

end;
(**) compute vertex imbalances;
(’) while the network contains an active V2-vertex v do

push
(:) while the network contains an active vertex v do

bipush/update v
end

FIG. 7.2. The procedure improve-approximation.

in V2 may have negative excess, this will sometimes involve a one-edge push and sometimes
involve a two-edge push.

We call an edge (v, w) in the residual network admissible if Cp(V, w) < 0. We define the
subnetwork ofG consisting solely of admissible edges to be the admissible network. The basic
operations in the procedure are selecting active vertices, pushing flows on admissible edges,
and updating vertex prices. The details of improve-approximation, adapted to the bipartite
case, appear in Figs. 7.2 and 7.3.

procedure bipush/update(v
begin

if there exists an admissible edge (v, w)
then if e(w) < 0

then push min[e(w), e(v), uf(v, w)} units of flow on (v, w)
else if there exists an admissible edge (w, x)

then push 3 min{e(v), uf(v, w), Uf(W,X)} units of flow
along the path v w x

else replace p(w) by max(w,x)eEj.{p(x) c(w, x) e}
else replace p(v) by max(v,u,)eEj.{p(w) c(v, w) }

end
procedurepush
begin

if there exists an admissible edge (v, w)
then push min{e(w), e(v), uf(v, w)} flow on (v, w)
else replace p(v) by max(o,u)Ef {p(w) c(v, w) }

end

FIG. 7.3. The procedures push/update and bi-push/update.

To identify admissible edges emanating from a vertex, the algorithm uses the same current

edge data structure used in the preflow-push algorithm for the maximum flow problem.

930 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

A movement offlow along a path v w -x in bipush/update is called a bipush. The bipush
is saturating if 3 min{uf(v, w), uf(w, x)} and nonsaturating otherwise. The correctness
and efficiency of the algorithm rest on the following results.

LEMMA 7.1. 1. The improve-approximation procedure always maintains e-optimality of
the pseudoflow, and at termination yields an e-optimal circulation.

2. Each vertex price never increases, and it decreases O(n 1) times during an execution

of the procedure.
3. There are 0 (n m) saturatingpushes andbipushes during an execution oftheprocedure.
4. Immediately before, during, and immediately after the while loop in line () ofimprove-

approximation, all excess is on V-vertices.
Proof These results follow directly from the proofs of Goldberg and Tarjan 17] adapted

for bipartite networks. E]

As in the preflow-push algorithm, it can easily be shown that the time spent updating
prices in an execution of improve-approximation is O(nm). The bottleneck in the procedure
is the number of nonsaturating pushes and bipushes. Observe that there are three different
types of pushes and bipushes to bound:

1. pushes in the while loop at line (-),
2. bipushes in the while loop at line (),
3. pushes in the while loop at line (:i:).
We bound the first type by observing the all the pushes are saturating except for at most

one per V2-vertex. Therefore, there are at most n nonsaturating pushes.
To bound the second type of bipushes, we need the following lemma from 17].
LEMMA 7.2 17]. The admissible network remains acyclic throughout the execution of

the improve-approximation procedure.
The number ofnonsaturating bipushes performed by the procedure depends upon the order

in which active vertices are examined. Goldberg and Tarjan 17] show that the generic version
of the procedure, in which active vertices are examined in an arbitrary order, performs O(n2m)
pushes for general networks. They show that a specific implementation of the generic imple-
mentation, called thefirst-active method algorithm, performs O(n3) nonsaturating pushes, as
does a related method, the wave method. (The wave method was developed independently by
Bertsekas and Eckstein [5].) We shall show that an adaptation of the first-active method for
bipartite networks performs O(n]) nonsaturating bipushes.

The first-active method uses the acyclicity of the admissible network. As is well known,
the vertices of an acyclic network can be ordered so that for each edge (v, w), v precedes w in
the ordering. Such an ordering of vertices is called a topological ordering and can be found in
O (m) time. The first-active method maintains a list L of all vertices in V in topological order.
The algorithm examines each vertex v 6 L in order. If v is active, it performs bipush/update
operations on vertex v until either it becomes inactive or p(v) is updated. In the former
case, the algorithm examines the next vertex on L. In the latter case, the algorithm moves
v from its current position on L to the front of L, and restarts the scan of L at the front.
Moving v to the front of L preserves the invariant that L is a topological order of the vertices,
because immediately after v is assigned a new prices, it has no incoming admissible edges.
The algorithm terminates when L is scanned in its entirety. Note that updating the price of a
vertex in V2 does not affect the topological order of vertices in V. On termination, no vertex
can be active.

Observe that if within n consecutive vertex examinations the algorithm performs no

price updates then all active vertices have discharged their excesses and the algorithm obtains

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 931

a flow. This follows from the fact that when vertices are examined in the topological order,
active vertices push flow to vertices after them in the topological order. As there are O(n2)
price updates of vertices in V, we immediately obtain an O(n3) bound on the number of
vertex examinations. Each vertex examination entails at most one nonsaturating bipush.
Consequently, the wave algorithm performs O(n) nonsaturating bipushes per execution of
improve-approximation.

Now we bound the third type of push. A push in this case is performed over an edge
(v, w) such that e(w) < 0. There are three cases. Either the value of the push is uf(v, w)
(saturating), e(v) (nonfilling), or e(w) (filling). For the first case we have already bounded
the number of saturating pushes. In the second case, we can bound the number of nonfilling
pushes by O(n) by arguments similar to those for non-saturating pushes above. For filling
pushes, observe that each vertex is filled at most once per iteration of improve-approximation;
thus there are a total of n such pushes overall.

Combining the three cases, we find that the number of nonsaturating pushes and bipushes
is O(n +n). As all other steps take O(n lm) time per execution of the improve-approximation
procedure and the procedure is called O(log(nlC)) times, we get the following result.

THEOREM 7.3. The wave algorithm solves the minimum costflow problem on a bipartite
network is O((nm + n) log(nlC)) time.

8. Summary and conclusions. We have considered a number of maximum flow algo-
rithms and algorithms for other network flow problems for bipartite networks in which one
side is much smaller than the other. Our work is motivated by and improves upon the work
of Gusfield, Martel, and Fernandez-Baca [21]. In that paper, the authors demonstrated the
importance of bipartite maximum flow problems in which one side is much smaller than the
other. In addition, they showed that existing algorithms run much faster on these "unbalanced"
networks.

We have extended the results of Gusfield et al. in several ways. First of all, we showed
that their analysis applies to other maximum flow algorithms. In addition, we developed the
concept of the bipush for preflow-push algorithms and showed that bipushes lead to further
improvements in several algorithms for the maximum flow problem. We further generalized the
results to algorithms for the parametric maximum flow problem, as well as the minimum cost
flow problem. We also showed that the results apply as well to dynamic tree implementations
if the dynamic tree algorithms are modified appropriately.

Although the theory in this paper has been concerned with bipartite networks, it would be
just as valid for networks in which we allow edges joining two vertices in V. More generally,
it is valid for networks in which have a small vertex cover. A vertex cover of a network
G (V, E) is a set S of vertices such that each edge in E is incident to at least one vertex
in S. A minimum vertex cover is one with the smallest number of vertices. Although it is
NP-hard to determine a minimum vertex cover of a graph, it is possible to find a vertex cover
in O(n + m) time whose cardinality is within a factor of 2 of the cardinality of a minimum
vertex cover. (Just find any maximal matching and include each of the matched vertices).

If the size of the minimum vertex cover of a graph is n, then all of the time bounds
presented in the previous sections apply. It is easy to show that the length of the longest
path in such a network is at most 2n 1. As for bipushes they would have to be replaced as
follows. Suppose G is a network, not necessarily bipartite, in which VI is a vertex cover. As
before we maintain the invariant that each active vertex is in V. Suppose that v is active,
and that (v, w) is eligible. If w is in V then we perform a normal push. If w is not in V1,
then each edge incident to w is in V and we perform a bipush. All ofthe results in this paper are

932 R.K. AHUJA, J. B. ORLIN, C. STEIN, AND R. E. TARJAN

thus easily generalized to networks with small vertex covers, and the time bounds stated in
Table 1.1 apply to such networks.

It is likely that improvements could be obtained in the running times of other algorithms
for network flow problems on unbalanced bipartite networks, or on networks in which the
cardinality of a minimum vertex cover is small. For example, one can obtain improved
running times for dynamic programming algorithms for the shortest path problem, and one
can improve the running time for all pairs shortest path algorithms. We conjecture that one can
also obtain improved time bounds for the b-matching problem on networks with small vertex
covers. We also conjecture that one can obtain improved results for polymatroidal network
flows.

Acknowledgments. We are grateful to David Shmoys for many helpful conversations
and suggestions, and for a careful reading of an earlier draft of this paper.

REFERENCES

R.K. AHUJA, T. L. MAGNANTI, AND J. B. ORLIN, Network Flows, Theory, Algorithms, andApplications, Prentice-
Hall, Englewood Cliffs, NJ, 1993.

[2] R. K. AHUJA AND J. B. ORLIN, A fast and simple algorithm for the maximum flow problem, Oper. Res., 37
(1989), pp. 748-759.

[3] R. K. AHUJA, J. B. ORLIN, AND R. TARJAN, Improved time bounds for the maximum flow problem, SIAM J.
Comput., 18 (1989), pp. 939-954.

[4] D. BERTSEKAS, Distributed asynchronous relaxation methods for linear network flow problems, tech. report
LIDS-P- 1606, Massachusetts Institute of Technology, Laboratory for Information and Decision Sciences,
Cambridge, MA, 1986.

[5] D. BERTSEKAS AND J. ECKSTEIN, Dual coordinate step methodsfor linear networkflow problems, Math. Pro-
gramming, 42 (1988), pp. 202-243.

[6] R.P. BRENT, The parallel evaluation ofgeneral arithmetic expressions, J. ACM, 21 (1974), pp. 201-208.
[7] J. CHERIYAN AND S. N. MAHESHWARI, Analysis ofpreflow push algorithms for maximum networkflow, SIAM

J. Comput., 18 (1989), pp. 1057-1086.
[8] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[9] W. CUNNINGHAM, Optimal attack and reinforcement ofa network, J. ACM, 32 (1985), pp. 549-561.

[10] E. DINIC, Algorithm for solution of a problem of maximum flow in networks with power estimation, Soviet
Math. Dokl., (1970), pp. 1277-1280.

11 M.J. EISNER AND D. G. SEVERANCE, Mathematical techniquesfor efficient record segmentation in large shared
databases, J. ACM, 23 (1976), pp. 619-635.

[12] L.R. FORD AND D. R. FULKERSON, Maximalflow through a network, Canad. J. Math., 8 (1956), pp. 399--404.
[13]. S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, in Proceedings of the 10th Annual ACM

Symposium on Theory of Computing, ACM Press, San Diego, CA, 1978, pp. 114-118.
14] G. GALLO, M. D. GRIGORIADIS, AND R. E. TARJAN, Afastparametric maximumflow algorithm and applications,

SIAM J. Comput., 18 (1989), pp. 30-55.
15] A.V. GOLDBERG, Efficient graph algorithmsfor sequential andparallel computers, Ph.D thesis, Massachusetts

Institute of Technology, Cambridge, MA, 1987.
[16] A. V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum flow problem, J. ACM, 35 (1988),

pp. 921-940.
[17] , Solving minimum-cost flow problems by successive approximation, Math. Oper. Res., 15 (1990),

pp. 430-466.
18] A.V. GOLDBERG, R. E. TARJAN, AND E. TARDOS, Networkflow algorithms, in Paths, Flows, and VLSI-Layout,

B. Korte, L. Lovisz, H. Pr6mel, and A. Shriver, eds., Springer-Verlag, Berlin, 1990, pp. 101-164.
[19] D. GUSFIELD, Connectivity and edge disjoint spanning trees, Inform. Process. Lett., 16 (1983), pp. 87-89.
[20] Computing the strength ofa graph, SIAM J. Comput., 20 (1991), pp. 639-654.
[21] D. GUSFIELD, C. MARTEL, AND D. FERNANDEZ-BACA, Fast algorithms for bipartite network flow, SIAM J.

Comput., 16 (1987).
[22] W. HILLIS AND J. G. L. STEELE, Data parallel algorithms, Comm. ACM, 29 (1986), pp. 1170-1183.

IMPROVED ALGORITHMS FOR BIPARTITE NETWORK FLOW 933

[23] A. HOFFMAN AND T. RIVLIN, When is a team "mathematically" eliminated?, in Symposium on Mathematical
Programming, Princeton University Press, Princeton, NJ, 1970, pp. 391-396.

[24] W. HORN, Some simple scheduling algorithms, Naval Res. Logist., 21 (1974), pp. 177-185.
[25] A.V. KARZANOV, Determining the maximalflow in a network by the method ofpreflows, Soviet Math. Dokl.,

15 (1974), pp. 434-437.
[26] T. LEIGHTON, C. LEISERSON, B. MAGGS, S. PLOTKIN, AND J. WEIN, Advanced parallel and VLSI computation,

Research Seminar Series MIT/LCS/RSS 2, Massachusetts Institute ofTechnology, Cambridge, MA, 1988.
[27] V.M. MALHOTRA, M. PRAMODH KUMAR, AND, S. N. MAHESHWARI, An O(I//" 13) algorithmforfinding maximum

flows in networks, Inform. Process. Lett., 7 (1978), pp. 277-278.
[28] C. S. J. A. NASH-WILLIAMS, Edge disjoint spanning trees offinite graphs, J. London Math. Soc., 36 (1961),

pp. 445-450.
[29] J. PICARD AND M. QUERAYNE, A network flow solution to some nonlinear 0-1 programming problems, with

applications to graph theory, Networks, 12 (1982), pp. 141-159.
[30] ,Selected applications ofminimum cuts in networks, INFOR., 20 (1982), pp. 394-422.
[3 l] B. SCHWARTZ, Possible winners in partially completed tournaments, SIAM Rev., 8 (1966), pp. 302-388.
[32] Y. SHILOACH AND U. VISHKIN, An 0(log n) parallel connectivity algorithm, J. Algorithms, 3 (1982), pp. 57-67.
[33] D. SLEATOR AND R. TARJAN, Self-adjusting binary search trees, J. ACM, 32 (1985), pp. 652-686.
[34] .,A data structurefor dynamic trees, J. Comput. System Sci., 26 (1983), pp. 362-391.
[35] C. STEIN, Efficient algorithmsfor bipartite networkflow, undergraduate thesis, Princeton University, Dept. of

Computer Science, Princeton, NJ, 1987.
[36] R.E. TARJAN, A simple version ofKarzanov’s blockingflow algorithm, Oper. Res. Lett., 2 (1981), pp. 265-268.
[37] Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 1983.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 934-950, October 1994

() 1994 Society for Industrial and Applied Mathematics
003

NEW RESULTANT INEQUALITIES AND COMPLEX POLYNOMIAL
FACTORIZATION *

V.Y. PAN

Abstract. The author deduces some new probabilistic estimates on the distances between the zeros of a poly-
nomial p(x) by using some properties of the discriminant of p(x) and applies these estimates to improve the fastest
deterministic algorithm for approximating polynomial factorization over the complex field. Namely, given a natural
n, positive , such that log(1/) O(n logn), and the complex coefficients of a polynomial p(x) i=0 pixi’
such that Pn O, --,i IPil _< 1, a factorization of p(x) (within the error norm) is computed as a product of factors

of degrees at most n/2, by using O(log n) time and n processors under the PRAM arithmetic model of parallel
computing or by using O(n log n) arithmetic operations. The algorithm is randomized, of Las Vegas type, allowing
a failure with a probability at most d, for any positive d < such that log(l/d) O(logn). Except for a narrow
class of polynomials p(x), these results can be also obtained for such that log(1/) O(n log n).

Key words, complex polynomial factorization, randomized algorithms, computational complexity, resultant

AMS subject classifications. 12D05, 62P99, 68Q25, 65Y20, 65Y05

1. Introduction. Randomization is a powerful tool for designing effective numerical
and algebraic algorithms over finite fields (see, for instance, [23]), but over infinite fields,
the application of randomization is usually limited to verification of polynomial identities
and to avoiding singularities (see 18] and [26]). We are going to demonstrate the power of
randomization in a new area, for approximate factorization (over the complex field) of a monic
univariate polynomial of degree n,

(1) p(x) E pixi P’ H(x -xj), Ilp(x)ll E Ipil,
i=0 j=l

that is, given a set of complex coefficients p0, p Pn and a positive e, we seek approxi-
mations x’ xn to the zeros Xl Xn of p(x) such that

(2)
n

lip(x)- p,, I-l(x -x)ll _< .
The requirement (2) can be motivated by the observation that in practice of numerical

computation, the coefficients of p(x) are most frequently available only within certain trun-
cation errors. For the worst case input polynomial p(x), where Pn 1, Ixjl _< 1, for all j (we
may satisfy this assumption by scaling x by a power of 2, thus preserving the binary length of
the coefficients), (2) implies the more classical requirement that

(3) Ixj-x]l <g for all j,

as long as g >_ 4.4(2e)1/; 2 < 40-n (see Proposition 11 in the appendix). Moreover, we
may represent the perturbed polynomial as p(x) p(x) + . q(x) and let xj(.) denote its
zeros, so that

xj(O) xj, p(xj(e) O, j l n.

*Received by the editors August 13, 1992; accepted for publication (in revised form) June 1, 1993.
Lehman College, City University ofNew York, Bronx, New York 10468. This author was supported by National

Science Foundation grant CCR 9020690 and PSC-CUNY Award 662478.

934

COMPLEX POLYNOMIAL FACTORIZATION 935

We may differentiate the latter expression, ignore the term O(e), and obtain that

xj(.) --q(xj(e)) / p’(xj(e)),

provided that p’ (xj(e)) O. If xj is a simple zero of p(x), that is, if

p(xj) O, p’ (x.) O,

then we have

Xj(J) Xj "JI- - XS.(VS) Xj d q(xj(v.) / p’(xj(ve))

for some v, 0 < v _< 1.
Therefore, (2) implies (3) for simple zeros of p(x) and for e/g of the order of Ip’(xj)l,

that is, (2) implies (3) for small e and for g roughly proportional to , unless p(x) has some
other zeros near xj, so that p’(xj) is close to 0.

For polynomials p(x) with multiple or clustered zeros, (2) implies (3), with g tending to
be substantially larger than e as e -+ 0.

Example 1. p(x) xn has the only zero xl x2 xn 0, whose multiplicity
is n. p(x) e xn e has the zeros xf el/nogj, j 1 n; o9 exp(2zrZ-1/n), so

that (e 1/n.
Example 1 suggests that, for polynomials with multiple or clustered zeros, computing the

factorization under (2) is numerically better conditioned than the zero finding problem under
(3).

More important for us, the same example also suggests that after a small random pertur-
bation of the coefficients of p(x), the zeros of the resulting polynomial p(x) + A(x), with
ZX(x) , tend to stay apart from each other at the distance at least of the order of (1/n)e /n

(even if they correspond to the multiple or clustered zeros of p(x)), so that such a perturbation
promises to eliminate a major obstacle to a rapid convergence of many known algorithms
for polynomial factorization, namely, those which converge slowly on the input polynomials
whose zeros form clusters.

Substantiation of this intuitive argument is not straightforward, however.
In this paper we achieved some progress towards such a substantiation, by exploiting

some properties of the resultant of p(x) and of its derivative (or of the discriminant of p(x)).
Based on these properties, we estimated the mth diameter dm = dm (x Xn) of the set
{x x.},

(4) dm min max Ixi xjl m 2, 3 n
[Tl=m i,jeT

where the minimum is was over all the cardinality m subsets of the set 1, 2 n (that is,
d,, denotes the minimum diameter of a subset of m elements of the set {x xn }, so that,
in particular, dn max_<i,j_<n Ixi xjl). More precisely, we estimated the mth diameter of
the set of the zeros of the polynomials

p(x)+xhA for h=0,1 n,

for a random complex A, uniformly distributed on the circle AI p, and for a fixed small
positive p. We have set m n/2 (assuming n even) and proved that, with a probability at
least / (2n + 1), the reciprocal of the mth diameter of the set of the zeros of p(x) + xh A was
bounded by O(1/104/(n-2)) (as/9 ---+ 0) if h 0, and moreover, for a large class of the input
polynomials p(x), the maximum of such a reciprocal over all integers h, 0 < h < n, was
bounded by O(1/,04/(n-2)n) (see (18), (53), and Proposition 4, for more specific estimates).

936 v..

We also examined the resulting effect ofthe perturbation of p(x) on the computation ofthe
factorization of p(x) by means of an effective factorization algorithm based on a combination
of the techniques of [25] and [19]. The resulting hybrid algorithm recursively computes a
complete numerical factorization (2) of p(x) and supports the record running time bounds
for this computation, both in terms of arithmetic and Boolean (bit) operations involved. The
intermediate steps compute incomplete numericalfactorizations of p(x). If the degrees of the
output factors are less than, say, 1/2 of the input degree in every recursive step, then in at most
[log2 n recursive steps, a complete numerical factorization (2) is computed, and the worst
case bounds on both sequential and parallel running times of the entire algorithm decrease
roughly by the factors of n and n/[log2 nJ, respectively. This is because in the worst case
for each i, recursive step splits its input polynomial of degree n / into two factors
of degrees and n i, respectively, so that n recursive steps are required to compute a
complete recursive factorization (2).

Actually, such a balanced splitting was a cornerstone of several recent successful algo-
rithms for polynomial factorization and/or rootfinding [4]-[7], [20]. The algorithms of [4]-[6]
and [20], however, only apply to the polynomials all of whose zeros are real, whereas the par-
allel algorithm of 17] reaches decisive parallel acceleration in the general (complex) case,
but at the expense of a great increase of its processor and sequential time bounds.

Unlike the cited papers, our approach is not fully recursive, and it works for a more limited
range of the output error bounds e, but it does not restrict itself to the real case, and leads
to parallel acceleration without blowing up the processor bound. More specifically, by using
the cited lower bounds on the distances among the zeros of the slightly perturbed polynomial,
p(x) / xh A, we prove that, with a probability bounded away from 0, for a random choice of
A, practically the same algorithm splits such a perturbed polynomial into factors of degrees
less than n/2. Thus, the randomization alone strictly improves the performance of the original
algorithms.

The same randomization techniques can be recursively applied to split the computed
factors of p(x). In each new recursive step the randomization may give us less and less ad-
vantages (see 8 on the details), and we may end up with shifting to the original deterministic
factorization algorithm at some recursive step at which using randomization gives us no ad-
vantage anymore. Some techniques may counter such a deficiency (see 9), and in any case,
our acceleration (due to randomization) applies to the hardest recursive steps, in which we
split into factors the polynomials of higher degrees.

We will formally state our main results in the form of Theorem 1, which presents our
estimates for the error and for the parallel and sequential computational complexity of a single
step of splitting p(x) + A (for a random A, IzXl p) into factors of degrees less than n/2.
We note that our randomization is of Las Vegas type, where no undetected errors may occur
(the algorithm may output FAILURE but with a low and controlled probability).

For simplicity, we will use the arithmetic (rather than Boolean) complexity estimates,
which is adequate since our deviation from the original algorithms of [25] and 19] does not
affect the required precision of the computation. We will assume the customary RAM and
PRAM models of sequential and parallel arithmetic computations, respectively (see [1 and
[14]), and will adopt the customary notation On(t, p), which means that O(t) parallel arith-
metic steps and p processors suffice in the parallel implementation of the solution algorithm.
(From now on, we use the "O" notation assuming that n --+ o and e, p -- 0.) Oa(t, p)
also implies OA(ts, p/s), for any integer p/s > 0, which gives us the sequential time bound
OA(tp, 1), for s p (Brent’s principle [10]).

We will assume hereafter that

(5) IIp(x)ll 1,

COMPLEX POLYNOMIAL FACTORIZATION 937

(6) 1/4 < r(C, p(x)) m.ax Ixj C[< 1, C (l/n)7 xj --pn-1/(npn).
J j

We may closely approximate r(C, p(x)) at the cost OA (log n, n) (see Proposition 5), and
if r(C, p(x)) > or if 0 < r(C, p(x)) < 1/4, we may shift, also at the cost OA(logn, n)
(see [2]), to a polynomial

n,.%
q (y) ap(by + c) qn |l(y YJ)’

j=l

for fixed complex a, b and c such that ab vk 0,

IIq(y)ll 1, 1/4 < r(C, q(y)) max lyl _< 1, nbC (xj c).
J j

Here, several choices of the values of a, b and c are possible. For instance, we may set
b 4r(C, p(x)), c C + 0.5 and define a from the equation IIq(Y)ll 1. (Actually, in
a more careful implementation, we may somewhat relax some constraints of (5) and (6) in
order to be able to choose lower precision values for a, b, and c, thus decreasing the Boolean
cost of the computations. For instance, we may require that < IIq(x)ll < (rather than
Ilq(x)ll 1) and choose a to be a power of 2.)

We are now ready to state our main result, which we will prove in 6 and 7 (also compare
Remark 8).

THEOREM 1. Suppose that we are given complex coefficients Po Pn ofthe polynomial
p(x) of (1), satisfying (5), (6), andfour positive or, 6, 6 and e such that

(7) >6>0, nlPnl20-n > e.

Then there exists a randomized algorithm (of Las Vegas type) that either reports a failure
with a probability at most or, otherwise, computes an incomplete numerical factorization
of p(x) (within error norm e) into a product ofpolynomials, each of degree less than n/2.
The algorithm supports the following parallel and sequential complexity estimates for this
computation:

(8) CA 0.4 (q(n, e) logn, n log(1/6)/dp(n,

(9) (SC)A OA((n, e)n2 logn + n(logn)2 log(I/6), 1),

where 4)(n, e) log(log(l/e) + (n/el
Remark 1. If

(10) log(l/3)--- O(logn), log(1/e) O(n (log n)3),

then log log(l/e) O(log n), log(1/e 1/") O(n-l(logn)3), and the estimates (8) and (9)
are specified as follows:

(11) CA OA(na-l(logn)+1, n3(logn)l-/),

(12) (sc)A Oa(n+(logn)+, 1).

(In the summary, we cited (11) and (12) for ot =/3 1.)

938 v.Y. PAN

Remark 2. We also show (in 9) how the complexity bounds (8) and (9) can be ensured,
except for a narrow class of input polynomials p(x), with b(n, e) replaced by the substantially
smaller quantity ap(n, e) log(log(l/e) + (n/e/n2)), which (for all but a narrow class of
input polynomials p(x)) implies the bounds (11) and (12), even provided that the upper bound
of (10) on log(l/e) is increased by the factor of n, to

log(l/e) O(na+ (log n)#).

In particular, for c 1, which implies the time bound (logn)t+l in (11), we have the
bound log(l/e) O(n2(log)t) versus O(n(logn)) of (10) for ot 1. According to the
estimates of [4] (p. 1084, the last paragraph of 2) or [17], (Lemma 4.1 and the paragraph
following equation (2.8)) (or alternatively, this can be deduced by analyzing the implications
of our Proposition 8), this improvement gives us a basis for separating and isolating the zeros
of p(x) from each other and, therefore, for their rapid subsequent refinement via Newton’s
iteration.

We organize the remaining part of the paper as follows: In 2 we estimate some corre-
lations between the absolute value of the discriminant of p(x) (or of the resultant R(p, p’)
of p(x) and if(x)) and the ruth diameter of the set of zeros of p(x). In 3 we estimate
IR(p + A, P’)I as a function in A. In 4 we show our hybrid deterministic algorithm. In 5
we combine the results of 2-4 into our basis lemma (Proposition 9). In 6 we summarize
our study in the form of a parallel algorithm. In 7 we modify this algorithm for the sequential
computation and will deduce the complexity estimates of Theorem 1. In 8 we comment on
the recursive application of our algorithms. In 9 we improve our complexity estimates over
a large class of the input polynomials p(x). Finally, in the appendix we recall some auxiliary
results on perturbation of polynomial zeros.

Hereafter, all logarithms are to the base 2, and each polynomial zero of multiplicity/z is
counted as/z zeros.

2. The magnitude of the resultant and the distances between polynomial zeros. In
this section we will relate the distances between some zeros of a polynomial p(x) of (1) to the
absolute value of R, the resultant of this polynomial and its derivative p’(x). We will make
use of the two following expressions for R:

(13) R R(po P") (--1)n(n-l)/2p2nn-1 H (Xi Xj)2;
l<_i<j<n

R equals the determinant of the (2n 1) (2n 1) Sylvester (resultant) matrix,

(14) R det S, S

Pn 0 (npn) 0

P2 Pn (2p)

Pl Pn-1 Pl

Po Pn-2

0 Po 0 Pl

Equation (14) implies, in particular, the following proposition.
PROPOSITION 2. The resultant R is apolynomial in Po, P Pn with integer coefficients,

having the total degree 2n 1.

COMPLEX POLYNOMIAL FACTORIZATION 939

We will recall (4), ignore the case of multiple zeros, assume for a moment that R 0,
and will immediately deduce from (13) the following proposition.

PROPOSITION 3. Let us denote that

(15) D D(po p,) IR(po p,,)/p2,,"-l.

Thenfor any integer m, 2 <_ m < n, we have that

(16) O < dnn(n-1) (dm/dn)m(m-1) m-- 1,2 n.

Hereafter, we will assume that n is even, n 2m, so that m (m 1) n (n 2)/4. Then
we will deduce from (16) that

(17) O/d(3n-2)/4 <_ dn(n-2)/4,

(18) D4/n(n-2)/d(n3n-2)/(n-2) < din.

3. Probabilistic lower bound on the magnitude of the resultant. Let A denote a ran-
dom complex parameter under the uniform probability distribution on the circle

(19) Iml- p,

where the value p will be fixed later on. We are going to deduce some probabilistic lower
bound on IRh(A)I IR(p0 Ph-, Ph -[- A, Ph+l Pn)l, 0 < h < n (compare (13)).
Recall Proposition 2 and rewrite Rh (A) as a polynomial in A,

(20) Rh(A) rh,i rh,k (x xj.(A)), k k(h) < n,
i=0 j=l

where rh,i are polynomials in P0 pn with integer coefficients and have total degrees at
most 2n i, 0, 1 n. Furthermore,

(21) rh, OR/Oph, h O, n,

(22) ro,. O, tO,n_ (_l)n(n-1)/2(npn)n.

The next simple result is the basis for our algorithms.
PROPOSITION 4. For a random A IPl, under the uniform probability distribution on

the circle (19),for any pair ofnonnegative integers h < n, u < n, andfor anyfixed positive
p, we have

(23) IRh(m)l > 0.51rh,lpu

with a probability at least 1/(2k(h) + 1) > 1/(2n + 1), where k(h is defined by (20).
Proof Let j be an integer such that

(24) Irh,ulpu < Irh,jlpj max (Irh,ilpi), 0 <_ j <_ n.
0<i<n

It is well known from analytic function theory that

(Rh(A)/AJ+I) dA 27rr- rh’j"
I=p

940 v.. PAN

Representing A as p exp(2rr -Z--1 q), we obtain that

zr

f0
2zr

(1/pj) IRh(A)l dck IRh(A)/AJ+ll Pdq > 2rclrh.jl,

lfo2 2rr
IRh(A)IdO Irh,jI PJ,

so that Irh, j IPj is a lower bound on the average value of Rh (A)] on the circle (19). To complete
X-,k(h) pithe proof, we compare this bound with the following upper bound: Rh (A)I < e__,i=0 Irh,il <

(k(h) + 1)lrh,jlPj, then recall (24). [3

Hereafter, denote that

Ph,n P,, + A if h n; h,n Pn otherwise.

Assume that/3h,n 0 for all h. Recall (20) and, similarly to the definitions (15) and (4),
denote that

Dh(A)-- IRh(A)/Zh,[,

dh,k(A) min max Ixh,i(A) xh,j(A)l,
[Jl=k i,jJ

k=2,3 n, h=0,1 n,

and rewrite (18) as

(25) (Dh(A))4In(n-2) / (dh,n(A))(3n-2)/(n-2) < dh.m(A), rn n/2.

Rewrite (3n 2)/(n 2) as 3 + 4/(n 2), combine (23) and (25), and obtain that

(26) 1-2n n(n-2))3+4/(n-2)dh,m(A) > (0.5 rh.uph.. IP")4/ /(dh,.(A)

u, h 0, n, with a probability at least 1/(2n + 1).
In particular, substitute (22) into (26), for h 0, u n 1, and arrive at the inequality

(27) do.re(A) > (0.5nn)4/n(n-Z)[p/pn[4(n-1)/n(n-2) / (do,n(A))3+4/(n-2),

where lim._.oo(O.5nn)4/"(n-2) 1.
Also, substitute (21) into (26), for u and h 0, 1 n, to obtain that

(28) dh.m(A) > (O.5l---1-2n OR lp)4/n(n-2)Ph,n Ph / (dh,n(A) 13+4/(n-2).

4. A deterministic algorithm for polynomial factorization. Hereafter, S(C, r) will
denote the square on the complex plane, with the center C and with the sides parallel to the
real and imaginary axes and having length 2r. D(C, r) will denote the disc on the complex
plane, with the center C and radius r. We assume that S(C, r) and D(C, r) denote closed
complex domains.

/r is called the isolation ratio of the square S(C, r) or of the disc D(C, r) if/ is the
minimum value such that the domains S(C, R) S(C, r) or, respectively, D(C, R) D(C, r)
contain a zero of p(x).

We next recall some known results.

COMPLEX POLYNOMIAL FACTORIZATION 941

PROPOSITION 5. Given the coefficients Po Pn, a complex C and a constant O, 0 <
0 < 1, it is possible, at the cost OA(logn, n), to evaluate r such that

(29) Or < r(C, p(x) max IC- xjl < r.
l<j<n

Remark 3. dn < 2r(C, p(x) < 2r, under the notation of (29).
Proposition 5 relies on an old algorithm of Turan (see [27] and [28]) complemented with

more recent estimates for the complexity of its blocks.
PROPOSITION 6 19]. Let a complex C and a positive r be two given values that satisfy (6)

and (29). Then there exists a natural H H(n, r, 0) O(log n) such that, for every K > H,
it is possible, at the cost OA(K logn, n2), to compute complex Ci, real ri, and natural g > 2
and ki > 1, g, such thatfor all

(30) ri < rn/2t:,

and S(Ci, ri) has an isolation ratio of at least 3 and contains exactly ki zeros of p(x);
furthermore, _gi=l ki n, and S(Cj, rj) fq S(Ch, rh) is emptyfor any pair of j and h such
that l <j <h < g.

The proof of Proposition 6 in [19] exploits and improves the search-and-exclusion con-
struction of Weyl for approximating polynomial zeros (compare 12], [22], and [24] on other
applications of Weyl’s construction).

PROPOSITION 7. Let S(Ci, ri), the squares defined in Proposition 6, for 1 g, be
given to us, together with the associated integers ki and with a positive *. Let us denote

(31) b b(e*) (1 In) log(1/e*).

Then, at the cost O (log n log(bn), gn log b/ log(bn)), the coefficients ofg < n monic poly-
nomials pl(x) pg(x) can be computed such that the polynomial pi(x) has exactly ki
zeros, all lying in S(Ci, ri), g, and

(32) lip(x) pl (x)... pg(x)II *.

Proposition 7 follows from the results of [25] (Corollary 4.3 and 12) applied to the discs
D(Ci, ri,f), g; such a disc D(Ci, ri/) contains exactly ki zeros of p(x) (lying
in the square S(Ci, ri)) and has an isolation ratio at least 3/.v/ > 2 (compare Remark 4).

Combining Propositions 5-7, we devise the following algorithm.

Algorithm 1. Input: the complex coefficients P0 p,,_ of a polynomial p(x) of (1)
and a positive e*.

Output: positive integers g > 1, k kg (such that kl +... + kg n) and the
coefficients of monic polynomials pi(x) of degrees ki, g, satisfying (32).

Stage 1. Compute C and r satisfying (6) and (29).
Stage 2. Compute the squares S(Ci, ri) defined in Proposition 6.
Stage 3. Compute a factorization (32), by following Proposition 7.

(33)

We immediately deduce the bounds

C,] O.((K + log(bn) log n, n2)

on the parallel cost of the computation by Algorithm 1, where b has been defined in Propo-
sition 7 and where we may choose any K exceeding H O(log n). (Later on, we will see
some advantages of choosing a larger value of K.)

942 v.Y. PAN

We may recursively apply Algorithm 1 in whose input set we replace p(x) by the polyno-
mials Pl (x) pg(X), as long as they have degrees exceeding (these g applications can be
performed concurrently, and similarly in the further recursive steps). The maximum degree
of the output polynomials of Algorithm is n g + or less, so that in at most n its
applications and at the overall cost bounded by OA((K + log(bn))n log n, nZ), we will arrive
at the factorization (2) of p(x) into linear factors. Here, we impose the same error bound e* for
the numerical factorization of all the auxiliary polynomials that we factorize in this recursive
process. We choose this bound * sufficiently small, so as to ensure the error bound e for
the complete numerical factorization (2). Specifically, we are guided by the next proposition
from 5 of [25], which relates e* to e:

PROPOSITION 8. Let

lip(x) p(x).., ph(x)ll < eh/n, Ilpl(x) f(x)g(x)l] < *,

Then

ellPl(x)ll
n2"llp(x)ll

lip(x)- f(x)g(x)p2(x).., ph(x)ll <_ (h + 1)e/n.

Due to Proposition 8, it is sufficient to choose

llw(x)ll
(34) * >

n2llp(x)ll n2nllp(x)ll

whenever Algorithm is applied to a monic polynomial w(x) in the recursive process described
above.

Next suppose that, by modifying the first step of this recursive process, we may ensure a
more rapid decrease of the degrees of the factors, such that

max deg pi(x) < 0.5 deg p(x) n/2,
<_i <_g

and similarly at all the next recursive steps. Then it would have sufficed to use [log n.I (rather
than n 1) concurrent recursive steps of application of Algorithm (as before, we ensure the
desired output error bound e by imposing the error bound e* of (34) at all the recursive steps).

We easily estimate that in this case the complexity of recursive step is

OA ((K+log(bn)) log n, n2/2i), for 1, 2 [log nJ, which implies that the overall com-
plexity of the complete numerical factorization of p(x) into linear factors is
OA((K + log(bn))log2 n, n2/logn). (To arrive at this bound, we apply Brent’s principle
of [10] by slowing down those recursive steps that otherwise would have used more than
n2/log n processors.)

In comparison to our previous bound of OA((K q- log(bn))n logn, n2) in the case of
unbalanced recursive splitting of p(x), we now note the decrease of both the sequential time
bound (by the factor of n) and the parallel time bound (by the factor of n/log n), so that
Algorithm performs much more effectively in the cases where the factors computed at its
recursive steps have smaller degrees. In the next sections we will apply a randomization
technique to split p(x) into factors of degrees less than n/2.

Remark 4. Algorithm is a modification (based on the results of [19]) of the algorithm
of [25]. The recursive step of [25] splits p(x) into two factors, whose zeros lie inside and,
respectively, outside a fixed disc that has an isolation ratio of the order of + In. Since
we deal with the squares S(C, ri) of Propositions 6 and 7, having isolation ratios at least 3,
the computation of the splitting by using Algorithm is substantially simpler than the similar
computation in [25].

COMPLEX POLYNOMIAL FACTORIZATION 943

5. How to ensure a balanced partition of the set of zeros. In the next result, we use D
and r defined by (15) and (29).

PROPOSITION 9. Let the integer K ofProposition 6 be chosen such that

(35) 2K-0.5 > n(2r)4(n-1)/(n-2) / O4/(n(n-2)).

Then 2/ri < dm for 1 g, that is, every square S(Ci, ri), 1 g, ofProposi-
tion 6 contains less than rn n/2 zeros of p(x).

Proof Proposition 9 immediately follows from the comparison of the upper bound (30)
on ri with the lower bound (18) on din. (Compare also Remark 3 and observe that the diameter
of the square S(Ci, ri) equals 2/ ri. []

Remark 5. The reader may extend (18) and Proposition 9, as well as our subsequent study,
by choosing a smaller m, say, rn ,v/ft.

Proposition 9 can be immediately extended to the case where p(x) is replaced by p(x)+A,
for A of (19), D by D0(A) (see 3) and similarly r of (29) by r0(A); in particular, we may
rewrite the assumption (35) as follows:

(36) Do(A) > (2ro(A))n-)" n(n-2)n/42-(K-O.5)(n-2)n/4,

where the quantity K will be estimated later on.
Now let d, K, A and p I/Xl be such that d > 2r0(A),

(37) 0.5lr0,n_ pln-2nlpn-1 >_ d(n-1)n nn(n-2)/4 /2(K-O’5)n(n-2)/4.

Apply Proposition 4 for h 0, u n and deduce that (with a probability at least
1/(2n + 1)) we have:

Do(A) IRo(A) / p2"-l > 0.51ro,.-/p2nn-11p"-

> d(n-1)n nn(n-2)/4 2-(K-O.5)n(n-2)/4.

Since d > 2r0(A), the latter inequality implies (36), and, consequently, implies the extension
of Proposition 9 to the case where the polynomial p(x) + A replaces p(x).

6. The factorization algorithm. Now we are ready to summarize our previous study,
by devising the following randomized (of Las Vegas type) algorithm.

Algorithm 2. Input: the complex coefficients P0 Pn-1 of a polynomial p(x) of (1),
a positive p such that

(38) r(C, p(x)) < 2r(C, p(x) + A) < 3r(C, p(x)) if IAI-- p, C -pn-1/(npn)

(compare Remark 6), and a tolerance/ to the probability of a failure, 0 < 3 < 1 (com-
pare (7)).

Output: FAILURE with a probability at most 3 or, otherwise, an integer g, g > 2, a
complex value A, I/Xl p, and the coefficients of g polynomials p(x, A) having degrees
less than n/2 and satisfying the inequality (40) below.

Stage 1. Successively compute the values

(39) v [(2n + 1)log(1/3) / log3],

then C and r satisfying (6) and (29), setting throughout (R) 0.99 (compare (29) andRemark 6),
then d 3.1 r, and finally, the minimum positive integer K exceeding H of Proposition 6

944 v.Y. PAN

and satisfying (37). Choose v independent random values A on the circle AI p, under the
uniform probability distribution.

Stage 2. For all such values A and for A 0, concurrently compute D0(A). If (36) has
been satisfied for none of the values A, end this computation and output FAILURE. Otherwise,
fix some A for which (36) holds, apply Algorithm to the polynomial p(x) + A in order to
compute and to output a natural g > 2 and the coefficients of the polynomials p’ (x, A) that
approximate g distinct nonconstant factors pi (X, A) of p(x) + A, for 1 g, such that

p(x) + A l-[i= pi(x, A); lip(x) + A H/g_.l p[(x, A)II < ,,9;

(40)
lip(x) 1-I/g_ p[(x, A)II _< 2/9,

and end the computations. (Note that 2p plays the role of e* of (32), (34), and Algorithm 1.)

Let us next show the correctness of the algorithm. First observe that d 3.1 r >
3.1 r(C, p(x)) (due to (29)). Recall (38) and obtain that d > 2.05 r(C, p(x) + A). Extend
(29) by replacing p(x) by p(x) + A and r by r0(A), and obtain that d > 2.05 19 r0(A).
Substitute 19 0.99 and obtain that

(41) d > 2r0(A).

Now apply Proposition 4, for h 0, u n 1, and deduce that, with a probability at
least 1 / (2n + 1),

[Ro(A)I > 0.5ro,n-lpn-l,

which implies that
D0(A) IRo(A) / p2n-l > 0.5 r0,,- I-pnl-2n IDn-1

The latter inequality implies (36) since we have chosen the value of K satisfying (37).
Therefore, we may apply Proposition 9 extended to the case of the input polynomial p(x) + A.
Then, application of Algorithm at stage 2 of Algorithm 2 gives us a numerical factorization
of p(x) + A satisfying (40), and we observe that the probability of a failure in an application of
stage 2 to p(x)+ A for all the v values A 0 is at most (1-1/(2n+ 1)) < 1/3lg(1/6)/lg3 t]

(see (39)).
Remark 6. The assumption (38) surely holds for any sufficiently small positive p. In

particular, we may deduce from Proposition 11 of Appendix A that it is sufficient if

(42) 2p < 40-’lpn

Of course, the reader may replace the "magic" numbers 2 and 3 in (38) and the value 19 0.99
by various other candidate values, so as to preserve the correctness ofAlgorithm 2, respectively
modifying (42).

Remark 7. In a heuristic attempt of derandomization, we may further modify stage 2
of Algorithm 2 by first computing the values of R0(A) for A pexp(2zr--fk/n), k
0 n 1, then the coefficients r0,0 tO,n-1 of R0(A) (by first performing FFT (which
gives us ro,ipi, for 0, n 1) and then scaling) and, finally, a complex A, IAI p,
for which IR0(zX)I reaches its maximum on the circle IAI p. We may approximate (within
the factor /) this maximum by the maximum of the absolute value of its real and imaginary
parts. If the coefficients Po Pn and, therefore, r0,0 to,,,-1 are real, then these real

n-1and imaginary parts are represented as the trigonometric polynomials k=0 pkro,k cos(kt)
and -,=0 pkro,k sin(kt), respectively, where A p exp(t-S-1) and ranges from 0
to 2:r. For a large class of input polynomials p(x), such a reduction to approximating the
maximum absolute value of the above trigonometric polynomials simplifies the original task
of the factorization of a polynomial.

COMPLEX POLYNOMIAL FACTORIZATION 945

7. Computational complexity estimates. Next, we will assume that p(x) and x have
been scaled so that

(43) d < 1

and will estimate the parallel complexity cA of performing Algorithm 2. Clearly, cA is
dominated by the complexity of computing D0(A) for all the v values A (bounded by
OA(1Og2 n, vn2 / log n), due to [21]) and of applying Algorithm (see (33)), so

(44) CA OA[(K + log(bn))logn, n2(1 + v/(K + log(bn)))],
where K denotes the minimum integer exceeding H (defined in Proposition 6) and satisfying
(37), bn -1 + log(l/p) (compare (31)) and v is defined by (39).

Now observe that (40) implies (32), for any p < e*/2 and for pi(x) p(x, A),
g. Suppose that ct,/3, 3 and e are given as in Theorem 1, such that (7) holds. Then (38)

holds for p e*/2 (see (5), (34), and Remark 6). Set p e*/2 and apply Algorithm 2.
Next, recall the definition of K given at stage of this algorithm and choose the minimum

K satisfying this definition, that is, the minimum K > H + satisfying (37). Formally, let

(45) K max{H + 1, [K*]},

where K* is such that setting K K* turns (37) into an equation, that is,

2(K*-O’5)n(n-2)/4 2d(n-l)n n(n-2)n/4 IPn2n-1 / r0,n-lP
-1 I.

Substitute (22), take logarithms on both sides, divide the resulting equation by n (n 2)/4 and
obtain that

(46)
K* 0.5 + 4/(n 2)n

+(1 -4/(n 2)) logn + ((4n -4) / (n 2)n)loglp,,d"/pl.

Replace p by e*/2, recall (5), (34), (43) and Proposition 9, and deduce from (43), (46) and
the equation H O(log n) (see Proposition 6) that

(47) K O(logn + (l/n) log(l/e) O(log(n/e 1/n)).

We also have that

(48) bn O(log(1/e*)),

(49) u O(n log(l/3)

(compare (31), (39)). Combining (34), (44)-(49), we obtain that K + log(bn) q(n, e)
O(log(log(1/e) + (n/el/n))), and arrive at (8):

cA OA(cP(n, .) logn, n log(l/g) / tp(n,)).

To deduce the bound (9), we modify Algorithm 2 as follows.

Algorithm 3.
(a) Compute R0(A) for n values A equal to all the nth roots of 1; for each value of A,

such an evaluation amounts to computing the determinant of a Sylvester matrix, at the
sequential cost OA(n(logn)2, 1) [7], [8], [16]; this means OA((n logn)2, 1) for all the
values A;

946 v.Y. PAN

(b) compute the coefficients of R0(A) as a polynomial in A (see (14) and (20)) by means
of the inverse FFT, at the cost O,(logn, n) or OA(n logn, l) [1];

(c) define v by (39) and compute D0(A), for v random and independent values A on the
circle IAI , at the overall cost 04((v + n) log2 n, 1) [1], [7], [9];

(d) among these v values, choose the value A that maximizes ID0(A)I and output FAIL-
URE if (36) does not hold, for this value of A;

(e) otherwise, if (36) holds, apply Algorithm 1 to the polynomial p(x) + A, at the
cost C) OA((K + log(bn))logn, n2), bounded according to (33), (45)-(48); by
Brent’s principle of [10], this implies the sequential cost bound (sC)*,4 O.(nE(K
log(bn)) log n, 1).

Summarizing all these estimates for the complexity ofperforming Algorithm 3 and assum-
ing (7), (38), and (39), we arrive at the bound (9) on the sequential complexity of computing
the approximate factorization (2), thus proving Theorem 1.

Remark 8. We may perform stage (a) of Algorithm 3 at the cost Oz(log2 n, na/logn)
by concurrently applying the parallel algorithm of [21] for all the n values of A. Stage (c)
can be performed at the parallel cost O,4 (log2 n, (v + n) log log(v + n)) [7], which turns into

Oz (log2 n, n log(1/) loglog(n log(1/))) under (39) and which is dominated by the above
bound on the cost at stage (a) under the mild condition that log(1/8) o(n2/log n). Assuming
this condition and recalling the bound O(4(n, e)logn, n), tp(n, e) O(log(log(1/e) +
(n/el/n))), on the cost at stage (e), we obtain the overall cost bound

(50) O,((n, e)logn, n2 4- n3/qb(n, e)),

which slightly improves (8).

8. Extension to recursive factorization. Unless FAILURE has been output, stages
and 2 of Algorithms 2 or 3 can be repeated with each of the polynomials Pi (x, A) of degree
ki > 1 replacing p(x), with ki replacing n in (37), and with

,,, 1)log(l/8)/log3]

replacing v of (39). Then the failure probability is at most at this factorization stage for all the
p (x, A). The difficulty with this extension of Algorithms 2 and 3 is that in order to compute
the factorization of p’ (x, A), we need to replace n by ki in both (37) and (46), so that at this
step, our estimate gives us K O((1/ki) log(l/p)), rather than K O((1/n) log(l/p)). At
the subsequent recursive steps, we need to replace ki, in this expression for K, by smaller and
smaller values. This means that we need to choose larger and larger values of K to ensure the
desired bound on the approximation error ofthe factorization. This would increase the running
time of the algorithm. Thus, at some recursive step, the estimated time of our randomized
computation may exceed the estimated time bound for the recursive step of the deterministic
algorithm (based on Algorithm 1), to which we shall shift at this point. It is desired, of course,
to decrease the error of the factorization, so as to take advantage of the randomization as long
as possible, reaching the factors of p(x) that have smaller degrees. To achieve this, we will
next slightly modify our randomization approach. (An alternative is to rely on Remark 5
instead of recursion.)

9. Decreasing upper bounds on the factorization error. Algorithms 2 and 3 and their
analysis in 7 relied on (22) and (27). For a very large class of input polynomials p(x), we
may substantially improve the asymptotic complexity bounds (8) and (9). In particular, we
may insure the complexity estimates (11) and (12) under the assumption on e that is weaker
than (10), namely, if we only assume that, roughly,

(51) log(l/e) O(nl+a(logn)),

COMPLEX POLYNOMIAL FACTORIZATION 947

that is, for a large class of inputs, we may arrive at a superior approximation to the factorization
of p(x) by using roughly the same amount of computational resources. (We refer to (55) and
(56) below, for a more precise statement ofthe assumption (51).) The improvement is important
in the recursive application of the factorization algorithms (see the previous section).

Let us supply some details. Denote

(52) wh 0.51/31-2n OR/Oph[h O, nh,n

substitute this expression on the right side of (28), also replacing dh,n(A) by d of (41), d >

dh,n (A), and obtain that

(53) dh,m(A) . (WhD)4/n(n-2) / d3+4/(n-2).

We need to choose K such that dnC/2x < dh,m(A), due to Proposition 6. Assume that
wh 0 and extend Proposition 9 replacing (45) and (46) by the following expression"

{ [4 4n-4]](54) K max H + 0.5 log(whp) + log n + log d
n(n 2) n 2

Assume that p */2 and d < (compare (34) and (43)), and deduce that

K O(logn + (1/n2) log(1/(wh))) O(logn / (Whe)l/n2), unless Wh O.

This is a considerable improvement of (47) unless Wh is small. Clearly, Wh does not
decrease as e --+ 0, and (52) and Proposition 2 imply that

wh > 0.5 z Izh,,I 1-zn

if z :/: 0, zpi are integers for all and 0 R/Oph O. Furthermore, we may evaluate 0ROph, for
h 0, n, atthe same asymptotic computational cost (boundedby OA (log2 n, nz / log n)
or alternatively by OA(n log2 n, 1)) that we need for the evaluation of R. We achieve this just
by applying to R the parallel algorithm of [13], which extends the sequential algorithm of
[3] and [15]. (The algorithm of [13] computes, all the first order partial derivatives of any
polynomial p(yl Ys) at the cost OA(t, p), provided that an algorithm is available that
computes p(yl ys) at the cost OA(t, p), by using only arithmetic operations, with no
branchings.)

Thus, initially, we may compute R/ph and WhP, for h 0, 1 n, then choose h
for which wh is maximum, and finally compare whp with 0.5 n’ IP / P, "-1 (see (22), (23)).
If the latter value is greater, we shall go to Algorithms 2 or 3 with no changes. Otherwise, we
shall apply one of these algorithms, replacing D0(A) by Dh (A) and K of (45) and (46) by K
of (54).

In the latter case, we shall replace 4 (n, e) in (8), (9), and (50) by ap (n, e) log(log(1/e)+
n/(e wh)1/n2), and thus shall arrive at the improved overall complexity estimates. In particular,
we may deduce 11 and (12) relaxing our previous assumption that log(1/e) O(n (log n)t)
and only assuming that

(55) loglog(1/e) O((logn)),

(56) log(1/(ewh)) O(na+ (log n)#), forfixed ct > 1, /3 > 1.

(Equations (55) and (56) turn into (51) if, say, 1/Wh O(1).)
Remark 9. Instead of computing all the partial derivatives, we may just try to factorize the

polynomial Yin=O(Pi -[- Ci A)X where ci have been chosen at random, say, in the real interval
from to 2 and A has been chosen as before, at random on the circle (19) for an appropriate
p. This approach (for appropriate p) shall work as long as 0h(det S)/(Opi)h 0 for some
h O(1) and for some > 1 (not necessarily for 1).

948 v.v. PAN

Appendix A. Perturbation of polynomial zeros. Approximation to polynomial zeros
and numerical polynomial factorization involve some nontrivial estimates of how much the
zeros are perturbed by the perturbation of the coefficients (compare (2), (3), and Proposition 8).
This problem is closely related to our study, and next, for the reader’s convenience, we will
recall and adjust to our purpose some known results on this topic.

We will first recall a simple corollary (see [12] and [17]) from a perturbation theorem by
Ostrowski. This theorem bounds the magnitude of the perturbation of the coefficients so that
the magnitude of the resulting perturbation of the zeros of p(x) never exceeds 2-.

Let us denote that

Iluixi I1 max lui I.

PROPOSITION 10. For two monic polynomials p(x) and p*(x) of degree n, where
IIp(x)ll < 2m, lip(x) p*(x)ll < 2-h, the zeros x, xn of p(x) and x*, ...,xn*
of p*(x) can be enumerated so that maxj [xj xl < 2m+lgn+2-h/n.

We may improve the latter estimates for a large class of polynomials whose zeros inside
and outside the unit circle Ix _< are isolated from each other (see [25]). Alternatively,
without imposing the latter restriction, we may just scale x so as to place all the zeros inside
this circle (as we have assumed in (6)), then argue somewhat similarly to [25], and arrive at
the next improved estimates.

PROPOSITION 11. Given a natural N, apositive < 0.5/40N, and the complex coefficients
two monic polynomials ofdegree N, P(x) and P* (x), such that P(x) I-I= (x xj),of

(57) liP(x)- P*(x)ll < e,

(58) max Ix/I 1,
J

we may enumerate the zeros of P* (x) so that P* (x) 1--I= (x x) and

(59) Ixj x]l < 4.4(2e) /N, j-- 1,..., N.

(60)

Proof First observe that P* (x) 0 implies that

Ie(x)l--Ie(x)- P*(x)l <_ liP(x)- P*(x)ll max(l, IxlN).

Therefore, the open set

T {z: IP(z)l < emax{1, [zig}}

contains all the zeros of P(x) and P* (x). Furthermore, the homotopy argument shows that in
a fixed component Tk of T, the polynomial P(t, x) P(x) + t(P*(x) P(x) has the same
number of zeros for all from 0 to 1; in particular, the two polynomials P(x) P(0, x) and
P* (x) P(1, x) have the same number of zeros in Tk.

Now, let P(x) 0, for some x 6 Tk, so that Ixl _< (see (58)). Let

(61) arc(x, y) {x(u) x + u z(u), Iz(u)l 1, 0 u d}

be an arc in Tk with the endpoints x x(0), y x(d). Then IP(x + u z(u))l 1-Ij Ix
xj + u z(u)I. On the other hand, by applying first (60) and then (57) and (61), we deduce that
IP(x +uz(u))l < e max{l, Ix +uz(u)lN} <e(1 +u)N < e(1 +d)N. Therefore,

Is(u)l-II(u-lx-xl)j=l N
< H Ix xj + u z(u) <(l+d)N

J=l

for 0<u<d.

COMPLEX POLYNOMIAL FACTORIZATION 949

The monic polynomial s(u) has degree N, so that 2 max0<u<d Is(u)l (d/4)u [11, p. 241].
Consequently, (d/4)u < 2E(1 + d)N, d < 4(1 + d)(2e) /N. It follows that

d<O.l(l+d), d< 1/9 for 2e < 1/40N,

and therefore
d < 4.4(2e)/N

which implies (59).
Let us now apply Proposition 11 under (42), to ensure (38). Equations (42) and (59)

together imply that

Ir(C, p(x) + A) r(C, p(x))1 < 4.4(2p/lp, I) /" < 0.11,

which together with (6) implies (38). (Note that the alternative application of Proposition 10
(instead of Proposition 11) would require that one replace (42) by a stronger bound, of the
order of/9 (1/n)O(n), in order to deduce (38).)

Acknowledgments. I wish to thank Joseph Lewittes and John Reif for their stimulating
discussions, the referees for their helpful comments, also C. Engle for her assistance in typing
the manuscript.

Note added in proof. The approach of the author’s paper 19] of 1987 has been recently
extended and modified in the papers New techniques for approximating complex polynomial
zeros, Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms (1994), pp. 260-270,
and Arithmetic complexity ofapproximating complex polynomial zeros, manuscript, 1994.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1976.

[2] A. V. AHO, K. STEIGLITZ, AND J. D. ULLMAN, Evaluating polynomials at fixed set ofpoints, SIAM J.
Comput., 4 (1975), pp. 533-539.

[3] W. BAUR AND V. STRASSEN, On the complexity ofpartial derivatives, Theoretical Comp. Sci., 22 (1983),
pp. 317-330.

[4] M. BEN-OR, E. FEIG, D. KOZEN, AND P. TIWARI, A fast parallel algorithm for determining all roots ofa
polynomial with real roots, SIAM J. Comput., 17 (1988), pp. 1081-1092.

[5] M. BEN-OR AND P. TIWARI, Simple algorithmfor approximating all roots ofa polynomial with real roots,
J. of Complexity, 6 (1990), pp. 417-442.

[6] D. BINI AND V. PAN, Parallel Complexity of Tridiagonal Symmetric Eigenvalue Problem, Proc. 2nd Ann.
ACM-SIAM Symp. on Discrete Algorithms, ACM Press and Society for Industrial and Applied
Mathematics, Philadelphia, PA, 199 l, pp. 384-393.

[7] Numerical andAlgebraic Computations with Matrices andPolynomials, vols. and 2, Birkhiiuser,
Boston, 1994.

[8] R.R. BITMEAD AND B. O. O. ANDERSON, Asymptotically fast solution of Toeplitz and related systems of
linear equations, Linear Algebra and Its Applic., 34 (1980), pp. 103-116.

[9] A. BORODIN AND I. MUNRO, The Computational Complexity ofAlgebraic andNumeric Problems, Elsevier,
New York, 1975.

10] R.P. BRENT, The parallel evaluation ofgeneral arithmetic expressions, J. ACM, 21 (1974), pp. 201-206.
11 S.D. CONTE AND C. DEBOOR, Elementary Numerical Analysis, McGraw-Hill, New York, 1980.
[12] E HENRICI, Applied and Computational Complex Analysis, Wiley, 1974.
13] E. KALTOFEN AND M. SINGER, Size efficient parallel algebraic circuits for partial derivatives, Tech. Report

90-32, Compt. Sci. Dept., Rensselaer Polytechnic Institute, Troy, New York, 1990.
[14] R. M. KARP AND V. RAMACHANDRAN, A survey ofparallel algorithms for shared memory machines, in

Handbook Theor. Computer Science, North-Holland, Amsterdam, 1990.
[15] S. LINNAINMAA, Taylor expansion ofthe accumulated rounding errors, BIT, 16 (1976), pp. 146-160.

950 v.v. PaN

16] B.R. MusIcus, Levinson andfast Choleski algorithmsfor Toeplitz and almost Toeplitz matrices, Internal
Report, Lab. of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 1981.

17] C.A. NEFF, Specifiedprecision polynomial root isolation is in NC, Proc. 31st Annual IEEE Symp. FOCS,
IEEE Computer Science Press, 1990, pp. 152-162, and J. Comp. System Sci., to appear.

[18] V. PAN, Complexity ofparallel matrix computations, Theoretical Comp. Sci., 54 (1987), pp. 65-85.
19] Sequential and parallel complexity ofapproximate evaluation ofpolynomial zeros, Computers

and Math. (with Applic.) 14 (1987), pp. 591-622.
[20] , Fast and efficient parallel evaluation of the zeros ofa polynomial having only real zeros, Com-

puters & Math. (with Applications), 17 (1989), pp. 1475-1480.
[21 Parametrization ofNewton ’s iterationforcomputations with structuredmatrices andapplications,

Computers and Math. (with Applics.), 24 (1992), pp. 61-75.
[22] ,Accelerated Solution of the Symmetric Tridiagonal Eigenvalue Problem, Tech. Rep. TR 92-6,

Computer Sci. Dept., State University of New York, Albany, New York, 1992.
[23] M. RABIN, Probabilistic algorithms in finite fields, SIAM J. Comput., 9 (1980), pp. 273-280.
[24] J. RENEGAR, On the worst-case arithmetic complexity ofapproximating zeros ofpolynomials, J. of Com-

plexity, 3 (1987), pp. 90-113.
[25] A. SCHONHAGE, Thefundamental theorem ofalgebra in terms ofcomputational complexity, manuscript,

Dept. of Math., U. of Ttibingen, Ttibingen, Germany, 1982.
[26] J. T. SCHWARTZ, Fast probabilistic algorithms for verification ofpolynomial identities, J. of ACM, 27

(1980), pp. 701-717.
[27] E TURAN, Powersum methodand approximative solution ofalgebraic equations, Math. Comp., 29 (1975),

pp. 311-318.
[28] On a New Method ofAnalysis and Its Applications, Wiley & Sons, New York, 1984.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 951-965, October 1994

1994 Society for Industrial and Applied Mathematics

RANDOMIZED ALGORITHMS FOR MULTIPROCESSOR PAGE MIGRATION*

JEFFERY WESTBROOK

Abstract. The page migration problem is to manage a globally addressed shared memory in a multiprocessor
system. Each physical page of memory is located at a given processor, and memory references to that page by other
processors incur a cost proportional to the network distance. At times the page may migrate between processors at
cost proportional to the distance times D, a page size factor. The problem is to schedule movements on-line so that
the total cost of memory references is within a constant factor c of the best off-line schedule. An algorithm that
does so is called c-competitive. Black and Sleator gave 3-competitive deterministic on-line algorithms for uniform
networks (complete graphs with unit edge lengths) and for trees with arbitrary edge lengths. No good deterministic
algorithm is known for general networks with arbitrary edge lengths.

Randomized algorithms are presented for the migration problem that are both simple and better than 3-competitive
against an oblivious adversary. An algorithm for uniform graphs is given. It is approximately 2.28-competitive as
D grows large. A second, more powerful algorithm that works on graphs with arbitrary edge distances is also given.
This algorithm is approximately 2.62-competitive (or, plus the golden ratio) for large D. Both these algorithms
use random bits only during an initialization phase, and from then on run deterministically. The competitiveness of
a very simple coin-flipping algorithm is also examined.

Key words, on-line algorithms, page migration, competitive analysis, multiprocessors, memory management

AMS subject classifications. 68Q20, 68Q25

1. Introduction. A common design for a shared memory multiprocessor system is a
network of processors, each of which has its own local memory [9], [14], [19]. In such a
design, a programming abstraction of a single global memory address space is supported by a
virtual memory system that distributes one or more copies of each physical page of memory
among the processors’ local memories. When processor p wishes to read or write to memory
address a, located in page b, it first looks to see if page b is contained in its own local memory.
If so, then the memory access is done immediately. If not, p determines some processor q that
does hold page b, and transmits a memory request to q over the network. The communication
cost is dependent on the interconnection distance between p and q. Processor q services the
request, and transmits back to p the (updated) value at address a.

Having a given virtual page stored at multiple processors reduces communication over-
head during memory reads, but introduces the problem of maintaining consistency among the
multiple copies during writes. Most multiprocessors do not provide mechanisms for main-
taining consistency [5]. Therefore, various network designers have studied thepage migration
problem [4], [5], [17], which arises when each writeable page is restricted to a single copy.
Suppose the single copy of page b is initially located at processor q. If the page is going to
be accessed frequently by processor p, then migrating the page from p to q will reduce the
communication overhead. On the other hand, moving a full page of memory incurs a large
amount of communication overhead, proportional to the size of the page. In addition, moving
the page to p may increase the cost of satisfying future memory requests should the pattern
of accesses change. The problem, then, is to design an on-line algorithm to schedule page
migrations in response to dynamically changing access patterns.

Formally, an instance of the migration problem consists of an edge-weighted undirected
graph G, and a real-valued constant, D, no smaller than 1. The graph G describes the

Received by the editors June 3, 1991; accepted for publication (in revised form) June 1, 1993. Research
partially supported by NSF grant CCR-9009753. A preliminary version of this paper appeared in the Proceedings of
the DIMACS Workshop on On-line Algorithms, American Mathematical Society, February 1991.

Department of Computer Science, Yale University, New Haven, Connecticut 06520-8285
(westbrook@cs.yale.edu).

951

952 JEFFERY WESTBROOK

interconnection network; each node contains a processor. We assume the nodes are numbered
from to n. One node of G, denoted p, contains the page. Initially the page resides at
node 1. The constant D corresponds to the size of the page. A request at node r is a reference
by processor r to some memory address on the page. A sequence of requests is generated at
the nodes of G. Each new request r is satisfied immediately at cost ;p,r, the shortest distance
in G between p and r. After satisfying a request, the page can be moved from p to a new
node pt at cost d- p,t,’. By definition, the distance function 8 satisfies the triangle inequality:
x,y <_ tx,z -]" z,y. Since G is undirected, 3 is symmetric.

For any sequence of requests, there is an optimum schedule of page movements that
minimizes the total cost of requests and migrations. In general, an on-line algorithm cannot
compute the optimum schedule, since it lacks knowledge of the future requests. An on-line
algorithm is called c-competitive if, for any request sequence, its cost is no more than c times
the cost of the optimum off-line cost for that sequence, for some constant c. Recently much
attention has been given to competitive analysis of on-line algorithms [6], [13], [15], [18].

Black and Sleator [5] formalized and studied the page migration problem in the context
of competitive analysis. They considered two classes of networks: uniform networks, i.e.,
complete graphs with each edge having length 1; and trees with arbitrary edge lengths. They
developed 3-competitive deterministic algorithms for these two classes for any D. In addition,
they showed that for all D, no deterministic algorithm could be better than 3-competitive, even
if the graph consists of only a single edge. Little is known about deterministic algorithms for
a complete graph with arbitrary edge weights. This problem seems quite hard. The best
previous deterministic bound for the general case was either the 2n bound for metrical
task systems [6] or a 2D + 2 bound given by a simple algorithm that moves the page to the
requesting node after each request.

In this paper we use randomization to beat the deterministic lower bound and to give
a fast algorithm for the general case. No randomized algorithms were known prior to this
work. A randomized on-line algorithm is c-competitive (against an oblivious adversary) if,
for any request sequence, its expected cost is no more than c times the cost of the optimum
off-line cost for that sequence, for some constant c. There are also definitions of randomized
competitiveness against stronger adaptive adversaries which are given in 2.

For uniform networks, we give a simple algorithm, UNIFORM, that is 2.38-competitive
for large values of D. This algorithm is "barely random," in the sense that it only uses a small
number of random bits during an initialization phase, and from then on runs deterministically.
Such a barely random algorithm has practical value since random bits can be an expensive
resource.

For the general problem (which includes trees) we develop a basic algorithm from which
variants can be constructed by choosing different probability distributions. We consider two
such choices. The first uses random coin flips after each request and gives an algorithm that
is (1 / q)-competitive for large D, where q is the golden ratio, approximately 1.62. We then
show that a deterministic resetting strategy gives a barely random algorithm with a competitive
ratio that also tends to + 4, although it is always slightly larger than the competitive ratio
of the first algorithm. Lastly we examine the competitiveness of a very simple coin-flipping
algorithm. We show that on any network and for any D it is 3-competitive against an adaptive
on-line adversary. The coin flipping algorithm is memoryless, and hence has no storage or
network overhead, but needs to generate a random number every request. Applying a result
of Ben-David et al. [2] to the coin-flipping algorithm and the (1 / q)-competitive algorithm
mentioned above, we prove the existence of a (3 / 3q)-competitive deterministic algorithm
for general networks.

Technically, the metrical task bound hold for a slightly different model. See below.

RANDOMIZED PAGE MIGRATION 953

Page migration is one of several problems that arise in managing data in a distributed
environment. Black and Sleator [5] have studied the related problem of page replication, in
which one may make multiple copies of a read-only page, and Karlin et al. 11 studied snoopy
caching, which is memory management given a bus-based interconnection network. Other
memory management problems have been studied in references [1], [12], [15]. Migration is
related to the 1-server with excursions problem defined by Manasse et al. 13]. Migration and
1-server with excursion are also related to the k-server problems [3], [7], 13]. Practical issues
and applications of page migration are discussed more fully in [4], [5], and 17]. Subsequent
to the work presented here, Chrobak et al. found a 2+ 1/2D-competitive algorithm for a single
edge and for the tree topology [8], and showed that this bound is tight.

2. Competitive analysis and lower bounds. Let r be a sequence of requests. The cost
of an algorithm A on cr is denoted A(cr). We denote by OPT the off-line algorithm that
achieves the optimum cost on r. Following [6], [13] we say a deterministic algorithm A is
c-competitive if there is a constant b such that for all request sequences r,

A(cr) < c. OPT(a) + b.

For randomized algorithms the competitiveness of an algorithm is defined with respect to
an adversary. Following [2] and 15] we consider three kinds of adversaries.

A randomized on-line algorithm, A, is c-competitive against an oblivious or weak ad-
versary if there is a constant b such that for all graphs and for all finite request sequences

E [A(cr)] < c. OPT(a) + b.

The expectation is over the random choices made by the on-line algorithm. This is the natural
extension ofdeterministic competitiveness, and models a situation in which the random choices
of the algorithm do not affect the choice of requests. We will typically use "c-competitive"
as an abbreviation for "c-competitive against an oblivious adversary." When an adaptive
adversary is intended we will state so explicitly.

An adaptive adversary generates the request sequence on-line, choosing requests based
on the actual moves made by the on-line algorithm. That is, an adaptive adversary A is a
function that takes as input a sequence of k 1 requests and corresponding actions by the
on-line algorithm, and outputs the kth request, up to a maximum number of requests, m. (Each
adversary has its own value of m.) Since the output ofA depends on the random choices of the
on-line algorithm, a randomized on-line algorithm and an adaptive adversary together generate
a probability distribution over request sequences tr.

There are two ways to charge the adversary for the request sequence. If , is an adaptive
off-line adversary, then ,(tr) is simply OPT(a), the optimum off-line cost for or. If/ is
an adaptive on-line adversary, then A,(tr) is the cost incurred on cr by an auxiliary on-line
algorithm MA. An on-line algorithm A is c-competitive against an adaptive adversary , if
there exists a constant b such that

The adaptive adversaries model a situation in which the random choices of the algorithm may
affect the future request sequence. The adaptive on-line adversary is not entirely intuitive,
in that the cost measure seems somewhat unnatural, but this adversary is useful in proving
theorems about deterministic algorithms.

Black and Sleator showed that in the simple case of two processors linked by a single
edge of length 1, no deterministic algorithm can be better than 3-competitive for any D.

954 JEFFERY WESTBROOK

In addition, Chrobak et al. [8] give an example of a 4-processor network on which every
deterministic algorithm has a competitive ratio slightly larger than 3 when D 1. By a
theorem of [2], these deterministic lower bounds also apply to randomized algorithms facing
an adaptive off-line adversary.

The results in this paper demonstrate that against an oblivious adversary, randomized
algorithms can beat the deterministic lower bound. By considering the case of a single edge,
one can show that for a given page factor D no randomized algorithm can be better than
2 + --competitive against an oblivious adversary [8]. We suspect, however, that the lower
bound is higher for more complicated graphs.

In 5 we show a randomized algorithm that is 3-competitive against adaptive on-line
adversaries for all D. One can apply a technique from [10], 16] to show that no algorithm
can do better. This lower bound follows from considering the simple case of two processors
linked by a single edge of length 1. The adaptive adversary’s strategy is to watch the on-
line algorithm and always generate requests at the processor that does not contain the on-line
algorithm’s page. Thus the on-line algorithm pays per request. Prior to generating the
first request, the adaptive on-line adversary simulates the on-line algorithm over all possible
random choices, using the above strategy to generate a probability distribution over request
sequences r of length m. From the simulation, the adversary computes the expected number
of requests at processors Pl and P2, and expected total cost of page migrations, B, paid by
the on-line algorithm. If B > rn/2, the adversary initially places its page at the processor
most often requested, and never moves it again. The expected cost to the adversary is at most
D + rn/2, while the expected cost to the on-line algorithm is at least 3m/2. If B < rn/2,
the adversary always moves so as to keep its page at the processor that does not contain the
on-line algorithm’s page. In this case, the adversary pays B, while the on-line algorithm pays
B + rn > 3B. Thus in either case, the on-line algorithm cannot guarantee to be better than
3-competitive.

The above discussion shows that in the migration problem the oblivious, adaptive on-line,
and adaptive off-line adversaries are strictly differentiated from each other in their power. This
is the first natural on-line problems for which this is known to be true.

3. Uniform graphs. In this section we describe and analyze a randomized algorithm,
UNIFORM, designed for uniform graphs. The uniform graph is a common and important
network topology [5]. In this model, d;v. 0 for all processor nodes v, 8u.v for all pairs
u # v, and the cost of moving the page from node u to node v is D > 1.

Before describing the algorithm, we remark that when the graph is a single edge between
two nodes, this problem is identical to the two-item list update problem. Reingold et al.
10], 16] gave a simple randomized algorithm for the list-update problem, which UNIFORM

parallels.
Each processor node v of the graph is given an associated counter, Co, that takes on values

between 0 and k 1. The optimum value of k depends on D; we will see later how to choose
k. Let C (C1, C2 Cn) be a vector of the counter values at each of the n nodes of the
graph. There are k" such vectors. Let C be the th such vector.

Let U denote a deterministic algorithm that begins with initial counter vector __C and
processes a request at node r as follows:

1. The page request is satisfied at cost at most 1.
2. The counter at r, Cr, is incremented.
3. If Cr has value k, the page is moved to node r, if it is not already there, and Cr is

reset to 0.
Prior to processing any requests, the UNIFORM algorithm chooses a deterministic algo-

rithm U uniformly at random, and then runs it. The random choice is made by initializing

RANDOMIZED PAGE MIGRATION 955

each node counter uniformly at random, using (R)(n log k) random bits.
THEOREM 3.1. UNIFORM is ck-competitive againstan oblivious adversary, where k is the

maximum counter value andck is the maximumofl +(k+ 1)/2D and 14- (2D 4- (k 4- 1)/2).
Proof. We show that E [UNIFORM(a)] < ck" OPT(a) for any finite request sequence a.
To analyze the expected cost of UNIFORM we imagine that the ensemble of m kn

different deterministic algorithms U is being run simultaneously on the request sequence. The
expected cost ofUNIFORM is the total cost ofthe ensemble dividedby m. Weuse the following
observation: At any time, each algorithm in the ensemble has a distinct counter vector. This
follows by an easy induction on the number of requests. The observation implies that at any
time the number of algorithms in the ensemble with the same value of Co is exactly m/k.
Equivalently, at any time during the running of algorithm UNIFORM, Pr [Co j] 1 /k for
O<j<k-1.

Our proof uses the technique of comparing simultaneous runs of U and OPT on the
request sequence a. The actions of U and OPT are partitioned into two kinds of events,
which together account for all costs to the algorithms. The first kind of event is the servicing
of a request by both U and OPT. This event may involve U moving its page. The second
kind of event is OPT moving its page. After the tth event, let pi denote the node where U has
the page and opt denote the node where OPT has the page. We define a potentialfunction P:

’l’t { 0 if pi opt,
D + k Copt if pi # opt.

Each event has an actual cost to OPT, and an amortized cost to Ui, defined to be the actual
cost of the event to U plus the change in the potential function, AC, t t-1. The
potential is always nonnegative, and 0 0, since OPT and U begin with the page at the
same node. This implies, by standard amortized analysis arguments, that the total actual cost
to U is bounded by the sum of the amortized costs for all events. To prove the theorem, we
show that for each event the sum of the amortized costs to the algorithms in the ensemble is
less than mck times the actual cost to OPT.

1. The event is a request. There are two subcases.
(i) The request is at node opt. In this case OPT pays 0, so we must show that the amortized

cost to each algorithm U is also zero. If pi opt then the actual and amortized cost to U
is also 0. Otherwise, U pays 1, but since Copt is incremented, the potential decreases by 1. If
the counter reaches k, then the page moves to opt. This costs D, but decreases the potential
by a further D. Thus the amortized cost is always 0.

(ii) The request is at node r - opt. The cost to OPT is 1. Each algorithm U pays at
most for the request. For m /k of the algorithms in the ensemble, Cr reaches k and the page
is moved to r at cost D. If pi 5 opt prior to moving, then there is no change in the potential.
In the worst case, pi opt prior to the move and the potential increases by D 4- k Copt. No
more than m/k2 algorithms, however, can move from opt with Copt i, for 0 < < k 1.
Therefore, the total cost of the event to the ensemble is bounded by

m m
m +D + -k(D+k-i).

O<i<k-1

Summing and dividing by m gives the expected amortized cost to UNIFORM,

1+ 2D+ 2
which is bounded by c, times the cost to OPT.

956 JEFFERY WESTBROOK

2. The event is that OPT moves its page to a new node r. The actual cost to OPT is
D, and the actual cost to each algorithm U is 0. Now we consider the cost due to changes
in potential. If r pi, the potential decreases by at least .D. If r pi and opt pi,
then A Copt Cr, which is bounded by k Cr. In the worst case, r pi and initially
opt pi. Then A D + k Cr. Exactly m/k algorithms have C i, so the total cost
to the ensemble of this event is at most

E m

0<i<k-1
(D + k- i).

Summing and dividing by m gives the expected cost to UNIFORM, D + (k + 1)/2, which is
at most Ck times the cost to OPT.

This completes the proof of Theorem 3.1. Given a value of D, we can choose k to
(2D + (k + 1)/2).minimize the maximum of 1 + (k + 1)/2D and +

Table 1 shows the best competitive ratio for UNIFORM for values of D up to 10. These
values are found by setting

k+ + 2D+1+
2D 2

and solving for k in terms of D. Then the best integer approximation to this value is taken.
As D tends to infinity, the best competitive ratio decreases and tends to (5 + 7)/4 2.28.
Note that all these values are better than the deterministic lower bound of 3. It is possible to

slightly improve upon the values for small D by using the random reset techniques employed
in [16].

TABLE
Best competitive ratiosfor UNIFORM.

2
3
4
5
6
7
8
9
10

best k

2
5
7
10
12
15
17
20
23
25

comp. ratio

2.75
2.50
2.43
2.38
2.38
7/3
2.35
2.33
2.33
2.32

The next theorem shows that our analysis is tight.
THEOREM 3.2. The UNIFORM algorithm is no better than ct-competitive, where ct is

defined as in Theorem 3.1.

Proof. Consider two processors, labelled "1" and "2," connected by a single edge oflength
1. Initially the page is located at processor 1. There are two kinds of bad request sequences:
era 2t and rb 21 t, where and 2 denote page requests at processors and 2 respectively,
and t denotes k consecutive requests at processor i. Sequence era can be satisfied at cost D,
and rb can be satisfied at cost 1.

The expected cost to UNIFORM on ra is simply the expected time until the page migrates
to 2, which is determined by the expected value of the counter at 2, plus the cost of migration.
(UNIFORM is guaranteed to move the page eventually, since there are k requests.) Therefore

E [UNIFORM(ra) D -}-
k+l

RANDOMIZED PAGE MIGRATION 957

or (1 + (k + 1)/2D). OPT(tra).
On trb, UNIFORM moves its page to 2 after the first request with probability 1/k, in

which case the remainder of the sequence looks identical to ra. Hence

1
E [UNIFORM(o’a)] + (2D + 2

OPT(orb).

The adversary can generate arbitrarily long request sequences by repeating era or trb, so the
UNIFORM algorithm cannot be better than ck-competitive.

4. General graphs. In this section we consider the migration problem on undirected
graphs with arbitrary edge distances. Recall that even with arbitrary edge lengths the shortest
distance function remains symmetric and still satisfies the triangle inequality.

One reason the general case seems harder than the uniform case is that a general graph
may contain clusters of processors that are very close to each other but relatively far from
other clusters. Such a situation models a collection of local-area networks tied together in
a wide-area network. Even though no single processor in a cluster is accessing the page
especially often, the cluster as a whole may generate many requests for the page, and it may
be advantageous to move the page to some node in the cluster. On the other hand, in the
uniform case a cluster of processors that access the page equally often is an easy situation for
the on-line algorithm to handle, since both it and OPT must pay about 1 per request.

The previous best known deterministic competitive ratio for general graphs is 2n 1,
given by the general metrical task system algorithm [6]. Technically, that result holds for a
different model, the "lookahead-1" model, in which the algorithm is allowed to move the page
after seeing the next request but before actually servicing it. In our "lookahead-0" model, the
request must be serviced immediately it is seen. It is easily checked that an algorithm for the
lookahead-1 model can be used to derive an algorithm for the lookahead-0 model that has a
competitive ratio no more than 2 times worse than that of the original algorithm. Furthermore,
the bounds converge as D grows large. One can also show that the strategy of moving the page
to the last requesting node yields a competitive ratio of 2D + 2. Thus even when the graph
is a single triangle, the best known deterministic algorithm for large D is only 5-competitive.
Our randomized algorithms for the general case are simple enough to be practical, and beat
the deterministic lower bound.

The general algorithm G maintains a single counter with value C > 1. After each request
to the page, we perform the following.

1. The counter is decremented by one, regardless of where the request is.

2. If the counter reaches 0, the page is moved to the location of the current request. After
the move, the counter is reset according to a resetting distribution 79 (ctl, a2, c3), where
ci is the probability of resetting the counter to value i.

The distribution 79 is fixed in advance and is independent of the request sequence. Let
k max{/ oti > 0}. We are only interested in distributions for which k exists (i.e., is not
infinite).

The counter value forms a Markov chain in which state corresponds to the counter having
value i, for 1 < < k. Being in state means that the page will be moved after accesses. A
state transition occurs with every access. The transition matrix for the corresponding Markov
chain is shown in Fig. 1. Note that the probability of being in a given state depends only on
the number of requests that have been processed, not on the nature of the requests.

Let pi denote the steady state probability of being in state i. Given a resetting dis-
tribution D, let R(79) denote the expected value of the counter immediately following a
reset and let ’s(79) denote the expected value of the counter in steady state. By definition,

958 JEFFERY WESTBROOK

or3

Olk-1
Olk

0 0
0 0

0 0 ".

FIG. 1. Markov chain transition matrix. Entry (i, j) contains the probability ofa transition to counter value
from counter value j following a request, < i, j < k.

’R(D) -i=1 ioti and s(D) Yik= ipi. We will abbreviate the notation to R and ’s
when the distribution 79 is clear.

The steady state probabilities Pi are given by the eigenvector of the transition matrix
corresponding to eigenvalue 1. One may verify that in steady state,

k

Pi -R j=i

This implies

es - otj
i=1 j=l

R
Oli

i=l j=l

CR =
Prior to starting a run of the algorithm, the counter is initialized according to the steady

state distribution, i.e., the counter is initialized to with probability p, for < < k.
LEMMA 4.1. Let G(79) be the general algorithm with resetting distribution 79. G(79) is

eTa-competitive, where cz is the maximum of2 + (2D/(’R(79)) and + (s(79)/D).
Proof As before, we partition the actions and costs into two events: a request that both

G(79) and OPT satisfy, and a page movement by OPT. A given tr fixes a sequence of events
and determines an ensemble of deterministic on-line algorithms that correspond to all possible
random choices that can be made throughout the processing of r. At any time, the fraction of
algorithms in this ensemble that have counter value is given by the steady state probability,
p. The average cost of the algorithms in this ensemble gives the expected cost of one run ofG
on r. We will calculate the expected amortized cost per operation of G directly. Let random
variable Xt be the amortized cost of the tth event. The total amortized cost is Yt Xt, and by
linearity of expectations the expected total amortized cost is]t E [Xt]. To prove the theorem
we bound E [Xt] in terms of the cost to OPT.

At the time of event t, let opt be the node where OPT has its page and g be the node where
G has its page. Let C be the value of the counter. Both g and C depend upon previous random
choices, but opt is fixed by

RANDOMIZED PAGE MIGRATION 959

We use the potential function

t (D + C) g,opt.

Note that 0 when OPT and G have their pages at the same node.
Now we analyze the expected amortized cost of each event.
1. The event is a request at node r. Let 0 3r, opt, 1 3g,opt and 2 8g, (See

Fig. 2.) The cost to OPT is e‘o. The actual cost to G is e‘2. The counter is decremented,
so A -e‘l, and hence the amortized cost to G is e‘2 e‘l. By the triangle inequality,
e‘2 < e‘o + e‘. Therefore, the amortized cost to G to satisfy the request is at most

opt

g

FIG. 2. DiagramforproofofLemma 4.1.

With probability p, the counter value is just prior to the request and becomes 0 after
the request is satisfied. Then G moves the page to node r at cost De‘2 and resets the counter
according to 79. The potential change is

e‘o(D + C’) De.l,

where C’ is the value to which the counter is reset. The expected change in potential is
determined by the expected value of the counter after the reset, ’R. Hence the expected
amortized cost of a move is

De‘2 -b e‘o D +) De‘

Again applying the triangle inequality, this is bounded by

e‘o(2D +).

Combining the cost to satisfy the request with the expected move cost in the case that C 1,
the total expected amortized cost to G is bounded by

go (1 + p,(2D +))

Since Pl (1/Cg), this is at most cz times the cost to OPT.
2. The event is OPT moving its page from node opt to a new node opt’. Let e‘0 opt,opt’.

The actual cost to OPT is De‘o and the actual cost to G is 0. Now we consider the cost due to
changes in potential. Let e‘l be g,opt and e‘2 be g,opt’. The actual potential change is

(e‘2 e‘l) (D + C),

where C is the actual counter value. The expected potential change is determined by the steady
state expected value of the counter, Cs. Since e‘2 < e‘0 + el, the expected potential change is
bounded by e‘0 (D + s), which is at most cz times the cost to OPT. [3

960 JEFFERY WESTBROOK

LEMMA 4.2. The general algorithm, G(79), is no better than cg-competitive, where c79 is

defined as in Lemma 4.1.
Proof As in Theorem 3.2 we consider two processors, connected by an edge of length 1,

and two request sequences: ra 2k and rb 21k.
The expected cost to G(D) on era is s, the initial expected time until the page migrates

to 2, plus the cost of the migration. Therefore

E [G(a)] D + s,
or (1 + (s)/D). OPT(aa).

On , G(D) moves its page to 2 after the first request with probability p. In this case
the cost on the remainder of 6 is determined by the expected time to return the page to 1,
given that it has moved initially. This expected time is Ce. Hence

[a(l] (1 + 1(+ d. OT(I + OT(.

The adversary can generate arbitrarily long request sequences by repeating
or b.

In the next two subsections we analyze two choices for the resetting distribution D. First
we give a randomized resetting strategy with a competitive ratio that tends to 1 + , where

is the golden ratio, approximately 1.618. Then we discuss the deterministic strategy of
resetting the counter to a single value k after a move. We show that the competitive ratio of the
deterministic strategy approaches that of the random resetting distribution as D grows large.
Deterministic resetting gives a simple, practical, near-optimal barely random algorithm.

4.1. Random resetting. We restrict our attention to distributions D that satisfy

2D s
() 2t =+.

C D

Then the competitive ratio is given by the choice of resetting probabilities that minimizes
2 + 2D/e. This is minimized when is maximized. For a fixed value of k, the following
linear program computes an optimum resetting distribution subject to constraint 1"

maximize
i=1

subject to the constraints

k

(i2
i--1

k

Oi l,
i=1

(2D 1)i)ci 4D2,

O/i 0, <i <k.

Let x be the positive solution to x2 (2D 1)x 4D2 Hence x D + ((20D2

4D + 1) 1/2 1). Then k0 Ix] is the least integer such that constant on the k0th term in the
second constraint of the linear program is greater than 4D2.

LEMMA 4.3. There is a feasible solution to the linear program with only ako-1 and o
nonzero.

RANDOMIZED PAGE MIGRATION 961

Proof Let ot Cko-1. By the first constraint of the linear program, c ck0. Setting
O 0 for all other i, the second constraint becomes

0 k02 (2D- 1)k0 -4D2 + c(2O- 2ko).

Replacing k0 by x / e, where 0 < e < 1, and using the fact that x2 (2D 1)x 4D2, this
constraint further reduces to

0 (2x 2D + + e)e (2x 2D + 2e)c,

implying

ot e + e(1 e)/(2x 2D + 2e).

Observing that 2x 2D > 0 for all D > 0, it is easily verified that 0 < c < 1. Hence
constraint three is satisfied.

THEOREM 4.4. The competitive ratio of the algorithm given by choosing ko and ot as
above is 2 + 2D/(ko -u)

Proof This theorem follows from straightforward substition into the formula for
CR.

Table 2 shows several competitive ratios given by Theorem 4.4. As D gets large, the best
competitive ratio decreases and tends to + (1 +)/2, which is one plus the golden ratio,
or approximately 2.62.

TABLE 2
Best general competitive ratios, resetting randomly with Otko-1 and otko.

2
3
4
8
16
32
64
128
256
512

best ko

3
6
9
13
26
52
103
207
414
828
1657

comp. ratio

2.800
2.696
2.667
2.655
2.636
2.627
2.622
2.620
2.619
2.619
2.618

4.2. Deterministic resetting. We can turn the randomized resetting strategy of the previ-
ous section into a deterministic resetting strategy by setting eitherc0_ orc to 1, depending
on which gives the lowest maximum competitive ratio. Let s k0 or k0 depending on
whether we choose ot0_ or ck0 1, respectively.

THEOREM 4.5. The general algorithm with deterministic resetting is Cs-competi-
tire against an oblivious adversary, where Cs is the maximum of + (s+ 1)/2D and2+ (2D/s).

Proof. The counter is initialized by setting it to value with probability 1/s for <_
_< s. At any time thereafter, the counter values are uniformly distributed from to s.

Calculating R and ’s from the formulas given above and applying Lemma 4.1 completes the
proof. [3

Table 3 shows the best competitive ratios achieved by this deterministic resetting strategy
for various values of D. As D and hence k0 grows, the deterministic and random resetting
algorithms tend to the same competitiveness. Deterministic resetting has the advantage of
greater simplicity, since it requires random bits only during initialization.

962 JEFFERY WESTBROOK

TABLE 3
Best general competitive ratios, resetting to ko with probability 1.

D

2
3
4
8
16
32
64
128
256
512

best k0

3
6
9
12
25
51
103
206
413
827
1656

comp. ratio

3.000
2.750
2.667
2.667
2.640
2.627
2.625
2.621
2.620
2.619
2.618

5. The coin-flipping algorithm. A very simple randomized strategy is to flip a weighted
coin at each request, and move to the requested node if the coin comes up heads. That is, at
each request, the page is moved to the requesting node with probability p > 0. This strategy
can be used on a general graph with arbitrary edge weights. It has the advantage of being
memoryless; no state information is remembered other than that given by the location of the
page. Furthermore, it achieves exactly a competitive ratio of 3 against both adaptive on-line
adversaries and oblivious adversaries. On the other hand, it has a poorer competitiveness
against an oblivious adversary than the algorithms for the uniform and general problems
presented in 3 and 4, respectively, and it requires a random number call every access.

In this section we analyze the competitiveness of the coin-flipping algorithm. First we
give a lower bound.

THEOREM 5.1. The coin-flipping algorithm is no better than 3-competitive against an
oblivious adversary.

Proof. We use our standard scenario of two processors and two request sequences:
tra 2j and trb 21 j. We require that j > D. For era the optimum cost is D, and for
trb the optimum cost is 1.

Letq 1-p. The expected cost ofthe coin-flipping algorithm on era is (D+ 1/p)(1 -qJ).
For any p < 1/2D, this is at least 3(1 qJ) times the optimal cost. The expected cost of the
coin-flipping algorithm on trb is + p(D+ (D+ l/p)(1 -qJ)) > 2pD+ 2(1 -qJ). For any
p > 1/2D, this is at least 3 2qJ times the optimal cost. Hence for any choice of p, there is
a sequence and a choice of j such that the competitive ratio of the coin-flipping algorithm is
arbitrarily close to 3.

Now we show that the coin-flipping algorithm is 3-competitive against an adaptive on-line
adversary.

To perform the analysis, we use the request-answer game framework of [2]. The adversary
initially commits to a request sequence length m. The game proceeds as a sequence of m
rounds. In each round, the adversary first moves its page, if it so chooses. Then the adversary
generates a request, and immediately services it. Then the on-line algorithm services the
request and possibly moves its page. At the end of each round, the adversary is told the
location of the page of the on-line algorithm.

THEOREM 5.2. The coinf,flipping algorithm with p 1/2D is 3-competitive against any
adaptive on-line adversary A.

Proof. We use the following crucial observation. In each round, the probability that the
coin-flipping algorithm moves its page is independent both of the request and of the location
of the adversary’s page when the request is generated. This observation is not true for the

RANDOMIZED PAGE MIGRATION 963

algorithms of3 and 4, which make moves based on counter values that the adaptive adversary
knows and can use in generating its requests. This observation is also not true for the coin-
flipping algorithm against an adaptive off-line adversary. In the off-line case, the location of
the adversary’s page depends deterministically upon future requests, which in turn depend
upon the outcomes of future coin-flips by the algorithm.

Using the observation, we show that the expected amortized cost of each event is no more
than 3 times the cost to the adversary of that event. Let f denote the processor containing the
page of the coin flipping algorithm, a denote the processor containing the page of A, and
denote the distance from f to a. We use the following potential function:

3D.

There are two events to consider in each round:
1. A request occurs at node r. Let f and a denote the nodes containing the pages of the

coin-flipping algorithm and the adversary, respectively, just prior to the request. There are
three distances of interest: 0, the distance from f to a; 1, the distance from a to r; and 2,
the distance from f to r. The cost to is 1. The expected cost to the coin-flipping algorithm
is

2 + --(D2 + 3D 3Deo).

By the triangle inequality, 2 < +0. This implies that the expected cost to the coin flipping
algorith is at most 3el.

2. A moves its page from a to a’. Let 0 and 1 denote the distance from f to a and f to
at, respectively. Let 2 be the distance from a to at. The cost to , of the move is De2. The
cost to the coin flipping algorithm is 3Del 3De0, which is at most 3De2, by the triangle
inequality.

COROLLARY 5.3. The coin-flipping algorithm is 3-competitive against an oblivious ad-
versary.

Proof. This follows trivially from the fact that an oblivious adversary is simply an adaptive
on-line adversary that generates the same requests regardless of the random choices made by
the on-line algorithm and services these requests optimally.

COROLLARY 5.4. On any graph the competitiveness ofthe coin-flipping algorithm against
an adaptive off-line adversary tends to 3 + 3b 7.86 as D grows large.

Proof. Theorem 2.2 of [2] states that if algorithm B is/-competitive against an adaptive
on-line algorithm and there exists an algorithm A that is a-competitive against an oblivious
adversary, then B is a-competitive against an adaptive off-line algorithm. We take A to
be the general algorithm with deterministic resetting from 4.2 and B to be the coin-flipping
algorithm. For various values of D, the competitive factor of the coin-flipping algorithm
against an adaptive off-line adversary can be found by multiplying by 3 the appropriate entries
in Table 3.

COROLLARY 5.5. There exists a deterministic algorithm for the migration problem with
competitive ratio that tends to 3 + 3 7.86 as D grows large.

Proof. Theorem 2.1 of [2] states that if there is a randomized algorithm that is
competitive against any adaptive off-line algorithm, then there is also a c-competitive deter-
ministic algorithm. The theorem gives a method of constructing the deterministic algorithm,
but we have not attempted to do so here.

6. Remarks. This paper presented randomized algorithms for page migration. We have
shown the following.

964 JEFFERY WESTBROOK

(i) An algorithm for uniform graphs that tends toward being 2.38-competitive as D gets
large.

(ii) An algorithm for general graphs that is parameterized by a resetting distribution.
Deterministic resetting gives a variant that tends toward being + b-competitive as D gets
large.

(iii) A very simple coin-flipping algorithm that is 3-competitive against adaptive on-line
adversaries.

We have also shown that the analysis is tight for each algorithm and that coin-flipping is
optimal against an adaptive on-line adversary.

There are several interesting open problems. One is to improve upon our randomized
algorithms, and to improve or generalize the lower bounds. A second one is to find a good
deterministic algorithm for migration on general graphs. Another open problem is to extend
any of these results to the more general problem of 1-server with excursions.

In recent work, Bartal et al. [1] studied file allocation in distributed systems. In this
situation multiple physical copies of writeable pages or data files are sometimes allowed. In
this problem, the competitive ratio rises to (R) (log n), where n is the number of processors.

Acknowledgments. The author thanks Daniel D. Sleator for suggesting the migration
problem and Nick Reingold for helpful conversations.

REFERENCES

Y. BARTAL, A. FIAT, AND Y. RABANI, Competitive algorithmsfor distributed data management, in Proc. ACM
Symp. on Theory of Computing, 1992, pp. 39-50.

[2] S. BEN-DAVID, A. BORODIN, R. M. KARP, G. T/RDOS, AND A. WIGDERSON, On the power of randomization in
on-line algorithms, in Proc. 22nd ACM Symp. on Theory of Computing, ACM Press, New York, NY,
May 1990, pp. 379-386.

[3] P. BERMAN, H. J. KARLOFF, AND G. TARDOS, A competitive three-server algorithm, in Proc. 1st ACM-SIAM
Symp. on Discrete Algorithms, 1990, Society for Industrial and Applied Mathematics, Philadelphia, PA,
pp. 280-290.

[4] D. BLACK, A. GUPTA, AND W. WEBER, Competitive management ofdistributed shared memory, in Proc. Spring
Compcon 1989, IEEE Computer Society Press, San Francisco, CA, 1989, pp. 184-190.

[5] D.L. BLACKAND D. D. SLEATOR, Competitive algorithmsfor replication and migration problems, Tech. Report
CMU-CS-89-201, Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1989.

[6] A. BORODIN, N. LINIAL, AND M. SAKS, An optimal online algorithm for metrical task systems, in Proc. 19th
ACM Symp. on Theory of Computing, ACM Press, New York, NY, 1987, pp. 373-382.

[7] M. CHROBAK, H. KARLOFF, T. PAYNE0 AND S. VISHWANATHAN, New results on serverproblems, in Proc. 1st ACM-
SIAM Symp. on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA,
1990, pp. 291-300.

[8] M. CHROBAK, L. L. LARMORE, N. REINGOLD, AND J. WESTBROOK, Page migration algorithms using workfunc-
tions, Tech. report YALEU/DCS/TR-897, Yale University, New Haven, CT, November 1991.

[9] W. CROWTHER, J. GOODHUE, E. STARR, R. THOMAS, W. MILLIKEN, AND Z. BLACKADAR, Performance measure-

ments on a 128-node butterfly parallel processor, in Proc. International Conf. on Parallel Processing,
IEEE Computer Society Press, Silver Spring, MD, 1985, pp. 531-540.

10] S. IRANI, N. REINGOLD, D. O. SLEATOR, AND J. WESTBROOK, Randomized algorithmsfor the list update problem,
in Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1991, pp. 251-260.

11 A. KARLIN, M. MANASSE, L. RUDOLPH, AND D. SLEATOR, Competitive snoopy caching, Algorithmica, 3 (1988),
pp. 79-119.

12] A.R. KARLIN, M. S. MANASSE, L. A. MCGEOCH, AND S. OWICKI, Competitive randomized algorithmsfor non-
uniform problems, in Proc. 1st ACM-SIAM Symp. on Discrete Algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1990, pp. 301-309.
[13] M. MANASSE, L. A. MCGEOCH, AND D. SLEATOR, Competitive algorithms for on-line problems, in Proc. 20th

ACM Symp. on Theory of Computing, ACM Press, Chicago, IL, 1988, pp. 322-333.

RANDOMIZED PAGE MIGRATION 965

14] G. PFISTER AND ET AL., The IBM research parallel processorprototype: hltroduction and architecture, in Proc.
International Conf. on Parallel Processing, IEEE Computer Society Press, Silver Spring, MD, 1985, pp.
764-771.

[15] P. RAGHAVAN AND M. SNIR, Memory versus randomization in on-line algorithms, Research Report RC 15622,
No. 69444, IBM T. J. Watson Reseach Center, 1990.

[16] N. REINGOLD, J. WESTBROOK. AND D. O. SLEATOR, Randomized algorithms for the list update problem, Algo-
rithmica, (1994), pp. 15-32.

17] C. SCHEURICH AND M. DUBOIS, Dynamic page migration in multiprocessors with distributed global memory,
IEEE Trans. Comput., 38 (1989), pp. 1154-1163.

18] D.D. SLEATOR AND R. E. TARJAN, Amortized efficiency oflist update andpaging rules, Comm. ACM, 28 (1985),
pp. 202-208.

19] A. WILSON, Hierarchicalcache architectureforshared memory multiprocessors, in Proc. 14th International
Symp. on Computer Architecture, ACM SIGARCH/IEEE Computer Society, IEEE Computer Society
Press, New York, 1987, pp. 244-252.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 966-975, October 1994

() 1994 Society for Industrial and Applied Mathematics
005

NEAR-OPTIMAL TIME-SPACE TRADEOFF FOR ELEMENT DISTINCTNESS*

ANDREW CHI-CHIH YAOt

Abstract. It was conjectured in Borodin et al. [J. Comput. System Sci., 22 (1981), pp. 351-364] that to solve
the element distinctness problem requires TS f2 (n2) on a comparison-based branching program using space S and
time T, which, if true, would be close to optimal since TS O((n logn)2) is achievable. Recently, Borodin et al.
[SIAM J. Comput., 16 (1987), pp. 97-99] showed that TS f2(n3/2(logn)l/2). This paper presents a near-optimal
tradeoff TS (n2-e(n)), where e(n) O(1/(logn)l/2).

Key words, branching programs, comparisons, element distinctness, linear ordering, lower bounds, time-space
tradeoff

AMS subject classifications. 68P 10, 68Q25

1. Introduction. In Cobham’s classic paper [C], time-space tradeoffs were established
for one-tape Turing machines. In recent years, a number of time-space tradeoff results have
been obtained for various computational models, such as Boolean and arithmetic circuits
[To], a general sequential computing model [BC], [B], multihead Turing machines [DG], [K],
comparison-based branching programs [BFKLT], [Y], [BFMUW], [K], and very large scale
integration (VLSI) models [Th] (see [U] for a review of results). In this paper, we establish
a tradeoff result in the comparison-based branching program model, proving in weaker form
an interesting conjecture of Borodin et al. [BFKLT].

Borodin et al. [BFKLT] proved a tradeoff TS (n2) for sorting n numbers on a
comparison-based branching program, but were not able to establish a similar tradeoff for any
decision problem in their model. They conjecture, however, that the tradeoff TS f2 (n2)
is also true for the element distinctness problem. This, if proved, would be close to the
best possible, since an upper bound TS O((n logn)2) is achievable for sorting [MP], and
hence for the element distinctness problem. Recently, Borodin et al. [BFMUW] gave a partial
resolution to the above conjecture, showing in the same model that TS (n3/2 (log n)/2).
In this paper, we will prove that TS f2(n2-(n)), where (n) O(1/(logn)/2). As
mentioned earlier, such a tradeoff is nearly the best possible.

Let xl, x2 xn be n elements chosen from a linearly ordered set (D, <). The element
distinctness problem (with parameter n) is to decide whether all xi are distinct. As discussed
in [BFMUW], a comparison branching program A is a labeled directed acyclic graph with
a distinguished nonsink node, called source. Each nonsink node is labeled by a comparison
xi xj with j, and has three outgoing edges labeled by <, --, >, respectively. The sinks
are labeled by either "accept" or "reject." An input (xi, x2 xn) 6 D starts at the
source and traverses A, making comparisons and branching according to the outcomes, until
a sink is reached. The input is accepted if and only if it reaches a sink with an "accept" label.
The capacity of ,4 is the base-2 logarithm of the number of nodes. The length of A, or the
time T used by A, is the length of the longest path starting with source. We say that A is an
algorithm for the element distinctness problem if is accepted when and only when all xi are
distinct. Let ,A,, denote the set of all algorithms for the element distinctness problem. We now
state our main result.

THEOREM 1. Any A An with capacity S and time T must satisfy TS- 2(n2-(n)) for
large n, where (n) 5/ (In n) 1/2.

*Received by the editors March 29, 1988; accepted for publication (in revised form) June 1, 1993. This research
was supported in part by National Science Foundation grant CCR-8813283.

Department ofComputer Science, Princeton University, Princeton, New Jersey 08544 (ao@c s. pr inceton,
edu).

966

TIME-SPACE TRADEOFE 967

2. Preliminaries.

2.1. Overview. As discussed in [BFKLT], using a result of Nick Pippenger, we can
assume without loss of generality that A is leveled, i.e., each node is assigned a level number
and each edge goes from a node in level to a node in level + 1. The source node has
level 0, and all sinks are at level T. From now on, all branching programs will mean leveled
comparison branching programs.

We review the ideas involved in the proof of TS (n3/2(logn) 1/2) in [BFMUW].
(Some of these ideas originated in [BFKLT].) Let A 6 .An. For any input 2 (Xl, x2
with distinct xi, the sequence of comparisons made by A must include all the "adjacent" ones,
i.e., comparisons of the form xij xij+, if the input satisfies xil < xi2 < < xi,, otherwise
we could have two identical xr. The idea is to show that any branching program of length less
than or equal to no, where no (n S/(16e))1/2, can make more than S adjacent comparisons
only for a very small fraction of the n! possible linear orderings in the input. Thus, A must
have (n 1)/S consecutive blocks of levels, each block of length no, to perform the needed
n adjacent comparisons for all linear orderings.

To prove Theorem 1, we will adopt the same general approach. We will show that any
branching program of length less than or equal to n n 1-e(n), can make more than O(S.rte(n))
adjacent comparisons only for a very small fraction of the possible linear orderings. The
asserted tradeoff then follows the same line of reasoning as before.

We first give some intuitive ideas behind the proof. In [BFMUW], the main technical
lemma can be roughly described as follows. Given T inequalities of the form xi < xj,
if we take a random linear ordering of the x,’s, the expected number of these inequalities
being adjacent comparisons is O (T2/n). The bound O(T2/n) is tight in some cases, such
as when the sequence of inequalities are Xl < x2 < < XT+I. However, in many other
cases, this bound is too large an overestimate. For example, if the inequalities are X <
x2, x3 < x4 x2r-1 < x2r, then the expected number of these inequalities being adjacent
comparisons is O (T/n). We have an opportunity to derive an improved bound, if a branching
program of length T can only infrequently produce T inequalities with the O(T2 /n) behavior.

To see how such a plan might work, consider any branching program of length o(n 5/3) and
O(log n) capacity. For simplicity, we will ignore logarithm factors in the rest of this overview.
Divide the program into blocks of length n 2/3. Assume that associated with each block b there
is a subset Db of O(n2/3) variables xi such that, within the block b, all comparisons made
are between variables in Db. We will argue informally that this branching program cannot
solve the element distinctness problem. For each block b, we can regard b as a branching
program working on the input numbers in Db. Using the original argument in [BFMUW], one
can easily show that typically the sequence of inequalities produced by the block b will have
an expected O(n /3) comparisons that are adjacent within Db (for a random linear ordering
among the elements in D,). Now, when we throw in the n O(n2/3)xi outside of D, a simple
calculation shows that the expected number of adjacent comparisons globally is O(1). This
suggests that one needs f2 (n) blocks b to get all the n adjacent comparisons, and hence
a branching program of length o(n5/3) would not be able to solve the element distinctness
problem.

To carry out a proof along the above line, one needs to develop the arguments without
the assumption that within each block b only variables among a small subset Db can be used.
Also, it seems that we might apply the argument recursively to the blocks b in the hope of
getting lower bounds on TS better than f2 (nS/3). Theorem is the result of the development
of such a recursive proof.

Before presenting the proof, we introduce a concept important for all the ensuing technical
n letdiscussions. Given any T inequalities Xil < xj,, xi2 < xj2 xir < xjr where T <

968 ANDREW CHI-CHIH YAO

support (C) denote the set of all xk involved in the inequalities, and let V be the set of the
2T]support(C)[variables Xr with the smallest indices r that do not appear in support (C).
Write support’ (C) support(C) tO V. Let Pc denote the partial order generated by the T
inequalities Xis < xjs on support’ (C). The following proposition is obviously true.

Fact 1. Let C, D be two sequences of inequalities. If C c_ D, then support’ (C) _c
support’(D).

We will use a measure of progress of the computation more refined than the one used in
[BFMUW]. Roughly speaking, instead of using the number of adjacent comparisons among
all xi, we look at only the xi we have seen so far and use the number of adjacent comparisons
among them. We give an informal description here and will define it formally at the end of
2.2.

Let A be a branching program trying to solve the distinctness problem. How well is
it doing, for example, after r steps? Take a random linear ordering of n xi as input, and
let C be the sequence of comparisons encountered in the first r steps. We concentrate on
the subset support’ (C) and record the number of comparisons (call it x) that are adjacent
within support’ (C) We use the probability of x > m(r) (where m(v) is some suitably chosen
benchmark) as a measure of how well is A doing. If this probability is small, then A is not
making good progress.

In the rest of this section, we introduce some additional needed notation and prove an
auxiliary lemma. The proof of Theorem will be given in 3.

2.2. Terminology. Let W {w, we wn} be any nonempty finite set. A linear
ordering on W is a sequence cr (wi < wi. < < wi,), in which each element of W
appears exactly once. Let 1-" (W) denote the set of all linear orderings on W.

Let P (< e, W) be a partial order on W. A linear ordering p 6 1-’(W) is said to be
iO LOconsistent with P, if w < , implies w < in p Let A (P) denote the set of all linear

orderings on W consistent with P.
We will use the symbol X to denote exclusively the set {x, x2 xn} of the n input

elements. Let X’ _c X. For any a 6 I-’(X’), let L(r)denote the set ofall p 6 F(X) consistent
with r.

Suppose cr (Xrl < xr2 < < xr,). A comparison xi < xj is adjacent in cr if xi, xj are
adjacent in the linear ordering 0-, i.e., there exists an m such that rm and j rm+. For any
p 6 F(X), let Plx’ denote thecr 6 F(X’) obtained from the restriction of p to X’. For example,
ifp (x3 < x2 < x5 < Xl < x4) and X’ {x2, x4, xs}, then Plx’ (x2 < x5 < x4).

Let C be a sequence of inequalities (xi < xj, xi. < xj. xiT < xjT). We say that C
is nontrivial if there is a linear ordering x, < Xr2 < < x, such that all inequalities in C
are true. Let C be nontrivial and let 0 <_ a < a2 <_ T be two integers. For any cr A (Pc),
let Z(C, a, a2, r) be the number of pairs (is, js), a < s < a2, such that the comparisons

Xis < xj. are adjacent in
Let A be any branching program of variables x, x2 x,. For any node u and positive

integer s, let A[u, s] denote the subbranching program of A of length s and rooted at node u.
Apath 3 in A is a sequence u0, e, u, e2 Us-, es, u, where each e is an edge from node
Ur- to u; s is the length of 3. We will restrict ourselves to paths for which no edge is labeled
by "-." Let Ca denote the sequence of comparison inequalities of the form xi < xj obtained
along the path 3. For any linear ordering p 6 F (X), let ; denote an input (x, x2 x,)
that satisfies all the inequalities in p. Let, be the (entire) path traversed by input t, in A.

Let A be a branching program of length T. Let rn be any integer. Take a random p uni-

formly chosen from I-’(X). Let gA(m) denote the probability of the event Z(Ca, O, T, Plx’) >

m, where 3 a,p and X support’(C). We regard gA(m), with a suitably chosen m, as
a measure of how effective A is in solving the distinctness problem. The plan for proving

TIME-SPACE TRADEOFF 969

Theorem is to show that gA (m) is small unless T is sufficiently large; m is chosen in a way
that accommodates an inductive proof.

2.3. An auxiliary lemma. We begin with an informal description of the problem to be
addressed by the lemma. Let a subset W c_ X of elements obeying a linear ordering cr on W
be given, say, xrl < Xr2 < < Xrw. Among the WI adjacent pairs (Xrj, Xrj+l), of them
are marked. Assume that it is known that all possible linear orderings p 6 F(X) consistent
with r are equally likely. We would like to find, by no more than T adaptive comparisons, a
set of 2T elements outside W with the objective of maximizing the probability p of success,
where success means that at least m of the marked adjacent pairs remain adjacent within the
larger "output" set W’(W’ being the union of W plus the 2T elements found). The lemma
provides an upper bound on the achievable p.

To specify the problem precisely, let W X be a nonempty set, and o" 6 F(W). Let
C be a nontrivial sequence of comparisons xi < xj with xi, xj W, with exactly of them
being adjacent in or, where 0 < < WI. Let A be a branching program of length T with
n > 2T + WI. For any possibly traversed path 3 of length T, let Wa be any subset of
X such that IWal 2T + IWI and Wa D__ WU support(Ca). Denote by the collection

Wal all paths }.
Now, take a random p 6 L(cr). Let f,A,W,v(cr, C, m) be the probability that the number

of comparisons of C adjacent in plw, is greater or equal to m, where 3 seA,p.
LEMMA 1. fn,A,W,V(cr, C, m) <_ (tin). (IWI/ZT)m.
Proof Without loss of generality, assume that W {Xl, x2 xo} where w [W[,

and cr is the linear ordering X < x2 < < Xw. Let C’ be the set of the comparisons of
C that are adjacent in or, for example, C’ {xi, < xi+l, xi. < xi2+l xi < xi+l}. Let
s--2T+w.

We express f,,,A,W,V in terms of a stochastic process. Take a random p a L(cr) and
traverse the path A,p. Let us keep a sorted list W’; initially, W’ is the sorted version of
W. When we encounter a new node u with a comparison Xr Xr’, we insert the elements in

{Xr, Xr’} W’, if any, one at a time into the ordered list W’. Note that each new element,
when added to an ordered list of c elements, will be equally likely in any of the c + ranks.
When we reach the leaf, we add s IW’l new elements of Wa, one at a time, into W’. Again,
each new element is equally likely to occupy any of the ranks currently possible in W’. The
quantity f,A,rV, V(Cr, C, m) can thus be calculated as follows. We start with an ordered list of
w items with of the intervals (between the ij and the ij - st items for < j < l) marked;
then we sequentially insert new items into the list. Each time the new item is equally likely
to be inserted into any of the existing intervals; f,A,rv,v (or, C, m) is the probability that, after
2T insertions, at least m of the original marked intervals remain intact (no item has been
inserted into these intervals).

We will obtain an upper bound on f,A,rV, v(cr, C, m). (Essentially, this is now reduced to

a calculation that was done in [BFMUW].) Let us describe the process using a sequence of 2T
integers jl, j2 jZT, where _< jr <_ to nt- r is the rank of the rth inserted item when it is

being inserted. Thus, there are in all U1<r<2T(w+r) configurations. To specify a configuration
for which at least m marked intervals remain intact, we first specify m such intervals, and then
specify the ranks of the inserted items by integers j, j2 j2T, where _< jr < w + r m.

The total number of such configurations is thus at most (,) 1-I1<r<2T(W + r m). It follows
that

fnArZ, v(cr, C,m) < (lm) l-II<r<2T(to-l-r--m)
l-Ii<r<2r(w + r)

970 ANDREW CHI-CHIH YAO. (w-m)!’

(lm) W(W-1)’"(w-m + l),
s(s- 1)...(s- m + 1)

Remarks. The bounds derived and the formulas involved in the above proof do not have
any explicit dependency on the choice of Wa. This is not a surprise, since it is not hard to see
that f,A,W,V(c, C, m) is in fact independent of]2. For any input consistent with , when we
have carried out the comparisons according to A (traversing a path 8), the xi’s outside WkJ
support(Ca) are isolated elements in the partial order generated by cr and the comparisons.
The choice of Wa only affects which of these isolated elements are to be included in the final
output W’ (in the sense described in the first paragraph of this subsection). By symmetry, this
choice does not affect the probability of "success" (in the sense defined in the first paragraph
of this subsection).

3. Proof of Theorem 1. The heart of the proof is the next lemma. Let No 1014, n >

No, S > 0, [e(l"’)/2], and k0 [logt(n/4)J. Then > eS, ko > 3. For any integer
k > 0, let mk 2k+4k+16tS, and q, 4(k-k)S(4t)k-k2-ls.

MAIN LEMMA. Let < k < ko. Then gA(m) < qk, for any branching program A of
length and capacity S.

COROLLARY. Let A be a branching program of length < and capacity S. Take a
random p, uniformly chosenfrom 1-’(X) and input Ycp to A. Then the probability that A makes
at least m comparisons adjacent in p is < qk.

The corollary follows from the Main Lemma, since the introduction of additional elements
xi into support’(Ca) will not increase the number of adjacent comparisons.

We first restate the Main Lemma. Take a random p, uniformly chosen from F (X), and
input 2p to A. Let :A,p. The Main Lemma asserts that

Pr{Z(Ca, 0, , p[x’) > m,} < qk,

where X’ support’ (C).
We will prove the above inequality by induction on k > 1. For k 1, we have mk > k.

Since A can make only k comparisons, the inequality is true (the left-hand side being 0).
We now assume that < k < k0, and that the Main Lemma has been proved for all values

less than k.
Let p F(X). Write seA,p and X’ support’(Ca). If Z(Ca, O, , P[x’) >_ mk, then

there is a _< dp <_ t, such that Z(Ca, (dp- 1)tk-, dptk-l, P[x’) > m,/t. Thus, for arandom
p uniformly chosen from 1-" (X),

(1) Pr{Z(Ca,0, k,p[x’)_>m*}_< Pr{Z(Ca,(d-1)t*-l,dtk-l,plx’)_>m*/t}.
l<d<t

We will show that, for each < d < t,

(2) Pr{Z(Ca, (d- 1)t- dt- P]x’) > m/t} < (2 + 1)q_

This will complete the inductive proof of the Main Lemma, since it follows from (1) and (2)
that

Pr{Z(Ca, O, , Plx’) > m,} < (2s + 1)tq,_
_< qk.

TIME-SPACE TRADEOFF 971

Fix < d _< t. Let v,/)2 /)r be the nodes of A at level (d 1)tk-. For each i, let
Bi be the set of paths/3 of length k- starting at node vi. Let

u:,(Pc,).

Note that kI/i consists of all linear orderings cr of the comparisons along/ restricted to the
subset support’(C) (not just support(Cry)) for all paths/ E Bi. The following two facts are

obviously true. Let _< < r.
Fact2. Let/3,/’ E Bi. Ifcr 6 A(Pc)nA(Pc,), then/ =/3’. Wecanthus write/3(i, or)

for the unique/3 6 Bi for which cr 6 A(Pc).
Fact 3. The family L (or), cr 6 qi, forms a partition of the set F (X).
To prove (2), we divide the set of inputs according to which node vi an input reaches.

For _< < r, let Ri be the set of p E F(X) such that input p will reach vi A. We
further subdivide each Ri into three parts. Let q) be the set of cr 6 kI/i such that C(i.o)
contains at least mk_ comparisons adjacent in or. Let q2) be the set of cr 6 kI/i such that

IL(r) n Ril <_ IL(cr)lq._/(lO. 2s). Let q{0) q/i klJ 1) kl/2). We will estimate the
contribution to Pr{Z(Ca, (d 1)tk-I ,dt-, Plx’) > m/t} from

p Ri n (Uq,jL(cr))
for each j 6 {0, 1, 2}. The overwhelming majority of the p’s belong to the part j 0; the
part j 2 groups some infrequently visited nodes and paths’ the part j gathers paths
making many local adjacent comparisons, and hence cannot include too many p’s by the
induction hypothesis. Facts 4-6 give estimates of the contributions from the various parts to
the right-hand side of (2).

Generate a random p uniformly chosen from r (X). Let be A,p, the path traversed by
Y-p in A. We consider the probabilities for two events. First, let Pi,cr be the probability that
p E L(cr) and the path contains vi. Clearly, Pi,a [Ri L(cr)[/n!. Second, let cti,o be
the conditional probability that, for such an input p, the branching program A[/)i, k-1 will
make rn k/ comparisons adjacent in P lx’ (X’ support’ (Ca)). Clearly,

(3)
Pr{Z(C, (d- 1)tk-, dt-, Plx’) > mk/t}

Z pi,crOti,r.
l<i<r

We need three facts. Let < _< r.
Fact 4.

pi,cr < qk-.

Fact 5.

Pi,r < qk_l/(10.2s).

Fact 6. For each cr 6 q0), O/i,cr < qk-1/10.
Applying the induction hypothesis to A[vi, k-1], we obtain

’1n! Uaq,:,)L(cr) _< qk-1,

972 ANDREW CHI-CHIH YAO

from which Fact 4 follows immediately. We obtain Fact 5 from the following derivation, using
Fact 3 in the last step,

_
Pi,a

IL(a)n Ri]
n!

IL(a) Ril
n IZ()l

IZ()la(2)

< qt- IZ()ln 10.2s

< 2sqk_.-10.

We now prove Fact 6. Let 6 0). Let u denote the node at the end of the path (i, g).
Thus u is at a distance dt- from the source of the branching program A.

We first construct a new branching program Ai,. Take the branching program A[root,
(d 1)tk-1], and attach to the end node vi a copy of A[u, -dt-] by identifying u
with vi. This is now a (nonleveled) branching program that may also be obtained by deleting
from A all outgoing edges from all nodes vj at level (d- 1)tk- except the one edge (out of vi)
on the path fl(i,), contracting the path fl(i,) to a point, and pruning away nodes and edges
unreachable by inputs. Call this the main portion of Ai,. We finish the construction by adding
arbitrary pieces to the other end nodes vj(j i) to make it a leveled branching program (to
conform to our convention of the definition of a branching program); for example, for each

vj vi, we can sequentially make the comparisons xa x+ for a 1, 2 dt-and go to new nodes uj,a irrespective of the results of the comparisons. Clearly, A. is of
length - Note that the capacity of Ai.o depends on how we choose the pieces outside
the main potion and may be different from the capacity of A. We will use Ai,a only for the
puwose of analyzing ai,.

For any path 6 of length t in A starting at the source and containing (i,) there is
an obvious coesponding path of length k - in A, that lies completely in the main
potion. The converse is also true. Any such in Ai,a will be called a central path.

For any central path in Ai,o, define Wg suppo’(C). For any noncentral path ’of length - in A,o, choose Wa, arbitrarily but subject to the conditions [Wa, 2t
and support’(C,) suppoa’(C(i,)) Wa,. This is always feasible since]support’(Ca,)]
2(tk -) and Isuppoa’(C(,))l 2t-. (We use the notation ’ for paths in Ai,a to
avoid confusion with the paths in A.) Let V be the collection of Wa, for all paths ’ (of length

-) in Ai,.
Note that, for any central path in A,, we have Wg support’(Ca) by definition. Also

from Fact 1 (2.1) suppo’(Ca) contains both support’(C(i,)) and suppo’ (Cg); this implies
suppo’(C(i,)) suppoa’(Cg) W$. Thus, for all paths ’ (of length k-) in Ai,,

(4) support’(C(i,)) suppoa’(C,) Wa,.

Let b denote the probability that, for a random , with p uniformly chosen from Ri GL (),
the path ’ traversed by in the branching program A, possesses the propey that C(i,)
contains at least mk/t comparisons adjacent in Wa,. (Note that (i,) is not a subpath of’ but
the path in A between nodes vi and u.) Define c in the same fashion as b was defined, except
that p is uniformly chosen from L(a). (These are well defined, since suppoa (C(i,)) Wa,
by (4).) Because any p satisfying the defining constraints for b must satisfy the defining
constraints for c, we have

(5) b.]Ri L()I c. IZ()l.

TIME-SPACE TRADEOFF 973

Let p Ri N L (er). Ifp is input to A and traverses a path 3, then the same p when input
to Ai,r will trace the central path g; furthermore, by definition we have Wg support’(Ca).
Recall that ui,o is the probability that, for a random 2p, with p uniformly chosen from Ri
L(r), C(i,o) contains at least mk/t comparisons adjacent in pl’x(X’ support’(Ca with
3 A,R). Comparing this with the definition of b, we have

(6) O/i,cr b.

Now, let W support’(C0,o)) and T tk-tk-; then [W[2t’- and2T +[W[2tk.
Note that n >_ 4tk >_ 2T + [W[. From (4), we have Wa,

WU support(Ca,) for all paths 3’

(of length T) in Ai,. From the definition of f,A,w,v stated at the beginning of 2.3, we see
that c is exactly equal to fn,a,,rv,v(r, C(i,), [mk/t]). We have thus from (5) and (6) and

the fact that o 6 q0)
IL(o)l

Oi,r < "C
IRi fq L(o)l

(7)
10.2s

qk-1
L,Ai,a,W,V(7, Cfl(i,cr),

Let lo denote the number of comparisons of C(i,cr adjacent in or. Then by definition

lo < mk_ for any cr 6 q}0). By applying Lemma to the branching program Ai, to get an
upper bound on f,A,,,rv,v(tr, C(i,o), [mt/t]), and then substituting it into (7), we obtain

lO’2S(lcrt(2tk-1)[m/‘/t].qk- Fm/t] 2(t -)

10.2s

qk-1

mk_)(t 1)
[mt/t]

lO" 2S (emk-)qk_ (t- 1)[mk/t]

lO’2S(et).qk-1 16(t- 1)

216+/’0 S

< --qk-l.
--10

This proves Fact 6.
We will now complete the proof of (2). From (3) and Facts 4-6, we obtain Pr{Z(Ca,

(d- 1)tk-, dt-, Plx’) > mk/t}-. y. pi,erOti,r
l<i<r

-’F - p Ot

cr d2)

974 ANDREW CHI-CHIH YAO

--<q*-lE I+E 10-2sq/-I +E E Pi,a-f-qk-,

<_ 2Sqk- + -i-dqk-1 + -q-I

_< (2s + 1)qt-1.

We have proved (2). This completes the inductive step in the proof of the Main Lemma.
We will now use the Main Lemma to complete the proof of Theorem 1. Let n > No,

where No 1014. Because ko < lnn/lnt <(lnn) 1/2, we have

25 < 2. exp((ln n) /2 + ko5 In 2)
(8)

o

Let A 6 ,4,. If S > 1-2-5k-16, then since T > n 1, we have by (8) TS
n 2-5ko-16 In this case(n2/t25k) S2 (n2-(’)). We now consider the case S < 7

(9) 0 < mk < n/lO.

Since A has to have at least n nodes, we have S > log2 (n 1) > 0. Suppose that A
has length T < tkn/2mko. We will derive a contradiction.

Let p 6 F(X). For each node v, let Av denote the branching program Air, min{tk, T
lv }], where lv is the level number of v. Let Kv be the set of p 6 F (X) such that Ca(,p) contains
at least m, comparisons adjacent in p, where 3(v, p) s,o,p. By the corollary to the Main
Lemma, K _< q/,o n !.

Thus,

Uv Kv < 2Sq,’o n

<n!.

It follows that there exists a p UvKv. Let us input 2p to A. The traversed path 3 can
be decomposed into 3(Vl, p)3(v2, p)... 3(Vd, p), where d [T/t], Vl is the source, and
Vl, v2 va are nodes in with distance k between vi and Vi+l; for each i, the subpath
6(vi, p) is a path in the subbranching program Ai. For each i, as p ’ Kv,, the number
of comparisons made along 3(vi, p) contains less than mk comparisons adjacent in p. It
follows that the total number of comparisons made by A that are adjacent in p is less than

" which by (9) is less than n This is a contradiction.dm <_ [n/2mo .m < m + ,
Thus, using (8) we obtain

T > k
2mko

k-I n)
n)f2
S t25k0

This completes the proof of Theorem 1.

TIME-SPACE TRADEOFF 975

4. Concluding remarks. In this paper we have shown a TS f2 (n2-(n)) time-space
tradeoff for the element distinctness problem for comparison branching programs. It remains
an interesting open question whether TS (n2). Another direction of research is to
investigate whether the time-space tradeoff presented here can be obtained for linear-test or
arithmetic branching programs.

Acknowledgments. The author thanks Paul Beame for pointing out an error in the state-
ment ofFact 4 in the original draft of this paper. The author also wishes to thank an anonymous
referee for valuable suggestions to correct an inaccuracy and improve the presentations.

REFERENCES

[B] E BEAME, A general sequential time-space tradeoffforfinding unique elements, SIAM J. Comput., 20
(1991), pp. 270-277.

[BC] A. BORODIN AND S. COOK, A time-space tradeofffor sorting on a general sequential model ofcomputation,
SIAM J. Comput., 11 (1982), pp. 287-297.

[BFMUW] A. BORODIN, F. FICH, F. MEYER AUr DER HEIDE, E. UPrAt, AND A. WIGDERSON, A time-space tradeofffor
element distinctness, SIAM J. Comput., 16 (1987), pp. 97-99.

[BFKLT] A. BORODIN, M. FISCHER, D. KmKPATRICK, N. LYNCH, AND M. TOMPA, A time-space tradeofffor sorting
on oblivious machines, J. Comput. System Sci., 22 (1981), pp. 351-364.

[C] A. CO3HAM, The recognition problem for the set of perfect squares, Research paper RC-1704, IBM
Watson Research Center, Yorktown Heights, NY, April 1966.

[DG] P. DORIS AND Z. GALIL, A time-space tradeofffor language recognition, Math. Systems Theory, 17
(1984), pp. 3-12.

[K] M. KARCHMER, Two time-space tradeoffsfor element distincmess, Theoret. Comput. Sci., 47 (1986), pp.
237-246.

[MP] J.I. MUNRO AND M. PATERSON, Selection and sorting with limited storage, Proceedings of Nineteenth
IEEE Symposium on Foundations of Computer Science, Ann Arbor, Michigan, October 1978, pp.
253-258.

[Th] C.D. THOMPSON, Area-time complexity for VLSI, Proceedings Eleventh Annual ACM Symposium on

Theory of Computing, Atlanta, Georgia, May 1979, pp. 81-88.
[To] M. TOMPA, Time-space tradeoffsfor computingfunctions using connectivity properties of their circuits,

J. Comput. System Sci., 20 (1980), pp. 118-132.
[U] J.D. ULLMAN, Computational Aspects of VLSI, Computer Science Press, Rockville, MD, 1984.
[Y] A.C. YAO, On the time-space tradeofffor sorting with linear queries, Theoret. Comput. Sci., 19 (1982),

pp. 203-218.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 976-989, October 1994

() 1994 Society for Industrial and Applied Mathematics
006

EXISTENCE AND CONSTRUCTION OF EDGE-DISJOINT PATHS ON
EXPANDER GRAPHS*

ANDREI Z. BRODERt, ALAN M. FRIEZE AND ELI UPFAL

Abstract. Given an expander graph G (V, E) and a set of q disjoint pairs of vertices in V, the authors are
interested in finding for each pair (ai, bi) a path connecting ai to bi such that the set of q paths so found is edge
disjoint. (For general graphs the related decision problem is NP complete.)

The authors prove sufficient conditions for the existence of edge-disjoint paths connecting any set of q <

n/(log n) disjoint pairs of vertices on any n vertex bounded degree expander, where tc depends only on the expansion
properties of the input graph, and not on n. Furthermore, a randomized o(n3) time algorithm, and a random A/’C
algorithm for constructing these paths is presented. (Previous existence proofs and construction algorithms allowed
only up to n pairs, for some , << 1/2, and strong expanders [D. Peleg and E. Upfal, Combinatorica, 9 (1989),
pp. 289-313.].)

In passing, an algorithm is developed for splitting a sufficiently strong expander into two edge-disjoint spanning
expanders.

Key words, edge-disjoint paths, expanders

AMS subject classifications. 05C85, 05C38, 68Q20, 68R 10, 60J 15, 90B 10, 90B 12

1. Introduction. Given an expander graph G (V, E) and a set of q disjoint pairs of
vertices in V, we are interested in finding for each pair (ai, bi), a path connecting ai to hi,
such that the set of q paths so found is edge disjoint.

For arbitrary graphs, the related decision problem is in 79 for fixed q [21], but is AfT’
complete if q is part of the input. However, this negative result can be circumvented for
certain classes of graphs. For certain bounded degree expander graphs, Peleg and Upfal 19]
have presented a polynomial time algorithm and a random .A/’C algorithm for constructing up
to n disjoint paths, where 0 < e << is a constant that depends on the expansion properties
of the input graph.

In this paper we describe a new algorithm for constructing edge-disjoint paths. Using it
we can construct up to n/(In n)K disjoint paths on bounded degree graphs with a sufficiently
strong expansion property, where tc is a constant that depends only on the expansion property of
the input graph. Our algorithm is based on two probabilistic tools: the rapid mixing properties
of random walks on expanders and the Lovfisz Local Lemma 10].

As in [19], the disjoint paths are constructed in two stages. In the first stage we choose a
random set Q of 2q vertices that are at least tc In In n apart from each other. (The constant tc
will be defined later.) We connect the original endpoints to the vertices of Q in an arbitrary
fashion via edge-disjoint paths, such that each Q-vertex is the endpoint of exactly one path. A
simple flow argument proves constructively the existence of such edge-disjoint paths on any
graph with edge expansion larger than one.

Let fii (respectively, i) denote the vertex in Q that was connected to the original endpoint
ai (respectively, bi) in the first stage. The core of the algorithm consists of constructing edge-
disjoint paths connecting 7i to/i, for q.

In the second stage of the algorithm we choose for each pair (fii,)i) a bundle of (In n)2

random paths connecting them. The goal is to show via the Lovisz Local Lemma that there

*Received by the editors June 1, 1992; accepted for publication (in revised form) May 11, 1993.
DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301.
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15218. A portion of this

author’s work was done while the author was visiting DEC Systems Research Center and was supported in part by
National Science Foundation grants CCR8900112 and CCR9024935.

IBM Almaden Research Center, San Jose, California 95120, and Department of Applied Mathematics, Weiz-
mann Institute of Science, Rehovot, Israel.

976

EDGE-DISJOINT PATHS ON EXPANDER GRAPHS 977

is one choice out of each bundle of paths such that the set of chosen paths is edge disjoint.
However, the Local Lemma cannot be applied to sets of paths chosen uniformly at random,
since the dependency graph that corresponds to such choices is too dense. The crux of the
proof is that for any expander graph there is a simple pruning mechanism that reduces the
dependency so that the Lemma can be applied.

To convert the existence proof to an explicit algorithm, we observe that the dependency
graph constructed in this process is almost surely composed of sufficiently small components,
such that the paths can be selected in polynomial time by exhaustive search.

Each of the two stages of the algorithm requires an expander graph. If we apply both
stages to the same expander we prove the following theorem.

THEOREM 1.1. Given any n vertex, bounded degree, regular graph G with edge expansion
greater than one, and given any set of q < n / (log n) disjoint pairs of vertices in G, with
high probability our algorithmfinds in o(n 3) steps a set ofpaths in G connecting the q pairs,
such that each edge in G participates in no more than two paths. (The constant tc is exposed
in the proof)

While the above result is sufficient for most applications, it is still of theoretical interest
to find edge-disjoint paths. To achieve this goal we develop a new algorithm for splitting
a sufficiently strong expander into two edge-disjoint spanning expanders. We believe that
this algorithm is of independent interest. The splitting algorithm requires a stronger but still
bounded degree expander. Splitting it and applying each stage of our algorithm to a different
set of edges we prove the following theorem.

THEOREM 1.2. Given an n vertex graph with sufficiently strong edge expansion, and given
any set ofq < n/(log n)K disjoint pairs of vertices in G, with high probability our algorithm

finds in o(n3) steps a set ofedge-disjoint paths in G connecting the q pairs. (The constant tc

and the required edge expansion are defined later)
The disjoint paths problem has numerous algorithmic applications. One that has received

increased attention in recent years is in the context of communication networks for parallel
and distributed computing. While packet routing is the communication protocol of choice for
bounded size messages, it cannot always be used efficiently for high volume communication
such as in multimedia applications and two-way communication. A more efficient way to
transmit such information is through disjoint paths (virtual circuits) that are dedicated to
one pair of processors for the duration of the communication. Our result gives yet more
evidence of the usefulness of a communication network with strong expansion properties [24],
16], [20].

A preliminary version of this paper has appeared in [8].

2. Preliminaries. There are various ways to define expander graphs" here we define them
in terms of edge expansion (a weaker property than vertex expansion).

Let G (V, E) be a graph. For a set of vertices S C V let out(S) be the set of edges
with one endpoint in S and one endpoint in V \ S, that is

out(S) ={{u, v} {u, v}6E, u6S, v S}.
Similarly

in(S) ={{u, v}l{u, v} E, u S,v S}.
DEFINITION 1. A graph G (V, E) is a/3-expander if for every set S C V, [SI < IVI/2

we have out(S)l >/ISI.

978 ANDREI Z. BRODER, ALAN M. FRIEZE, AND ELI UPFAL

DEFINITION 2. An r-regular graph G (V, E) is an (or,/3,)/)-expander if for every set
ScV

(3r/4+c)lSI iflSI <)/IVI,
out(S) >

/lSI if ?’lVI < ISi _< IVI/2.

DEFINITION 3. The t-neighborhood of a vertex u in G is the set of all vertices that are at
distance or less from u in G.

The notation dist(u, v) refers to the distance from vertex v to vertex u. If U is a set
of vertices, then dist(U, v) minuu dist(u, v). If P is a path (which we view as a set of
edges), then dist(P, v) is the minimum over all vertices u on P of dist(u, v). These definitions
generalize in the obvious manner when both arguments are paths, sets, and so on.

A random walk on the undirected graph G (V, E) is a Markov chain {Xt} V
associated with a particle that moves from vertex to vertex according to the following rule: the
probability of a transition from vertex i, of degree di, to vertex j is 1/di if {i, j} 6 E, and 0
otherwise. (In case of a bipartite graph we need to assume that we do nothing with probability

-2 and move off with probability only. This technicality is ignored for the remainder of
the paper.) Its stationary distribution, denoted zr, (or rr(G)) is given by try d,/(2 IEI). A
trajectory W of length r is a sequence of vertices [w0, w w] such that {wt, wt+} E.
The Markov chain {Xt} induces a probability distribution on trajectories, namely the product
of the probabilities of the transitions that define the trajectory.

The notation B(m, p) stands for the binomial random variable with parameters m
number of trials, and p probability of success.

The notation [m stands for the set 1, 2 m for any positive integer m.

3. The sequential algorithm. Below we present the algorithm for finding disjoint paths.
If we relax the requirements so that edges can be used twice, then the input can be any/3-
expander,/3 > 1, and phase is omitted entirely. The algorithm involves certain constants
to, tel, to2, x3, and to4. The required relations between these constants are explicitly given in
equations (13)-(15). At various points of the algorithm we stop if certain conditions fail to
hold. The subsequent analysis shows that premature termination is unlikely.

Algorithm DisjPaths
Input: An r-regular graph G (V, E) with sufficiently strong expansion. A collection of q
disjoint pairs of vertices (a, b) (aq, bq)}. (The term "sufficiently strong" will be fully
explained below.)

Output: A set of q edge-disjoint paths {P Pq} such that/9, connects ai to hi.
Phase 1. Split G into two spanning expanders GR (V, ER) and GB (V, EB) such
that E E/ t2 E and E fq E 0. We require G to be a 1-expander and G to be a
fl’-expander for some fl’ > 0. (The details of this procedure are presented in 4.1.)

The steady state distribution of the random walk on G is easily seen to be given by

dB(v)
zr(v)-

2lEvi’
v V,

where d(v) denotes the degree of the vertex v in G. Our construction guarantees that

3
<zr(v)< YveV.(1)

2n 2n

EDGE-DISJOINT PATHS ON EXPANDER GRAPHS 979

Phase 2. Choose independently (with replacement) according to the distribution zr(G), a
multiset of 4q vertices in V. Let R {r F4q be the multiset of vertices so chosen.

Phase 3. Select a set Q c R of 2q vertices, such that every pair of vertices in Q are ,c In In n
apart from each other, as follows.

Q <--- 0
for 4q while IQI < 2q do

if dist(Q, ri) > ,c lnlnn then Q +-- Q tO {ri} fl
od

If at the end of this procedure QI < 2q then stop. The algorithm has failed.

Phase 4. Let S {a aq, bl bq }. Using a flow algorithm in GR, connect in an
arbitrary manner the vertices of S to the vertices of Q by 2q edge-disjoint paths. (Except for
the edges on these paths, no other edges of GR are used for the final construction.) If such a
flow cannot be constructed then stop. The algorithm has failed. (This can happen only if G
did not have sufficient edge expansion.)

Phase 5. Let i (respectively, bi) be the vertex in Q that was connected to ai (respectively,
bi). For each pair ((i, {3i) construct rn (lnn)2 paths, Pi, P/,m connecting i to 3i, as
follows.

for j- 1,2 tndo
Pick a vertex Xi,j according to the distribution rr(G).

(respectively, W:’.) of lengthChoose a trajectory Wi, j t, j

r to2 In n that goes from 7i to xi,j (respectively, bi to xi,j)
in G 8, according to the distribution on trajectories,
conditioned on l/)i,j, 0 (i and ll)i,j, Xi,j. (The
distribution for Wi’j is analogous.)

Let Wi,j be the walk formed by W’i,j followed by Wi’, reversed.
Reduce Wi,j to a path Pi,j by removing cycles.

od

(The purpose ofthe remainder ofthe algorithm is to find among the set ofq .m paths constructed
in this phase a solution set, that is, a subset of q edge-disjoint paths, one for each pair (fii,/’i).)
Phase li. We refer to the set of paths Bi P/, 1, P/,2 Pi,m as bundle i. The purpose
of this phase is to prune from each bundle those paths that go "too close" to the endpoints of
other bundles or to each other.

Let wi,j, and wi,j, denote the tth vertices of Wi’,j and Wi’;j, respectively. Let Mi,j
ll)

j,
ll)

j >_ c c3) lnlnn}.

for/= 1,2 q do
for j 1,2 rn do

(a) if dist(Mi,j, Uk<j Mi,k) < 2t3 lnlnn then

Bi +-- Bi \ {P/,j} ti

(b) ifdist(Wi,j, Q \ {(i, {3i}) < ,c3 lnlnn then
B <--- B \ {P/,j} i

od
od

(Condition (a) ensures that outside the (x -x3) In In n neighborhood ofthe common endpoints,
all paths remaining in Bi are at least 2tc3 In Inn apart. Condition (b) ensures that all paths in

Bi are at least to3 In Inn from the endpoints of other bundles.)

980 ANDREI Z. BRODER, ALAN M. FRIEZE, AND ELI UPFAL

Let m; denote the number of paths left in bundle for 1, 2 q, and rename the
paths such that Bi Pi, Pi,m, }.

Check that for all 6 [q], the number of paths in Bi satisfies mi > (Inn)2/2. If this does
not hold then stop. The algorithm has failed.

Phase 7. Let H (F/4, E/4) be the graph defined by

and

V/4 [(i, j) =1 q;j=l mi]

E/4 {{(i, j), (i’, j’)} i’ and Pi, f Pr,j’ 13 I.
The ith row of H is the set of vertices {(i, j) < j < mi}. A row represents the bundle of
paths associated to a certain pair of endpoints, and a solution set corresponds to an independent
set of size q that spans all the q rows of H.

Let A/4 denote the maximum degree of a vertex in H. If there is an such that m < 8AH
then stop, the algorithm has failed. (As shown in the analysis of this phase, the Local Lemma
implies that the condition m > 8AH is sufficient for the existence of at least one solution
set.)

Optionally, for efficiency reasons, we can arbitrarily delete paths from each bundle until
for every we have m 8AH nt- 1.

Phase 8. Let H’ ([q], E/4,) be the graph on q vertices defined by

E/4, {1/, i’}13j, j’ s.t. P/,j N Pi’,j’ :/: 0}.
(In other words H’ contains an edge from to i’ if and only if any of the paths from
intersects any of the paths from hi, to hr. Clearly H’ can be obtained from H by contracting
each row of H to a single vertex.)

If any connected component of H’ has size greater than 3 In n/ (2 In In n) then stop. The
algorithm has failed.

Phase 9. For each connected component J of H’, find by exhaustive search an independent
set in H of size]JI that spans the rows of H corresponding to the vertices of J. (We checked
in phases 6 and 7 that such a set exists, and we checked in phase 8 that the components of H’
are sufficiently small to ensure that the exhaustive search takes only polynomial time.)

The union of independent sets thus found is independent and spans all the rows of H, and
hence corresponds to a solution set.

The final path from ai to bi is the union of the paths from ai to ai, and from bi to bi found
in phase 4, and the path from a to bi selected here.

End DisjPaths

Observation: Phases 6 and 7 are essential only for the proof and can be omitted while running
the algorithm. In this case, the exhaustive search in phase 9 would still take only polynomial
time, but with small probability (corresponding to failure in phase 6 or 7) it might not find a
solution set. Nevertheless, the running time is likely to be shortened if phases 6 and 7 are run,
since the search space is reduced.

4. Analysis of the algorithm.

4.1. Splitting expanders. In this subsection we present an algorithm that partitions the
edge set of the input graph into two spanning expanders.

EDGE-DISJOINT PATHS ON EXPANDER GRAPHS 981

Algorithm Split

Input: An r-regular (or,/3, V)-expander graph G (V, E). For simplicity we assume that
r 4s, for an integer s.

Output: Two spanning/’-expanders GR (V, ER) and G, (V, E,) such that E
E CI E, and E fq E, 0. (The constant/’ is greater than and will be exposed in the
proof.)

1. Using an arbitrary Euler tour, orient the edges of G in such a way that each vertex has
indegree and outdegree 2s.

2. For each vertex v, randomly divide the edges from v into a red set and a blue set, each of
size s. Set E (respectively, E,) to be the set of red (respectively, blue) edges, un-oriented.

End Split

Clearly, our construction guarantees that (1) holds, since in each subgraph every vertex
has degree at least s and at most 3s, and each subgraph has exactly ns edges.

We now analyze the probability that Split will produce useful results. We start by defining
two functions, H and 7t, on [0,1]:

H(F) ((1 F)I-F)-,
ap() (1) ln(1) -I- e.

(Observe that ap() > :/2.)
Let inR(S), OUtR(S)refer to in(S) and out(S) as applied to the graph GR.
THEOREM 4.1. Suppose that G is an (, , F)-expander and let 0 < < be such that

2
(2) /3 > ?,-1 In H(,).

For every set S C V, ISl IV I/2, we have

(3) min{outR(S), OutB(S)} > min{c, (1 --)/3/2} ISI,

with probability 1- o(1)as n - cx.
Proof We obtain a lower bound for outR. We consider two cases.
Case 1. IS[< ,n. By construction every vertex has degree at least s in G. Hence

(4)
slSI 2 inR(S) -1- outR(S)

< 2 in(S) -I- OUtR(S).

On the other hand, by the definition of G,

()
4slSI 2 in(S) + out(S)

> 2 in(S) + (3s + c)lSI.

Inequalities (4) and (5) imply

982 ANDREI Z. BRODER, ALAN M. FRIEZE, AND ELI UPFAL

(6) outR(S) clSl.
Partition out(S) so that two edges are in the same subset if in theCase 2. ’n < ISI _< .

Euler orientation they have the same start vertex.
Let there be m such sets, A Am, with IAil ki < 2s and mi=1 ki k, where

k >/lSI by the definition of G. Let Zi be the number of edges of Ai that are colored red.
Clearly the Zi’s are independent. For any > 0 and > u > 0 we have

Pr(Z +... + Zm < k/2- u)

Pr(exp(-t(Z +...+ Zm k/2 + u)) > l)
< E(exp(-t(Zl +...+ Zm)- k/2 + u))

m

et(k/2-u) H E(e-tZ’)"
i=1

But

E(e_tZi) (2sS)-I (k))(2-i)e_,j
j=0

(kiS2s]< + (e-t- 1)

< exp((e-t- 1)ki/2).

For a proof of the first inequality above see either Hoeffding 14, 6] or Chvfital [9]. (Note
that although Z, Z2 Zm are independent, a simple application of Theorem 2 of 14] will
not suffice. This is because the Zi have too large a range. The interested reader can check
that one obtains a factor s-2 in the exponent of the probability bound.)

Hence

(7)
Pr(Z -+-... + Zm k/2- u)

< exp(t(k/2- u) + (k/2)(e-’- 1)).

Putting -ln(1 2u/k) minimizes the right-hand side (RHS) of (7), which then
becomes exp(-(k/2 u)(ln(1 2u/k)) u). Hence if u k/2, then

and consequently

Pr(Z +... + Zm <_ (1 -)k/2) _< e-k(E)/2

Thus

Pr(out(S) _< (1-)/31SI/2) e-1S1/()/2.

(8)
i>yn

EDGE-DISJOINT PATHS ON EXPANDER GRAPHS 983

Now if/ On, for O > ’ then (7) e(n)H(O)’, and the summand, Ui say, on the RHS of
(8) is then

Now

exp(n(o(1) + In H(O) flOp())/2).

0 02 0 3

0- In H(O) In0 +
2 6 12

clearly decreases with 0 and so if/3 satisfies (2) then ui is exponentially small. The result
follows.

COROLLARY 4.2. Suppose that G is an (or, , y)-expander. Let 0 < o < be the unique
solution to

(9)
p(() In H(y)

and let

2
/30 ?’- In H(y).

(0)

Ifor > and > o then both GR and GB are ’-expandersfor some fl’ > 1, with probability
o(1).
Proof. The existence of 0 follows from the fact that the left-hand side of (9) de-

creases from oo to 0 as increases from 0 to 1. Plugging /3 > /30 in (3), we get that

fl’>l. [

It is fairly easy to apply this to the Ramanujan graphs of Lubotsky, Phillips, and Sarnak
[17] and to random regular graphs. It follows from Lemma 2.3 of Alon and Chung [4] that

(10) IXl- n implies out(X) > r(1- ,k)(1-)IXI,

where k is the second largest eigenvalue of the transition probability matrix associated with
the random walk on G. If G is one of the Ramanujan graphs then ,k 2/r 1/r and if
G is a large random r-regular graph then ,k 2/f (see Friedman, Kahn, and Szemer6di
[13]). One can then show that in these cases rain {outR(S), out6(S)} > (r/4 o(1))ISI for
ISI _< VI/2, as r grows. (For simplicity take y e r-l/3.)

The above ideas can be extended to arbitrary graphs. We need to be able to assert that
(i) small sets of vertices, ISI _< ,n, contain few edges; and that (ii) one can orient the edges
so that every vertex has large outdegree. Given (ii) we can then randomly split the edges
into two sets. It is known [11], [12] that the edge set of a graph can be oriented so that the
out-degree of each vertex is at least k if and only if I/z(S)l _>_ klSI for all S c_ V where
/z(S) {e 6 E e N S :/: 0}, and that this can be checked in polynomial time. We do not
consider this generalization in this paper, however.

4.2. Analysis of the main algorithm. Let P denote the transition probability matrix of
the random walk on G ,, and let r,w denote the probability that the walk is at w at step
given that it started at v. Let k be the second largest eigenvalue of P. (All eigenvalues of P
are real.) It is known that

(11) p(t)
,w r(w) + O(v/r(w)/r(v)).

984 ANDREI Z. BRODER, ALAN M. FRIEZE, AND ELI UPFAL

To ensure rapid convergence we need ,k < e for some constant > 0. This holds for
all expanders [1]. In particular if

(12) OUtB(S) /’lSI 8 V, ISI V I/2,

for some constant/3’ > 0, Sinclair and Jerrum [22] show that (12) implies

We will now explicitly state our claims about the performance of our algorithm. As input, G
is an n-vertex, bounded degree, r-regular (c,/3, ?,)-expander graph where c > and/3 >/30,
with/30 as in Corollary 4.2.

Suppose that

(13) tc > max{7, tc In r, 2 + x3 In r},

4 + 2tc3 In r
(14) tc > + to3,

ln-I

(15) K2, K3 >

THEOREM 4.3. Under the above assumptions with n sufficiently large, given any set of
q n/(log n) disjoint pairs of vertices in G such that et > and > o, with high
probability our algorithm finds in o(n3) time, edge-disjoint paths connecting these q pairs.

In 3 we pointed out for each phase the conditions under which it might fail. We now
proceed to bound the associated failure probabilities.

Phase 1. The failure probability of this phase is o(1) by Corollary 4.2. Also the time to carry
out the construction is O(n).

Phase 3. The tc In In n neighborhood of any vertex contains at most v rK lnlnn (In n)’ lnr

vertices. Using (1), the probability that ri is rejected is thus never more than 3qv/2n. Thus
the probability that this phase fails is at most

Pr(B(4q, 3qv/2n) > 2q)

and this is o(1) if

(16) x lnr < x,

since q <_ n/(lnn). It is of course straightforward to carry out this selection in o(n2) time.

Phase 4. A straightforward application ofthe Max-Flow Min-CutTheorem shows that success
is certain provided that G R is a/3’-expander for some/3’ > 1. By Corollary 4.2 this happens
with probability o(1). Furthermore it only takes o(n3) time to find the required flow since
arc capacities are for the arcs of the network.

Phase 5. The remainder of the proof relies heavily on the fact that the trajectories W:.
constructed by our algorithm, have the same distribution (up to negligible factors) as m inde-
pendent random trajectories of length r x2 In n from fii, the difference being that we pick
the endpoint of the trajectory using rr instead of P-) Using (11), since

3
(17) x2 >

ln-

EDGE-DISJOINT PATHS ON EXPANDER GRAPHS 985

we see that

P, rol- o-3
for all v, w.

To allow us to view the trajectories Wit,j, W[, as having exactly the same distribution as
random trajectories we can imagine generating Wi’,j as follows.

(a) Choose x xi,j according to the distribution P()..
(b) Choose a random trajectory Wit,j from i to X.

p(r) / p(r) do(c) If O(x) ,,x 7r(x) > 0 then with probability O(x),
1. discard Wit,j;
2. choose y 6 f2- {v O(v) < 0} with probability O(y)/O(f2-);
3. choose a new random trajectory W from i to y.i,j

It is not hard to see that the endpoint of W’ other than i is now chosen according toi,j
the distribution 7r Furthermore, as long as (1)-(3) above are not executed, we can view W:
as a random walk of length r from fii. But

Pr((1) (3) occur during the algorithm)

O(qm max0(x)) O((lnn)2-X/n) o(1).

This justifies viewing the W "i,j, Wi,j as unbiased random walks.
The next question is how, given Xi,j, do we compute a random trajectory of length r from

i to xi,j? This is not difficult.
To simplify notation, suppose we want to compute a random trajectory W [u0

u, ul ut v] of length from a vertex u to a vertex v. If w is a neighbor of v then

(18) Pr(ut-1 tolut v)
p,(t)

Thus our algorithm to generate W is to choose to according to (18) and then choose a random
trajectory of length from u to w. To compute p(t) we need only compute powers of P.
Because G has bounded degree we can compute pk from Pk- in O(n2) time. Thus the total
time to compute all the trajectories is O(rn2) o(n3), for tc > 7.

Phase 6. We prove several intermediate propositions Our aim is to show that relatively few
paths get deleted.

PROPOSITION 4.4. Assume that

(19) tel >_
4 + 2tc3 In r
lnX- +to3

Then with probability o(1) the number ofpaths deleted due to condition (a) is O(lnn)
simultaneouslyfor each [q].

ItProof Recall that Mi,j {wi,j, t, wi,j, >_ (x to3) lnlnn}, and a path P/,j is deleted

due to condition (a) if dist(Mi,j, Jk< Mi,k) < 2tc3 lnlnn.
For > (tc to3)lnlnn the probability that w’i,j,t V is (by (11)) O(U + 1/n)

O((lnn)-(x’-x3llnx-) for any vertex v. Also the 2tc3 lnlnn neighborhood of I,.Jk< Mi,k is of
size O((lnn)3+2x3 lnr) and so the probability that Wi’,j or W’ti,j wanders into this neighborhood
after (t x3) In In n steps, is only

O((lnn)3+2x31nr-(x’-x3)lnx-’) O(1/Inn),

986 ANDREI Z. BRODER, ALAN M. FRIEZE, AND ELI UPFAL

given (19). Thus the number ofpaths deleted from bundle is dominated by a binomial random
variable B(N, p) with Np O(In n).

The inequality (see, e.g., [7, Thm. 1.7])

(20) Pr(B(N, p) > aNp) < ()aNp
is, for sufficiently large a, enough to verify the proposition. (Take a c lnn/(Np) for a

sufficiently large c.)
PROPOSITION 4.5. Assume that

(21) x > 2 + x3 lnr.

Let

Ni {v R {i, 3i} dist(v, Bi) < to3 lnlnn}.

Then Ni O (In n) simultaneouslyfor each [q], with probability o(1).
Proof The size of the to3 ln lnn neighborhood of all the bundles Bi together is

O((lnn)3+K3nr). The number of vertices in R chosen in this neighborhood is a binomial
with mean O(lnn), given (21). The result follows again by using (20). [3

We can now bound the number of paths deleted from each bundle in phase 6 due to
condition (b). Recall that the vertices of Q \ {fii} are at least tc lnlnn away from fii. Hence,
if two paths in a bundle are simultaneously closer than x3 In Inn to the endpoint of another
bundle, then one of them is deleted by condition (a). Thus any v Ni fq Q can lead to the
deletion of a single path via condition (b), so almost surely only a total O(ln n) paths are
deleted from each bundle.

Phase 7. We start by proving the following proposition.
PROPOSITION 4.6. The maximum degree in the graph H (the incidence graph ofthe paths)

satisfies AI O((ln n)2/ ln ln n), almost surely.
Proof We will show below in the analysis of phase 8 that with probability o(1) the

graph H’ has maximum component size O(ln n/In In n) and so it suffices to prove that with
probability -o(1) for every i, j, k, the trajectory W’ meets only O(lnn) trajectories in thei,j
bundle Bk.

Now fix i, j, k. The pruning done in phase 6 allows us to assume now that

dlst(Wi,j," {k, /}) is at least to3 lnlnn. Consider a trajectory W,t. The probability that

W, meets Wi’,j is by (11) of order O((lnn)2-K3nx-1) O(1/(lnn)) provided that

3
(22) x3 >

ln,k_l

Treating the construction of each W, as an independent trial we see that the expected number
of trials in which Wi j

["] m, is O(ln n). We can now use (20). 1
We now show that if we reach the start of phase 7 and m > 8AH for each then we can

be sure that there is a set of disjoint paths contained in our bundles. We use the following
lemma [10], [23].

LOV,SZ LOCAL LEMMA. Let A1 AN be events with dependency graph CA. Let
deg(i) be the degree of Ai in CA. If

Pr(Ai) < p i,

deg(i) <_ d i,

4pd < 1,

EDGE-DISJOINT PATHS ON EXPANDER GRAPHS 987

then

Pr(/A-i) > 0.

Consider the experiment in which a random vertex is chosen from each row of H. The
events Ai (the "bad" events) are defined by the choice of two vertices joined by an edge.
The maximum degree in the dependency graph for the Lovisz Local Lemma is 2m A/4 and
each bad event has probability at most 4/m2. The Local Lemma now proves easily that our
independent set exists, since m (lnn)2 and AH O((lnn)2/lnlnn).

(Alon has shown in [2] the existence of such spanning independent sets in a similar
setting using the same technique. Later he proved in [3] that for m sufficiently large relative
to the dependency degree there is a proper m-coloring of the graph so that each row uses m
colors. Furthermore, Beck has shown that this coloring can be found in polynomial time [6].
However, for our purposes it is necessary to show that the component size does not exceed
O (log n / log log n) (see below), hence these more sophisticated algorithms seem unnecessary.)

Phase 8. Pair the vertices in R \ Q arbitrarily. Connect each of the q new pairs by m random
walks as is phase 5. Define a supergraph H" D H’ obtained from H by adding q additional
vertices corresponding to bundles of paths connecting vertices of R \ Q, and by adding extra
edges in an obvious way (we ignore the pruning of phase 6).

Let 7r(r) be the other end of a bundle that has endpoint r. Let r be the set of m random
walks of length r starting at vertex r 6 R. We claim that if r is fixed and r’ is chosen uniformly
at random from R \ {r, rr (r)}, then there exists a constant K4 such that the probability that Wr
and Wr’ intersect is bounded by

(23) Pr(r fq/47,.,

_
13) _<

tr4(ln n)6

4n

To see this, consider a random walk from r’ of length r and assume for the moment that r’ is
chosen uniformly at random in R. Since r’ is thus chosen from the steady state of the random
walk, the expected number of vertices of r visited by this random walk is O(mr2/n).
Summing over all walks in r’ we obtain O(m2r2/n) as the expected number of visits to

Wr. The probability of at least one visit is bounded by this expectation. Now if r’ is chosen
uniformly at random only within R \ {r, zr(r)}, the probability of intersection increases at most

by a factor of (1 2/[RI) -1 + o(1). Thus we have (23).
Each bundle Bi is composed of two sets of rn random walks. Hence, for fixed, and i’

chosen uniformly at random in {1 2q} \ {i} we have

(24) Pr({Bi, Bi, is an edge of H") < K4
(lnn)6

Furthermore, if o- is a random permutation of [2q],

Pr(H" contains a component of size > k)

_< Pr(gr)=(2) Pr(r),
SC_[2ql T f2,,(S

where A denotes the set of trees with vertex set A, and gr denotes the event that H" contains a
tree isomorphic to T, under the isomorphism +- Bi. The inequality is immediate because any
component of size > k must contain a tree of size k, and the equality follows from symmetry.

988 ANDREI Z. BRODER, ALAN M. FRIEZE, AND EL1 UPFAL

We can restrict our attention to the range where k/q < . We claim that Pr(gT) _<
(2x4(lnn)6/n)k-1 Indeed consider the edges of T in a breadth-first search order from some
arbitrary root; assume that we have already explored edges, and thus vertices numbered
without loss of generality 1 I. The probability that the/th edge exists is given by the
probability that for a certain fixed 6 l} the bundle Bi intersects B where i’ is chosen
uniformly at random (via r) in {l + 2q }. This probability can be proven via essentially
the same argument used to derive (23) and (24) to be less than (1 (21)/(2q))-x4(lnn)6/n,
independently of the existence of previous edges.

Now, since fZotk kk-2 we obtain that

Pr(H" contains a component of size >_ k)

2qe 2tc4 (In n)6
kk-2O -- n

((n (4ec4q(lnn)6)))0
(ln n) n

(n (4e4)
k)0 (Inn) (lnn)-

=o(1)

for tc > 7 and k > k0 In n / (In In n).

Phase 9. The execution time of Phase 9, given that there are no large components in H", is
bounded by

(Inn)
((lnn)2)lnn/lnlnn o(n3).

5. Random A/C algorithms. In this section we show that our construction can be done
in random A/’C. To convert DisjPaths to a random A/’C algorithm we need to modify phases
2 and 3 of the algorithm. We replace them by the following two phases:

Phase 2*. Each vertex v 6 V is included in R with probability 8qzrv independent of the other
vertices.

Phase 3*. A vertex u 6 R is in Q if no vertex in its tel In In n neighborhood is in R.

We now consider each phase in turn.

Phase 1. The algorithm Split is in A/’C since computing an Euler Path is in A/’C [5].

Phases 2* and 3*. With probability o(1), R has at least 4q vertices. The probability that
a vertex in R has another vertex in R in its tc In In n neighborhood is smaller than , thus
with probability o(1), Q has at least 2q vertices. The fact that Q might have more than
2q vertices does not matter since the flow algorithm gives an integer solution, and only 2q
vertices in Q will participate in the flow.

Phase 4. Flow with unit capacities is in Random A/’C [15], 18].

Phases 5, 6, and 7. By attaching one processor to each of the q(lnn)2 paths used in the
algorithm, all these phases can be computed in O(ln n) time.

Phase 8. Computing connected components is in .A/’C.

EDGE-DISJOINT PATHS ON EXPANDER GRAPHS 989

Phase 9. Observe that there are no more than n / (In n) components, and with high probability
there are no more than

((lnn)2)lnn/lnlnn n2

choices of paths for each component. Given a possible choice, it can be checked by one
processor in O(ln2 n) steps. Thus, phase 9 can be computed by o(n 3) processors in O(ln2 n)
parallel steps.

REFERENCES

[1 N. ALON, Eigenvalues and expanders, Combinatorica, 6 (1986), pp. 83-96.
[2] The linear arboricity ofgraphs, Israel J. Math., 62 (1988), pp. 311-325.
[3] The strong chromatic number ofa graph, Random Structures Algorithms, 3 (1992), pp. 1-8.
[4] N. ALON AND F. R. K. CHtJNG, Explicit construction of linear sized tolerant networks, Discrete Math., 72

(1989), pp. 15-19.
[5] B. AWERBUCH, A. ISRAELi, AND Y. SHILOACH, Finding Euler circuits in logarithmic parallel time, in Advances

in Computing Research 4: Parallel and Distributed Algorithms, E P. Preparata, ed., JAI Press, Greenwich,
CT, 1987, pp. 69-78.

[6] J. BECK, An algorithmic approach to the Lov6sz Local Lemma I, Random Structures Algorithms, 2 (1991),
pp. 343-365.

[7] B. BOLLOBA,S, Random Graphs, Academic Press, New York, 1985.
[8] A. Z. BRODER, A. M. FRIEZE, AND E. UPFAL, Existence and construction of edge-disjoint paths on expander

graphs, in Proceedings of 24th Annual ACM Symposium on Theory ofComputing, Victoria, BC, Canada,
ACM Press, New York, 1992, pp. 140-149.

[9] V. CHV,TAL, Probabilistic methods in graph theol., Ann. Oper. Res., (1984), pp. 171-182.
[10] P. ERDOS AND L. LOVASZ, Problems and results on 3-chromatic hypergraphs and some related questions,

Colloq. Math. Soc. Jfinos Bolyai, 11 (1975), pp. 609-627.
11 T. I. FENNER AND A. M. FRIEZE, On the connectivity ofrandom m-orientable graphs and digraphs, Combina-

torica, 2 (1982), pp. 347-359.
[12] A. FRANK AND A. GYARFAS, How to orient the edges ofa graph, Colloq. Math. Soc. Jinos Bolyai, 18 (1978),

pp. 353-364.
13] J. FRIEDMAN, J. KAHN, AND E. SZEMERIDI, On the second eigenvalue in random regular graphs, in Proceedings

of the 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, ACM Press, New York,
1989, pp. 587-598.

[14] W. HOEFFDING, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., 58
(1963), pp. 13-30.

15] R.M. KARP, E. UPFAL, AND A. WIGDERSON, Constructing a perfect matching is in random NC, Combinatorica,
6 (1986), pp. 35-48.

[16] T. LEIGHTON AND B. MAGGS, Expanders might be practical: Fast algorithms for routing around faults in

multibutterflies, in Proceedings of the 30th Annual Symposium on Foundations of Computer Science,
Research Triangle Park, NC, IEEE Computer Society Press, New York, 1990, pp. 384-389.

17] A. LUBOTSKY, R. PHILLIPS, AND P. SARNAK, Ramanujan graphs, Combinatorica, 8 (1988), pp. 261-277.
[18] K. MULMULEY, V. VAZIRANI, AND V. VAZIRANI, Matching is as easy as matrix inversion, Combinatorica, 7

(1987), pp. 105-113.
[19] D. PELEG AND E. UPFAL, Constructing disjoint paths on expander graphs, Combinatorica, 9 (1989), pp. 289-

313.
[20] The token distribution problem, SIAM J. Comput., 18 (1989), pp. 229-243.
[21 N. ROBERTSON AND P. D. SEYMOUR, Graph minors-XIII: The disjoint paths problem, J. Combinatorial Theory,

Set. B, to appear.
[22] A. SINCLAIR AND M. JERRUM, Approximate counting, uniform generation, and rapidly mixing Markov chains,

Inform. and Comput., 82 (1989), pp. 93-133.
[23] J. SPENCER, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, 1987.
[24] E. UPFAL, An o(log n) deterministic packet routing scheme, in Proceedings of 21st Annual ACM Symposium

on Theory of Computing, 1989, pp. 241-250.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 990-1000, October 1994

() 1994 Society for Industrial and Applied Mathematics
007

SEPARATING DISTRIBUTION-FREE AND MISTAKE-BOUND LEARNING
MODELS OVER THE BOOLEAN DOMAIN*

AVRIM L. BLUM

Abstract. Two of the most commonly used models in computational learning theory are the distribution-free
model in which examples are chosen from a fixed but arbitrary distribution, and the absolute mistake-bound model in
which examples are presented in an arbitrary order. Over the Boolean domain {0, }n, it is known that if the learner
is allowed unlimited computational resources then any concept class learnable in one model is also learnable in the
other. In addition, any polynomial-time learning algorithm for a concept class in the mistake-bound model can be
transformed into one that learns the class in the distribution-free model.

This paper shows that if one-way functions exist, then the mistake-bound model is strictly harder than the
distribution-free model for polynomial-time learning. Specifically, given a one-way function, it is shown how to
create a concept class over {0, }n that is learnable in polynomial time in the distribution-free model, but not in the
absolute mistake-bound model. In addition, the concept class remains hard to learn in the mistake-bound model even
if the learner is allowed a polynomial number of membership queries.

The concepts considered are based upon the Goldreich, Goldwasser, and Micali random function construction
[Goldreich, Goldwasser, and Micali, Journal ACM, 33 (1986), pp. 792-807] and involve creating the following new
cryptographic object: an exponentially long sequence of strings rl, or2 rr over {0, }n that is hard to compute
in one direction (given O" one cannot compute rj for j < i) but is easy to compute and even make random-access
jumps in the other direction (given ri and j > one can compute crj, even if j is exponentially larger than i). Similar
sequences considered previously [Blum, Blum, and Shub, SlAM J. Comput., 15 (1986), pp. 364-383], [Blum and
Micali, SIAM J. Comput., 13 (1984), pp. 850-863] did not allow random-access jumps forward without knowledge
of a seed allowing one to compute backwards as well.

Key words, machine learning theory, learning models, one-way functions

AMS subject classifications. 68Q25, 68T05, 94A60

1. Introduction. Two ofthe most popular theoretical models for learning from examples
are the distribution-free model, also known as the probably-approximately-correct (PAC) or
"Valiant-style" learning model 17], [25], and the absolute mistake-bound model [21]. In both
models, the goal of a learner is to approximately infer some unknown target concept from
positive and negative examples of that concept. In the distribution-free model, an adversary
chooses a distribution over the labeled examples from which the learner may sample. The
learner, from a polynomial (in relevant parameters discussed in 2) number of samples, must
produce a hypothesis that agrees with the target concept over most of the distribution. In the
mistake-bound model, the adversary instead actually chooses the order in which examples
appear. Here the learner sees unlabeled examples, and after each one must predict whether it
is positive or negative before being told its true classification. The job of the learner in the
mistake-bound model is to make a polynomially bounded number of mistakes.

In this paper, we will consider the "representation-independent" versions ofthe distribution-
free and mistake-bound models, also known as the "prediction" model [12], [13], in which
the learner’s hypotheses need not be the same form as the target concept. The mistake-bound
model is equivalent to Angluin’s equivalence query model [3], [21] when query hypotheses
are similarly not restricted.

It is known that any algorithm for learning a concept class in the mistake-bound model
can be converted to one that will learn the class in the distribution-free model [3], [18]. If
computational considerations are ignored, then over the Boolean domain {0, }n the converse
holds as well. Any concept class over {0, }n learnable with polynomial sample size (and

*Received by the editors July 20, 1992; accepted for publication (in revised form) July 4, 1993.
tSchool of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3891

(avr+/-m@cs. cmu. edu). This work was done while the author was at the MIT Lab for Computer Science and
supported by an NSF Graduate Fellowship, NSF grant CCR-8914428 and the Siemens Corporation.

990

SEPARATING LEARNING MODELS 991

not necessarily polynomial time) in the distribution-free model can also be learned with a
polynomial mistake bound (in not necessarily polynomial time) in the mistake-bound model
[3], [21]. At the heart of the proof for this last direction is the use in the mistake-bound model
of the "halving algorithm." This algorithm enumerates all concepts in the class, predicts
according to majority vote, and when a mistake is made throws out the concepts that predicted
incorrectly. The equivalence oflearnability in the noncomputational setting has led researchers
to wonder (e.g., 16]) whether the models remain equivalent when computation is limited--
especially in light of recent work showing that the distribution-free model is equivalent to a
seemingly much easier form of learning known as "weak-learning" [24].

In this paper we show that if we consider only algorithms that run in polynomial time,
then if one-way functions exist, the distribution-free and mistake-bound models over {0, }"
are not equivalent. Specifically, we create a concept class starting from a pseudorandom bit
generator [6], [7], [26], which is learnable in polynomial time in the distribution-free model
but not in the mistake-bound model. The existence of pseudorandom bit generators has been
proven equivalent to the existence of one-way functions [20], [15], [11]. The concept class
we create remains hard to learn in the mistake-bound model even if the learning algorithm is
allowed membership queries--the ability to ask whether examples of its own choosing belong
to the target concept. So, for instance, the position of this concept class contrasts with that
of deterministic finite automata (DFAs) which are learnable in a mistake-bound model with
membership queries [2] but not in the distribution-free model [19].

The concept class created is based upon the Goldreich, Goldwasser, and Micali random
function construction [9] and involves creating the following new cryptographic object: an
exponentially long sequence of strings al, cr2 Cr over {0, }" that is hard to compute in
one direction (given oi one cannot compute o-j for j < i) but is easy to compute and even
make random-access jumps in the other direction (given o’i and j > one can compute
even if j is exponentially larger than i). This sequence is "stronger" than those considered
previously [6], [7] in the sense that for those sequences, the only known way to compute in the
forward direction (without knowing the seed that allows one to compute in the other direction
as well) is to compute the strings sequentially in order.

The sequence of strings is useful for separating the learning models for roughly the
following reason. Attached to each cri is a classification that can only be computed given crj
for j < i. So, an adversary can present the strings in the reverse order or, O’r- and cause
the learner to make a mistake nearly half the time. However, for any distribution over the
strings, if a learner collects m samples, we expect that about m/(m + 1) of the distribution
falls on the "easy side" (the set of o-j for j > i) of the string oi of least index seen. The
"random-access forward" property of the sequence then allows the distribution-free learner to
use cri as a predictor for any aj. for j > i. Notice that without the random-access property, then
even on a uniform distribution the learner might still fail because the examples seen would
likely all be exponentially far away from each other.

An earlier version of this paper appears in [5].

2. Notation, definitions, and background. An example x is an element of {0, }" and
a concept is a set of examples (subset of {0, }n). We will also identify concepts with their
indicator functions, defining c(x) if x 6 c and c(x) 0 otherwise. For a given target
concept c, a labeled example of c is a pair (x, c(x)) where x is an example and c(x) is its

classification. An example x is a positive example if c(x) 1; otherwise it is a negative
example. A concept class is a collection of concepts, together with a (sometimes implicit)
representation for each concept. For instance, the class ofDNF formulas consists of concepts

1To be rigorous, we should define a concept class C to be a family {Cn} (one for each n) where Cn is defined
over {0, }n. In order to avoid overly cumbersome notation, we shall assume this type of indexing is done implicitly.

992 AVR|M L. BLUM

given in a disjunctive normal-form representation. If c is a concept in a given concept class
C, we use [el to denote the size of the (smallest) representation of c under C. In both the
distribution-free and mistake-bound models, the object of a learning algorithm for a concept
class C is to approximately infer an unknown target concept c 6 C from examples. The
models differ in how examples are chosen and how successful learning is defined.

In the distribution-free model, there is some distribution 79 over the set oflabeled examples
of the target concept. The learning algorithm is allowed to sample from 79 and based on this
information and knowledge of the class C to which the target concept belongs, must produce
a hypothesis h that approximates the target concept. In particular, if c is the target concept, we
say a hypothesis h has error e if on pair (x, c(x)) chosen from 79, the probability that h(x) does
not equal c(x) is e. We will allow the hypothesis produced by the algorithm to not necessarily
belong to concept class C (this version is sometimes termed "polynomial predictability" 12],
[1 3]). More formally, an Algorithm A learns in the distribution-free model a concept class C
over {0, }n if for some polynomial P, for all target concepts c 6 C, distributions 79, and error
parameters e and 3" in time at most P(n, -d, -g, Icl) the algorithm with probability at least 3
finds a polynomial-time evaluatable hypothesis h (not necessarily from C) with error at most
e. See Haussler, Kearns, Littlestone, and Warmuth [12] for various equivalent formulations
of the distribution-free model.

In the mistake-bound model, instead of a distribution, we imagine there is some adversary
presenting the examples in any order it wishes. Learning is done on-line in a sequence ofstages.
In each stage the adversary presents an unlabeled example to the learner, the learner suggests
a labeling, and then the learner is told whether or not that labeling was correct. The object
of the learning algorithm is to make at most a polynomial number of mistakes. Algorithm A
learns a concept class C in the mistake-bound model if for some polynomial P, for all target
concepts c 6 C and all orderings of the examples, the algorithm makes at most P(n, Icl)
mistakes using polynomial time in each stage [21].

A membership query is a query in which the learner selects an unlabeled example of its
own choosing and asks for (and is told) that example’s classification. We may incorporate
membership queries into the mistake-bound model by allowing the learner at each stage to
choose either to make a membership query or else to receive an example from the adversary.
We will say that Algorithm A learns a concept class C in the mistake-bound model with
membership queries if for some polynomial P, for all target concepts c 6 C, the algorithm
makes at most P(n, Icl) mistakes and membership queries using polynomial time in each
stage.

Note that in all models we require a learning algorithm to run in polynomial time. In
some of the literature, this is called "polynomial learnability."

We now review some useful notation and definitions from the cryptographic literature. If
S is a set we will use the notation s S to mean that s is chosen uniformly at random from
S. For convenience, if A is a probabilistic polynomial time (PPT) algorithm and g is some
function, we will use 7"ga(A, g(s)) to mean Pr[A(g(s)) s{0, 1}a]. If g(s) s we

will just write 79a(A, s). In order to simplify the statements of some of the theorems, in this
paper we will use the term "algorithm" to include circuit families (nonuniform algorithms).

Informally, a cryptographically strong pseudorandom bit generator, or CSB generator to

use the notation of GGM, is a deterministic polynomial-time algorithm that given a randomly
chosen input produces a longer pseudorandom output. More formally we have the following.

DEFINITION 1. A deterministicpolynomial-timeprogram G is a CSB generator with stretch

if on input s {0, }k it produces a tk-bit output, andfor all probabilistic polynomial-time
algorithms A, for all polynomials Q, for all sufficiently large k:

179k(A, G(s)) k(A, s)l <
Q(k)

SEPARATING LEARNING MODELS 993

That is, no polynomial-time algorithm can distinguish with a 1/poly(k) probability between
a string chosen randomly from {0, }tk and the output of G on a string chosen randomly from
{0, }k. For this paper, we will just need a CSB generator G with stretch 2.

For a CSB generator G that on input s 6 {0, }k produces a 2k-bit output G(s)
bl b2,, let us define the following notation.

(i) Let Go(s) be the leftmost k bits bl bk of G(s), and let G (s) be the rightmost
k bits bk+ b2k.

(ii) For a d-bit string i ia {0, }a, let

Gi,...ia(s) Gia(Gia_,(... Gi(Gi(s))...)).

Note that this is well defined because Go(s) and G(s) are both k-bit strings.
(iii) Let G’o(S) G (s) and let G’ (s) . (i.e., the empty string). Think of G’ as a

rightward-shift of G.
If x and y are strings, we will use x o y to denote the concatenation xy. Also, if an example

created by a concatenation of strings has length less than n, then we will implicitly pad with
zeros, say, on the right. Finally, let LSB[x] denote the rightmost bit of string x.

We now review the GGM random function construction. Let G be a CSB generator that
on input s {0, } produces a 2k-bit output. Goldreich, Goldwasser, and Micali define the
function f {0, }k {0, }k on input/= il... ik to be

fs(i) Gil...ix. (s) Gix. (Gix._, (... Gi, (s) .)).

The function f, can be viewed as a complete binary tree of depth k. The root is the seed s, and
on input i, the output f(i) is the ith leaf in the tree if is viewed as a binary number between
0 and 2. Though this fact will not be needed for our purposes, it is proved that the collection

Fk {f }s10,11x- is a"polyrandom" collection of functions over {0, }’. Essentially, this means
that no polynomial-time algorithm can distinguish between a function chosen randomly from

Fk and a function chosen randomly from the class of all functions from {0, }k to {0, }.
We will use the basic form of the GGM construction as a starting point to create a concept

class that separates the distribution-free and mistake-bound learning models.

3. A concept class to separate the learning models. We now create a concept class
over {0, }" that is learnable in the distribution-free model but not in the mistake-bound model
if one-way functions exist. We first give the formal definition of the class, and follow this by
a more informal explanation and example. Given a CSB generator G, we will fix k, the size
of seed s, to equal v/-].

DEFINITION 2. Let Ca {c.}se{0,1: where the concepts Cs are defined asfollows:

cs {x {0, }: and LSB[Gi...ix. (s)] },

wherefor each ik,

o G’ G’ G’ G’. (Gil .ix.- (s)).X i,(S) O i2(Gi,(s))o i3(Gii2(s))o o
tx. ",

Now the informal description. There is one concept c for each s 6 {0, }k. For each
for c, so there are aboutsuch that LSB[f (i)] 1, there is an associated positive example x

2Lvj- positive examples for c. We can think of the labeled example (x, cs(x)) as the pair
(i, LSB[f,(i)]) together with the following extra information: for each bit ij equal to zero

994 AVRIM L. BLUM

(running left to right along i), we include the right half of G(Gi,...ij_, (s)). For example, if
k 4 and 0101, then we would have (see Fig. 1)

xsi 0101 o G (s) o . o G (G (G0(s))) o .,
0101 o G(s) Go(s),

cs(x) LSB[G0101 (s)].

We will think of the index as both a bit string and a binary number between 0 and 2k.

LSB

FIG. 1. Darkened regions are information given with (x, cs(x)) for 0101.

for whichNotice that negative examples of c+. come in two forms" some are examples x
for anyLSB[f.(i)] 0 and some are just bit strings from {0, }" that are not of the form x

the "good examples" of c.; so the positive examples of cs arei. We will call the examples x
will be shown to have thesuch that LSB[f,(i)] 1. The examples xthe good examples x

property of the strings o mentioned in the introduction.
For convenience, let us define the following additional notation.

be the (correctly) labeled good example (x, c (x)(i) Let z

(ii) Let-i be the incorrectly labeled good example (x, c(x)).Z

(iii) For id 6 {0, 1}d, let:

GGi’’’’i" (s) G’ (s) o (Gi, (S)) o o id (Gi,...i,_ (s))i i2

is equal to o Gi’’i (s).So example x
and j > computes z in time O (n Tk)We now demonstrate an algorithm that on input x

where Tk is the time to compute G on a k-bit input. The essential idea of the algorithm is
that contained in example x, are ancestors in the full binary tree of each piece of information

contained in z!. The reason we want to compute the entire Zs
j and not just the classification

c (x) is that the learning algorithm, given an e.xample x that purports to be some x (becaus
e its first k bits are j), first will compute Xs to yerify that x really is the "ggod example,"

and then predict positive exactly when both x XsJ and the classification of XsJ is 1.

ALGORITHM COMPUTE-FORWARD
and j > i.Given: x

1. Write i ik and j j j,. Let r be the least index such that i - j. Since

j>i, wehavei=0andj- 1.

SEPARATING LEARNING MODELS 995

the portions:2. Extract from x

u=G’ (s) oG’il i2 (Gi (s)) o... o G’i,._l (Gil’’’i’-2 (S)) Gil’’’ir-’ (s).

v=Gir (ai...i,._l (s)) aj...jr (s)

(Notice that G’. (Gjl...jr_ (s)) ..)Jr

3. Ifr=k, output: (jouo,LSB[v]).
Otherwise, output: (j o u o . o Gjr+’’’jk (v), LSB[Gjr+...j. (v)]).

Algorithm Compute-Forward produces zj as output for the following reason. By the
(s))definition of r, we know Gil .i,._ (s) Gjl’’’j’- (s), so u o,k Gj’’’j’-I (s) o Gjr (Gjl ..j,_

Gjjr (s). Since v Gj...jr (s), we have

IA 0 Z o Gjr+’’’’j" (1)) G jl’’’jr (s) o Gjr+’’’’j" (Gjl...j, (s)) G jl’’’j" (s),

and LSB[Gjr+,...j. (v)] LSB[Gjl...j. (s)] Cs(XJs). In addition, Algorithm Compute-Forward
uses at worst O(k2) computations of G.

THEOREM 3.1. Concept class Ca is learnable in the distribution-free model.
labeled examples. IfProof. Algorithm Learn-Ca works as follows. Collect m >

all examples are negative, hypothesize the empty concept. Otherwise, we know each positive
ofexample is a "good example," so let be the index (first k bits) of the positive example xs

least index seen so far. Produce the following hypothesis: "On example x, let j be the first k
bits of x. If j < predict 0. If j > i, use algori.thm Compute-Forward to produce labeled
example (xJ, c,(xj)). If x x then predict c,(xJ); otherwise predict 0."

One simple way to see that Learn-Ca learns in the distribution-free model is just to notice
that it is an "Occam Algorithm" in the sense of Blumer, Ehrenfeucht, Haussler, and Warmuth
[8] since for any size sample, the hypothesis produced has size O(n) and is consistent with
all the data seen. Alternatively, one can use a direct argument of the type used for learning a
subinterval [0, a] of the interval [0,]. Let be the least index such that the set of examples
St {zj j < and Cs(X) has probability at least e. Algorithm Learn-Ca fails to learn
with error less than e exactly when it sees no example from St. So, the probability Learn-Ca

llnlfails is at most (1 e)m which is less than for m >

THEOREM 3.2. Concept class Ca cannot be learned in the mistake-bound model if G is a
CSB generator.

is difficult toIn order to prove Theorem 3.2, we show that the sequence of examples x
compute in the reverse direction, as described in the following lemma and corollary.

LEMMA 3.3. For any PPTAlgorithm A andpolynomial Q, for sufficiently large k, for all
{0, 1},

17)k(A z) 79k(A --i’Zs)l <
Q(k)"

That is, for any Algorithm A and index i, for random seeds s, Algorithm A cannot
and an incorrectly labeled one. Using Algorithmdistinguish between a correctly labeled x;

Compute-Forward, on input xs one can easily compute any other labeled example z for j > i.
So, Lemma 3.3 could equivalently be written as the following.

COROLLARY 3.4. For any PPT algorithm A and polynomial Q, for sufficiently large k,

for all e {0, }k,

179(A, z,) 79k(A,
Q(k)

996 AVRIM L. BLUM

where 0 is an oracle that on any input j > outputs labeled example zJ.
Lemma 3.3 implies, as shown below, that any learning algorithm will be fooled in the

in reverse order. In fact,mistake-bound model by an adversary that presents the examples x
Lemma 3.3 is stronger than we need because it implies that any algorithm will fail not just on
some cs C but on almost all of the concepts c.

ProofofTheorem 3.2 (assuming Lemma 3.3). Suppose there exists a learning algorithm L
and polynomial P such that for all c C over {0, }n, Algorithm L makes at most P(n) mis-

2 .2takes. Consider an adversary that presents the good examples in reverse order: x, as
Algorithm L makes a mistake on at most a of the first 4P(n) examples presented. If L is
deterministic, this implies there exists some index (2 4P(n) < < 2k) such that over all

If L is randomized,Cs C, Algorithm L makes an error an at most of the examples xs.
we still have that for some the probability over the choice of s and the coin tosses of L that

is at most So, we can use L in an Algorithm A that contradictsL makes a mistake on x
Corollary 3.4: On input (x, b/we use the oracle (or Algorithm Compute-Forward) to simulate
the adversary presenting examples to L and then output if L’s prediction of Cs(X) equals
b. If b was the correct classification, there is at least a probability that L will output 1, but

probability if b was incorrect.there is only a
it is difficult to calculateWe now prove Lemma 3.3, showing that given only example xs

the classification c(x). The basic idea of the proof is a version of a standard cryptographic
technique described by Yao [26]. Roughly, if an algorithm can distinguish strings z from
strings 2’, then we will slowly substitute bits in those strings with random bits and watch
the performance of the algorithm degrade. At some point before the strings have become
completely random the performance must degrade significantly, and we will focus on that
location to break the generator.

Proof ofLemma 3.3. Suppose to the contrary there is a PPT Algorithm A and polyno-
mial Q such that for infinitely many k, for some t(k) {0, 1}k, we have 179k(A,
79k(A, 2t(k)) > -. Without loss of generality, let us assume that A has {0, output. We
will use A to create an Algorithm B that breaks generator G. In particular, for infinitely many
k, we will have IPk(B, G(s)) P2k(B,s)I >_ 1/2kQ(k).2 Let S) {0, 1}’ and S’ {,k} (to
correspond to the notation for G and G’) and let t(k) tl... tk. Let p,, 79,(A, zts)
and "l,k "]9k (A, -tz), and for < d _< k, define:

where b LSB[Gt,...t,.(s)] and b LSB[Gt,...t,(s)].
So, for d > 1, pa,k is the probability that A outputs on input z where the first d

have been replaced by random strings of the appropriate length and the1 "pieces" of x
application of generator G begins at depth d in the full binary tree.

Wehave by assumption that IPl,k--l,kl >- / Q(k) for infinitely many k. We now consider
two cases. The first is that IPk,k --ff,,k > 1/(kQ(k)) for infinitely many k. The second is that

2Algorithm B will be nonuniform, in part because we have no guarantee that the index (k) is easy to compute
given k (to contradict Lemma 3.3 just requires there exist some t(k)). One could modify (and make less "clean")
the statement of Lemma 3.3 so that this problem no longer occurs and still separate the learning models, since our

adversary chooses the examples in an easy to compute ordering.

SEPARATING LEARNING MODELS 997

for infinitely many k we have both IP,k ,kl >_ 1/Q(k) and IPk,k ,kl < 1/(kQ(k)).
In the first case, the following Algorithm B will break generator G (the analysis follows the
description of the algorithm).

ALGORITHM B

1. On input y 6 {0, }2k, let Y0 be the left half of y and y be the right half of y. Let
Y) Yl and Y’I "

2. For 6 k choose ri GR S’ti"
3. Flip a coin:

(i) If heads, output: A (t o r o... rk_ Yi’,, LSB[yt.]).
(ii) Iftails, output: A(t r ... o rg_ Yi’., LSB[yt.]).

If the input y to B equals G(s) for random s, then the probability B outputs is: p,,k +
(1 --k,k) + (pk,k --,,k). If the input y to B is randomly chosen from {0, }2k, however,

The reason is that since Yt. and Yt’. arethen we claim the probability B outputs is just .
disjoint pieces of y, B outputs with equal probability either A (t c> r, b) or A (t r, b) for
independent, random r and b. So, for infinitely many k we have 179k(B, G(s)) 792, (B, s)l >
I-(Pk,, --fik,k)l >_ 1/(2kQ(k)); breaking G.

The second case, recall, is that for infinitely many k we have P,k P,kl >_ and

IPk,k--ffk,kl < () Ifk is such that these two inequalities hold, then either [Pa,,- Pa+,,l >

1/((2k- 1)Q(k))or Iffa,k--ffa+,kl > 1/((2k- 1)Q(k))for some d 6 {1, 2 k- 1}" this
just follows from the fact that Ip, l,kl -< Ipl,a- Pz,kl +’" + [Pk-l,k Pk,k[q" IPk,k
ff,,kl + Iff,,k ffk-,kl +’’" + [ff2, ff,kl. So, this second case implies that either

(i) for infinitely many k there exists d d(k) {1 k 1} such that [Pd,k
Pd+,k[> 1/(2kQ(k)), or

(ii) for infinitely many k there exists d d(k) {1 k such that]d,k
ffa+,kl > 1/(2kQ(k)).

Let us assume that the first situation occurs; the second situation is completely analogous.
Algorithm B’ to break generator G is then as follows.

ALGORITHM B’
1. On input y 6 {0, }2k, let Y0 be the left half of y and y be the right half of y. Let
y y and Y’I). Let d d(k) as above.

2. For 6 d choose ri Si.
3. Output:

A(t rl c r2 rd- c y, c Gt,’+l"t(yt,), LSB[Gta+...t.(yta)]).

If the input y to B’ equals G(s) for random s, then y[Gt’+’’’’t (Yt,) Gt’’’t (s) and
Gta+,...t. (Yta) G t,,...t. (s). So the probability B’ outputs is pa,k. On the other hand, if
y6,{0, 1 }2k, then Yt, and Yia are completely independently chosen strings, so the probability
B’ outputs is Pa+,k. By the choice of d, Algorithm B’ breaks the generator G on infinitely
many k, a contradiction. [3

So by Theorems 3.1 and 3.2, concept class C is learnable in the distribution-free model
but not in the absolute mistake-bound model if G is a CSB generator, and such G exist if
one-way functions exist.

998 AVR|M L. BLUM

4. Allowing membership queries. It turns out that a mistake-bound model learning
algorithm can do no better on this concept class even if it is allowed to make membership
queries. The reason is that in order for membership queries to help, the algorithm at some

it has not yet seen to query. (Otherwise thepoint must produce an entire good example x
membership query oracle could be replaced by a machine that always answers "negative" to
any query of an example not yet seen.) As we show below, this would allow one to break G.

THEOREM 4.1. Concept class Ca cannot be learned in the mistake-bound model with
membership queries if G is a CSB generator.

Proof. Suppose for contradiction there is a learning algorithm L and polynomial P such
that for all Cs C over {0, }n, Algorithm L makes at most P(n) mistakes plus queries. The

2 2adversary will present the good examples in the order: xs x and let us consider the
behavior of L on the first 5 P(n) examples. Clearly, L makes a mistake on at most g of the
examples and makes at most P(n) membership queries.

Let us say that a membership query is a "good query" if it is a query of a good example
L has not yet seen. Also, let us define the algorithm dequery(L) to be the algorithm for the
mistake-bound model (no queries) that runs L, and each time L attempts to make a membership
query on an example it has not yet seen, returns to L the answer "no."

Suppose first that the probability that L makes no good queries during the first 5 P(n)
4 (probability taken over the random choice ofc Ca and the coin tossesexamples is at least g

of L). This would imply that for some index t, over random s, the algorithm dequery(L) has
Thisa probability at least 4 _3 of producing the correct classification of example x5

contradicts Corollary 3.4.
We may now assume that L makes a good query at some point in the first 5 P(n) examples

(over random s). Thus, for some > 2k 5 P(n) the probabilitywith probability at least g
t-1 is at leastbut before seeingalgorithm L makes its first good query after seeing x

1/(25P(n)). Let tl...tk and let Q(n) 25[P(n)]2.
for < t. So,Note that Gt...t (s) is efficiently computable from any good example xs

has a probability at least Q- of producingwe can use L in an Algorithm A that on input x
and Algorithm Compute-Forward to runGtl...t. (S) as output, as follows. Algorithm A uses x

2 2-1 returning "no" as an answer to each membership query made.L on inputs x Xs,
is the good query (in case L makesIt then guesses which membership query made after xs

t. the number of such queries is at most P(n)). A then uses that queryseveral queries after x,
to produce a hypothesis for Gt,...t. (s).

In analogy to definitions in the proof of Lemma 3.3, let q,k be the probability that A
outputs Gt...t,, (s) on input o r ra- Gt’’’t‘ (s), where ri is a randomly chosen string
of length k if ti 0 and ri , if ti 1. We are given that q,k > -5" However, we know
that qk,k must be small for the following reason. Quantity qk,k is the probability that A outputs
Gt (s) on input o r G’t (s), where r is a random string of the appropriate length. If A does
so with probability greater than / k Q(k), then Algorithm B to break G is as follows: on input
y (let y0 be the left half and yl be the right half), pick a random r and feed to A input r yl

if tk 0 or o r if tk 1, and output if A outputs yt.. If y G(s) for random s, then
B outputs with probability at least 1/kQ(k), but if y is a random string then B outputs
with probability at most (1/2)k since y. is a random string of length k and independent of the
input to A. Hence B breaks G.

Thus, there must exist some value d such that Iqa,k qa+l,kl > 1/kQ(k). We can now
break G with a variant of Algorithm B’ of the proof of Lemma 3.3. On input y 6 {0, }2k
the algorithm outputs if A(t o rl o o rd-1 o Yd 0 Gtd+l’"t’(yta)) Gt,,+l...t.(Yta)" So if

y G(s) for random s, it outputs with probability qd,k, and if ye, {0, }2k, then it outputs
with probability qd+l,l, and thus breaks G.

SEPARATING LEARNING MODELS 999

5. Conclusion. We have shown how to construct a concept class over {0, }n that is
learnable in the distribution-free model but not in the mistake-bound model ifcryptographically
secure bit generators (or equivalently one-way functions) exist. In fact, the assumption of one-
way functions gives us something stronger. Not only is the concept class C hard to learn in
the mistake-bound model in the sense that for any learning algorithm there is some c C
hard to learn, but in fact we have that for any learning algorithm, nearly all c 6 C are hard
to learn. The fraction of concepts which an algorithm can learn is less than any polynomial
fraction (for sufficiently large n). This fact leads one to ask the question: is it possible to

separate the two models using a weaker assumption? Some assumption is apparently necessary
since if computational considerations are ignored, any concept class learnable in one model
is learnable in the other.

The concept class C6. remains difficult to learn in the mistake-bound model even if the
learner is allowed membership queries. This lies in contrast to the class of DFAs which are
learnable in the mistake-bound (equivalence query) model with membership queries [2] but
not in the distribution-free model [19]. Thus, neither model is strictly easier than the other.
Recently, membership queries have been shown not to help in learning (for a reason similar
to that described here) for the important class of DNF formulas [4].

The concept class constructed here is very nonnatural. To date, every "natural" concept
class known to be polynomial-time learnable in the distribution-free model is also known to be
polynomial-time learnable in the mistake-bound model. However, for some of these classes
the known mistake-bound algorithm is qualitatively more difficult and sometimes followed
quite a bit later than the distribution-free algorithm. One such case is the class of decision lists
(distribution-free algorithm by Rivest [23], mistake-bound algorithm by Littlestone (personal
communication) and Helmbold, Sloan, and Warmuth [14]). With the addition of membership
queries to both models, another case is that of read-twice DNF (distribution-free with queries
algorithm by Hancock 10], and a more complicated mistake-bound with queries algorithm
by Aizenstein and Pitt [1]). An interesting open problem is whether there is any natural class
that would be a good candidate for being learnable in the distribution-free model but not the
mistake-bound model.

Acknowledgments. would like to thank Shaft Goldwasser, Silvio Micali, Ron Rivest,
and Phil Rogaway for helpful discussions, and Rob Schapire for suggesting the simple "Oc-
camness" argument for the proof of Theorem 3.1.

REFERENCES

[1] H. AIZENSTE1N AND L. Pitt, Exact learning of read-twice DNFfortnulas, Proceedings of the 32nd Annual

Symposium on Foundations of Computer Science, San Juan, Puerto Rico, IEEE Computer Society Press,
New York, pp. 170-179, 1991.

[2] D. ANc;t,tJIb, Learning regular sets from queries and counterexamples, Inform. and Comput., 75 (1987),
pp. 87-106.

[3] Queries and concept learning, Machine Learning, 2 (1988), pp. 319-342.
[4] D. Abc;LtJlb At M. K4ARITONOV, When won’t membership queries help, Proceedings of the Twenty-Third

Annual ACM Symposium on Theory of Computing, New Orleans, LA, ACM Press, New York, pp. 444-
454, 1991.

[5] A. BLUM, Separating distribution-free and mistake-bound learning models over the Boolean domain, Proceed-

ings of the 31 st Annual Symposium on Foundations of Computer Science, St. Louis, MO, IEEE Computer
Society Press, New York, pp. 211-218, 1990.

[6] L. BtUM, M. BUM, AY M. Sgug,A simple unpredictablepseudo-random numbergenerator, SIAM J. Comput.,
15 (1986), pp. 364-383.

[7] M. Bt.UM AND S. MICALI, How to generate coptographically strong sequences ofpseudo-random bits, SIAM
J. Comput., 13 (1984), pp. 850-863.

1000 AVRIM L. BLUM

[8] A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, AND M. K. WARMUTH, Occam’s razor, Inform. Process. Let., 24
(1987), pp. 377-380.

[9] O. GOLDREICH, S. GOLDWASSER, AND S. MICALI, How to construct randomfunctions, Journal ACM, 33 (1986),
pp. 792-807.

10] T. HANCOCK, Learning 2it DNFformulas and kit decision trees, Proceedings of the Fourth Annual Workshop
on Computational Learning Theory, Santa Cruz, CA, Morgan Kaufmann, San Mateo, CA, pp. 199-209,
1991.

11 J. HASTAD, Pseudo-random generators under uniform assumptions, Proceedings of the Twenty-Second Annual
ACM Symposium on Theory of Computing, Baltimore, MD, ACM Press, New York, 1990.

[12] D. HAUSSLER, M. KEARNS, N. LITTLESTONE, AND M. K. WARMUTH, Equivalence of models for polynomial
learnability, Proceedings of the 1988 Workshop on Computational Learning Theory, Cambridge, Morgan
Kaufmann, San Mateo, CA, pp. 42-55, 1988.

[13] D. HAUSSLER, N. LITTLESTONE, AND M. K. WARMUTH, Predicting {0, }-functions on randomly drawn points,
Proceedings of the Twenty-Ninth Annual Symposium on Foundations ofComputer Science, White Plains,
NY, IEEE Computer Society Press, New York, pp. 100-109, 1988.

[14] D. HELMBOLD, R. SLOAN, AND M. K. WARMUTH, Learning nested differences of intersection-closed concept
classes, Proceedings of the Second Annual Workshop on Computational Learning Theory, Santa Cruz,
CA, Morgan Kaufmann, San Mateo, CA, pp. 41-56, 1989.

15] R. IMPAGLIAZZO, L. A. LEVIN, AND M. LUBY, Pseudo-random generationfrom one-wayfunctions, Proceedings
of the Twenty-First Annual ACM Symposium on Theory of Computing, Seattle, WA, ACM Press, New
York, pp. 12-24, 1989.

[16] M. KARNS, The Computational Complexity ofMachine Learning, Ph.D. thesis, Harvard University Center for
Research in Computing Technology, Technical Report TR-13-89, Harvard Univ., Cambridge, MA, 1989.

[17] M. KEARNS, M. L, L. PTT, AND L. VALIANT, Oil the learnability of boolean formulae, Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, New York, ACM Press, New York,
pp. 285-295, 1987.

[18] , Recent results on boolean concept learning, Proceedings of the Fourth International Workshop on
Machine Learning, Morgan Kaufmann, San Mateo, CA, pp. 337-352, 1987.

[19] M. KEARNS AND L. G. VALIANT, Cryptographic limitations on learning booleanformulae andfinite atttomata,

Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, Seattle, WA, ACM
Press, New York, pp. 433-444, 1989.

[20] L. A. LVIN, One-way fimctions and pseudorandom generators, Proceedings of the Seventeenth ACM Sym-
posium on Theory of Computing, Providence, RI, ACM Press, New York, pp. 363-365, 1985.

[21] N. LITTLESTONE, Learning when irrelevant attributes abound: A new linear-threshold algorithm, Machine

Learning, 2 (1988), pp. 285-318.
[22] W. MAASS AND G. TURAN, On the complexity of learningfrom counterexamples, Proceedings of the Thirtieth

Annual Symposium on Foundations of Computer Science, Research Triangle Park, NC, IEEE Computer
Society Press, New York, pp. 262-267, 1989.

[23] R.L. RIVEST, Learning decision lists, Machine Learning, 2 (1987), pp. 229-246.
[24] R.E. SctAPm, The strength ofweak learnabili., Proceedings of the Thirtieth Annual Symposium on Foun-

dations of Computer Science, Research Triangle Park, NC, IEEE Computer Society Press, New York,
1989.

[25] L.G. VALIANT, A theory ofthe learnable, Comm. ACM, 27 (1984), pp. 1134-1142.
[26] A. C. YAO, Theory and application of trapdoor fimctions, Proceedings of the 23rd IEEE Symposium on

Foundations of Computer Science, Chicago, IL, IEEE Computer Society Press, New York, pp. 80-91,
1982.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 1001-1018, October 1994

1994 Society for Industrial and Applied Mathematics
008

COMPUTING WITH NOISY INFORMATION*

URIEL FEIGEt, PRABHAKAR RAGHAVANt, DAVID PELEG AND ELI UPFAL

Abstract. This paper studies the depth of noisy decision trees in which each node gives the wrong answer with
some constant probability. In the noisy Boolean decision tree model, tight bounds are given on the number of queries
to input variables required to compute threshold functions, the parity function and symmetric functions. In the noisy
comparison tree model, tight bounds are given on the number of noisy comparisons for searching, sorting, selection
and merging. The paper also studies parallel selection and sorting with noisy comparisons, giving tight bounds for
several problems.

Key words, fault-tolerance, reliability, noisy computation, sorting and searching, error-correction

AMS subject classifications. 68M 15, 68P 10, 68R05

1. Introduction. Fault-tolerance is an important consideration in large systems. Broadly,
there are two approaches to coping with faults. The first is the "reconfiguration" approach [7],
[13], in which faults are identified and isolated in real time. This is done concurrently with
computation, and often has a significant overhead. A second, different approach is to devise
robust algorithms that work despite unreliable information operations, without singling out
the faulty components. This latter approach has been the focus of much recent work 11],
[23], [16]-[19] [26], [22], [14], [15]. These papers differ in their general setting and in the
mechanisms they use to model the faulty behavior of components. This paper concerns the
probabilistic setting to this latter paradigm, as in [22], [14], and [15].

1.1. Model. Our general model will be a (possibly randomized) computation tree, in
which each node gives the correct answer with some probability, which is at least p, where p
is a fixed constant in (1/2, 1), bounded away from 1/2 and 1. The node faults are independent.
We study the depth of the computation tree in terms of a tolerance parameter Q 6 (0, 1/2):
on any instance, the computation tree must lead to a leaf giving the correct answer on that
instance with probability at least Q. The success probability of the algorithm is computed
over the combined probability space of the outcome of individual operations and the results
of coin flips (in case our algorithm is randomized).

There are several possible types of computation trees that could be studied in this noisy
tree model; this paper focuses on two. The first is the noisy Boolean decision tree, in which
the tree computes a Boolean function of N Boolean variables X XN. Each node in the
tree corresponds to querying one of the input variables; with some probability, we are given
the wrong value of that variable. Each leaf is labeled 0 or 1, and corresponds to an evaluation
of the function.

The second type studied is noisy comparison trees for problems such as sorting, selection,
and searching. Here the input is a set {Xl, x2 XN} of N numbers. (For searching, the
input contains also x-l, the searched element.) Each node in the tree specifies two indices
and j of the elements to be compared. (In our searching algorithms, for instance, one of

these indices is always the searched element.) The node responds with either "xi > xj" or

*Received by the editors March 4, 1991; accepted for publication (in revised form) June 8, 1993.
tThe Weizmann Institute of Science, Rehovot, Israel. Part of the work was done while this author was visiting

IBM T.J. Watson and Almaden Research Centers, San Jose, California 95120.
tlBM T.J. Watson Research Center, Yorktown Heights, New York 10598. A portion of this work was done while

the author was visiting the Weizmann Institute of Science, Rehovot, Israel.
The Weizmann Institute of Science, Rehovot, Israel. The work of this author was supported in part by an Allon

Fellowship, a Bantrell Fellowship and a Walter and Elise Haas Career Development Award.
IBM Almaden Research Center, San Jose, California 95120. This author’s work at the Weizmann Institute was

supported in part by a Bat-Sheva de Rothschild Award and by a Revson Career Development Award.

1OOl

1002 U. FEIGE, R RAGHAVAN, D. PELEG, AND E. UPFAL

"Xi " Xj," and gives the wrong answer with some probability. Each leaf is labeled with a
permutation representing the sorted order for the input (for sorting and merging) or an index
in [1, N] (for selection and searching).

A simple example is in order here. In the absence of errors, the maximum of N numbers
can be found by a comparison tree of depth N 1. In the face of a constant probability of error,
it is possible to repeat each comparison of the fault-free decision tree O(log(N/Q)) times and
obtain, by majority voting, a guess for the true result of the comparison that is wrong with
probability at most Q/N. (Note that this does not require a special majority operation, but
only "blowing up" each node of the tree into a subtree of the appropriate depth.) Doing this
for every comparison immediately gives us a noisy comparison tree of depth O(N log(N/Q))
for finding the maximum (we can afford to sum the failure probability of Q/N over the N
events). In a similar fashion, any decision tree that has depth d in the absence of noise can be
used to devise a noisy one of depth O(d log(d/Q)).

The crux of our work is to show that while this logarithmic blowup is unavoidable for
certain problems, it is (perhaps surprisingly) unnecessary for certain others. In fact, we are
able to show such a separation between problems that have the same decision tree complexity
in the absence of errors, such as the threshold function with various parameters (Theorems 2.2
and 2.7). A major obstacle to proving the lower bounds is that errors cancel--multiple errors
could compound on an input to lead to a leaf giving the correct answer to that input, for the
"wrong reason."

Another distinction we make is between a static adversary, where the probability of
correctness of every node of the tree is fixed at p, and a dynamic adversary who can set the
probability of correctness of each tree node to any value in [p, 1).

It turns out that there is a difference between these two cases. In the dynamic case, the
noisy decision tree complexity is bounded below by the deterministic (noise free) decision tree
complexity, since the adversary may always opt for a correct execution (with all individual
operations giving the correct value). In contrast, in the static case, the noisy decision tree
complexity is bounded above by log(n/Q) times the randomized noise free decision tree
complexity. This follows from the fact that the availability of basic operations with fixed
success probability provides us with a fixed-bias coin, which in turn can be used to generate
a fair coin. Since there are problems for which the randomized decision tree complexity
is significantly smaller than the deterministic decision tree complexity (cf. [24]), it follows
that the presence of fixed probability faults may actually help the algorithm. This points out
another source of difficulty in proving lower bounds in the noisy decision tree model.

1.2. Related previous work. Noisy comparison trees for binary search and related prob-
lems were studied by Renyi [22] and by Pelc 14], 15]. Pippenger 16] and others have studied
networks of noisy gates, in which every gate could give the wrong answer with some prob-
ability. Kenyon-Mathieu and Yao [11 study a Boolean decision tree in which an adversary
is allowed to corrupt at most k nodes (read operations) along any root-leaf path. Rivest et al.
[23] consider the problem of binary search on N elements using a comparison tree when an
adversary can choose k comparisons to be incorrect ("lies") on any root-leaf path. This model
was further studied by Ravikumar et al. [18], [19]. Yao and Yao [26] study sorting networks
with at most k faulty comparators.

Our work differs from [11], [23], [18], [19] in that we allow every node of the decision
tree to be independently faulty with some probability. Thus in our model the number of faults
is not prescribed in advance--knowledge of this number could well be exploited by a "fault-
tolerant" algorithm. The probabilistic model allows us to tolerate a relatively large number of
faults compared to [11], [23], [18], [19].

COMPUTING WITH NOISY INFORMATION 1003

/3Prob 1"[’1.3. Results. Let ,_,U, Q ,,lj (respectively, rt)et,N,Q(II)) denote the minimum depth of any
noisy probabilistic (respectively, deterministic) decision tree for instances of size N ofproblem
I-l, with tolerance Q. For notational simplicity, we shall write DN, Q(["I) ()(f) to denote
both/r)Prob /3Det...N,Q([’I) (f) and .N,Q(II) O(f).

All our lower bounds are for probabilistic trees, and all the upper bounds (with the excep-
tion of parallel sorting) are for deterministic trees. Furthermore, all our lower bounds apply
against the weaker static adversary (and hence also against a dynamic adversary), and all the
upper bounds apply against a dynamic adversary (and hence also against a static adversary).
Since all of our bounds are tight (up to constant factors), we conclude that randomization does
not significantly help for the problems studied (with the possible exception of parallel sorting).

For any problem I-l, the depth of its optimal decision tree is at most polynomial in the
length of the input. However, the size of the decision tree is often exponential. An important
feature of our upper bounds is that the corresponding decisions trees have descriptions which
are polynomial in the length of the input. At any time step, the next query (or comparison)
to be made is a simple function (i.e., computable in polynomial time) of the outcomes of the
previous queries.

Let TH denote the K-of-N threshold function: given N Boolean inputs, the output is
if and only if K or more of the inputs are 1. The PARITY function on N Boolean inputs

outputs if and only if the number of l’s in the input is even. For noisy Boolean decision
trees we have the following results (in 2).

(1) DN,Q(TH) (R)(Nlog(m/Q)), where rn min{K, N- K}. In particular,
/DetN,Q(OR) and ,N,Q(AND) are both O(Nlog(1/Q)).

(2) DN, Q(PARITY) (R)(N log(N/Q)).
Notice the wide range of noisy tree depths in these results, whereas in the absence of

noise, decision trees for all these problems have depth N. Problems such as parity have a
blowup in tree depth that grows with N, rather than p or Q alone (unlike the OR function).
In 2 we extend these results to all symmetric functions.

Let K-SEL be the problem of selecting the Kth largest of N elements. In the noisy
comparison tree model we have the following tight results (in 3).

(1) DN, Q(BINARY SEARCH) (R)(log(N/Q)).
(2) DN, Q(SORTING) (R)(N log(N/Q)).
(3) DN, Q(MERGING) ((N log(N/Q)).
(4) DN, Q(K-SEL) (R)(Nlog(m/Q)), where rn rain{K, N- K}.
In particular, the maximum or the minimum element can be found by a noisy tree of depth

O(Nlog(1/Q)).
A well-known sports commentator has observed [9] that the problem of finding the max-

imum by a noisy comparison tree has a sporting interpretation: we wish to find the best of N
teams by a tournament. In each game, the better team wins with some probability, which is at
least p; how many games must be played in order that the best team wins with probability at
least Q? One algorithm we give for finding the maximum by a noisy comparison tree bears
a remarkable resemblance to the NBA championship: teams pair up and play a game at the
first round, the winners pair up and play three games at the next, five in the third round and so
on. It can be shown that the best team fails to win such a tournament with probability at most
c’(1 p) for some c’, and that the total number of games is O(N). This failure probability
can be reduced to Q by multiplying the number of games in each round by c log(1 / Q).

This brings up the following natural question: how many days must such a tournament
last, assuming a team plays at most one game a day? Similarly, what is the depth of a noisy
"EREW" parallel comparison tree with up to N/2 parallel comparisons at each node? The
"NBA" algorithm described above requires (R)(log N log(N/Q)) rounds.

1004 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

In 4 we show that O(log(N/Q)) rounds suffice for this problem, while keeping the
total number of games down to O(N log(l/Q)). More precisely, we show that there is an
N-processor EREW-PRAM algorithm that computes the maximum of N elements with noisy
comparisons, using O(log(N/Q)) rounds and a total of O(N log(1 / Q)) comparisons, with
failure probability at most Q. The algorithm applies even when each element is allowed to

participate in at most one comparison per round (i.e., no element duplication is allowed).
In 5 we give a randomized parallel algorithm for sorting. The algorithm is based on a

randomized, noisy, parallel comparison tree (with N comparisons per node) ofdepth O(log N).
For sorting N numbers, the failure probability ofthe algorithm can be made as small as N
for any constant c > 0.

2. Boolean decision trees. The main result of this section is a lower bound on the depth
of any noisy Boolean decision tree computing the K-of-N threshold function THNr. As a first
step, we prove a lower bound for the case K 1, which is the OR function.

THEOREM 2.1 FIPrb._.N,Q(OR) ((Nlog)/(log _-Pp)).Q

Proof Let (X1 XN) be the input vector, let 6 (0 0) and let ij denote
an input vector Xj and the remaining inputs zero. The proof is based on showing that
distinguishing between 6 and the adjacent vectors 1-j requires the stated depth. For a leaf of a
Boolean decision tree of depth d and an input vector ’, let Pr{l’} denote the probability of
reaching (in a probabilistic decision tree it combines the probabilities of the random choices
of the algorithm with the probabilities of the random answers to the queries) on an input ’.

Assume that Xj appears r(j,) times on the path from the root to . Then

Pr{,.fj} > (.1 P)
r(j’e)

Pr{lO}.
P

For any e, Y’;= r(j, e) d. Therefore ;= ((1 p)/p)r(j,e) achieves its minimum (over
all choices of r(j,)) at N((1 p)/p)a/N.

For a set L of leaves, define

Pr{L[f} _, Pr{g[)}.
eeL

Thus, letting S denote the set of leaves labeled 0, we get

N N

Pr{SIj} _Z Pr{glfj}
j=l j=l

>
1- p Pr{[(}

eS j=l P

> Pr{S[}N(1-P)d/N

P

Clearly Pr{SI6} > (1 Q), and for every j, Pr{S]j} < Q, and hence

(l--P)dIN
QN >_ (1- Q)N

P

The bound on d follows.
Note that the proof works with a static adversary. A somewhat simpler proof can be given

if the adversary is dynamic (Theorem 4.1).

COMPUTING WITH NOISY INFORMATION 1005

Let us now turn to the general threshold function THN. For a vector " (X1 XN)
of N bits, let o9 (") denote the weight of , i.e., co (") -,.N=I Xi. Thus

THe.= [1, w()>_K,

! O, otherwise.

THEOREM 2.2. For every K < N/2,

[
(THe) f2 ION log K +N,Q

forO (1 l_Q)/(log 1/(1 p)).
We first give a high level overview of the main ideas of the proof.
The main difficulty in proving lower bounds in our model stems from the fact that algo-

rithms may be adaptive. For our lower bound, it suffices to use a static adversary: each query
has a fixed probability p of giving the right answer.

Let T be a noisy decision tree (algorithm) of depth ?,N that computes THNx, where ?,
may be a function of N. Now we strengthen the algorithm, but make its adaptive behavior
easier to analyze, by transforming it to a two-phase algorithm T in a "more powerful" model.
The transformation is based on the observation that in any execution of T, at most N/3 input
variables are each queried more than ot 3y times. (The choice of 1/3 is somewhat arbitrary,
and is replaced by the parameter # later.)

(A) Nonadaptive phase: Query each variable exactly c times. Each query returns the
correct value with probability p.

(B) Adaptive phase: Request the values of N/3 of the input variables. These requests
are answered correctly. At each point, T’s choice of which variable to read next may depend
upon all the answers up to that point.

Since we are considering static adversaries and randomized algorithms, T can simulate
the execution of T. The algorithm T first runs the nonadaptive phase (A), querying each input
variable c times. In phase (B) it starts simulating the execution of T. As long as T queries
a variable fewer than ot times, T supplies the answers from the answers it got in phase (A)
on queries to that variable. Once T queries a variable more than ot times (note that this may
happen for at most N/3 of the variables), T requests the (correct) value of this variable in the
adaptive phase (B). It then uses this value to answer T’s subsequent queries after corrupting it
randomly with probability p. Clearly, on any input, the probability distribution on TI’s outputs
is identical to that on T’s outputs. Noting that the depth of T is at most a constant times the
depth of T plus N, any lower bound on the depth of T implies a corresponding lower bound
for T.

We now outline the approach to proving thatTH cannot be computed reliably by a T type
algorithm if y is o(log K). For the lower bound, we only supply inputs to the algorithm with
weights either K (for which the algorithm should output 0) or K (for which the algorithm
should output 1). We show that if T1 has insufficient depth, it is unlikely to distinguish between
inputs from these different weights (and thus output values).

Since phase (A) of T is nonadaptive, it is relatively easy to analyze its outcome. We view
this phase as a game of randomly placing N balls, K or K of which are black and the rest
white, into c -4- bins, numbered 0 to or. A white (respectively, black) ball corresponds to an
input variable Xi that is set to 0 (respectively, 1). Ball is placed in bin j if exactly j of the

queries to Xi were answered 1. (By symmetry, it suffices to count the number of answers
and ignore the ordering between them and the 0 answers.) The vector (so s), where sj

1006 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

is the number of balls in bin j, is called the execution profile of the nonadaptive phase (A). If
K > 1/(1 p), each bin can be expected to have at least one ball of each color.

At the end of phase (A), T1 gets to see its profile, but not the actual colors of the balls in
the bins. Its must determine the number of black balls using noiseless queries to N/3 of the
balls in phase (B), together with the execution profile from phase (A).

We employ one final device to simplify the analysis of phase (B). Before phase (B) begins,
we "help" the algorithm T1 by revealing the values "for free" ofK- ofthe black balls (creating
a new profile). In particular, if the input contained K black balls, then the single black ball to
be left hidden, is chosen randomly with the probability distribution of the white balls. Now, if
there were just K black balls, then phase (B) will reveal only white balls, and if there were
K black balls, then the probability that phase (B) reveals the remaining ball is only constant
(bounded from above by N/3(N K + 1) < 2/3). Thus with constant probability, phase
(B) gives T no additional information about the number of black balls. In this case, Tl must
base its decision upon only two profiles seen, both of which were seen before phase (B) of the
algorithm has begun. Thus we reduce our problem to the analysis of simple random allocation
games. Now standard probability theory can be used to show that the distribution of profiles
that result from inputs having K black balls is statistically similar to the one that results
from inputs having K black balls, making it impossible for T to achieve a success probability
better than some fixed constant bounded away from 1.

We turn to a detailed proof of the theorem.

Proof of Theorem 2.2. If K < max{(1 Q)/Q, C}, for some constant C, then the
adversary can announce the values of input variables X, X2 X:_ in advance to be 1.
Computing THN is then reduced to the problem ofcomputing the OR function ofthe remaining
N K + bits. By Theorem 2.1, this requires a tree of depth

Nlog((1 Q)/Q))log(p/(1 p))

Thus for the rest of the proof assume that K > max{(1 Q)/Q, C}, for a sufficiently
large constant C. Fix constants #, 0 such that

t0 < # <
1-Q

and

0 <0 <-
3 log(1 p)

Given a noisy decision tree forTH ofdepth y < 0N log K, we show that its failure probability
exceeds Q, and this will yield the lower bound of 0N log K on the depth.

Let

log K
3 log(1 p)

Since y < 0N log K, the number of input variables that are queried more than ot times in any
particular computation path is at most

By the previous discussion we may, without loss of generality, grant the decision tree

some additional information as outlined, and prove the lower bound for trees of the following
two-phase form, which are more powerful than any decision tree of depth y _< 0N log K.

COMPUTING WITH NOISY INFORMATION 1007

Phase (A). Query every variable exactly a times. Each query returns the correct value
with probability p.

Phase (B). Request the values of #N of the input variables X XN; these queries are
answered correctly.

The proof is by means of the probabilistic method. We present the tree with randomly
chosen inputs having K or K ones. We show that certain leaves of the tree will be reached
with almost the same probability regardless of whether the input has K or K ones. We
first analyze the outcome of Phase (A). Let Si denote the set of variables, of whose c queries,
were answered in Phase (A). The outcome of Phase (A) is fully characterized by the vector
S (So S,). Let si]Sil, and (so s,) (the execution profile of Phase (A)).
Let zi (respectively, Yi) denote the number of input variables in & whose actual values are 0
(respectively, 1). Let Y (z0 z) and)5 (y0 y,).

For a variable X, let

Pi Pr{X E SilX-- O} ()p-i(1- p)i.

Note that the expected value of Z over the inputs of interest is either (N K)Pi or
(N- K + I)Pi.

LEMMA 2.3. Pr{:li, Yi 0} < 1/N.
Proof

Pr{3i, y 0} < (1
i=1

Since the minimum value of p/0 is obtained when a,

log K

Pr{Zti, Yi 0} <_ (or + 1)(1 pO)N-K <_ (Or + 1)(1 (1 p)3,0gi,-p,)N-K l/N,

for sufficiently large N.
We now argue that the probability of getting a vector given co(’) K and given

co() K are very close to each other. In order to prove that, we shall restrict our
attention to the case when none of the zi variables diverges from its expected value by much
more than the standard deviation. Formally, let ,5’ be the event that for all < _< c,

(N- K)Pi (1 Ai) < zi < (N- K)Pi (1 + Ai),

where

log N
A 6

(N_K)PiO.

By the Chernoff bound [4], it follows that the case we focus on is the dominant one.

LEMMA 2.4. Pr{} < 1/N, where is the complement of. []

We now derive the following lemma.
LEMMA 2.5.

Pr{[(oo(’) K)/x g}
< <1+

N/5 Pr{[(o(3 K- 1) A oe}

1008 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

Proof. Let g(e) (so se s) denote a distribution of N variables
(K ones and N K zeros) among the sets So S,. Similarly, denote by 5(e)
(zo ze z,) a distribution of the N K 0-variables among So S.

For any e, e2,

pr{5(el)l (zl N-K ot

z, z, I-I Pi z’

Pr{5(2)1} N-K ot

< Zg2 P
By condition g,

Ael < ze Pe2 < +mel
+ Ae ze2P 1- Ae

Since for any i, K-1/3 < Pi0 < 1,

Am 6,/!g[N
N

/-log N
mi 6/ -5 AM.

Thus,

2Am ze P2 2AM
<1-- < <1+ <1+N/5 + Am ze2 P AM N/5

By summing over all possible pairs ((), 33) such that (e) + 33 g(e) we get

Pr{g(e)lg}
Pr{g(e2))l}

e(e,)+p=(e) Pr{2(e) 1,5’} Pr{)l,5’}

e(e.)+p=e(e.) Pr{5(g2)lg} Pr{)31,5’}

Thus,

Pr{g(/)l}
N/5 Pr{g(t2))[}- N/"

We now add the last variable X, with value either one or zero, and get

Pr{Sl(w(fo K) , 1
Pr{gl(w(fo K- l) A $}

Y=I Pr{g(e)l}Pr{X e SeIX= 1}

Y.= Pr{g(g.)I}Pr{X e SeIX= 0}"

Using the fact that Pr{X &IX 0} Pr{X e S-elX 1} we have

Pr{gl(w(X) K) A g}
< < 1-1-

N1/5 Pr{gl(w(fO K- 1)/x g} Nil5

Since all assignments of K or K ones to the variables have equal probability, by
symmetry, all partitions of the variables into sets of sizes Sl s have equal probability
and the claim is proven. 1

To simplify the analysis of Phase (B) we assume without loss of generality that at the
end of Phase (A) the adversary reveals the locations of K input variables with value 1. If

COMPUTING WITH NOISY INFORMATION 1009

co ({’) is K, and for all i, Yi > 0, the remaining (unexposed) variable is chosen to be from set

Si with probability zi/(_j=l zj) zi/(N K).
Denote by Srl Sr, the input to Phase (B), where . contains the variables in Si that

were not revealed by the adversary. Note that zi/1 < for all (more specifically, I zi
for all sets Si except at most one, which might have zi -t- variables).

The tree cannot distinguish between variables in .. Suppose that the tree queries ri
variables in (_,i ri #N). If ; contains the unexposed 1-variable, the probability that
the tree hits the unexposed 1-variable is ri/1" I. The probability that the 1-variable is in . is
proportional to Si I. Thus the probability Phit of hitting the 1-variable in Phase (B) when for
all i, Yi > 0 is bounded above by

() Phit

Let S denote the event that the output of Phase (A) is a vector with the property that if
Phase (B) does not find a 1-variable, the algorithm outputs 0.

LEMMA 2.6.

Pr{SIw(fO K} > (1 1)N1/5
(1 Q)

N

Proof. Clearly Pr{SIw(X) K 1} > Q, or else the tree does not perform as
claimed. Now

Pr{SIw(fO K- 1} < Pr{g} + Pr{Sl(w(fo X- 1) A g}.

By Lemma 2.5,

Pr{$1w(X) K-1} < Pr{g} + Pr{SI(w(’) K) A$} 1+
Nil5

Pr{SIw()=K}()<_ Pr{} +
Pr{$}

+

Thus, for an input 2 with w(’) = K, by Lemma 2.4,

(Pr{Slw(fO=K} > (l-N) Pr{SIw(’) K- 1}-
(1 + z)

(1)(l)>
N1/5 1-Q--

implying the lemma. !-1

We are now ready to complete the proof of Theorem 2.2. By (.), when the output of
Phase (A) satisfies event S, w(’) K, and for all i, yi > 0, the probability that Phase (B)
finds the unexposed is at most 2/z. Otherwise the algorithm outputs 0. Since Q < 1/2,
when co (2") K, by Lemma 2.3,

Pr{3i y O} 2
Pr{3i Yi 0[S} < <

Pr{S} N"

1010 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

Thus, the probability that the algorithm fails and outputs 0 when co(X) K is at least

Pr{$lco(fO K}(1 Pr{Bi y; 0IS})(1 2#) > Q

for sufficiently large N. []

A matching upper bound for THxN follows from a variant of the algorithm for K-SEL in

3. We defer the details of the algorithm to 3. Thus we have a deterministic upper bound
matching the lower bound for randomized algorithms.

rDet (THN) O(Nlog(m/Q)), where m min{K,N- K}. InTHEOREM 2.7. *-"N,Q
/3Det oDetparticular, N,0(OR) and N,0(AND) are both O(N log(l/O)).

In fact, the algorithm for K-SEL implies a more general result. A Boolean function f
on N Boolean variables is symmetric if f(X1 XN) f(Xr{l) X{N}) for every
permutation rr on N}. For the function f, let k be the largest < N/2 such that there
exist with o0 (") 1, and " with o(’) i, and f(") # f(’). Similarly, let k2 be
the smallest > N/2 such that there exist E" with co() i, and ’ with co (") + 1, and
f() f(’). Let/ max{k1, N k2 }.

THEOREM 2.8. Forany symmetricfunction f, DN, 0 f ID N log(//0)). In particular,
DN, o(PARITY) (R)(N log(N/Q)).

For the proof of this theorem see the end of 3.
3. Comparison trees. This section concerns noisy comparison trees. Our first claim is

that binary searching and insertion in a balanced search tree does not require a blowup in noisy
tree depth that grows with N. This result can be derived by modifying the algorithms of [23]
or [25] and adapting them to our model, or from 14]. We present a different algorithm, which
has the advantage that the ideas it is based on can also be used for other problems, where the
techniques of [23] or [25] do not seem to apply (see Theorem 4.2). The algorithm is obtained
by thinking of a noisy binary search as a random walk on the (exact) binary search tree.

In discussing upper bounds for searching among a set of elements x _< x2 < < XN
in a binary search tree, we will refer to our noisy comparison tree as an "algorithm" (rather
than tree) to avoid confusion with the binary search tree. For simplifying the description we
shall assume that the key being searched for is not in the tree (so that its insertion location has
to be determined).

Each node of the tree represents a subinterval of (-co, cxz], and is labeled by a pair
representing the endpoints of this interval. In particular, each leaf of the search tree represents
an interval between two consecutive input values. There are N + leaves, with the th
(1 _< < N + 1) representing (xi-1, xi] (assume x0 -oc and XN+ oo). For an internal
node u of the tree, let T,, denote the subtree rooted at u. Then the intervals associated with
the leaves of T, are contiguous, and u represents the interval obtained by merging them. That
is, u is labeled with the interval (xe, xh], for 0 < < h < N + 1, where xe is the smallest
endpoint of an interval associated with a leaf in T,,, and x, is the largest such endpoint. The
tree is nearly balanced, in the sense that for a vertex u labeled by (xe, xh], the left child of u

Fe+his labeled (xe, Xz] and the right child is labeled (x, xh], where z ,-T-q" The tree has depth
log Nq.

To search with unreliable comparisons we extend the tree in the following way: each leaf

xe is a parent of a chain of length m’ O(log(N! Q)). The nodes of the chain are labeled
with the same interval as the leaf. (In practice, these chains can be implemented by counters

representing the "depth" from the leaf.) Fig. depicts the resulting tree for three values,
(Xl, X2, X3) (2, 5, 7).

Let X (given, say, as X_l in the input set) be the key being searched for in the tree. The
search begins at the root of the tree, and advances or backtracks according to the results of the

COMPUTING WITH NOISY INFORMATION 1011

(- , 21 (
(- , 21

(- , 21

(- , 21

(- , 21

(2 ,51

(2 ,51

(5,71 (7 ,

(5,71 (7 ml

) (5 ,71

) (5,71

) (7 ,lll

FIG. 1. The extended comparison tree corresponding to the input list (2, 5, 7).

comparisons. Whenever reaching a node u, the algorithm first checks that X really belongs to
the interval (xe, x,] associated with u, by comparing it to the endpoints of the interval. This
test may either succeed, i.e., respond in X > xe and X < xh, or fail, i.e., respond in X < xe
or X > xh (or both). Such failure of the test may be due to noisy comparisons. However,
the search algorithm always interprets a failure as revealing an inconsistency due to an earlier
mistake, and consequently, the computation backtracks to the parent of u in the tree. If the
test succeeds, on the other hand, then the computation proceeds to the appropriate child of u.
That is, if u has two children, the algorithm compares X to Xz, the "central element" in u’s

e+ q), and continues accordingly.interval (i.e., such that z 2
The search is continued for m O(log(N/Q)) steps, m < m’ (hence it never reaches

the endpoint of any chain). The outcome of the algorithm is the left endpoint of the interval
labeling the node at which the search ends. For example, in the search tree depicted in Fig. 1,
the search for the value X 6 should terminate at the leaf marked x.

LEMMA 3.1. For every Q < 1/2, the algorithm computes the correct location ofX with
probability at least Q in O(log(N/ Q)) steps.

Proof We model the search as a Markov process. Consider a leaf w of the extended
tree T, and suppose that X belongs to the interval labeling this leaf. Orient all the edges of
T towards w. Note that for every node v, exactly one adjacent edge is directed away from v
and the other adjacent edges are directed towards v. Without loss of generality we can assume

1012 U. FEIGE, E RAGHAVAN, D. PELEG, AND E. UPFAL

that the transition probability along the outgoing edge is at least 2/3, and the probability of
transitions along all other (incoming) edges is at most 1/3. Otherwise, we can bootstrap the
probability to 2/3 by repeating each comparison O(1) times and taking the majority.

Let my be a random variable counting the number of forward transitions (i.e., transitions
in the direction of the edges) and let rn b denote the number ofbackward transitions (mf %-rn 6

m). We need to show that mf m6 > log N with probability at least Q, implying that the
appropriate chain is reached. This follows from Chernoff’s bound [4] for rn c log(N/Q),
for a suitably chosen constant c. [

Using N insertions of the above algorithm, each with failure probability Q/N, yields a
noisy comparison tree of depth O(N log(N/Q)) for sorting.

THEOREM 3.2. (1) D,e(BINARY SEARCH) O(log(N/Q)).
/3Det(2) .N,Q(SORTING) O(N log(N/Q)).

(3) D,e(MERGING) O(N log(N/Q)).
We now present a noisy comparison tree of depth O(N log(m / Q)), m min{K, N K}

for selecting the Kth largest of N elements (in fact, the tree described can find all K largest
elements, or all N K smallest elements for K < N/2). By symmetry, we need only
consider the case K < N/2. Furthermore, the case x/ < K < N/2 can be handled
using our O(N log(N/Q)) sorting algorithm. Thus we assume that K < /-. The idea in
finding the Kth largest element when K is "small" is to use "tree selection" or "heapsort"
(see Knuth, pp. 142-145 [12]). In essence, the algorithm operates as follows. Once a heap
is created, the largest element can be extracted from the top of the heap, and "reheapifying"
the rest of the elements requires at most log N noiseless comparisons. Thus, extracting the K
largest elements can be done in K log N noiseless comparisons. By repeating each of these
K log N comparisons O(log((K log N)/Q)) times in the face of noise we can extract each
of the K largest elements from the heap with error probability at most Q/2K. Thus with
O(K log N log((K log N)/Q)) noisy comparisons we can extract the K largest elements with
probability at most Q/2. For K < ,v/-, this number of comparisons is O(N log(K/Q)).

The only remaining problem is that of constructing the initial heap. In order to do this,
run a "tournament" algorithm similar to the "NBA" algorithm in the introduction for finding
the maximum with failure probability Q/2K. The algorithm takes O(Nlog(K/Q)) steps,
and each of the K largest elements has probability at most Q/2K of being eliminated by a
smaller element. Thus, with probability Q/2, the initial heap is consistent with respect to

the K largest elements, and this suffices for our purposes. Therefore we have the following
theorem.

Det (K-SEL) O(Nlog(m/Q)), where m min{K, N K}.THEOREM 3.3. N,Q
In 2 we proved lower bounds on the threshold function in the noisy Boolean decision tree

model, whereas in this section we prove upper bounds on selection in the noisy comparison
tree model. We can use a reduction between the two problems to show that both bounds are

tight (up to constant factors). But first, since the results are proven in different computational
models, we need to show a reduction from the Boolean decision tree model to the comparison
model.

LEMMA 3.4. A noisy comparison between two Boolean variables can be implemented by
a constant number ofnoisy queries.

Proof. Query each of the two variables a constant number of times, obtain an estimate
for each of the variables by taking the majority of the corresponding responses, and compare
the estimates.

For Boolean inputs, selecting the Kth largest element and testing (by O(log N) queries)
if its value is 1, is equivalent to computing THN. The upper bound in Theorem 2.7 follows
trivially. The upper bound for computing any symmetric function (Theorem 2.8) follows from

COMPUTING WITH NOISY INFORMATION 1013

the fact that the comparison tree for K-SEL actually finds all K largest (or N K smallest, if
K > N/2) elements. By repeating K-SEL once with K kl and once with K k2 (see the
prologue to Theorem 2.8 for the interpretation of these parameters), and then querying each
of the kl largest and each of the N k2 smallest elements O (log N) times, the value of any
symmetric function can be established.

We now turn to lower bounds for the problems discussed above.
rr’rb(BINARY SEARCH) f2(log(N/Q)).THEOREM 3.5 (1) .U, Q

/-)Prob(2) .N,Q(SORTING) f2(N log(N/Q)).
rr’rob min{ K, N K}.(3) .N,Q(K-SEL) f2(Nlog(m/Q)), where m
/3Prob(4) .N,Q(MERGING) (N log(N/Q)).

Proof It is immediate that our searching and sorting algorithms are asymptotically optimal
in the comparison model, hence claims (1) and (2).

Next, the fact that a comparison tree for K-SEL implies a comparison tree for THxN
enables us to derive claim (3) from Theorem 2.2.

Finally, a lower bound for MERGING (claim (4)) can be derived by a reduction from
PARITY. We first show how a merging algorithm can be used to establish parity. Consider a
vector f; (xl Xx) of Boolean inputs whose parity is to be established. Transform it to
a vector of increasing integers I (11 IN), where for each j, Ij 2xj + 3j. Consider
the merge operation of with the vector " (Y1 YN), where Yj 3j + 1. The result
establishes the value of each of the xj, since Ij < Yj iff xj 0. So in order to compute the
parity of ,, it is sufficient to simulate the merging of I and . Claim (4) now follows from
Theorem 2.8 and the argument of Lemma 3.4.]

4. Parallel tournaments. In this section and the next we consider two problems on

noisy N-processor PRAMs in which each comparison operation between two elements in-
dependently gives the correct result with probability at least p. In this section we discuss
the problem of finding the maximum of N elements. Our solution can be implemented on
an EREW parallel decision tree with at most N/2 comparisons per round in O(log(N/Q))
rounds. Furthermore, each input element is involved in at most one comparison per round, and
no element is ever copied to create a replica of the element Because of its sporting interpreta-
tion, we will describe the algorithm in the tournament setting introduced in the introduction.
Let us now describe this setting in more detail.

A parallel algorithm for computing the maximum is called a tournament if in each parallel
step of the algorithm, each input element is involved in at most one comparison A tournament
is deterministic if the comparisons made at each step are uniquely determined by the results
of comparisons in previous steps (no randomization is allowed). The depth of a tournament
is the total number of parallel steps it takes. The size of a tournament is the total number
of comparisons it involves. A tournament is noisy if comparisons might output the wrong
answer. We consider noisy tournaments with a dynamic adversary. A noisy tournament is

Q-tolerant if it outputs the maximal element with probability at least Q.
THEOREM 4.1. Any deterministic Q-tolerant tournament has depth f2(log(N/ Q)) and

size f2(Nlog(1/Q)).
Proof. Let T be any Q-tolerant tournament. Let d denote its depth and s its size. Any

Q-tolerant tournament is also a deterministic noise-free tournament for finding the maximum,
hence its depth is at least log N. Thus for Q > N- we immediately derive that d > og<N/Q)

Assume now that Q < N-. For simplicity, we describe the argument as if a dynamic
adversary were controlling the probability of error for each comparison. Fix an arbitrary
input with a unique largest element. The adversary decides to introduce no noise in the
comparisons. The tournament must output the correct maximal element. Now switch the
indices of the largest and second largest elements in the input. Now the adversary introduces

1014 U. FEIGE, P. RAGHAVAN, D. PELEG, AND E. UPFAL

noise only in comparisons between the two largest elements, and T proceeds exactly as in
the case that the inputs are not switched. Since there are at most d comparisons between the
two largest elements, the probability that the algorithm returns the same index as that of the
maximum element on both runs is (1 p)’, implying that d > (log(1/Q))/(log l_p).

The bound on the size follows from Theorem 2.1, together with the equivalence of the
models from Lemma 3.4.

We remark that a stronger version of the above theorem, in which the algorithm is proba-
bilistic and the adversary is static, can be proved along similar lines as those of Theorem 2.1.

We state an inequality, due to Hoeffding [8], to be used in the proofofthe next theorem. Let
Xi, for < _< n, be n independent random variables with identical probability distributions,
each ranging over the interval [a, b]. Let be a random variable denoting the average of the

Xi’s. Then

2n3Prob(l-

THEOREM 4.2. For every 0 < Q < 1/2 there is a Q-tolerant deterministic tournament

forfinding the maximum with depth O(log(N/ Q)) and size O(N log(l/Q)) simultaneously.
The tournament we construct is similar in spirit to the noisy binary search procedure of

3. For simplicity (and without loss of generality) we assume that N 2 for some
m. Create a balanced binary tree of depth m, and arbitrarily place one input element in each
node (including leaves, root and internal nodes). The algorithm proceeds in rounds. In each
round, many mini-tournaments are performed in parallel. Each mini-tournament involves
three players, and the largest of the three wins with probability at least q, for some constant

q to be computed later. The mini-tournaments are organized by partitioning the nodes of the
tree into triplets in a way to be described shortly, and forming a mini-tournament between
the three elements stored in each triplet. The partition into triplets depends on the round. In
even rounds, each triplet consists of a node at an even level of the tree and its two children.
Analogously, in odd rounds, each triplet consists of a node at an odd level and its two children.
At the end of the round, the winner of each mini-tournament is stored at the parent node, and
the two other elements are placed arbitrarily at the children. The whole procedure is repeated
for O(log(N/Q)) rounds.

We give some intuition on why our construction computes the maximum. The tournament
is best described as a random walk taken by the maximal element, M, over the balanced binary
tree. A win at a single mini-tournament may or may not advance Mtowards the root, depending
on whether M is already placed at the parent node before the mini-tournament begins. But
wins in two successive mini-tournaments advance M by at least one step. Likewise, if it loses
one of two successive mini-tournaments, it may move away from the root by one step, and
if it loses two successive mini-tournaments, it may move away from the root by two steps.
Summing up the probabilities of these events, it follows that on the average, in two successive
rounds, M is expected to decrease its distance to the root by at least q2 + 2q 2 steps. For
q > 15/16, this value is greater than 3/4, and so any g rounds are expected to advance M by
3g/8, and in less than 8m/3 steps M is expected to reach the root. (Note that guaranteeing
that M wins each mini-tournament with probability q > 15/16 can be achieved in a constant
number of comparisons, since a mini-tournament involves only three players.)

Two parts are still missing from the construction. One is a method of preventing M from
leaving the root once it reaches it. The other is a method of decreasing the total number
of comparisons from O(Nlog(N/Q)) to O(Nlog(1/Q)). This is significant if Q > N-c

asymptotically for any constant c.

In order to secure M at the root with high probability we adopt the following policy: an
element stays at the root as long as it has won the majority of mini-tournaments since it last

COMPUTING WITH NOISY INFORMATION 1015

reached the root. We employ a root counter which is initialized to 0. In mini-tournaments
which involve the root, if the element placed at the root wins the mini-tournament, the root
counter is incremented by 1. If a different element wins, and the root counter is at 0, this
element exchanges places with the root element. If the root element does not win and the root
counter has value greater than 0, then the root counter is decremented by 1, and no exchange
takes place.

LEMMA 4.3. The probability that M is at the root after d 256 log(N/Q) rounds is at
least Q/2.

Proof Assume that some other element W wins the tournament, i.e., occupies the root
by the end of the process. We do not decrease the probability of W ending up at the root
if we let it begin the tournament placed at the root, and let it win without competition any
mini-tournament in which M is not involved. This implies that during the whole tournament,
only two elements, M and W, could have occupied the root. Furthermore, W played exactly
d/2 mini-tournaments involving the root, losing at most d/4.

Now consider M’s performance in the tournament. Envision a scoring system, where
M starts with 0 points. Partition the rounds of the tournament into successive pairs of mini-
tournaments. For each such pair, M’s score is decremented by point for each mini-tournament
that it loses, and if M did not lose in any mini-tournaments, then its score is incremented by

point. In d rounds, M’s score is expected to be at least 3d/8. Applying the Hoeffding
inequality with d/2 (for the d selected above), we get that with probability Q/N, M’s
scores are at least 5d/16 points. At most log n of these points can be accounted for as steps
taking M from a leaf to just below the root. The other 5d/16 log n points must have been
"wasted" on decrementing W’s root counter. For d as in the lemma, this value is greater than
d/4, contradicting our assumption that W ends the tournament at the root.

Though the depth of the above tournament is O(log(N/Q)) as desired, its size is
O(N log(N/Q)), which is too large (for / Q o(N)). In order to diminish the total number
ofcomparisons when / Q < N, we execute the following truncation procedure during the first
(log N)/3 rounds. After O(i log(l/Q)) rounds, we delete the ith level from the bottom of the
competition tree. This has the effect of reducing the number of parallel mini-tournaments by
a constant factor every O(log(1 / Q)) rounds, and thus reducing the size of the first (log N)/3
rounds of the competition to O(N log(1 / Q)). Since for / Q < N the total number of rounds
is O(log N), it follows that the size of the whole competition remains O(N log(1/Q)).

LEMMA 4.4. Theprobability thatM is ata leafofthe truncated tree after 16i (log(/ Q)+2)
rounds is less than Q/2i+l.

Proof We may assume that M starts at a leaf of the tree. Observe that (log N)/3 rounds
are insufficient for M to reach the root, and thus we can ignore the effect of the root counter. In
g 16i (log(1 / Q) + 2) rounds, M is expected to advance by at least 3g/8 6i (log(1 / Q) + 2)
steps. The probability it advanced less than steps is as specified in the lemma, by the Hoeffding
inequality. [3

We now have all the ingredients to complete the proof of Theorem 4.2.

Proofof Theorem 4.2. From Lemma 4.4 it follows that the probability that the maximal
element M is lost in the truncation process is less than Q/2. Thus the total probability that M
does not win the tournament is at most Q, completing the proof of the theorem. []

5. Parallel sorting. The main result of this section is an N processors randomized
O (log N) time noisy sorting algorithm. We first present the algorithm in an N-parallel decision
tree model, and then modify it to an N-processor PRAM algorithm.

Our proof uses the following results of Assaf and Upfal [2].
THEOREM 5.1 [2]. There is a constant o, such thatfor every constant c > there is an

N log N processor deterministic EREW-PRAM algorithm that sorts N elements in the noisy
comparison model in O(cu log N) parallel time with failure probability Q < N-c.

1016 U. FEIGE, R RAGHAVAN, D. PELEG, AND E. UPFAL

(The result in [2] is stronger, the sorting algorithm is nonadaptive and can be implemented
as a network of comparators; however the PRAM version is sufficient for the proofs in this
section.)

THEOREM 5.2. There is a constant , such that for any constant c > there is a
randomized, noisy, parallel comparison tree (N comparisons per node) of depth c log N
that sorts N numbers with error probability Q < N-c.

Proof The algorithm has three phases. In the first phase it chooses a random sample of

N log N elements and sorts them by running the algorithm of Theorem 5.1 (c + 2)/3 log N
steps. Since (N/log N)-(c+2) _< N-(c+l) for sufficiently large N, the probability that the first
phase fails to sort the sample correctly is bounded by 1/Nc+

The second phase of the algorithm partitions the N elements into N/log N sets,
S Se, such that with probability 1/Nc+l all elements in each set Si are not smaller
than the (i 1)st sample element and are not larger than the ith sample element (in the correct
sorted order). To achieve this, we assign one processor to each element. The processor runs
the noisy binary search algorithm of Theorem 3.2 for O((c + 3) log N) steps. The probability
that one search fails is at most 1/Nc+2, so that the probability that any element is misplaced
is at most 1/Nc+.

The third phase sorts the O(N/log N) sets. The probability that any set has more than
(c + 2) log2 N elements is bounded by

N(1 (c+2) log2 N)
N/lgN

< N-(C+).
N

In what follows we assume that all sets have no more than (c 4- 2) log2 N elements. We sort
the sets in parallel in O(log N) parallel steps, using any logarithmic parallel algorithm such
as the AKS network [1] or [5], repeating each comparison log N log log N times and taking
the majority value.

The probability that the majority oflog N/log log N comparisons does not give the correct
answer is bounded (using Chernoff bound) by

log log N pp
Since the sorting algorithm of each set uses O(log2 N log log N) comparisons, the probability
that a given set is not correctly sorted is bounded by exp(-0 log N

loglog N for some constant 0 > 0.

Thus, the probability that more than N/log N sets are not correctly sorted is bounded by

N/log N ’N log N,] exp (-0-logN N) <N-(C+)
log logN log N

By comparing each element O(log N) times (sequentially) to its two neighbors in the
computed order we can identify, with probability N-(c+), all the sets that are not correctly
sorted. Since with high probability the total number of elements in these O(N/log N) sets
is bounded by O(N/log N) we can assign log N processors to each element and sort all the
sets correctly, with probability 1/NC+, in O(log N) additional parallel steps, using again
the algorithm of Theorem 5.1 Summing the run-time and the failure probabilities of the three
phases we get that the correct sorted order is computed in O(c log N) time with probability
1- 1/N. fi

THEOREM 5.3. There is a constant y, such that for any constant c > there is an N
processor randomizedCRCW-PRAM algorithm that sorts N elements in the noisy comparison
model in cy log N parallel time with failure probability

_
N-c.

COMPUTING WITH NOISY INFORMATION 1017

Proof The three phases of the previous algorithm are implemented on an N processor
randomized CRCW-PRAM as follows.

Phase one: Each element chooses to participate in the sample with probability 2N/log N.
With probability 1/NC+1 the sample has at least N log N elements and no more than
3N/log N elements. Using an O(log N)-time prefix sum algorithm we copy the sample to a
second array. The fault tolerant sorting network can be directly modified to a PRAM algorithm.

Phase two: The binary search can be done in parallel by the N processors on a CREW-
PRAM. The main complication in implementing this phase is in placing the elements in the
sets. We use the counting method of Reischuk [20] to count the number of elements in each
set, and allocate them in N log N arrays.

Phase three: The only complication in implementing this phase is in assigning log N
processors to each of the elements in sets that need to be sorted again. When these sets are
identified, the allocation can be done by a O (log N)-time prefix-sum procedure.

li. Extensions and open problems. Using reductions from the bounds given above, it is
possible to derive tight bounds on the depths of noisy tree for the following problems: finding
the leftmost 1, UNARY-BINARY, COMPARISON, ADDITION and MATCHING (see [3] for
definitions).

The results of 2 can also be extended to show that there is a noisy Boolean decision tree
of depth O(N log(1 ! Q)) for any function that can be computed by a constant-depth formula
of size N.

In Theorem 2.8 we characterized the noisy decision tree complexity of all symmetric
functions. Obtaining such a characterization for general functions is a major open question.
Some progress was achieved by Kenyon and King [10], who showed that O(Nlog(k/Q))
queries suffice to compute any function f that can be represented either in k-DNF form or
in k-CNF form. As for lower bounds, Reischuk and Schmeltz [21] showed that almost all
functions require (R)(N log(N/Q)) queries. A simpler proof of this result is presented in [6].

An interesting open question is to give a deterministic noisy PRAM algorithm for sorting.
We conjecture that there is no noisy sorting network of size O(N log N) that sorts N elements
with polynomially small error probability.

Acknowledgments. We thank Noga Alon and Yossi Azar for helpful discussions, and
for directing us to some of the references. Thanks are also due to Oded Goldreich and two

anonymous referees for their illuminating comments on previous drafts of the paper.

REFERENCES

M. AJTAI, J. KOML0S, AND E. SZEMERDI, Sorting in c log n parallel steps, Combinatorica, 3 (1983), pp. 1-19.
[2] S. AssAr AND E. UPrAL, Fault tolerant sorting network, in 31 st Annual Symposium on Foundations ofComputer

Science, pp. 275-284, October 1990.
[3] A. K. CHANDRA, L. STOCKMEYErt, AND U. VISHKIN, Constant depth reducibility, SIAM J. Comput., 13 (1984),

pp. 423-439.
[4] H. CHERNOF, A measure of asymptotic efficiency for tests ofa hypothesis based on the sum of observations,

Annals of Math. Stat., 23 (1952), pp. 493-509.
[5] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[6] U. FEIGE, On the complexity offinite randomfunctions, Inform. Process. Lett., 44 (1992), pp. 295-296.
[7] J. HASTAD, E T. LEIGHTON, AND M. NEWMAN, Reconfiguring a hypercube in the presence offaults, in 19th

Annual Symposium on Theory of Computing, pp. 274-284, 1987.
[8] W. HOErr:DING, Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc., 58

(1963), pp. 13-30.
[9] R.M. KARr’, Personal communication, Berkeley, CA, 1989.
10] C. KENYON AND V. KING, On Boolean decision trees with faulty nodes, Proc. of the Israel Symposium on the

Theory of Computing and Systems, 1992, Springer-Verlag, New York.

1018 U. FEIGE, R RAGHAVAN, D. PELEG, AND E. UPFAL

11 C. KENVON-MATHIEU AND A. C. YAO, On evaluating Boolean functions with unrealiable tests, Int. J. of Foun-
dations of Computer Science, (1990), pp. 1-10.

[12] D. E. KNUTrt, Sorting and Searching, The Art of Computer Programming, vol. 3. Addison-Wesley, Reading,
MA, 1973.

[13] M. PEASE, R. SHOSTAK, AND L. LAMPORT, Reaching agreement in the presence offaults, J. ACM, 27 (1980),
pp. 228-234.

14] A. PELf, Serching with known error probability, Theoret. Comput. Sci., 63 (1989), pp. 185-202.
[15] Sorting with random errors, Technical Report TR # RR 89/06-12, Univ. du Quebec a Hull, Quebec,

Canada, 1989.
[16] N. PIPPENGER, On nem’orks ofnoisy gates, in 26th Annual Symposium on Foundations of Computer Science,

pp. 30-38, 1985.
17] N. PIPPENGER, G. D. STAMOULIS, AND J. N. TSITSIKLIS, On a lower boundfor the redundancy ofreliable networks

with noisy gates, IEEE Transactions on Information Theory, to appear.
[18] B. RAVlKUMAR, K. GANESAN, AND K. B. LAKSHMANAN, On selecting the largest element in spite oferroneous

information, in Proc. 4th Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci., pp. 88-99, Springer-Verlag, New York, 1987.

19] B. RAVIKUMAR AND K. B. LAKSHMANAN, Coping with knownpatterns oflies in a search game, Theoret. Comput.
Sci., 33 (1984), pp. 85-94.

[20] R. RESCHUK, Probabilisticparallel algorithmsfor sorting and selection, SIAM J. Comput., 14 (1985), pp. 396-
409.

[21 R. REISCHUK AND B. SCHMELTZ, Reliable computation with noisy circuits and decision trees a general n log n
lower bound, in 32nd Annual Symposium on Foundations of Computer Science, pp. 602-611, San Juan,
Puerto Rico, 1991.

[22] A. RENY, On a problem in information theory, in Selected Papers of Alfred Renyi, volume 2, P. Turan, ed.,

pp. 631-638. Akademiai Kiado, Budapest, 1976.
[23] R. L. RIVEST, A. R. MEYER, D. J. KLE|TMAN, K. WINKLMANN, AND J. SPENCER, Coping with errors" in binary

search procedures, J. Comput. System Sciences, 20 (1980), pp. 396-404.
[24] M. SAKS AND A. WIGDERSON, Probabilistic Boolean decision trees and the complexi, ofevaluating game trees,

in 27th Annual Symposium on Foundations of Computer Science, pp. 29-38, Toronto, Ontario, 1986.
[25] J.P.M. SCHALKWIJK, A class ofsimple and optimal strategiesfor block coding on the binary symmetric channel

with noiselessfeedback, IEEE Trans. Inform. Theory, 17 (1971), pp. 283-283.
[26] A.C. YAO AND E E YAO, On fault-tolerant networksfor sorting, SIAM J. Comput., 14 (1985), pp. 120-128.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 1019-1025, October 1994

() 1994 Society for Industrial and Applied Mathematics
009

ON COMPETITIVE GROUP TESTING*

DING-ZHU DU AND HAESUN PARK

Abstract. In many fault detection problems, the goal is to identify defective items from a set of items with
a minimum number of tests. Each test is on a subset of items, which tells whether the subset contains a defective
item or not. The concept of competitive algorithm has been developed to relate the properties of the group testing
algorithms that assume that the number of defective items d is known, to those without any a priori knowledge on d.
A new concept of strongly competitive algorithm is defined that relates different characteristics of these two classes
of algorithms and present an interesting relationship between the two concepts competitive and strongly competitive.
A strongly competitive algorithm is also presented.

Key words, competitive algorithm, group testing, fault detection, strongly competitive algorithm

AMS subject classifications. 68P 10, 68Q25, 68R05

1. Introduction. Consider a set of n items in which some items are defective and others
are good. The problem is to identify them by a sequence of tests. Each test is on a subset of
items, which tells us whether the subset contains a defective item or not. In the former case,
the subset is said to be contaminated and in the latter case, the subset is said to be pure. The
problem has applications in high speed computer networks [4], medical examination], [2],
quantity searching [3], and statistics [1], etc. In the literature, the problem has been named
group testing.

A classic model for group testing is to assume that the number of defective items is known.
This assumption is restrictive since in practice this number is usually unknown a priori and
it can be discovered only after testing. If the number of defective items is unknown at the
beginning, how do we design and analyze algorithms? Motivated from the study of on-line
problems 16], 17], Du and Hwang [9] proposed the concept of competitive algorithm for the
group testing problem as follows.

For an algorithm or, let N(s d, n) (N(s n)) be the number of tests that algorithm ot

spends on a sample s of n items under the condition that d, the number of defective items, is
known (unknown). Denote

M(d, n) max N(s d, n),
s,A(d,n)

M(d, n) min M(d, n),

M,(d n) max N(s n),
st(d,n

where .A(d, n) is the set of samples of n items containing d defective items. An algorithm
c is called a c-competitive algorithm if there exists a constant a such that for 0 < d < n,
M(d n) < c M(d, n) + a. Note that in the definition we exclude the case d n because
M(n, n) 0 and M(d n) may depend on n. The exclusion of the case d 0 is not
necessary, but is convenient. We will remark on this in 4. A c-competitive algorithm for a
constant c is simply called a competitive algorithm while c is called the competitive ratio of
the algorithm.

*Received by the editors March 22, 1993’ accepted for publication (in revised form) June 28, 1993.
Computer Science Department, University of Minnesota, Minneapolis, Minnesota 55455. The work of the first

author was supported in part by the National Science Foundation under grant CCR-9208913 and by the Institute of
Applied Mathematics, Chinese Academy of Sciences, Beijing, China.

1019

1020 DING-ZHU DU AND HAESUN PARK

Du and Hwang [9] presented two competitive algorithms, a bisecting algorithm with
competitive ratio 2.75 and a hybrid algorithm ot that has the following property:

Mr(din)
(*) lim 1.

no M(d, n)

They conjectured that there exists a bisecting algorithm A such that

(1) M,(d In) < 2M(d, n) + for 0 _< d _< n 1.

Bar-Noy, Hwang, Kessler and Kutten [4] discovered a 2.15-competitive algorithm with a
new technique, called a doubling algorithm. Du, Xue, Sun, and Cheng [12] introduced a
new method to analyze the competitive algorithms. They proved that the bisecting algorithm
appeared in an earlier version of Du and Hwang’s paper 10] actually satisfies (1). Du and
Hwang [11 pointed out that with a similar method, the doubling algorithm can be proved
to have competitive ratio 2, too. Du, Xue, Sun, and Cheng [12] also obtained a competitive
algorithm with ratio 1.65 by modifying the doubling algorithm. Neither the doubling algorithm
nor its modified version has the property (.).

In this paper, we propose a new competitiveness for group testing and prove that a com-
petitive algorithm in the new sense must both satisfy property (.) and be competitive in the
original sense. We also present an algorithm which is competitive in the new sense.

2. Strong competitiveness. A number of papers [5]-[7], [14]-[15] have appeared on
group testing algorithms for < d < 3. In those papers, the following number was studied"

n(d, k) max{n M(d, n) < k}.

Motivated from previous work on this number, we defined the second competitiveness as
follows.

Consider an algorithm u. Define n(d k) max{n M(d n) < k}. An algorithm
c is called a strongly c-competitive algorithm if there exists a constant a such that for every
d > andk > 1, n(d,k) < c.n(d k)+a. Note that we have to exclude the case
d 0 because n (0, k) cxz for k > 1. A strongly c-competitive algorithm for a constant c is
called a strongly competitive algorithm. An interesting property of strong competitiveness is
as follows.

THEOREM 2.1. Every strongly competitive algorithm ot is a competitive algorithm satis-
fying the following condition:

M(d In)
lim
n-- M(d, n)

Before proving this theorem, let us first state a lemma.
LEMMA 2.2. For < d < n,

n n
d log2 < M(d, n) < d log2 + 4d.

Proof. There are (,) samples. Each test divides these samples into two sets. So, the
information lower bound for M(d, n) is [log2 (,)-I. (A better bound can be found in [8] and

[13].) The first inequality follows immediately from (,) >_ ()d. The second inequality will
be proved in the next section.

Now we prove Theorem 2.1.

ON COMPETITIVE GROUP TESTING 1021

ProofofTheorem 2.1. Let n (d, k) < c n (d k) + a. Without loss of generality, assume
that c and a are positive integers; otherwise, we may use two positive integers bigger than c
and a instead of c and a. From the above inequality, we obtain

M(d In) min{k n(d k) > n}
< min{k (n(d, k) a)/c > n} M(d, cn + a).

Thus, for d > 1,

cn+aM(d cn + a) d log2 --d- + 4d
<
M(dln)

< <
M(d, n) M(d, n) d log2

Clearly, the right side is bounded by a constant for d < n. Thus, c is a competitive algorithm.
Moreover, the right side approaches one as n goes to infinity and d is fixed. Therefore
lim,__, M(dln)/M(d, n) for d >_ 1. [3

The inverse of the above theorem is not true. Next, we give a sufficient condition for
strong competitivity.

THEOREM 2.3. Iffor algorithm there exists a constant c such thatfor <_ d <_ n 1,

n
Ma(d In) < dlog2 + cd,

then ct is strongly competitive.
Proof Note that

n(d k) max{n M(d n) < k}
n

>_max n ldlog+cd<_k
> d2--and

n(d, k) max{n M(d, n) < k}

<max n ldlog<k
< d2.

Thus,

n(d, k) < 2c(n(d k) + 1). [3

3. Strongly competitive algorithm. A bisecting algorithm for group testing can be sim-
ply described as follows: Starting from the input set of items, the algorithm tests a set and
bisects it when the set is found to be contaminated. Continue to do this until every item is
either in a pure set or in a contaminated singleton. A lot of tests are wasted in the bisecting
algorithm in the following situation: When Xand X’ both are contaminated sets with X’ C X,
then the test on X’ would render the test on X useless. From this observation, we make the
following improvement: Once a contaminated set is found, a defective item is eliminated from
the set. This idea may decrease the frequency of the occurrence of the above situation, which
results in a strongly competitive algorithm.

First, we introduce a procedure ELIMINATE which eliminates a defective item from a
contaminated set X with [log2 IXIq tests. Note that performing a test on set X will be written
as TEST(X). Let G and D be containers for good items and defective items, respectively.

1022 DING-ZHU DU AND HAESUN PARK

Procedure ELIMINATE(X);
Y :-- X;
while YI > 2 do begin

Y’ :-- IYI/2] items from Y;
TEST(Y’);
if Y’ is contaminated then Y := Y’

else Y "= Y \ Y’;
G :-- G U y1;
X:= X\Y’;

end-while;
X:=X\Y;
D :-- D U Y;

end-procedure.
Now we give an algorithm as follows.

ALGORITHM A:
input S;
G :=0;
D :=0;
O := {S};
repeat

pop Xfrom queue Q;
TEST(X);
if X is pure
thenG:=GUX
else ELIMINATE(X);

if lXI then push X into queue Q;
if IXI >_ 2 then bisect X into X’ and X" such that IS’l 2lg2 ISl]-I and

X" X \ X’ and push X’ and X" into queue Q;
until Q 0.

end-algorithm.

Next, we analyze Algorithm A. We first consider n which is a power of 2 since the analysis
is easier in this case.

LEMMA 3.1. Let n be a power of 2. Thenfor 0 < d < n.

n
Ma(dln) < d log2 d-q- + 4d- log2(d + 1)+ 1.

Proof Let n 2", v [log2(d + 1)J and v’ log2(d + 1) v. Note that detecting
a defective item from a set of size s by procedure ELIMINATE needs [log2 s] TESTs. In
Algorithm A, once a contaminated set is discovered, a defective item is eliminated from the
set and then the remainder is divided into two sets if the remainder contains at least two items.
It is not hard to see that procedure ELIMINATE is applied to at most one set of size n, at
most two sets of sizes between + n/4 and n/2 and in general, at most 2 sets of sizes
between + n/2i/l and n/2 for < v. Thus, the number of TESTs required by procedure
ELIMINATE is at most

2 (u i) + d 2 (u v)
i=0 "=

u(2v 1) (v2 2v+l + 2) + (d 2 + 1)(u v)

ON COMPETITIVE GROUP TESTING 1023

ud v(d + l) + 2v+l 2

d(u v v’) + v’d v + 2v+l 2

d(u v v’) + (v’ + 2-v’)(d + 1) 2 logz(d + 1)

<dlog2d+l +2d-lg2(d+l).

The last inequality holds because v’ + 21-’ _< 2 for 0 _< v’ < 1. In fact, v’ + 2-’ is a convex
function with value 2 at v’ 0 and v’ 1.

Now, consider the tree T* which is built up by the bisecting process as follows: The node
set of T* consists of S and all sets X’ and X" appearing in the computation. A node X is
the father of two sons X’ and X" if and only if X’ and X" are obtained by bisecting X after
eliminating a defective item. Clearly, every internal node is a contaminated set from which a
defective item is eliminated. Thus, T* has at most d internal nodes. It follows that the total
number of nodes of T* is at most 2d + 1. Therefore,

n
MA (d n) < d log2 d + + 4d log2 (d + 1) + 1. V1

For convenience, we assume that the value of function d log2 2 at d 0 is 0 because
limd-0 d log2 } 0. The following lemma is an important tool for our analysis.

LEMMA 3.2. Letd dl+dzandn nl +n2, whered >_ 0, d2 >_ 0, nl > Oandn2 > O.
Then

log + _< log

Proof Note that d2/dx2 (x log2
_1 1/(x In 2) < 0 for x > 0, so -x log2 x is a

concave function. Thus,

nl n2
dl log2 ll + d2 log2 d2

(nl d, nl n2 d2 n2)--n ----log2 +----log2n n ll n n2 22

n
d log2 . 71

LEMMA 3.3. For <_ d <_ n,

M(d n) <_ d logan+4

Proof. We prove it by induction on d. For d 1, the algorithm finds the only defective
item with [log2 n] + TESTs which is clearly bounded by log2 n +4. For d > 1, the algorithm
eliminates the first defective item with [log2 n] + TESTs, and bisects the remaining n- items
into two sets S’ and S" of size n and n2, respectively, where n 2’’-I with u l-log2 (n 1)].
Suppose that S’ and S" contain dl and d2 defective items, respectively. So, dl + d2 + d
and nl + n2 + n. Then by Lemma 3.1, the number of TESTs for identifying items in S’
is at most

d log2 + 4 log2(dl + 1) + 1.

024 DING-ZHU DU AND HAESUN PARK

Next, we consider two cases.
Case 1. d2 > 0. By the induction hypothesis, all defective items in S" can be identified

in at most d2(log2(n2/d2) + 4) tests. Thus, the total number of TESTs is at most

(n
(d+l)+l + d21og222 +4d2([log2n]+l)+ dlog2d+l +4d log

n
+4 -log2(d+l)+d2 1g222 +4_<u+3+d lg2d+l

/71
(d + 1) lg2

d +

5 d log2 d + 4

4)< d (log2 +

+ 4) + d2 (lg2 -22 + 4)
(by Lemma 3.2)

(since u + log2 n)

Case 2. n 2"+ and d2 0. In this case, u [log2(n- 1)] flog2n] and the
algorithm uses one TEST to detect S". Thus, the total number of TESTs is at most

([logn] + l)+ dl loga d + + 4dl- log(d + 1)+ +

(n +4) lg2(d + 1)<u+3+d lgzd+l
(dl + 1) log

dl + + 4 (since u + log n)

n 3).< d klog +

Case 3. n 2" + and d 0. In this case, u + [log n] and n n 2"-1 and
the total number of TESTs is at most

u + 4 + dl log dl + + 4 -log(d + 1)

(1)l+d log+4
d log+4 S

It is an immediate consequence that M(d, n) d log 2 + 4d for d n.
THEOREM 3.4. Algorithm A is strongly competitive.

Pro@ It follows immediately from Lemma 3.3 and Theorem 2.3. S

4. iseussins. In the definition of competitive algorithm, the exclusion of the case
d 0 is not necessary because all current existing competitive algorithms spend a constant
number of tests in this case. However, this case makes some unnecessary noise. In fact, if we
include this case in the definition, all results in this paper still hold provided we add "M (0, n)
is a constant" in the definition of strongly competitive and in the assumption of Theorem 2.3
and note that M (0, n) for Algorithm A in 3.

The strongly competitive algorithms are near optimal when d < < n. This happens often
in practice.

The hybrid algorithm in [9] is also a strongly competitive algorithm. However, the
competitive ratio 258 is bigger than that of the algorithm which we presented in the last

ON COMPETITIVE GROUP TESTING 1025

section. We can design other strongly competitive algorithms with the same upper bound as
that in Lemma 3.3. The coefficient 4 for the term d in the upper bound seems to be a barrier.

The lower bound for M(d, n) has been established by [8], [13]. Whether the ratio (M(d
n) M(d, n))/d is close to 4 or close to is an open question.

REFERENCES

R. AHLSWEOE ArqO I. WEGENER, Search Problems, John Wiley and Sons, New York, 1987.
[2] M. AIGNER, Combinatorial Search, John Wiley and Sons, New York, 1988.
[3] J.A. ASLAM AND A. DHAGAa’, Searching in the presence oflinearly bounded errors, Proceedings of 23rd ACM

Symp. on Theory of Computing, New Orleans, Louisiana, 1991, pp. 486-493.
[4] A. BAR-NOY, F. K. HWANG, I. KESSLER, AND S. KUTTEN, A new competitive algorithmfor group testing, Discrete

Applied Mathematics, to appear.
[5] G.J. CHANG AND E K. HWANG, A group testing problem on two disjoint sets, SIAM J. Algebraic Discrete Meth.,

2 (1981), pp. 35-38.
[6] G.J. CHANG, E K. HWANG, AND S. LIN, Group testing with two defectives, Discrete Appl. Math., 4 (1982), pp.

97-102.
[7] X.F. CrANG, E K. HWANG, ANO J. WENG, Optimal detection oftwo defectives with a parity check device, SIAM

J. Discrete Math., (1988), pp. 38-44.
[8] D.Z. DtJ ANO E K. HWANG, Minimizing a combinatorialfunction, SIAM J. Algebraic Discrete Meth., 3 (1982),

pp. 523-528.
[9] Competitive gro,p testing, in L.A. McGeoch and D.D. Sleator, eds., Proceedings of Workshop on

Online Algorithms, Feb. 1991, pp. 125-134.
10] Competitive group testing, DIMACS Technical Report 90-62, New Brunswick, NJ, 1990.
11 Combinatorial Group Testing and Its Applications, World Scientific Co., Singapore, 1993.
[12] D. Z. Do, G.-L. XUE, S.-Z. SUN, AND S.-W. CHENG, Modifications of competitive group testing, SIAM J.

Computing, 23 (1994), pp. 82-96.
13] M. C. Hu, E K. HWANG AND J. K. WANG, A boundary problem for group testing, SIAM J. Algebraic Discrete

Meth., 2 1981), pp. 81-87.
14] E K. HWANG, A tale oftwo coins, Amer. Math. Monthly, 84 (1987), pp. 121-129.
[15] K.-I. Ko, Searchingfor two objects by underweightfeedback, SIAM J. Discrete Math., (1988), pp. 65-70.
16] M.S. MANASSE, L. A. McGEocn, AND D. D. SLEATOR, Competitive algorithmsfor on-line problems, Proceedings

of 20th ACM Symp. on Theory of Computing, Chicago, Illinois, 1988, pp. 322-333.
[17] D. D. SLEAa’OR ANO R. E. TARJAN, Amortized efficiency of list update and paging rules, Communications of

ACM, 28 (1985), ?p. 202-208.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 1026-1049, October 1994

1994 Society for Industrial and Applied Mathematics
010

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT*
ERIC ALLENDER AND VIVEK GORE

Abstract. The authors show that uniform families of ACC circuits of subexponential size cannot compute the
permanent function. This also implies similar lower bounds for certain sets in PP. This is one of the very few examples
of a lower bound in circuit complexity whose proof hinges on the uniformity condition; it is still unknown if there is

any set in Ntime (2’I()) that does not have nonuniform ACC circuits.

Key words, circuit complexity, uniformity, permanent, lower bounds, complexity classes

AMS subject classifications. 68Q05, 68Q15, 03D15

1. Introduction. Circuit complexity classes consisting of circuits of constant depth and
polynomial size have been intensely studied in the last decade. The first such class to be
studied was AC, the class of languages accepted by polynomial size, constant depth circuits
consisting of NOT gates and unbounded fan-in AND and OR gates. Machinery for proving
lower bounds for AC has been developed in a series of papers, culminating in the powerful
and elegant techniques of 18], [29], [3]. These papers provide exponential size lower bounds
for constant depth circuits computing the PARITY function. These lower bounds prompted
people to look at constant depth, polynomial size circuits with PARITY gates along with
AND, OR, and NOT gates, but Razborov [22] proved that these circuits could not compute
the MAJORITY function. Smolensky [25] extended Razborov’s method to show that an AC
circuit with MODp gates cannot compute the MODq function if p and q are distinct primes.
This implies that no AC circuit containing MOD gates for a single prime can compute the
MAJORITY function. Therefore, the next natural extension of the above class was to allow
MODm gates for composite moduli m. This extension is known as the class ACC, and it was
introduced (implicitly) by Barrington in [4]. Although there has been a fair amount of research
on ACC, we still do not know much about this class except the trivial fact that AC C ACC c_
NC where NC is the class of languages accepted by polynomial size, O(log n) depth circuits
with NOT gates, and bounded fan-in AND and OR gates. Barrington [4] has conjectured that
ACC C NC1.

Yao [30] proved the first nontrivial upper bounds on the power of ACC circuits, showing
that each set in ACC is accepted by a family of depth three threshold circuits of size 2,lgn)l’"

these bounds were slightly improved by Beigel and Tarui 10]. These results have been proved
for nonuniform ACC. We are, however, interested in the uniform version of ACC.

A circuit family consists of a sequence of circuits C1, C2 where circuit Cn takes n
Boolean inputs. The circuit family is uniform if a description of C,, can be computed efficiently
from n; otherwise the circuit family is said to be nonuniform. The original motivation for
studying uniform circuit families came from a desire to relate time and space complexity
classes to circuit complexity (see, e.g., [11]). Some sort of uniformity condition is essential
for this endeavor to succeed, since it is an easy observation that there are sets with trivial circuit
complexity that are not even recursive. The question ofexactly which uniformity condition one
should use has proved to be somewhat controversial, and largely it has been a matter of taste.

*Received by the editors July 9, 1992; accepted for publication (in revised form) June 16, 1993.
tDepartment of Computer Science, Rutgers University, New Brunswick, New Jersey 08903 (al l ender@cs.

rutgets. edu). The work of this author was supported in part by National Science Foundation grants CCR-9000045
and CCR-9204874, and was conducted in part while visiting Princeton University, Princeton, New Jersey 08544.

Program in Computing, Department of Mathematics, University of California, Los Angeles, California 90024-
1555 (gore@math. uc 1 a. edu). This work was conducted while the author was a student at Rutgers University, and
was supported in part by a Rutgers University Graduate Excellence Fellowship, and by National Science Foundation
grant CCR-9204874.

1026

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1027

When providing upper bounds, or when defining complexity classes, as a practical matter
it usually makes no difference which uniformity condition one uses. For example, Ruzzo
[23] considers a number of related uniformity conditions, and shows that, for all k >_ 2, NCk

consists of languages defined by uniform circuits of polynomial size and O ((log n)k) depth, no
matter which of those uniformity conditions is considered. For very small complexity classes,
however, the uniformity condition is sometimes crucial. For example, P-uniform NC circuits
are known for division [8], but it remains an open question whether one can improve this result
using a more restrictive uniformity condition. Similarly, [6] presents a number of beautiful
characterizations of subclasses of NC using Dlogtime uniformity, but these characterizations
are not believed to hold if less restrictive uniformity conditions are used. In this paper, we
consider uniform circuits out of necessity. The lower bounds that we present are not known
to hold in the nonuniform setting.

Before we can state our results, we need a few technical definitions. We are interested
in two classes of subexponential functions that we call subexp and subsubexp. Let us call a
function fconstructibleif f(n) 2g(n), where g(n) can be computed fromn (in binary) in time
polynomial in g(n). Let subexp denote the class of all monotonic functions that are bounded
above by some constructible function f such that > 0, f(n) o(2n). Let subsubexp
denote any class of monotonic functions closed under composition with polynomials, such
that for any two functions f and g in this class, the composition of f and g is in subexp.

A typical example of a function in subexp is 2n/lg*", and typical choices for subsubexp
are ?/lgl) or 2(lgn)glg’) It is not hard to prove that if s is in subexp, then so is S (lgs)t’ for
any constant k.

In this paper, we provide lower bounds for the classes of languages accepted by uniform
circuit families of ACC circuits of subsubexponential and subexponential size. Let those
classes be denoted by ACC(subexp), and ACC(subsubexp). Formal definitions can be found
in 2 (Definition 2.10). For the rest of this section, we assume that ACC, ACC(subexp), and
ACC(subsubexp), denote the uniform versions of these classes for the notion of uniformity
defined in 2 (Definition 2.9). Any other notions of uniformity that we use will be mentioned
explicitly. We show that PERM (the permanent of a matrix) is not in ACC(subexp), and
that PP ACC(subsubexp). We are also able to show that ACC C C=P and that C=P
ACC(subsubexp). Our main tool in proving these results is the following theorem.

THEOREM 1.1. There is a set Y in PP such that ACC(subexp),

Dtime(n2) r’.

Theorem 1.1 trivially gives us an important corollary (which also follows from a more
general lower bound proved in Theorem 3.5 later in the paper).

COROLLARY 1.2. ACC C PP.
Proof Theorem 1.1 implies that ACC

_
Dtime(n2)r" for some Y 6 PE Since ACC c_

PP, suppose for the sake of contradiction that ACC PE Then ACC P PE Therefore,
Dtime(n3)r" c_ PY c_ P ACC

Dtime(n2)’. But this contradicts the time hierarchy theorem

of [17]. 1
This seems to be one of the very few instances where lower bounds are known for the

uniform circuit complexity of certain languages or functions, but where nothing is known
about the nonuniform circuit complexity. In fact, the only other instance that we are aware of
is that it is not known if EXPTIME contains sets that are not in P/poly (the class of languages
accepted by nonuniform circuit families of polynomial size), whereas it does contain sets that
are not in P (which is the class of languages accepted by uniform circuit families of polynomial
size). In contrast with our results, the combinatorial and algebraic techniques developed in
18], [22], [25] make no use of uniformity, and thus they provide lower bounds on nonuniform

circuit size. The uniformity condition is critical in the proof ofTheorem 1.1; it is still unknown
if PP Dlogspace-uniform ACC. Although Dlogspace-uniform ACC is trivially seen to be

1028 ERIC ALLENDER AND VIVEK GORE

properly contained in PSPACE, it is not known if P-uniform ACC PSPACE. In fact, it is
even unknown if there is any set in Ntime (2"") that is not accepted by a nonuniform ACC
circuit family.

To prove Theorem 1.1, we will first use the results of Toda [26], Yao [30], and Beigel
and Tarui 10] to convert a circuit family in ACC(subexp) into an equivalent circuit family of
depth-two circuits with a symmetric gate at level two, AND gates of small fan-in at level one,
and the input gates at level zero. However, since we need the resulting circuit family to be
uniform as well, we need to show that the above conversion process can be done uniformly. We
then show that the language recognized by the new circuit family can be quickly recognized
by a deterministic Turing machine that has access to a particular oracle set in PP. Results about
PERM then follow from Valiant’s [27] results about the class #P.

Section 2 presents some basic definitions. Section 3 states Theorem 3.1, which is a
uniform version of the main result of 10]. Theorem 3.1 is then used to prove the main results
of the paper. The final section of the paper presents conclusions and open problems.

The proof of Theorem 3.1, which is the longest and most technically involved part of
the paper, is presented in the Appendix. Even though the basic machinery of the proof was
developed in [30], [10], there are many obstacles to overcome to ensure that one maintains
uniformity.

2. Preliminaries. We will assume that the reader is familiar with circuits and standard
complexity classes such as NP, PP, PH, etc., and the various notions of reducibility.

DEFINITION 2.1. Let m be a positive integer. A MODm gate outputs if the sum of its

(binary) inputs is 0 modulo m; O, otherwise. That is,

!
MODm (xl Xn {

/ 0
if Yi Xi = 0 (mod m),

otherwise.

DEFINITION 2.2. A MAJORITY gate with n inputs outputs if or more of its inputs are

1; 0, otherwise. That is,

1
MAJORITY(xl x,)

0
ifi xi -,
otherwise.

DEFINITION 2.3 [21], [4], [7]. A language L is in ACC if there exists a positive integer
m such that L is recognized by afamily ofconstant depth polynomial size circuits containing
NOT gates and unboundedfan-in AND, OR, and MODm gates.

ACC was first defined and studied in [21], [4], [7] under the name ACC. Barrington
and Th6rien showed that ACC is equal to the class of languages recognized by polynomial
length programs over solvable monoids [7]. Razborov [22] and Smolensky [25] also studied
bounded depth circuits containing AND, OR, and MOD gates. Yao’s definition of ACC is

slightly different from the one given by Barrington et al.; it allows a fixed finite set S of moduli
instead of a single modulus m. It is easy to see that a MODm gate can simulate a MODk gate
for any k that divides m. Letting rn be the least common multiple of the elements in S makes
the two definitions equivalent. Yao [30] showed that every language in ACC is recognized by
a family of depth-two probabilistic circuits with a symmetric gate at level two and 2(lgn)t)

AND gates having fan-in (log n) <l) at level one. Beigel and Tarui [10] improved this to show
the existence of deterministic circuit families of this sort.

DEFINITION 2.4. For an NP machine M, let #M be thefunction #M E* N defined by
#M(x) number ofaccepting paths ofM on input x. Then #P {#M M is an NP machine}.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1029

It is well known from [27] that PERM is complete for #P under polynomial time many-one
reductions (_<,P,). (See also [31], [9].)

DEFINITION 2.5. A language L is said to be in PrTime(t(n)) if there exists a nondeter-
ministic machine M that runs in time t(n) such thatfor all x 52", x L === more than
halfof the computation paths ofM on input x are accepting.

DEFINITION 2.6. A language L is said to be in C-Time(t (n)) if there exists a nondeter-
ministic machine M that runs in time t(n) such thatfor all x 52", x L == exactly half
of the computation paths ofM on input x are accepting.

In particular, for polynomial running times we get the well-known classes
PP PrTime(n() and C=P C=Time(n)).

DEFINITION 2.7. Let {Cn be a family of circuits. Following [23], we define the direct
connection language L of{Cn} as L {(n, gl, g2) gl g2 and g isa gate in Cn or g =/= g2

and g2 is an input to gl in C,, }. Here g and g2 are names of gates and n is in binary notation.
DEFINITION 2.8. A circuit family {C,, is dlogtime-uniform if its direct connection lan-

guage can be recognized in linear time by a deterministic Turing machine. The Turing machine
that recognizes the direct connection language of {Cn will be referred to as the uniformity
machinefor C }.

The above notion of uniformity is the one that is generally used for small complexity
classes (see [6], [12], [23]). However, we are going to use a slightly less restrictive no-
tion of uniformity for our results. Our notion of uniformity can be informally referred to as
polylogtime-uniformity. The reason that we use this notion is that we are dealing with cir-
cuits of possibly superpolynomial size and the proofs are much simpler with this uniformity
condition. It should be noted that a set has uniform ACC(subexp) circuits with respect to our
notion of uniformity if and only if it has Dlogtime-uniform ACC(subexp) circuits. This can
be established by "padding" a circuit with many dummy gates.

DEFINITION 2.9. A circuit family {C,, is uniform if its direct connection language can
be recognized in polynomial time by a deterministic Turing machine. Note that the time is
polynomial with respect to the length of the strings in the language (l(n, gl, g2)[) and not

merely polynomial in n.
DEFINITION 2.10. Let ACC(s(n)) denote the class of languages accepted by circuit

families of constant depth circuits with NOT gates and unbounded fan-in AND, OR, and
MODm gates or some integer m > 2) ofsize s(n). Then

ACC(subexp) U ACC(s(n)),
s6subexp

ACC(subsubexp) U ACC(s (n)).
s6subsubexp

Throughout the rest of the paper, classes ACC, ACC(subexp), and ACC(subsubexp) denote

uniform circuit classes according to the notion of uniformity in Definition 2.9 unless the
uniformity condition is mentioned explicitly.

3. The main results. For the proof of Theorem 1.1, we will first show the following.
THEOREM 3.1. Suppose L is accepted by an ACC(subexp) circuit family. Then L is

accepted by a uniform, depth-two circuitfamily ofs(n) sized circuits that have thefollowing
properties:

This circuit family is not an ACC(subexp) circuit family because the circuits have arbitrary symmetric gates at
their roots. When we say that it is uniform, we are using a slightly different notion of uniformity which is explained
in Definition A.22.

1030 ERIC ALLENDER AND VIVEK GORE

1. Level one consists of a subexponential number of AND gates having fan-in
(logs(n)) (1). Furthermore, given the name of one of these AND gates, the exact fan-in
ofthis AND gate can be computed deterministically in time (log s(n)) (1).

2. There is a symmetric gate at level two. Furthermore, given the number m of AND
gates that evaluate to one, it can be determined deterministically in time (log s(n)) (1) if the
symmetric gate will evaluate to one.

The above theorem is the most important part ofthe argument. It is equivalent to saying that
the main theorem of 10] holds also in the setting of uniform circuit complexity. Unfortunately,
transformations that are obvious in the nonuniform setting require considerable care when
undertaken in the uniform setting; we present a complete proofofTheorem 3.1 in the Appendix.
The rest of this section assumes that Theorem 3.1 is true and uses it to prove our main results.

Proof of Theorem 1.1. Let {Cn} be a circuit family in ACC(subexp) that accepts L.
Using the result in Theorem 3.1, we can get a uniform family of circuits {Dn such that for
every n, Dn is a deterministic depth-two circuit with the properties mentioned in the statement
of Theorem 3.1.

Let ML be a nondeterministic Turing machine that, on input x, guesses the name of one
of the AND gates of Dn (n Ix 1) and the names of all the inputs of D, that are connected to
this gate. It verifies that the guesses are correct (using the uniformity machine for D }). It
then accepts if and only if the AND gate evaluates to when x is the input to D. Since D
is uniform and the AND gates have fan-in o(n) (for every e), ML can do this computation
in linear time. Note that #M (x) is the number of AND gates of D that evaluate to on
input x.

Let M1, M2 be an enumeration of nondeterministic machines running in linear time.
Define the set Y to be {(i, x, l) x 6 {0, }* and #Mi(x) > l}. Note that Y is in pp2. With
oracle Y, a deterministic machine (say M) can compute #M(x) in time n2 using the binary
search technique. Then, since this is the number of AND gates of D that evaluate to on
input x, it can then in linear time determine if Dn accepts x, using the properties guaranteed
by Theorem 3.1. Thus membership of x in L can be determined in time n 2 relative to oracle
Y. (Note that the running time can actually be brought down to o(n) by modifying the oracle
Turing machine model, but we choose not to do so for the sake of clarity.)

COROLLARY 3.2. Thefollowing statements are true:

1. ACC(subexp)

_
Dtime(ng)’FRMII where PERM[1] refers to the case when only one

call is made to PERM.
2. There is a set Z in C-P such that ACC(subexp) _c Ntime(n2) z.
Proof 1. Let M and M be the machines from the proof of Theorem 1.1. Note that

if M has access to PERM, it can compute #ML (x) in time n9 with just one call to PERM
because PERM gives the exact number of accepting paths. The bound n9 comes from a nai’ve

analysis of Valiant’s reduction [27] applied to nondeterministic Turing machines running in
linear time.

2. As before, let M1, M2 be an enumeration of nondeterministic Turing machines
running in linear time. Let Z be the set {(i, x, 1) x 6 {0, }* and#Mi(x) 1}. It is not
hard to see that Z is in C=P (much like Y 6 PP in Theorem 1.1). Let ML be as above. A
nondeterministic machine can compute #M (x) in time n2 using Z as an oracle. It guesses a
value for #M; (x) and asks the appropriate query (i, x, l) to Z. [3

THEOREM 3.3. ACC C C=P.

2Let M be a nondeterministic machine that is given input (i, x, l). Suppose t(Ix[) is the total number of paths of

Mi on input x. The computation of M will have 2t(Ixl) paths; the first t(Ixl) of those consist of t(lxl) trivially
accepting and trivially rejecting paths, and the other (Ix]) paths will simulate the computation of Mi on x. It is

easy to see that q, x, l) Y if and only if #Mi(x) > if and only if more than half of the paths of M are accepting.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1031

Proof Corollary 3.2 implies that ACC
C=P, for the sake of contradiction assume that ACC C=E Since co-NP

C=P and ACC

is closed under complement, it follows that ACC P NP C=E Therefore, Ntime(n3)z __.
NPz

NPAce NP’ NP ACC

_
Ntime(n2)z, which contradicts the hierarchy theorem

of [15] for nondeterministic time classes.
THEOREM 3.4. The permanentfunction (PERM) does not have ACC(subexp) circuits.

Proof Corollary 3.2 states that ACC(subexp)C_ Dtime(n9)r’ERrvIll]. By the hierarchy
theorem of [17], we know that Dtime(n9)PERIIll C Dtime(nl)PERMII. Suppose PERM has
ACC(subexp) circuits. Let L 6 Dtime(nl)’ERMII and let M be the oracle machine that
accepts L making at most one call to PERM. Let L’ (x, z) M accepts x if z is used as the
answer to the query made by M to PERM on input x }. Clearly, L’ 6 P. Similarly, let L"
{(x, i) the th bit of the query by M on input x is }. Clearly, L" 6 P as well. A careful
reading of Valiant’s proof [27] reveals that the membership question for any set in P can be
reduced to PERM via uniform AC circuits. (In brief, Valiant’s reduction takes an input y to
a #P function f, builds a CNF formula 4 such that f(y) is equal to the number of satisfying
assignments to 4, and then builds a weighted graph whose permanent is equal to f(y). It has
been noted before (e.g., in [19]) that 4 can be built in uniform AC. An inspection of Valiant’s
graph construction shows that the presence or absence of each edge depends only on the
presence of a literal in a given clause, and thus can be computed in uniform AC.) Therefore,
by the hypothesis, P has ACC(subexp) circuits. Now we can describe an ACC(subexp) circuit
family for L. On any input, the query made to PERM is constructed using the circuits for L";
the circuits for PERM are then used to get the answer to the query, and finally, we use the
circuits for L’ to determine whether x 6 L. Since L’, L", and PERM all have ACC(subexp)
circuit families, the resulting family for L is also in ACC(subexp). Therefore, using the result
in Theorem 1.1, L 6 Dtime(n9)r’ERII, which contradicts the hierarchy theorem of 17] since
we started with an arbitrary L in Dtime(nl)

THEOREM 3.5. PP ACC(subsubexp).
Proof. We claim that ifPP

_
ACC(subsubexp), then PrTime(subsubexp) __c ACC(subexp).

To see this, note that if L 6 PrTime(t(n)) for some 6 subsubexp, then L’ 6 PP, where
L’ {xlOtlxl) x L}. Since by assumption L’ 6 ACC(subsubexp), one can build
subexponential size circuits for L because the composition of two functions in subsubexp is
in subexp. This implies that PrTime(subsubexp)

ACC(subexp).

Note that using the result in Theorem 1.1 and the hierarchy theorem of [17], we know
that there are sets in PPP that are not in ACC(subexp). However, if PP is contained in
ACC(subsubexp), then

PPP C pACC(subsubexp)

pDtime(subsubexp)

c_ Dtime(subsubexp)_
PrTime(subsubexp)___
ACC(subexp).

The last step follows from the claim above. Hence, pr,p __. ACC(subexp), which is a contra-
diction, and the theorem follows. [3

Theorem 3.6 is stronger than Theorem 3.5; we include both results to demonstrate the
proof technique.

THEOREM 3.6. C_-P ACC(subsubexp).

1032 ERIC ALLENDER AND VIVEK GORE

Proof We note, as above, that if C=P c ACC(subsubexp), then ACC(subexp) con-
tains C=Time(subsubexp). We also have that co-C__Time(subsubexp) ACC(subexp) since
ACC(subexp) is closed under complement.

Using the result in Corollary 3.2 and the hierarchy theorem of [15] for nondetermin-
istic time, we know that there are sets in NPc=P that are not in ACC(subexp). If C_-P c
ACC(subsubexp), then

NPC=P C NPACC(subsubexp)

c NPDtime(subsubexp)

c_ Ntime(subsubexp)

c__ co-C_Time(subsubexp)
ACC(subexp),

which is a contradiction.

4. Conclusion. We have shown that uniform ACC circuits of subexponential size cannot
compute the permanent function. We have also proved a somewhat weaker bound for some
sets in PP. The proofs are based on a simulation of ACC given by Beigel and Tarui in 10].
We have shown how to carry out this simulation in the uniform setting. Some of the obvious
open problems are the following.

1. Is uniformity really necessary? Our lower bound proofs work only in the uniform
setting. Can we prove a lower bound for the permanent with respect to nonuniform ACC
circuits?

2. How powerful are nonuniform ACC circuits? It is still unknown if Ntime (2n)
contains sets that are not accepted by nonuniform ACC circuit families.

3. The lower bound that we have for PP is not as strong as the one for permanent. Can it
be improved? Even though the permanent function seems to provide more information about
the number of accepting paths of NP machines (the permanent gives us all the bits whereas
PP only gives us the most significant bit) we still think that a subexponential lower bound can
be proved for PP as well.

The work presented here originally started off as the study of sets that are immune to

small complexity classes such as AC and ACC. An infinite set L is immune to a complexity
class C if no infinite subset of L is in C. In], we show that PPP contains sets that are immune
to ACC, and that nonrelativizing proof techniques suitable for attacking the Dtime vs. Ntime
question about exponential time would result from a proof of existence as well as a proof of
nonexistence of sets in NP that are immune to AC.

It should be emphasized that our results about the complexity of PERM do not rely on
any unproven complexity-theoretic assumptions. This is in contrast to other results, such as
[14], which proves stronger intractability results about PERM under the hypothesis that the
polynomial hierarchy is infinite.

We conclude with a few remarks about some related work that has been done recently.
In 16], Green et al. have studied the class of languages that can be recognized in polynomial
time with the information about just one bit from the value of a #P function. They define the
class MidBitP and show that the classes MODkP, for every k, and the class PH are all low
for MidBitP. They have also improved the existing upper bounds for ACC by introducing the
idea of MidBit gates. A MidBit gate over w inputs x l, x2 Xw is a gate that outputs the
value of the middle bit in the binary representation of the number i= xi. They show that
every language in ACC can be accepted by a family of depth-two deterministic circuits of size
20gn)c with a MidBit gate at the root and AND gates of fan-in (log n)c at the second level.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1033

It would be interesting to see if our techniques can be used in this setting to obtain stronger
lower bounds.

Barrington has written an article [5] about the power of circuits of constant depth and
2(lg n)C (quasipolynomial) size. The article surveys many results that deal with these kinds of
circuits and provides an overview ofthe new complexity classes that have been introduced. The
paper also shows that the notion of uniformity introduced for constant depth circuit families of
polynomial size in [6] can be extended to quasipolynomial size as well. It should be noted that
this extended notion of uniformity coincides with the one that we have used. Independently
of our work, Barrington’s paper outlines a proof that shows that the simulation of Beigel and
Tarui 10] is uniform according to this new notion of uniformity; thus [5] may be consulted
for an alternative approach to proving Theorem 3.1. (The proof in [5] leaves many details to
the reader.) In addition, it also shows that the simulation of Green et al. 16] is uniform under
this notion as well.

A. Appendix. The appendix is devoted to the proof of Theorem 3.1, which can be re-
garded as a uniform version of the main theorem of [10]. The definitions, lemmas, and
theorems presented in this section all lead up to the proof. Since the proof of Theorem 3.1 is
fairly involved, we first start with a very high level outline.

Outline. Since our goal in this section is to prove that the construction of [10] can be
done uniformly, it is necessary to prove some preliminary results about uniform constant depth
circuits. To that end, we define the notions of "clean" and "nice" circuits, which are circuits
that have certain properties that we find essential in presenting our uniformity results. The
proof of Theorem 3.1 consists of a number of transformations of a circuit. Without loss of
generality, we start out with a "nice" circuit family. After each transformation, we will have a
circuit that may not obviously satisfy the "niceness" condition, but at least satisfies the weaker
notion of being "clean." We show that this clean circuit can then be transformed into a nice
circuit of the same depth, and the process repeats.

The main steps in the transformation are as follows.
1. All the AND and OR gates in the circuits are replaced by constant depth probabilistic

subcircuits. This step removes all the OR gates from the circuits and the only remaining AND
gates have small fan-in. The circuits are probabilistic but the number of probabilistic bits used
in each case is small and is in fact a simple function of the size of C,,.

2. All the MOD gates in the circuit with composite moduli are replaced with equivalent
subcircuits so that the resultant circuits consist only of MOD gates with prime moduli.

3. The circuits are now made deterministic by taking separate copies of those for each
setting of the probabilistic bits and connecting all outputs to a MAJORITY gate.

4. A general technique is used, showing how nice circuits with small fan-in AND gates
can be replaced by equivalent circuits with the same depth, whose outputs are MOD gates.

5. An induction is begun where each step reduces the depth ofthe circuit. At the beginning
of the inductive step, the circuit consists of a symmetric gate on the output level, where the
inputs to the symmetric gate are "nice" ACC circuits with MODp gates feeding into the
symmetric gate. Then, using techniques developed by Toda [26], Yao [30], and Beigel and
Tarui 10], we create an equivalent circuit with a new symmetric gate that "absorbs" the level
of MODp gates; thus the new circuit has smaller depth.

A.1. Nice circuits. In this section, we present a series of "niceness" conditions, and
prove that it is no loss of generality to deal only with "nice" circuits.

DEFINITION A. 1. A circuitfamily Cn is well named iffor every n, the name ofthe output
gate of Cn can be computedfrom n (in binary) in polynomial time (i.e., in (logn)) time).

DEFINITION A.2. A circuitfamily Cn is said to have the strong connection property iffor
all n, for every connection g -- h in C,, where is the number such that g is the ith input to h

1034 ERIC ALLENDER AND VIVEK GORE

(assuming lexicographic ordering), it is the case that h can be computed in polynomial time

from (n, g, i), and additionally, given (n, h, g), the number can be computed in polynomial
time. Under the weaker assumption that this condition holds whenever h is an AND gate then
Cn is said to have the strong connection property for ANDs.

DEFINITION A.3. A circuitfamily Cn is said to have small fan-in AND gates iffor every
n, the fan-in ofeach AND gate in Cn is polylogarithmic in the size of Cn.

DEFINITION A.4. Let C be a circuit and let 19 be a path in C from the output gate to an

input gate (say t). Let G1, G2 Gk be the sequence of the types ofgates occurring on P
so that G is the type ofthe output gate ofC and Gk is the type ofthe gate that is connected
to. Then the sequence (G , G2 Gk) is defined as the signature of the path P.

DEFINITION A.5. The compression of a signature s is the sequence s’ that results from
applying the following operation as many times as possible to s: replace "AND, AND" by
"AND" and replace "OR, OR" by "OR" That is, the compression of s contains no two

adjacent ANDs or ORs.
DEFINITION A.6. A circuitfamily {Cn} is clean if

1. It is well named.
2. It has the strong connection propertyfor ANDs.
3. Every path from an output gate to an input gate in Cn Q’or every n) has the same

signature. (Note that only constant depth circuit families can be clean, since the signature
does not depend on n .)

DEFINITION A.7. A circuitfamily {Cn ofsize s(n) is nice ifit has thefollowing properties.
1. It is clean.
2. For every n, the fan-in of every gate g in Cn can be computed from g in time

(logs(n))).
3. For every n, the depth ofa gate g in Cn can be computedfrom g in time (log s(n))).
4. Each circuit C,, is in treeform (excluding the inputs and negated inputs, which may

fan out to many gates at level 1).
5. It has the strong connection property.
6. For all input lengths n, all the MOD gates in Cn have the samefan-in.

Our main lemma in this section is Lemma A.8, which states that any uniform ACC(subexp)
circuit family can be transformed into an equivalent nice family.

LEMMA A.8. Suppose {Cn} is an ACC(subexp) circuit family. Then there exists an

equivalent nice family Dn ofsubexponential size. Furthermore,
1. If {Cn is clean, then the signature of {Dn} is the compression of the signature

of{C,,}.
2. If {Cn} is clean and has small fan-in AND gates, then {D,} has small fan-in

AND gates.
The proof of the above lemma follows from a sequence of lemmas that are presented

below. The proofs of these lemmas make use of a version of the Alternating Turing Machine
(ATM) model of computation. For background on alternation, see [13]. It should be noted
that the model that we use here is somewhat different from the one defined in [13]. Some
of the lemmas that follow are similar in flavor to the results in [23], in which correspon-
dences between ATMs and uniform circuits were first established; the reader may wish to

consult [231.
The following "road map" is intended to explain how the following lemmas combine to

prove Lemma A.8.
(i) Lemma A.15" circuit -, ATM.
(ii) Lemma A. 16: ATM + clean ATM.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1035

(iii) Lemma A.17: clean ATM - nice ATM.
(iv) Lemma A.18: nice ATM nice circuits.

The transformations in Lemmas A. 15, A. 17, and A. 18 preserve various properties, such as the
property of having small fan-in AND gates.

The existential and universal states in our ATMs behave as usual. Each configuration of
an ATM has either zero, one, or two successor configurations (i.e., the fan-out of any node
in the computation tree is at most two). We follow the convention that the ATM is always
provided the length of the input (in binary) on the work tape as part of its initial configuration
on a particular input. This conver,tion has been introduced to simplify the proof. We consider
ATMs that access their input only at the leaves. (That is, the only configurations that depend
on the input are halting configurations. These are of two types: those that accept if and only
if bit of the input is 1, and those that accept if and only if the complement of bit is (for
some that is recorded on the address tape). The results in [24] show that this convention can
be introduced without loss of generality.)

The MOD states and other aspects of our ATM model are described in the following
definitions.

DEFINITION A.9. For a modulus m, a MODm configuration (say or) is the root of a

subtree of associated configurations. This tree is called the subtree associated with c and is

represented as T. We say that cr is accepting if and only if the number of leaves of To that
are accepting is congruent to 0 modulo m. We also use the term MOD-tree at times to refer
to a subtree associated with a MOD configuration.

DEFINITION A. 10. There issaid to be an alternation between two configurations c1 and2
ofan ATM ifand only if cr2 followsfrom via one step of the ATM and one of the following
conditions hold.

1. cq is the leafofa MOD-tree, and c2 is of type 3, or MOD.
2. cq is of type 3 and 72 is of type V or MOD.
3. cq is of type and cr2 is of type 3 or MOD.

Let T denote the computation tree of an ATM M on a particular input. The root of the
tree is said to have alternation depth 1. A node in the tree labeled by configuration cr2 with
parent labeled by configuration cr is defined to have alternation depth one greater than the
alternation depth of cr if there is an alternation between and o2; the alternation depth of
cr2 is equal to that of otherwise. The alternation depth ofa tree is the maximum alternation
depth of all nodes in the tree. The alternation depth of an ATM is the maximum alternation
depth ofall its alternation trees.

It is necessary for us to define a notion of "clean" ATMs corresponding to our notion of
"clean" circuit families. This is accomplished using the following definitions.

DEFINITION A. 11. Let cr and r be two different configurations ofan ATM. If r is reached

from via a path that contains an alternation only in the step at which is reached, then r,

is called a primary descendent ofor.
DEFINITION A.12. For a computation path of an ATM on an input, let C, C2 Ck

be the sequence of configurations such that C is the initial configuration, and Ci+l is a

primary descendent of Ci. The signature of the path is the sequence t, t2 tk such that if
configuration Ci is existential (universal, MODm), then ti OR (AND, MODm).

DEFINITION A. 13. An ATM is clean if every path in every alternation tree of the ATM
on every input has the same signature. (Note that only ATMs making 0(1) alternations can

be clean.)

3It is worthwhile to note that the input length can be computed deterministically in logarithmic time (see [12])
but this requires multiple accesses to the input along a given computation path.

1036 ERIC ALLENDER AND VIVEK GORE

DEFINITION A.14. An ATM running in time (n) has well-behaved universal configura-
tions ifeach universal configuration has (n)1) primary descendents, and given a universal
configuration r and a number i, the ith primary descendent of r can be computed in time
t(n) 01).

LEMMA A.15. Let L cc_ {0, }*, let s be a function in subexp, and let L be accepted by a

uniformfamily {C,} ofdepth d circuits (d O(1)) of type ACC(s(n)). Then L is accepted
by an ATM M that has existential (3), universal (), and MOD states (for the same set of
moduli) that runs in time (log s(n))1) and has alternation depth a 0(1). Moreover,

1. If{C, is clean, then the signature ofM is the compression of the signature of Cn }.
2. If Cn is clean and has smallfan-in AND gates, then M has well-behaved universal

configurations.
Proof Suppose L is accepted by a uniform circuit family {Cn }. Let U be the uniformity

machine for {C }. M behaves as follows.

On input x, (with n Ix] on the work tape)
(zl) guess the name of the output gate (say g) of C of length (log s(n)))

Use U to verify that g is indeed a gate in C,, (i.e., check that U
accepts (n, g, g)).
() gates h of length (logs(n))1) check that U rejects (n, h, g)
(so that g is indeed the output gate).
Call Eval(g).

Eval(g)
If g is an OR gate then

(q) guess h (an input to g) of length (logs(n))).
If U rejects (n, g, h) then reject
else call Eval(h).

If g is an AND gate then
() guess h (an input to g) of length (log s(n)) 1).
If U rejects (n, g, h) then accept
else call Eval(h).

If g is a MODm gate then
Switch to a MODm configuration.
(=1) guess h (an input to g)of length (logs(n))1.

(This is the subtree associated with the MODm configuration.)
If U rejects (n, g, h) then reject
else call Eval(h).

If g is a constant gate then
Accept iff g is the constant gate.

If g is an input gate then
Accept iff the corresponding input is 1.

end (Eval).

It is fairly obvious that M accepts x if and only if CI, evaluates to on input x. Note
that M consults its input only at the leaves. It is clear that M makes a constant number of
alternations and runs in time (logs(n))l). Indeed, the most time-consuming part of the
simulation involves running the uniformity machine U. The constructibility conditions on s
are also essential here.

If {C is clean, then it is well named, and thus the name of the output gate g can be
computed deterministically. Also, since all circuits in {C,} have the same signature, each
output gate is of the same type. If the type of the output gate is MODm, for instance, we can

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1037

avoid the extra two levels of alternation caused by the processing outside the routine Eval by
starting out in a MODm configuration, deterministically computing g, existentially guessing
h, rejecting if U rejects (n, g, h), and otherwise proceeding to Eval(h). The case when the
output gate is an AND or OR gate is handled similarly. Thus if {C,, is clean, the signature of
M can easily be seen to be the compression of the signature of {Cn }.

If {Cn has the strong connection property for ANDs and all AND gates have fan-in
(logs(n))C, then instead of universally guessing an input h to an AND gate g, universally
guess a number < (logs(n))C and deterministically compute the name of the gate h. If
M is simulating r consecutive levels of AND gates of Cn, it is not hard to see that each
universal configuration of M will have at most (log s(n))rc primary descendents, and M thus
has well-behaved universal configurations.

The other claims of the lemma are easily seen to hold.
Lemma A. 15 does not guarantee the existence of a clean ATM accepting a language when

the given circuit family is not already clean. This is remedied by the following lemma.
LEMMA A.16. If L is accepted by an ATM M that makes a constant number ofalterna-

tions between MODm, MODm2 MODm., 1, and states and runs in time (n) then L is
accepted by a clean ATM N running in O(t(n)) time with a constant number ofalternations
between MODm, MODm2 MODm,, :i, and states.

Proof Suppose M makes at most alternations on any input. Then N has the sequence
MODml, MODm. MODm., ::!, ’v’ (repeated . times) hardwired into its finite control. N
simply simulates M but follows the signature in its finite control. If N is trying to simulate
a move that does not involve an alternation or that involves moving into a state that has the
same type as the next type in its signature, it simply proceeds with the simulation and behaves
exactly as M does. In the case of a type mismatch, N behaves as follows.

1. If the next state in the sequence is universal (existential), then it executes a one-ary
universal (existential) branch and continues the simulation. (Note that amounts to adding a
"dummy" node in the alternating tree.)

2. If the next state in the sequence is a MODm state for some m, then it executes a m-way
MODm branch. It trivially accepts along m of these branches (following the signature)
and continues the simulation on the remaining one.

It is fairly obvious that N is clean and for every x, N accepts x if and only if M
accepts x.

Our main reason for introducing the ATM model is the following lemma, which enables
us to construct "nice" circuits.

LEMMA A. 17. Let 2t(n) be constructible, and suppose L is accepted by a clean ATM M
running in time (n). Then L is accepted by a clean ATM N with the same signature (and
hence with the same alternation depth) that runs in time t(n)() and also has the following
properties.

1. Given a configuration cr on an input oflength n, the number ofprimary descendents
ofr is computablefrom r in time (n) o).

2. Given a configuration cr on an input of length n, the alternation depth of r is

computablefrom cr in time t(n) ().
3. Given a configuration cr and number < the number ofprimary descendents of r,

the ith primary descendent ofor (under the usual lexicographic ordering) can be computed in
time (n) o() from the encoding of

4. All the MOD configurations in the computation tree have the same numberofprimary
descendents.

5. IfM has well-behaved universal configurations, then N also has this property.
Proof The proof is very similar to the proof of Lemma A. 15. We will need to settle on

some convention of encoding paths in an alternation tree, with the property that for every path

1038 ERIC ALLENDER AND VIVEK GORE

of length < (n) in an alternation tree, there is exactly one string of length 2.t (n) that denotes
that path. This can easily be accomplished by encoding sequences in {left, right, stop}* in the
obvious way; note that there will be many strings that do not correspond to any path in the
tree. Similarly, pick some encoding of configurations of M so that any configuration cr of M
on inputs of length n has a unique encoding using c. (n) bits (for some constant c). Again,
many strings of length c.t(n) will not correspond to any configuration of M.

N will begin its computation on x by first computing (deterministically) (n). (Note that
this can be done regardless of whether the initial configuration of N is existential, universal,
or MODm.) If M has well-behaved universal configurations, then let I(n) b logt(n) for
some constant b; otherwise let I(n) t(n). (Note that the decision of which value to use for
I (n) can be encoded in the finite control of N.) Then N will set r to be equal to the initial
configuration of M, and run the routine Eval(cr).

Eval()
If r is an existential or MODm nonhalting configuration then

existentially guess strings w of length 2. (n) and r of length c. (n).
If w encodes a path from r to configuration r, where the last step
in the path involves an alternation (so z is a primary descendent of r)

then enter a configuration of the same type as r and call Eval(r)
else call Trivial(reject)

If is a universal nonhalting configuration then there are two cases"

(1) We are simulating a machine M with well-behaved universal
configurations.

Universally guess < b log (n). Let r be the th primary descendent
of r. Call Eval (r).
(If there is no such r, then call Trivial(accept).)

(2) Otherwise.
Universally guess strings to of length 2. (n) and r of length c. (n).
If to encodes a path from cr to configuration r, where the last step in
the path involves an alternation (so r is a primary descendent of r)

then enter a configuration of the same type as r and call Eval(r)
else call Trivial(accept)

If cr is a halting configuration, then
Accept iff r is accepting. (Note that this may involve accessing the input,
if cr depends on input bit for some i.)

end (Eval).

The routine Trivial(d) (for d {accept, reject}) used in the routine Eval is a simple
routine that depends on the number of alternations executed thus far by N in its simulation
of M. If the next step in the signature calls for computation of type :1 (), then N executes
a 2c+2tn-way existential (universal) branch, all of which in turn call Trivial(d). If the next

step in the signature calls for computation of type MODm, and d accept (respectively, d
reject), then N enters a MODm state, executes a 2c+2)t0)-way existential branch all of which
call Trivial(reject) (respectively, the first of which calls Trivial(accept) and the rest of which
call Trivial(reject)).

Machine N uses its worktape to record the path in the alternation tree leading to the current
configuration. Thus no configuration of N will label two distinct nodes in the alternation tree.

Let us now verify the various properties claimed in the statement of the lemma.
Given r a configuration of N, one can trace through the path in the alternation tree leading

to cr (since this information is recorded in or). This allows one to compute the alternation depth

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 039

of r, as well as to find the configuration r reached after the last alternation on this path, and
compute the number j of moves with fan-out 2 that have occurred along this path between
r and or. If cr is an :1 or MOD configuration, the number of primary descendents of cr is
2(c+2)t(n)-j. If r is a ’v’ configuration, then this number is 2(c+2)I(n)-j. In the particular case
that cr is a MOD configuration, note that j 0; thus all the MOD configurations have the
same number of primary descendents. Furthermore, if or’ is the th primary descendent of r,
then the number is encoded in (c + 2)t (n) j consecutive positions in the bit string encoding
the path leading to or’, thus enabling us to compute or’ given (n, or, i). The other claims of the
lemma are easy to verify. [3

LEMMA A. 18. Let L be accepted by an ATM M satisfying the conditions ofLemma A. 17,
running in time t(n). Then there is a nice ACC(2(t(n)) circuit family {Cn} accepting L,
such that the signature of {Cn is the same as the signature of M. Furthermore, if M has
well-behaved universal configurations, then Cn has smallfan-in AND gates.

Proof. The proof of this lemma is by a standard simulation of the sort introduced by
[23]. The output gate of Cn will be labeled by the initial configuration of N on an input of
length n (i.e., with n recorded on the worktape, as per the conventions of our ATM model).
The inputs to any gate labeled with configuration r will be all of the primary descendents of
r. Universal configurations are represented by AND gates, existential configurations by OR
gates, and MODm configurations by MODm gates. Halting configurations are either constant
or 0 gates (if they do not depend on the input) or are input gates connected to (negated) input
(if they access input bit i).

It is easily verified that {C satisfies the requirements of the lemma. 71

Proof of Lemma A.8. This follows immediately from Lemmas A. 15, A. 16, A. 17, and
A.18. 71

A.2. Transformations on circuits. In this section we prove a general lemma, enabling
us to replace gates by equivalent subcircuits. (This, of course, is completely obvious in the
nonuniform setting. However, in the uniform setting, where we need the additional property
that the fan-in of a circuit be easy to compute, we need all of the "niceness" conditions
guaranteed by the preceding section.) Then we apply this lemma to remove OR gates, large
fan-in AND gates, and composite MOD gates from ACC circuits.

DEFINITION A. 19. Suppose G is a particular type of gate. Let {Gr denote a family of
gates such that the gate Gr is oftype G and takes r inputs. Let {Er be afamily ofsubcircuits
so that for every r, Er takes r inputs and has a single output. We will assume an ordering
on the inputs of G and Er and let x l, x2 xr denote the inputs to G and Yl, Y2 Yr
denote the inputs to Er. We say that Er replaces G in a circuit C if we remove G from C
and put Er in its place in such a way that the output gate of Er is connected to exactly the
gates that Gr is connected to in C, and the inputs to Gr now become inputs to Er so thatfor
all i, < < r, xi yi. In general, when we talk about replacing a gate type G in a circuit,
we will mean that all occurrences of G in the circuit are replaced simultaneously.

LEMMA A.20. Suppose Cn and Er are nice circuitfamilies. Let G denote a particular
type ofgate used in the circuits of Cn }. For every n, let Dn denote the circuitfamily obtained
by replacing all occurrences ofG (of theform Gr for various r) by a subcircuit Er. Then the
circuitfamily Dn is clean.

Proof It is clear that D is well named and that every path from output to input has the
same signature. Thus we need only show that Dn is uniform and has the strong connection
property.

Consider the transformation from C, to D, for a particular value of n. Let g (with fan-in
r) be an instance of G in C,, and let Er be the subcircuit that replaces g. Suppose Er consists
of the gates h0, h hs where h0 is the output gate of Er. The names of these gates in the

1040 ERIC ALLENDER AND VIVEK GORE

new circuit Dn will be g#hi, for 0 < < s. Let L0 be the direct connection language for {Cn },
L for Er }, and L for Dn }. Similarly, let f0, fl], and f be the functions that, given (n, g, h),
compute the number such that h is the th input to g in C, En, and Dn, respectively, and
let fd, f(, and f’ be the related functions that compute h given (n, g, i). To accept L, and to
compute f, one has to consider the following cases.

1. Strings of the form (n, g, h) where neither g nor h are of type G. In this case (n, g, h)
L = (n, g, h) L0. Also, f(n, g, h) J(n, g, h).

2. Strings of the form (n, g#h, g#h). This is done as follows.
a. Check that (n, g, g) 6 L0 and that g has type G.
b. Compute the fan-in r of g from the description of g.
c. Check that (r, h, h)

3. Strings of the form (n, g#h, g#h’) with h - h’. This is done as follows.
a. Check that (n, g, g) L0 and that g has type G.
b. Compute the fan-in r of g from the description of g.
c. Check that (r, h, h’)
d. Note that f(n, g#h, g#h’) fl (n, g#h, g#h’).

4. Strings of the form (n, g, g#ho) where G is not the type of g’. This is done as follows.
a. Check that (n, g’, g’) and (n, g, g) 6 L0, and that g has type G.
b. Compute the fan-in r of g from the description of g.
c. Check that (r, h0, h0) 6 L1 (h0 is the output gate of Er).
d. Check that (n, g’, g) L0.
e. Note that f(n, g, g#ho) fo(n, g’, g).

5. Strings of the form (n, g#h, g’), where G is not the type of g’. This is done as follows.
a. Check that (n, g, g) and (n, g, g) are in L0, where g has type G.
b. Check that (n, g, g’) 6 L0.
c. Compute the fan-in r of g from its description.
d. Check that (r, h, h)
e. Compute the number j such that g’ is the jth input to g (using the strong connection

property).
f. Let xl, x2 Xr denote the inputs to Er. Check that (r, h, xj)
g. Note that f(n, g#h, g) j.

6. Strings of the form (n, g’#h, g#ho) where both g and g’ are of type G. This is done as
follows.

a. Check that (n, g, g) and (n, g’, g’) are in L0.
b. Compute the fan-in r of g and check that h0 is the output gate of Er.
c. Compute the fan-in r’ of g’ and check that (r’, h, h) 6 L1.
d. As in the previous case, check that g is the jth input to g’ and that h is connected

to input j of Er’.
It is not hard to see that all the above cases can be checked within the required time bounds

and hence the new circuit family {D,,} is uniform as well.
A similar analysis shows that f’ can also be computed in time polynomial in the length

of its input, and thus {D,, has the strong connection property.
LEMMA A.21. Suppose L is accepted by an ACC(subexp)family Cn }. Then L is accepted

by a nice probabilistic ACC(subexp) circuitfamily Dn }4 such that
1. Dn has no OR gates and no MODm gatesfor composite modulus m.
2. Dn} has smallfan-in AND gates.
3. For every n, the numberofprobabilistic inputs in Dn ispolylogarithmic in the size ofDn.

4Note that the circuits in Dn are probabilistic and hence also have probabilistic inputs, but when we say Dn
we mean the circuit that has n nonprobabilistic inputs. We follow this convention because the proof shows how to

convert Cn into Dn for every n.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1041

Proof. By Lemma A.8, we may assume that {Cn is nice.
Let n be fixed. The transformation Cn --+ Dn is carried out by performing the following

sequence of steps.
1. By a construction in the proof of Lemma 13 in [2], one can replace the AND and OR

gates in the circuit by nice depth-six probabilistic circuits with MOD2 gates and small fan-in
AND gates. (This construction is based on an idea of Valiant and Vazirani in [28]; similar
constructions may be found in work by Toda [26] and Kannan, et al. [20].) The size of the
new circuit is only polynomially more than that of the old one. If the AND or OR gate being
replaced has r inputs, then the probabilistic circuit that replaces it uses O((log r)3) random
bits. The probabilistic circuits have the property that the probability of error for the whole

after all the AND and OR gates have been replaced by these probabilisticcircuit is less than
circuits, even when the same O((logs(n))) probabilistic bits are fed into the probabilistic
inputs of each of these subcircuits. (Even though Allender and Hertrampf discuss space
uniformity, it is clear from their proof that the probabilistic circuits are uniform even in our
sense of uniformity.) We can now apply Lemma A.20 to prove that the new circuit family
(now probabilistic) is clean, and thus by Lemma A.8 there is an equivalent nice circuit family
{Cn }. Note that {Cn has small fan-in AND gates and has no OR gates.

2. Suppose the circuit C contains a MODm gate (call it G) where m is composite. Let

m-- a
i=1

where ai < ai+l for all such that < < t- and for all i, < < t, ai is prime and
ei > 0. We use the elementary fact that x 0 (mod m) x 0 (mod a’) for all i,

_< < to change G into an AND of MODa; ’s. Suppose G has r inputs. For each m, the
subcircuit family {Er that replaces the MODm gates is easily seen to be nice. The subcircuit

Er has depth two, with an AND gate at the top level and MODaT; gates at the bottom level for
all i, _< < t. The top level AND gate has fan-in and is connected to each of the MOD
gates at the second level. All the MOD gates at the second level have fan-in r and are all
connected to each of the inputs of the gate G. We can now use the result of Lemma A.20
to conclude that the new circuit family is clean. Moreover, the family contains MOD gates
with only prime power moduli. The subcircuit Er, other than its input gates, contains only a
constant number of gates that depend on m. Since the original circuit family {Cn only has
MOD gates for a fixed set of moduli, the size of the circuit after this step goes up by at most
a constant factor. We again use Lemma A.8 to get a nice family of probabilistic circuits {Cn2
that has no composite MOD gates, no OR gates, and small fan-in AND gates.

3. This step eliminates all the MOD gates that have moduli of the form pe where p is
prime and e > from C2 and replaces them with subcircuits consisting of AND and MODp
gates. Suppose C2 contains a MODpe gate G for some prime p and e > 1. This step uses
the following result (for references, see, e.g., [10]): x is congruent to 0 (mod pe) if and only
if each of x p,_, are congruent to 0 (mod p). If x ’=1 xi, then for
l<j<e-1

X -t-X2"t-’"-[-Xr]

S C {1,2 r},lSl=pj kS

The subcircuit that replaces G is a three level subcircuit that is described as follows.
(a) The top level consists of an AND gate that has fan-in e.
(b) The middle level consists of e MODp gates and each of those is connected to the

top level AND gate. For all j, 0 < j _< e- 1, the jth MODp gate outputs if and only if

1042 ERIC ALLENDER AND VIVEK GORE

(p.) 0 (mod p). If G has fan-in r, then the jth MODp gate at this level has fan-in (p.), one
corresponding to each subset of the inputs of size pJ.

(c) The bottom level consists of -1 (p) AND gates divided into e groups. For all

j, < j < e 1, the jth group consists of (pr.) AND gates, one corresponding to each subset

of the inputs of size pJ. The inputs to a particular gate in the jth group are the pJ inputs in
the subset to which it corresponds and it fans out to the jth MODp gate at the middle level.
Note that all the AND gates introduced here have constant fan-in.

It is not hard to see that the subcircuit family described above is nice for every prime power
pc. (The only point that is not completely obvious is checking that the strong connection
property holds, but this is straightforward to verify.) Using Lemma A.20 we can now replace
every MOD gate with a prime power modulus with a subcircuit that consists only of MOD
gates with prime moduli and we now get a clean circuit family that only has AND gates and
MOD gates with prime moduli. The size of the subcircuit that replaces a MODpe gate is

O(E.- (pr.)) which is a polynomial in the size of the circuit C2, and thus the new circuit
family also has subexponential size. The proof is completed by appeal to Lemma A.8. l-1

Ao3. Circuits with symmetric gates. In order to prove Theorem 3.1 we need to show
how to convert an ACC(subexp) circuit family into a uniform deterministic depth two-circuit
family that has a symmetric gate at the root and AND gates of small fan-in at the bottom level.
So far we have only dealt with ACC type circuits. To proceed, we need to deal with circuits that
have arbitrary symmetric gates (but only at the root). However, since most of the results proved
so far only deal with uniform ACC type circuits, we need to expand the notion of uniformity
a little so that the results can also be used with circuits that have arbitrary symmetric gates at
the root. The new notion of uniformity is explained in the following definition.

DEFINITION A.22. Let f N N be a function. Then {Cn,t n N, < < f(n)}
is a uniform family of ACC sequences if there is a constant d and a finite set S such thatfor
all n andfor all t, Cn,t is a circuit ofdepth d taking inputs from the set {x l, x2 x, and
having AND, OR, and MODm gates or rn S) and the direct connection language defined
as (n, t, g, g2) gl g2 and gl is a gate in Cn, or gl 7 g2 and g2 is an input to gl in Cn,t}
can be recognized in polynomial time. A uniform family of ACC sequences {Cn,t n N,
1 _< < f(n)} together with afunction SYM N x N --+ {0, 1}, defines a uniform SYMACC
circuitfamily Dn such thatfor every n,

1. Dn is a circuit with a symmetric gate at the output level that computes SYM(n, i)
where is the number of its inputs that evaluate to 1.

2. The symmetric gate has fan-in f(n) and the output gates of C,t, < <_ f(n), are
connected to it.

3. Given n and i, f(n) and SYM(n, i) can be computed in time polylogarithmic in the
size of Dn.

Note that the results proved so far also hold with this new notion of uniformity. In
particular, letting f(n) for all n and letting SYM be the identity function reduces this
to the old notion of uniformity. Also, we will use the fact that Lemma A.8 also holds in this
new setting. That is, given a uniform clean family of ACC sequences, there is an equivalent
nice family of ACC sequences with the same signature and of approximately the same size.
(In proving the analog of Lemma A.8 in this new setting, the index of circuit Cn,t would be
provided to the ATM as an additional parameter on the worktape, along with n.)

LEMMA A.23. Let L be accepted by an ACC(subexp) circuitfamily Cn }. Then there is
a constructible subexponential function s and there is a constant c such that L is accepted
by a deterministic circuit family {Dn} where for every n, Dn has a MAJORITY gate at

the root, connected to the output gates of Cn,t, <_ < 2(lgs(n)) where {C,t n N,

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1043

_< < 2(lgs(n)) is a uniform family ofACC sequences with small fan-in AND gates, no

OR gates, and no MODm gatesfor composite m.

Proof By Lemma A.21, if L is accepted by an ACC(subexp) circuit family, then L is
accepted by a nice ACC(subexp) family ofprobabilistic circuits with small fan-in AND gates,
no OR gates, and no MODm gates for composite m, using at most (log s(n)) probabilistic
bits (for some constant c), where s(n) bounds the size of C.

Now construct the sequence of circuits {C,t where is a bit string of length (log s(n)).
The gates in Cn,t will have names ofthe form (t, g) where g is a gate in Cn, and the connections
among all gates are the same, except that if gate g in Cn is connected to probabilistic bit number
j, then gate (t, g) will be connected to the jth bit of t. (i.e., the new circuit sequence consists
of identical copies of C, with particular choices of probabilistic bits hardwired in.)

Let D consist of a MAJORITY gate with inputs from the various C,t. It is clear that the
new circuit accepts the same language as {C,,}. The size of D is O(s(n)20gs(n))), which is
subexponential. It is immediate that the other required properties also hold.

The following lemma shows how one can in effect "push" an AND gate below a level of
MOD gates (much as multiplication distributes over addition).

LEMMA A.24. Let {Cn,t be a nicefamily ofACC sequences ofsubexponential size, having
smallfan-in AND gates, no OR gates, and no MODm gates where m is composite, where the
output gate ofeach circuit is an AND gate, and the inputs to that AND gate are MODp gates.
Then there is an equivalent nice sequence Dn,t} with the same depth, also ofsubexponential
size with smallfan-in AND gates, no OR gates, and no MODm gates where m is composite,
where the output gate ofeach circuit is a MODp gate, and the inputs to that MODp gate are
AND gates.

Proof. Our proof again follows the outline given in [10] (see also [2], [20]), where we
must be careful to see that the transformation can be done uniformly.

Suppose G is an AND gate (the output gate of some Cn, that has r MODp gates
G 1, G2 Gr as inputs). Note that r is polylogarithmic in s (n), where s(n) bounds the
size of Cn,t. Since the sequence C,,t is nice, all the MODp gates G1, G2 Gr have the
same fan-in. Let this fan-in be denoted by no and let {xij }, < j < no denote the set of inputs
tO Gi. Finally, let xi Yl<_j<_oXij. Consider the AND of G1, G2 Gr. By Fermat’s
Little Theorem, for < _< r,

-xi
p-1

0 (mod p) if xi 0 (mod p),

/ (mod p) otherwise.

Therefore,

[xi 0 (mod p)] -ILI (1 -xi p-l) 0 (mod p).
i=1 i=1

Note that Hi=I (1 xi p-l) is a polynomial of degree r(p 1) in the variables Xij
< < r, < j < no. Let [r] denote the set {1, 2 r}.

12-I (1 Xi/)-l) 12I 1--
i=1 i=1

(__1)k_lH (jn=l)p-IXij
k=l IC_[r],[I[=k i6I

1044 ERIC ALLENDER AND VIVEK GORE

k=l IC_[r],[II=k

p-1

k=l IC_[rl,[ll=k i6l J=(ji.,ji.2 ji,p_l)6[nolp- 1=1

k p-1

(- 1)-’ E E HH xisjis’t(*)"
k=l IC_[r],I={i,i2 &-} Ji,J,2 ... s=l 1=1

This expression can be realized by a MODp gate (call it g) with AND gates of fan-in at
most r(p 1) as inputs. Since r is (logs(n)) (1), the fan-in of these AND gates is also
polylogarithmic in s(n). The only things we need to take care of are the negative coefficients
in the above expression. That is done by multiplying the negative coefficients by (1 p).
The expression is changed slightly and the term (-1)k-1 is replaced by ek where c if
k is even and ct p if k is odd. Now we interpret scalar multiplication as repeated
addition and the multiplication of variables is realized by AND gates. From the expression
(,), it is not hard to see that the number of AND gates that are input to the new MODp gate
g is: c(D(n-l). Note that since r is polylogarithmic in s(n), this expression (i.e., the
fan-in of the new MOD gate)can be computed in time (logs(n))() from (G, G1 Gr).

To show that this step can be done uniformly, we must show how the new gates cre-
ated in this step should be named so that the direct connection language of the new circuit
family can be recognized within the required time bound. The name of the new MODp gate
is g (G#(G1, G2 Gr), MODp). Looking at the expression (.), it is clear that a typ-
ical AND gate has k(p- 1) inputs where < k < r. The k(p- 1) inputs can be divided
up into k groups of size (p- 1) each. Every group represents a distinct gate in the set
{G, G2 Gr }. The (p 1) inputs in a particular group (representing say Gi) are simply
some of the input gates to G (with repetitions allowed) in C,,,t. Depending on the value of
ck, such an AND gate either appears once or (p 1) times. The name of such an AND gate
is (G#((H#L), (H2#L2) (H,#L.))#m, AND) where H, H2 H are distinct gates
from the set {G, G2 G and each Li, < < k is a list of (p 1) of the gates that are
input to H/in the original circuit. Note that Li is allowed to have repetitions. The number m
is either 0 (indicating only one copy of the gate; this will be the case if k is even) or between
and (p 1) and is used for indexing the (p 1) different copies.
We now show how to recognize the direct connection language for the new circuit family

that we get after applying this transformation. Let Lo be the direct connection language before
the step and L the one after the step. Note that the strings in L conform to the naming scheme
discussed above. The following cases must be considered.

1. Let g be a new6 gate. To check if (n, t, g, g) 6 L, we have the following two subcases.
(a) g is a new MODp gate of the form (G#(G, G2 Gr), MODp). We do the

following:
i. Check that G is the output gate of C,,,t. (This can be done because the circuits

are well-named.)
ii. Check that (n, t, G, Gi) L0 for all i, _< _< r, where r is the fan-in of

G. (Recall that r can be computed from G, by one ofthe niceness properties.)

5Note that this does not change the value of the expression mod p.
6The word "new" will hereafter be used to refer to gates that were created in the current step.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1045

(b) g is a new AND gate of the form

(G#((HI#L1), (H2#L2) (Hk#Lk))#m, AND).

We do the following:
i. Check that G is the output gate of Cn, t.

ii. Verify that H, H2 Hk are all distinct.
iii. Check that for all i, < < k, (n, t, G,/-/i) 6 L0.
iv. Check that rn has the right value based on the parity of k.
v. For all i, < < k, verify that Li is indeed a list of (p 1) gates that are

all input to/-/i.
2. Let g be an old gate and g2 a new gate. Then (n, t, g, g2) ’ L.
3. Let g be a new gate and g2 an old gate. The only way for (n, t, g, g2) 6 L to hold is

that gl is a new AND gate created in this step. Hence g has the form (G#((H#L), (H2#L2),
(Hk#Lk))#m, AND). We do the following to check if (n, t, g, g2) 6 L.

a. Check that (n, t, g, gl) 6 L.
b. Check that (n, t, g2, g2) 6 Lo.
c. Verify that 3 i, < < k, such that g2 belongs to the list of gates L i.

4. Let g and g2 both be new gates. The only way for g2 to be an input to g is if g
(G#(G, G2 G,.), MODp) and g2 (G#((H#L), (H2#L2) (Hk#Lk))#m, AND)

where H H, __. G G }. This is obviously easy to check.
The only remaining property that needs to be checked is the strong connection property

for ANDs. However, this is immediate using the naming system that we use, since the name
of each new AND gate explicitly lists the names of each of its inputs.

Let us now consider the size of the new circuit after a single level of AND gates has been
pushed below a level of MOD gates. The increase in size comes mainly because of all the
new AND gates that get created. For a circuit of size s, the number of new AND gates created
to change an AND of r MODp gates is < Y’k=, ck(r)sp-)k < (p 1)2rS(p-1)r. Therefore,
the overall size of the new circuit is at most o(2rs(p-1)r+l). Since s is subexponential and r
is polylogarithmic in s, the size of the new circuits is still subexponential.

Note that this step does not preserve the tree structure of the circuit so we use Lemma A.8
to produce an equivalent nice circuit sequence. [3

LEMMA A.25. Let L be accepted by a uniform nice SYMACC circuit family {Cn of
subexponential size, with small fan-in AND gates, no OR gates, and no MODm gates for
composite m, such that each path from the output gate to an input passes through k >

MOD gates. Then there is an equivalent SYMACC circuitfamily {On satisfying the same
conditions, such that each path from the output gate to an input gate passes through k
MOD gates.

Proof Our proof follows the outline in [10], using techniques developed in [30], [26].
Let L and Cn be as in the statement of the lemma, where the output gate of Cn computes

the function A(n, 0), where r/is the number ofelements of {Cn, < < f(n)} that evaluate
to 1. By Lemma A.24, we may assume without loss of generality that the output of each circuit

Cn, is a MODp gate. Since {Cn} is nice, for each n there is some no so that each MODp
gate in Cn,t has fan-in no (where no can be computed in (log s(n))) time from n). For each
< f(n), let the inputs to the ith of these MODp gates be denoted by Xi,j, < j < no. Then

the value of {C,} can be expressed as A(n, l<i<f(n)MODp(xi,1, xi,2 Xi,no)).
Let k(n) + [logp f(n)/ so that pk) > f(n). Note that k(n) is computable in time

(logs(n))). For the rest of this discussion, fix n, and let k denote k(n).

1046 ERIC ALLENDER AND VIVEK GORE

It is shown in 10] that the polynomial P, defined by

Pk(y)=(--1)k+l(y--1)k((k+J-lyj)j +1
\j=O

satisfies the property that for every m > and y > O,

y- 0 (mod m) =: Pk(Y) =-0 (mod mk)

and

y (mod m) === Pk(y) (mod mk).

Let Q, (y) P,(yp-). Then

] (mod pk) ify_=0(mod p),
Q(y) / 0 (mod pk) otherwise.

If y- Ef=l Yi then

Q, yi MODp(Yl, Y2 Yr) (mod pk).
\i=1

Thus, recalling that the value of the circuit Cn is

l<i<f(n)

we see that this can also be expressed as

A(n, (Qk(xi.j)(modp))).
l<i<f(n) l<j<no

Since f(n) < pk and Qk is always 0 or (mod pk), we can bring the outer sum inside the
modulus to obtain the equivalent expression

Let B(n, i) be defined to be A (n, (i mod pt)). Thus the value of {C, is equal to

lif(n)

Note that B is computable in time polylogarithmic in s(n).
Note that (lsi/(.)Qk(ljzoXi,j)) is a low degree polynomial in the variables {xi,j}.

As in the proof of Lemma A.24, our strategy will be to implement scalar multiplication with
AND gates, and multiply the negative coefficients by (1 pk) to make them positive7, to
obtain a realization of this polynomial in terms of circuits.

7This does not change the value of the expression mod p.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1047

Our first task is to compute the coefficients in the polynomial

l<_i< f(n) l<_j<no

Since this is just a sum of f(n) similar polynomials, we can consider each of them separately.
Recall that Qk(y) Pk(yp-1). Let z yp-1. After a little simplification we get

1- Pk(z) (1- za’j tz..,j=0tv’’-I ,(k+J-1)zj)j This is a polynomial of degree 2k 1. For _> 0, let

bi if is even, and bi p’ if is odd. The coefficients of zm, say Cm, are given by

ifm -0,

Cm
0 ifl_<rn_<k-1,

bi() (k+j-1)j
O<_i<k,O<_j<_k-l,i+j=m

ifk<rn <2k-1.

These coefficients Cm can be computed in (log s (n)) o(1) time, because we only need to compute
O(k) binomial coefficients, each involving numbers that are O(k log k) bits long. It can be
verified that O (k4 log k) time suffices, which is polylogarithmic in the size of the circuit since
k is logarithmic in the size.

Now observe that the value of circuit {Cn is given by

B n, Qk xi,j
i--1

In place of each circuit Cn,t in the original sequence of circuits, there will be several new
circuits, each of the form Dn,(i,m,c,j j(p_),,,) where 0 < m <_ 2k 1, < c < Cm, and each
jt is in [no]. (Of course, by our conventions, there will also be circuits D.t where is not of
this form; each such circuit Dn,t will be a trivial rejecting circuit that will therefore have no
effect on the output of the symmetric gate.)

The output gate of each circuit Dn,(i,m,c,j j(p-l),,,) will be an AND gate with the name
g =(n, i, m, c, jl j(p-1)m, AND). The inputs to g will be the (p 1)m gates that are the
jtth inputs to the MODp gate Gi in the original circuit C,,.i. Note that since C,i has the strong
connection property, one can show that Dn,(i,m,c,j j(p-l),n) does, too.

Note that the number of bits needed to express (i, m, c, j j(p-1)m) is bounded by
(log s(n))b for some constant b, and thus if we define f’(n) to be equal to 2(lgs(n))b, it follows
that the symmetric gate computing B in circuit D,, has fan-in f’ (n), where f’ (n) is computable
in time polylogarithmic in s(n).

Since the new circuit consists of a subexponential number of circuits, each of which is of
subexponential size, the new circuit is also of subexponential size.

The depth of the new circuit family is the same as {C,, but the top layer of MODp gates
has been "absorbed" into the symmetric gate computing B and been replaced by a layer of

1048 ERIC ALLENDER AND VIVEK GORE

AND gates of small fan-in. Now, by an appeal to Lemma A.8, the circuit can be converted
into nice form, which completes the proof.]

ProofofTheorem 3.1. By Lemma A.23, every language in ACC(subexp) is accepted by
a deterministic SYMACC circuit family of subexponential size, with small fan-in AND gates,
no OR gates, and no MOD,n gates for composite m. Successive applications of Lemma A.24
and Lemma A.25 remove all MOD gates from the circuit, while maintaining the property that
all AND gates have small fan-in. This suffices to prove the theorem. [3

Acknowledgments. We thank the anonymous referees for suggestions that improved the
presentation of these results. We also thank Richard Beigel for suggesting that our results
concerning PP could be extended to C=P.

REFERENCES

[1 E. ALLENOER ANO V. GORE, On strong separations from AC, in Advances in Computation Theory, Jin-Yi
Cai, ed., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 13, American
Mathematical Society, Providence, RI, pp. 21-37, 1993.

[2] E. ALLENDER AND U. HERTRAMPF, Depth reductionfor circuits ofunboundedfan-in, Inform. Comput., to appear.
[3] J. AsPNES, R. BEIC;EL, M. FURST, AND S. RUDICH, The expressive power of voting polynomials, in Proc. 23rd

Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1991, pp. 402-409.
[4] D. BARRINGTON, Bounded-width polynomial-size branching programs recognize exactly those languages in

NCl, J. Comput. System Sci., 38 (1989), pp. 150-164.
[5] Quasipolynomial size circuit classes, in Proc. 7th Annual IEEE Structure in Complexity Theory

Conference, IEEE Computer Society Press, Washington, DC, 1992, pp. 86-93.
[6] D. BARRINGTON, N. IMMERMAN, AND H. STRAUBING, On uniformity within NC 1, J. Comput. System Sci., 41

(1990), pp. 274-306.
[7] D. BARRINGTON AND D. THIRIEN, Finite monoids and the fine structure of NC J. Assoc. Comput. Mach., 35

(1988), pp. 941-952.
[8] P. BEAME, S. COOK, AND H. HOOVER, Log depth circuitsfor division and related problems, SIAM J. Comput.,

15 (1986), pp. 994-1003.
[9] A. BEN-DOR AND S. HALEVI, Zero-one permanent is #P-complete, a simpler proof, in Proc. 2nd Israel Sympo-

sium on Theory of Computing and Systems, IEEE Computer Society Press, Washington, DC, 1993.
[10] R. BEIGEL AND J. TAROI, On Ace, in Proc. 32nd Annual IEEE Symposium on Foundations of Computer

Science, IEEE Computer Society Press, Washington, DC, 1991, pp. 783-792.
11 A. BORODIN, On relating time and space to size and depth, SIAM J. Comput., 6 (1977), pp. 733-743.
[12] S. Buss, S. COOK, A. GUPTA, AND V. RAMACHANDRAN, An optimal parallel algorithm forformula evaluation,

SIAM J. Comput., 21 (1992), pp. 755-780.
13] A. CHANDRA, D. KOZEN, AND L. STOCKMEYER, Altenation, J. Assoc. Comput. Mach., 28 (1981), pp. 114-133.
14] U. FEIGE AND C. LUND, On the hardness ofcomputing the permanent ofrandom matrices, in Proc. 24th Annual

ACM Symposium on Theory of Computing, ACM Press, New York, 1992, pp. 643-654.
[15] M. FISCHER, A. MEYER, AND J. SEIFERAS, Separating nondeterministic time complexity classes, J. Assoc.

Comput. Mach., 25 (1978), pp. 146-167.
[16] E GREEN, J. KOBLER, K. REGAN, T. SCHWENTCK, AND J. TOR,N, The power of the middle bit ofa #Pfunction,

J. Comput. System Sci., to appear. Preliminary versions appeared in Proc. 7th Annual IEEE Structure
in Complexity Theory Conference, IEEE Computer Society Press, Washington, DC, 1992, pp. 111-117,
and in Proc. 4th Italian Conference on Theoretical Computer Science, World Scientific Press, Singapore,
1992, pp. 317-329.

17] J. HARTMANIS AND R. STEARNS, On the computational complexity ofalgorithms, Trans. Amer. Math. Soc., 117
(1965), pp. 285-306.

[18] J. HXSTAD, Computational Limitationsfor Small Depth Circuits, MIT Press, Cambridge, MA, 1987.
[19] N. IMMERMAN, Languages that capture complexity classes, SIAM J. Comput., 16 (1987), pp. 760-778.
[20] R. KANNAN, H. VENKATESWARAN, V. VINAY, AND A. YAO, A circuit-based proof of Toda’s theorem, Inform.

Comput., 104 (1993), pp. 271-276.
[21 E MCKENZIE AND D. THIRIEN, Automata theory meets circuit complexity, in Proc. 16th Annual International

Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 372,
Springer-Verlag, Berlin, New York, 1989, pp. 589-602.

A UNIFORM CIRCUIT LOWER BOUND FOR THE PERMANENT 1049

[22] A. RAZ3OROV, Lower bounds for the size of circuits of bounded depth with basis {/, 3}, Math. Notes, 41
(1987), pp. 333-338.

[23] W. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 21 (1981), pp. 365-383.
[24] M. Sn,sEr, Bore! sets and circuit complexity, in Proc. 15th Annual ACM Symposium on Theory of Computing,

ACM Press, New York, 1983, pp. 61-69.
[25] R. SMOLENSKY, Algebraic methods in the theory oflower boundsfor Boolean circuit complexity, in Proc. 19th

Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1987, pp. 77-82.
[26] S. TOOA, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865-877.
[27] L. VALIANT, The complexity ofcomputing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.
[28] L. VALIANT AND V. VAZmANI, NP is as easy as detecting unique solutions, Theoret. Comput. Sci., 47 (1986),

pp. 85-93.
[29] A. YAo, Separating the polynomial-time hierarchy by oracles, in Proc. 26th Annual IEEE Symposium on

Foundations of Computer Science, IEEE Computer Society Press, Washington, DC, 1985, pp. 1-10.
[30] On ACC and threshold circuits, in Proc. 31 st Annual IEEE Symposium on Foundations of Computer

Science, IEEE Computer Society Press, Washington, DC, 1990, pp. 619-627.
[31 V. ZArK0, #P-completeness via many-one reductions, Internat. J. Found. Comput. Sci., 2 (1991), pp. 77-82.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 1050-1074, October 1994

() 1994 Society lbr Industrial and Applied Mathematics
011

THE JOINT DISTRIBUTION OF ELASTIC BUCKETS
IN MULTIWAY SEARCH TREES*

WILLIAM LEW AND HOSAM M. MAHMOUD

Abstract. Random search trees are studied when they grow under a general computer memory management
scheme. In a general scheme, the space is released in buckets of certain predesignated sizes. For a search tree with
branch factor m, the nodes may hold up to m keys. Suppose the buckets of the memory management scheme that
can hold less than m keys have key capacities Cl cp. The search tree must then be implemented with multitype
nodes of these capacities. After n insertions, let Xni) be the number of buckets of type (i.e., of capacity ci, l<_i <_p).
The multivariate structure of the tree is investigated. For the vector X,, (X(1) X(nP)) ’, the asymptotic mean
and covariance matrix are determined. Under practical memory management schemes, all variances and covariances
experience a phase transition: For 3 < m < 26, all variances and covariances are asymptotically linear in n" for
higher branch factors the variances and covariances become a superlinear (but subquadratic) function of n. The joint
distribution of Xn is shown to be multivariate normal in a range of m. While the tree is growing, conversions between
types are necessary. A multivariate problem concerning these conversions with an asymptotic multivariate normal
distribution is also studied. The fixed bucket, exact fit, and buddy system allocation schemes will serve as illustrating
examples.

Key words, searching, random trees, multivariate statistics

AMS subject classifications. 05C05, 60F05, 68P05

1. Introduction. The m-ary search tree is a data structure that grows by the progressive
insertion of keys into a tree with branch factor m. The subtrees are numbered to m, from
left to right. The tree is constructed by placing up to m keys in its root, sorted from left to
right, and then guiding a subsequent key to the jth subtree, < j < m, if that key is greater
than exactly j of the root keys. In the jth subtree, the newcomer is subjected recursively
to the same procedure until a unique insertion position is found.

The usual data probability model is the randompermutation model where all permutations
of {1 n} are considered equally likely input sequences (see [12]). The random permuta-
tion model covers a wide variety of situations, since clearly the only data aspect relevant to
the structure of the tree is the order statistics; the ranks of data taken from any continuous
distribution follows the random permutation model (see 17] for a detailed discussion). For
the rest of this paper the term random tree will refer to a tree constructed from a random
permutation.

In practice, a random tree grows under a computer memory management scheme. Memory
management schemes allocate space in blocks of storage called buckets or pages. Sometimes
the buckets come in fixed allowed sizes. For example, the buddy system releases blocks of
sizes 2k words of memory, k 1, 2 We shall assume a general scheme under which the
buckets are measured in terms of key capacity. It is clear from the insertion algorithm that
the largest buckets that may be used as a tree node must be capable of holding m keys
and m pointers. Thus the design parameter m must be chosen in an application so that the
space for m keys, m pointers, and any space needed for system use coincide with the
capacity of a system’s bucket. It should also be clear that a node with less than m keys
has no descendants and thus may be implemented without pointers as it is a terminal node.
Also some terminal nodes may be holding m keys, but they do not need pointers as well.
Nonterminal nodes must have pointers.

*Received by the editors April 27, 1992; accepted for publication (in revised form) May 28, 1993.
tThe IBM Corporation, 6710 Rockledge Drive, Bethesda, Maryland 20827.
Department of Statistics/Statistical Computing, The George Washington University, Washington, D.C. 20052

(hosam@gwuvm.bitnet). This author’s research was supported in part by National Security Agency grant
MDA904-92-H-3086.

1050

JOINT DISTRIBUTION OF BUCKETS 1051

Let cl, 2 p be all the bucket sizes (in terms of keys) that are less than or equal to
rn 1, with

(1.1) C1 < C2 < < Cp_l < Cp rn 1.

We shall call a bucket (a tree node) of capacity i, a bucket of type i, < < p. It is also
helpful to think of NIL pointers as buckets of type 0 with capacity c0 0. The tree thus
grows by allocating a bucket of type when insertion falls in an empty subtree. Subsequent
insertions that fall in the same bucket will increase the number of keys in the bucket until it
is filled with el keys. A later insertion attempting to fall in the same bucket will force it to
be stretched into a bucket of the next size c2, and so on. We call the stretching of a bucket to
become a larger bucket a conversion, and because of this stretching, some authors call such
stretchable buckets "elastic." Thus types p- are pointerless, but type p must contain
m pointers. Notice that the inequalities (1.1) are all strict except possibly the last. For it is
conceivable that Cp_ < Cp, in which case an insertion in a node of type p converts it
into a partially filled node of type p that will continue to accept some more keys until it is
filled before the keys are sent to the subtrees. On the other hand, it is conceivable that in
some memory management schemes Cp_ Cp rn 1, in which case an insertion in the
pointerless type p will convert it into a type p bucket with the same number of keys
Cp rn but with an extra rn pointers; the new key will then appear by itself in a new
node (of type 1, of course) that will be linked as a subtree. Figure illustrates the growth of
a tree with branch factor 8 from eight keys under a scheme that allows buckets of capacities
Cl 3, c2 5, c3 7 (and type 3 has eight pointers).

I. I. :’I. I, 1:-1_ I’1 l:-l" ’i:-L
l_q-l-1 IALI FI.I.I I-! I_1

FIG. 1. The step-by-step growth ofan 8-way tree with node capacities 3, 5, and 7.

The advantage of random search trees is that they are almost complete (i.e., shortest
possible) with very high probability (see [201, [4], [17], [18], [22]). Thus time-performance
is almost the best possible. Under a fixed allocation scheme (a scheme with only one type
node, i.e., p 1), search trees are known to be wasteful of space (see [12], [1], [21], and
[17]; [12, Exercise 6.3.20, p. 501] presents the first known analysis of trees with buckets). We
investigate in this paper the possibility of rectifying the situation via elastic buckets so as to get
good space performance too. The notion of increasing sizes for different type nodes of a linked
data structure was introduced before in the class ofbalanced trees. Frederickson [8] and Lomet
15] used elastic buckets to implement increasing size nodes when they overflow instead of the

usual splitting of nodes in B-trees and their derivatives. Baeza-Yates and Larson [2] analyzed
mathematically the storage utilization of B+-trees with elastic buckets. The possibility of
using elastic buckets was also made implicit by Hoshi and Flajolet [10], who computed the
average number of nodes of each type in a paged quadtree. Baeza-Yates found the optimal
second size in the case where two page sizes are allowed for a multiway search tree.

In practice, an algorithm on the m-ary tree may require knowledge of the sizes of the
nodes and most memory management systems reserve some bytes in each block for system
use. These hidden bytes may hold information like the size of the bucket. We shall call these
hidden bytes the hidden tag. In most memory allocation schemes, the hidden tag has a uniform
length in all buckets regardless of their size. Practical multitype memory management systems
include the following:

1052 WILLIAM LEW AND HOSAM M. MAHMOUD

(a) The exactfit scheme where type buckets contain the exact space for keys and the hidden
tag, p 1, and type p contains the exact space for m keys, m pointers, and
the hidden tag.

(b) The buddy system scheme, which allocates space in blocks that are proper powers of
two words. One word is reserved in each bucket for a hidden tag. Thus in an application
with real or integer data (where each datum needs one word of memory), a bucket of size 2k

words can accommodate 2k 1 data items (even if the data are not numeric, uniform pointers
occupying one word each may be used for indirect addressing). Thus the bucket capacities (in
terms of keys) are 1, 3, 7, 15 2p (with the branching factor m 2p, a proper power
of 2). This is the choice method of accessing the free space in some popular systems such
as the simulation programming language SIMSCRIPT and the MALLOC memory allocation
function in the programming language C (on the UNIX 4.3 BSD operating system).

Let S(ni) be the number of .nodes of type after n insertions. We shall investigate the

multivariate structure of the tree by examining the vector Xn-’-(Xn(1) y(np)) r. We shall
compute the asymptotic average of this vector. We shall further find the covariance matrix
and (for a range of m the joint asymptotic distribution of the components of Xn. It will turn
out that in practical systems all variances and covariances are linear in n for 3 < m < 26, and
then they suffer from a phase transition: For m > 26, the variances and covariances become a
superlinear (but subquadratic) function of n. The asymptotic distribution for the linear range
of the variances and covariances (3 < m < 26) is multivariate normal (multinormal).

An associated multivariate problem is a study ofthe number ofconversions between types.
The total number of conversions may not be an accurate measure of the cost of conversions
since different conversions involve movements ofdifferent block sizes ofdata. A more accurate
measure is obtained by studying the number of conversions of each type. More precisely, let
C(ni) be the number of times a node of type is converted into a node of type (a conversion
of type i), p, and C) be interpreted as the number of times a node is created for
the first time, i.e., the number of times a NIL pointer (a node of type 0) is converted into a
node of type 1. We are interested in the behavior of the vector

Cn (Cn(1, C(nP)) T

The same questions about average, covariance matrix, and any phase transitions that may
appear therein, and limiting joint distribution may be addressed again. Results about Cn may
be found from the behavior of X,, since their components are related as follows. When a
bucket of capacity ci first appears, it increases Ci) by one. But this node may grow into a

bigger bucket later on. In other words, in the final tree, every node of capacity ci or larger has
passed at some point in its history through one conversion of the th type or

(i) y..i) X(ni+l) X(nP)C,= n + +...+

or C ,lpXn, in matrix form, where ,lp is the p p upper diagonal matrix whose upper
diagonal elements are all 1. To avoid duplicating the effort to find results about each bucket
type, we shall instead study the linear combination

,n--al X(n1) -I-- -I- apX(np)

for any arbitrary real numbers a ap. This adds flexibility to our calculations: results
concerning the mean and variance of an individual type, type i, say, are obtained by setting
aj O, j =/= i, and ai 1. For the covariance between types and j we set ai aj and

as 0, s {i, j }, to obtain

JOINT DISTRIBUTION OF BUCKETS 1053

Var[Xn] Var[Xi) + Xj)

Var[X(ni)l q- Var[X<.) + 2Cov[X(ni) x(nJ)l.

Results about the total number of nodes allocated are obtained by setting a

a2 ap 1, and results about the actual number of words allocated may be obtained
by setting ai to the actual number of words taken by a bucket of type (e.g., ai kl + ke for
the exact fit scheme with constants kl and ke, and ai 2 under the buddy system scheme).
The added advantage of studying the linear combination A’n is that it prepares for use of the
Cram6r-Wold device to prove the joint asymptotic normality of the components of the vector

(Xnl) x(p)) r in a range of m.
We shall use the following notation for the falling and rising factorials:

(Z)j de2 Z(Z 1)...(z j + 1),
def

(Z)o 1,

def
(Z)j

def
Z(Z -I- 1)...(z / j 1), (z) 0 1.

We shall also denote by [zn]f(z) the coefficient of z in f(z). The kth harmonic number
+ 1/2 -t- 1/3 + + 1/k will be denoted by Hk. The rest of the paper will be organized

into sections as follows: In 2, we set up a partial differential equation for a supergenerating
function that generates the moment generating functions of the linear combination A’, for
all values of n. Although this partial differential equation is not tractable, we can develop
from it tractable ordinary differential equations for the moments. In 3, we solve the ordinary
differential equation for the first moment and obtain an asymptotic estimate for the components
of A’, and in 4, we solve for the second moment and obtain the asymptotic covariance
matrix between the types. The main result of this paper, the asymptotic joint normality of the
components of A’, in a range of m, is presented in 5. In 6, we use the fixed bucket, exact
fit, and the buddy system schemes as illustrating examples and provide comparisons between
these practical methods. Section 7 is a conclusion.

2. A differential equation for a super moment generating function of Xn. Given that
the number of keys that end up in the jth subtree is r/j (nl -k- q-- nm n m + 1), the ith
type bucket satisfies the recurrence

Y(ni + X(ni2 -+"""" + Y(ni,?, 1, 2 p 1,
S(ni)

X’(n/l) + S(ni2) -t-- + X(ni, + 1, i= p,

valid for n > Cp + m. Thus, given n nm, n > m,

(2.1)
al IX(hi, +""-t- X(n,1.)] + a2[X(n2, -k-"""-t- X(n2.]-+-"""-t-ap[X(nP -t-"" + X(nP., 1]

m

ap + Z(alX(nl) + a2X(n +... + apX(nP))
j=l

YII + Yll +’’’ + Ynm + ap.

Let (n(t) be the moment generating function of An, and denote the number of keys in the jth
subtree by rj, j m. We can write a recurrence for 4 (t) by conditioning as follows

1054 WILLIAM LEW AND HOSAM M. MAHMOUD

4n(t) E[exp(A’nt)]

E[exp(A’nt)l rl nl Z’m nm]

X Pr(rl nl I’m /’/In).

The condition is known to occur with probability (mn 1) -1 under the random permutation model
(see [19] for a probabilistic proof or 16] for a combinatorial proof). So from the recurrence
(2.1),

On(t)
n) nl+...+nm=n-m+l

m-1

E[exp{ (Xn, +"" + Xn,, + ap)t }]

or

(2.2) (n)m-ldPn(t) (m 1)! exp(apt)
n +’"+nm =n-m+

E[exp(A’n, t)]... E[exp(A’nm t)]

(valid only for n > m), where the last relation follows from the independence of the structures
of the subtrees (after checking the root, the insertion algorithm goes into a subtree and does
not look at any of the other subtrees after that point). Define the supergenerating function

(x, t) ’ Cn(t)xn.
n--0

Multiply both sides of (2.2) by Xn-m+l and sum over n >_ m to get

(2.3)
om-l(x,t)

Oxm-I
(m 1)! exp(apt).m(x, t) + (m 1)! [m-, (t) exp(apt)].

The last term on the right appears owing to the necessary corrections for n 0, m
as the general recurrence (2.1) is not valid for these values of n.

The partial differential equation (2.3) seems to be intractable; however, tractable ordinary
differential equations for the moments may be obtained from it as in several instances discussed
in a few papers and reported in [17]. Derivatives of 4(x, t) with respect to at 0 are
generating functions for the moments of A’n. Calling the kth derivative Gk(x), we can easily
see that

0k*(X, 0) E[,,nk]XG(x)
Ot

n--0

is the ordinary generating function for the kth moment of

3. The first moment. In particular, G1 (x) generates the sequence of averages
n > 0. Differentiating both sides of (2.3) once with respect to and evaluating it at 0 we
obtain

(3.1)

G(x) m! Gl(x)m-l(x, O) q- (m 1)!apdpm(x, O) + (m 1)! [q’m_l(O) ap].

JOINT DISTRIBUTION OF BUCKETS 1055

But (x, 0) -,,%0 xn (1 x)-I for Ix I< and

d
(E[exp(tXm_l)])t=o4"m-O

E[a,X(m)__l +... + ap_, "_ +ap
From the behavior of the algorithm with multitype buckets

-1 --0, p-2,

and

-1)
-1 (Cp,p-l p)

-1 1- (Cp,Cp-l

where 6 is the Kronecker delta function. Hence (3.1) can be written as

dm-1 m! G1 (x)
(3.2)

dxm_ 1GI(X) (1 --X)m-1
-[’- HI(X),

where

H (x)
(m 1)! ap
(1 x)

-31- (m 1)! (ap-1 ap)Cp,Cp_,.

Equation (3.2) can be solved under the obvious initial conditions

d
(3.3)

dx
G (0) E X’i i a,., 0, rn 2,

where by definition: (i) co 0, (ii) r 0 and a0 0 for 0, and (iii) r is defined by
cr_l < < cr for rn 2 (i.e., r is the index of the type that corresponds to the
smallest capacity for keys).

The homogeneous part of the differential equation (3.2) is of the Euler type and has
solution (1 x)- for each/j that is a solution to the characteristic equation

p(z) 0,

where

p (,k) m (,k) de_____f ,k(,k + 1)...(,k + rn 2) m!.

Mahmoud 17] discusses in detail the role of the roots of this characteristic function for a class
of random variables called additive on m-ary trees and surveys the results of several papers
solving other instances. Our linear combination A’n falls into this class.

We list here some of the properties of the roots of the characteristic function, p(,k), for
the sake of completeness:

(a) 7t (2) 0; denote this root by ,k; is a simple root and ,q)j < 2, j 2 rn 1.
The number -m is a simple root if and only ifm is odd. All the other roots of 7t (,k) are complex
valued, each of multiplicity one.

(b) No two roots may have the same real part unless they are mutually conjugate.
(c) For rn >_ 4 there is precisely one pair of complex conjugate roots 2 O "-I- ifl,

X3 c i/3 (/3 > 0), with ot < 2 being the second largest among the real parts of the roots.
Thus, .qZj < ot for 4 < j < rn 1.

1056 WILLIAM LEW AND HOSAM M. MAHMOUD

(d) ot am --+ 2 as rn --+ oo. Moreover, ot < for 3 < rn < 13 and 1 < ot < 3/2 for
14<m <26.

m-2 -1(e) ’(X,) m! ’j=0 0vk + j) < k < m 1. Another useful expression for
p’ (Xk) is

VI (x
l<j<m-1

For more details on the properties of the roots of (X), see [21].
It can be checked that the term Hi (x) in (3.2) gives rise to the particular solution

h (x)
ap 6Cp,Cp_l (ap-1 ap)

(1 x)m-1
(m 1)(1 x) rn + (--1)m

Thus the complete solution to (3.2) is given by

(3.4)
m-1

G(x) EAj(1 -x)-xj + h(x),
j=l

where Aj are the constants of integration obtained from (3.3) by solving the linear system of
equations

m-1 d dE(*J)i Aj
dx

G (0)
dx
h (0),

j=l

--0 rn -2,

which can be written in matrix form as

Vm-IA b,

where

Vm-1 Vm-I (/.1 m-1)

[(.j)i], 0 rn 2, j- m- 1.

After some elementary row operations the determinant ofVm_ reduces to the well-known Van
Dermonde determinant of order m 1. In the vector A= (A1 Am_l) r, each of the con-
stants Aj, j m is of course a function of a ap. For each allocation scheme

and each choice of the numbers a ap, the constants in the vector b (b0 bm-2) r

are completely known from (3.3) to be

i=0,-hl(O),dibi i! ar dxh(0), 1, rn 2,

where r is defined by Cr-1 < < Cr for m 2. Specific examples of bucket
multityping will be used to illustrate the-procedure of obtaining the constants Aj at the end
of the paper. Thus for any given allocation scheme, we have a procedure for obtaining the
constants Aj, j rn 1. Extracting the coefficients of x from both sides of (3.4) we
obtain

JOINT DISTRIBUTION OF BUCKETS 1057

E[A’n] [xn]Aj(1 x)-zj
ap 3Cp,Cp_, (ap_ ap)

(- 1)n
rn

j=
rn rn -k-(--1) n

According to the binomial theorem, for any complex number ,k, the imaginary part of the
coefficient of x" will only provide oscillation with no growth in magnitude; the growth comes
only from the real part, and nz-1 is its exact order of magnitude as n co. Hence the root
with the largest real part, (. 2) of the characteristic equation gives a term that asymptotically
dominates all other terms, and the average of A’, can be written in the form

E[,Y]-Al[xn](1-x)-2w[xn](Aj(1-x)-) ap

\j=2
rn

Cp,Cp_t(ap-l--ap))n(m 1)rn + (-1)m n

Aln + AI + 0
m-1

+

where b max{0, ot- }. From the list of properties of the roots of the characteristic
equations for rn < 13 and c _< the lower-order term is O (1) and for rn > 13 it grows
sublinearly with n.

4. The covariance between types. Differentiating (2.3) twice with respect to at 0
gives

dm-1 m! G2(x)
G2(x) + Hz(x),

dxm-1 (1 --X)m-1

where

(m 1)I 2 2ap(mt)G(x)
H2(x) de__f m! (m- 1)GlZ(x) + .ap +

(1 --X)m-2 (1 -x)m (1 --X)m-1

+(m 1)! (ap2_l a2p)Cp,Cp_l,
and G(x) was completely determined in the previous section. Thus, in a manner similar to
the integration steps used for G l(x), we obtain

m-1

G2(x)- -Kj(1- x)- + h2(x),
j=l

where Kj are integration constants,)Lj are the roots of the characteristic equation for j
rn 1, and hz(x) is the particular solution corresponding to the integration of H2 (x).

The initial conditions are

d
[,y/2] 2 0, rn 2,(4.1)

dx
G2 (0) E a

where by definition" (i) co 0, (ii) r 0 and a0 0 for 0, and (iii) r is defined by
Cr- < <_ Cr for rn 2 (i.e., r is the index of the type that corresponds to the

1058 WILLIAM LEW AND HOSAM M. MAHMOUD

smallest capacity for keys). Thus the constants Kj are solutions of a linear system that may
be written in the form

Vm-IK f.

Note that like Aj, the constants Kj are functions of al ap. For each allocation scheme

and each choice of the numbers al,..., ap, the constants in the vector f (f0 fm-2) T
are completely known from (4.1) to be

-h2(0),
d

O,
2 h2(0), rn 2,f= i!ar x

where r is defined by cr- < < c,. for m 2. Specific examples of bucket
multityping will be used to illustrate the procedure of obtaining the constants Kj at the end of
the paper.

Observe that all the terms of H2(x) have the general form c(1 x) -z-m+l. As in [17],
each term of H2(x) of the form c(1 x)-z-m+ contributes to the particular solution h2(x) a
term of the form

c
(1 x) -z

provided that 7t (,k) :/: 0. If (,k) 0, then a term of the form

c ()1x,(.----- (1 x) -z In

is contributed to the particular solution. Thus, he(x) can be obtained by organizing the terms
of Hz(x) into cases according to the powers) in the term (1 x) -z-m+. The details of this
calculation are given in the appendix. The final conclusion is the following:

THEOREM 1.

Var[X,]- y,,,n + Cm(n)n- + O(n)
2apA 7r -periodicfor every b > max{0, 2or 2, a }, where Fm K1 + A2 + and Cm (n) is the -function

(4.2) Cm(n) AjAk[m! (m -1)]
2<_j,k<_3 t()jk)F(Xjk) F(Xj)FOk)

The factors Aj, Kj, j m 1, depend on the allocation scheme and on our
choice of al ap. In the computation of variances and covariances, we shall need the
values of Aj and Kj corresponding to setting all ai’s to 0 except for a pair of indices, say, s

(st) and K)st) the values of Aj and Kj withand (not necessarily distinct). We denote by Aj
ar O, r {s, t}, and as at 1. Similarly, F(mij) and C(imJ)(n) refer to Fm and cm(n) when

ai aj and all the other a’s are 0. For the variances of the individual types we compute

Var[Xn/)] Var[X]
=0; ki

"u(ii)n -t-n(ii)(n)11

for every b > max{0, c 1,2or 2}. Thus, the variance of each bucket type satisfies a
formula that is essentially like that of Var[A’,]. For practical memory management systems,

JOINT DISTRIBUTION OF BUCKETS 1059

(ii) (n) are nonzero as illustrated by a few examples at the end of the paper.both y(mii)(n) and cm
That is, for such memory management systems, the variance of each bucket type suffers from
a phase transition at rn 26. The value 26 is an exact result based on an analysis of the roots
of the characteristic equation (,k) 0 mentioned in 3 and is independent of the bucket
sizes. Furthermore, the covariances between different types of buckets may be found from
the relation

or

ai=aj =1
Var[X(ni) + X(j)

as=0: sq{i,j}

Var[X(ni) + Vat[X(,j> + 2Coy[X(,i) X(nj)

Cov[X’(ni), S(nj)] -[(miJ y(mll)

+ -1 [C(imJ (t’l) t-m"(ii) (H) C -3
t- O(nb)

for every b > max{0, ot 1, 2or 2}. For practical memory management systems, the covari-
ances also have phase transitions after branch factor 26, from a linear behavior to a superlinear
(but subquadratic) behavior with oscillations. It appears that the phase transition persists in
all practical memory management systems. This phase transition is known to be true for trees
with a fixed bucket size implementation and the study of multitype buckets could be thought of
as lumping nodes holding a certain number of keys into one type. It is therefore expected that
properties such as phase transition in the variance for trees with a fixed bucket capacity will
carry over to multitype search trees. Since the asymptotic variances and covariances between
the components of Xn (X(,1 X(P)) r

all have the same linear order of magnitude for
3 < rn < 26, the asymptotic variance-covariance matrix is of the form Apn, with Ap being a
p p matrix of coefficients for this range of m.

5. Asymptotic joint normality of the different types. Let .-(,i) be the normalized ran-
dom variable (X(i) E[X(,i)])/v/-. The main result of this paper is the following"

THEOREM 2. In the range of rn for which ot < 3/2 (which happens if 3 < rn < 26),
the components ofthe vector (nl))(nP)) v are asymptoticallyjointly multinormal with a
covariance structure Ap thatfollowsfrom the procedure of the previous section.

The idea of the proof is similar to that in the case of the fixed allocation scheme [21]
but extends their previous result to cover the entire range of linearity of the variance, where
they only showed asymptotic normality for 3 < rn < 15. For the univariate random variable
A’n, we give an outline of a streamlined proof by only listing the adjustments needed in the
proof of the fixed allocation scheme by a few lemmas without proof except for Lemma 4 in
the following text. A proof for Lemma 4 is given to show the extension to the entire range
of linearity of variances and covariances. The idea in the proof of asymptotic normality is
to compare the moment generating function 4), (t) (for which the recursive nature of the data
partitioning process provides a recurrence) with the moment generating function

2

,(,) exp {E[A’, l’ + Var[Xl },
which is the moment generating function of a normally distributed random variable with mean
and variance like A’,,. The proof works by conditioning on the number of keys in the subtrees:
for any particular partitioning (n r/m) of keys into the subtrees (of course n +... +nm

1060 WILLIAM LEW AND HOSAM M. MAHMOUD

n m +), b, (t) can be written as an expression involving the product 4, (t)... qn,,, (t) and
n (t) can be written as an expression involving the product sent (t)... sen, (t). The similarity of
the two forms is advantageously used in an inductive proofto give tight upper and lower bounds
on 4n(t)/n(t). In what follows, n denotes a row vector (nl nm) whose components
satisfy n +... + nm n m + 1.

LEMMA 1.

m

m-1

LEMMA 2.

mexp(apt) ZHn (t) + (R)(n c)
m-1

n(t)

with

c max{3c, C -I- C2, 2c2 },

c max{-1/2, ot 3/2}, and C2 max{2ot 3,-1, ot 2}.

LEMMA 3. For large n and every 0 < v < n"

exp(dyne) <
4v(t)

< exp (dvnc)m-1 v(t) m -1

for some positive number d.
LEMMA 4.

4,. (t)
lim
" n (t)

Proof First, observe that if m < 26, then c < 3/2, and the constant c can be computed
from Lemma 2 yielding c < -0.00255. Choose 0 < 3 < -c. Let v(n) [na.l, and note that
v(n) ranges over the set of positive integers hV (with repetitions) as n varies from to cxz.
Conversely, for each v, we can define nl hi(V) max {n[[na/ v}. Observe that v < nl
and nl O(v/a), as v oo and we can apply Lemma 3 with large v to get

(dvnCl) pv(t) (dvnCl)exp < < exp
m-1 (t) m-1

or

exp (- O(v(c+’)/’)) < 4(t)<
exp(t) (O(v(c+’)/’))"

According to our choices of 3, the right and left ends of the above inequality tend to as
v o, giving us the desired result. [3

JOINT DISTRIBUTION OF BUCKETS 1061

LEMMA 5. (an E/a’.])/x/Varla’n converges in distribution to the standard normal
distribution with mean 0 and variance 1.

Since

Xn E[X]
/Var[Xn]

-----+ N(O, 1),

this implies that

(--, N O, lim Var[X]),n

which implies that

X"-E[A"]-- N(0, E aiajsij)
l<i,j<p

where sij is the (i, j)th entry of Ap or

X,, E[Xn] N(O, arApa).

However, N(0, aTApa) is the distribution of ary where Y is a multinormal vector of p
components and variance-covariance matrix Ap. So, this can be summed up as

ar(X.- E[X.]) __V_+v arY

for all p-component row vector aT E /Rp and Theorem 2 follows from the Cram6r-Wold
device (see [3]).

COROLLARY 1. For 3 < m < 26, the normalized number of buckets of type i, that is

)(ff) converges in distribution to the normal distribution with mean 0 and variance V (ii)
m

As discussed in the introduction, each Coni) (the number of conversions from type
bucket to type bucket) is a linear combination of X(X(,p). In matrix form, we have

Cn JpXn.

Whence

TCov[Cn] JpXnJp.

As is well known, linear combinations of normal variates are themselves normal, and we have
COROLLARY 2. Let (ni) (C(ni) E[C(ni)])/v/-. For 3 < m < 26, the random vec-

tor (n1) (nP)) T is asymptotically jointly normal (with mean 0 and covariance matrix

$pApJ;) and each (ni) converges in distribution to the normal distribution with mean 0 and

variance equal to the (i, i)th entry of pAp;.

1062 WILLIAM LEW AND HOSAM M. MAHMOUD

6. Some illustrating examples. (a) FixedBucket Scheme. Under several operating sys-
tems, like IBM’s OS/2 for personal computers and IBM’s VM/CMS, virtual memory is used
where external storage devices can be thought of as extensions to the primary computer mem-
ory. Communication with the external devices takes place infixed units called pages (a typical
page size is: 0.5 4K bytes where 1K 1024 bytes). For these operating systems, a tree
node with all its keys and pointers may be designed as one page giving rise to a branch factor
in the range of hundreds. This special case corresponds to p 1, as we have only one type
of nodes with capacity e m 1. Let Sn be the total actual space in words taken by the tree.
If each bucket (page) size is 0 words, then

E[Sn E[O,:Y,,],,:,
On

2(Hm 1)

with b max{0, c- < 1. This result was derived by different methods in 12],], and [21].
Moreover, the result about the variance and its phase transition and the asymptotic normality of
S,, appears in [21]. These results are special cases of the results in this paper as Sn
As a consequence of a forthcoming discussion about the exact fit scheme, it can be shown
that yi), the number of fixed buckets with keys, m 1, is asymptotically normal
and its variance suffers from a phase transition after m 26. Also, Yn) ym-) are
asymptotically jointly normal with covariances suffering from phase transitions after m 26.
The space utilization of the fixed bucket will be discussed in the exact fit scheme method.

(b) Exact Fit Scheme. This is a multitype scheme with complete control over memory. A
request for a certain number of bytes is honored exactly. This kind of control may be achieved
by accessing a "heap" of free space. When a tree grows under this scheme, the type bucket
for 1 p will have the exact space required for keys and a hidden tag meaning
ci for 1 p 1. The type p bucket will have the exact space for m keys, m
pointers, and a hidden tag. Clearly, we have m types of buckets in this scheme (p m) and
Cp_ Cp. The average of the linear combination A’n is given by

m-1

j=l

ap
m-1

(ap-1-ap))n(m-1)m +(-1)
m(-1

n

For large n

ap oE[Xn] An + (A + O(n -’1.m-1

Hence

E[Xni)] E[,n
(ii)A n.

ai=l
aj=0;

The factors A]ii) were obtained for m 2 by Baeza-Yates 1] by a fringe analysis
method (originated by Yao [25] in the context of B-trees and by Poblete and Munro [23] in
the context of balancing heuristics for binary trees). For m 2, Baeza-Yates found

(i + 1)(i + 2)(Hm 1)

JOINT DISTRIBUTION OF BUCKETS 1063

Thus we need only complete Baeza-Yates’s calculations for the last two terms. We have

m-1

()j)kA.m-l’m-1)
j=l

k! E[A’k] +
(- 1)k

",,,-,=’ m + (- 1)m
(m 1)k

aj =0; jC-m

rn + (-1)m
(-m + 1)k, k 0 rn 2,

or, in matrix form,

(6.1)

(1)0 (2)0
()1) (2)1

(l)m-2 (2)m-2

m q- (--1)

A(m-l,m-1)
()Vm_l) 0 ’l

A (rn-l,m-1)()Vm-1) "’2

()Vm_l)m_2 A(m-l,m-1)
"m-

(-m + 1)o
(--m -t- 1)1

(-m + 1)m-2

Similarly, A(mm) is obtained by solving the linear system

m-1
j= a/=0;

(-1)k

rn + (--1)m
(m 1)k

k!

rn + (--1)m
(-m + 1)k A- m-l’ k 0 rn 2,

or, in matrix form,

(6.2)

(1)0

(l)m-2

<)2)0 ()m-1)0
Amm<2)1 (m-1)l

()V2) -2 ()Vm-1)m-2 A (mm)m
"*m-1

(-m + 1)0 (1)0
(-m + 1)l

m+(- 1)
+
m-1

(-m + 1)m-2 (1)m-2

Applying Cramer’s rule to (6. l) yields

A(m_l,m_l) A

rn -k- (-1)m A

where ZX det [’Vm_ (/.1,..., Am-l)] and A1 is obtained from A by replacing its first column
with the right-hand side vector in (6.1). After some elementary row operations, A has the form
of the Van Dermonde determinant det [Vm-1 (-m + 1, .2)m-1)]. Using the well-known
expansion of the Van Dermonde determinant, one obtains

1064 WILLIAM LEW AND HOSAM M. MAHMOUD

A(m-l,m-1)

m-I

H [,ks- (-m + 1)]
s=2

m--1

[m + (-1)m]H [(,ks-
s--2

m

1-I [(-m + 1)),1
s--2

m--1

[m + (--1)m]H [(2- s)]
s--2

(-m + 1)
[m + (-1)m](-m 1)7t’(2)

m(m + 1)(Hm- l)

In a similar manner, one finds from (6.2)

A(mm A1
-Jr-

A2
[m + (-1)m]A (m 1)A

where det A2 det [Vm- (1, ,k2 .m-)]. After simplification, one obtains

A(mm)
(m + 1)(Hm- l)

Assuming that we are dealing with an application where the keys are ot bytes each on a
computer whose memory addressing requires pointers of size fl bytes each and the memory
management system reserves p bytes for system usage, the actual average space Sn occupied
by the random tree is

(6.3)

m-1

E[Sn] E[((m 1)c + mfl + p)X(nm)] + E E[x(ni)(iot + p)]
i=1

m-1

[(m 1)or + m + p]A(lmm)n + E(iot + p)A (ii)

i=1

=n [(m-1)o+mfl+] (m+l)(Hm-1)

m-1 }+ ti.= (i + 11(i + 2)(Hm 11
+ p

i=1 (i + 11(i + 2)(Hm 11

tim p] n

m+l
+(Hm- 1)ot+- Hm-l"

Under a fixed-bucket scheme for the same environment, each node is like a type m bucket of
the exact fit scheme, i.e., the total actual space is asymptotic to

JOINT DISTRIBUTION OF BUCKETS 1065

(m 1)u + m/ + p

2(Hm 1)
no

Thus the asymptotic space of the exact fit scheme relative to the fixed-bucket scheme is

average total space for exact fit

average total space for fixed buckets

For large m, this is about

m/(m + 1) + (Hm- 1)c + p/2

[(m 1)c + m[3 + p]/2

l + p/2 + ot ln m

(or + l)m /2

As an example, in a personal computer environment, pointers are 4 bytes and each page of
virtual memory under IBM’s OS/2 operating system is 4K bytes. Under OS/2, p byte.
Thus, a search tree implementation in this environment means a full node has 511 four-byte
keys, a one-byte hidden tag, and 512 four-byte pointers. That is, m 512, c 4,/3 4,
and p 1. In this instance, the relative efficiency between exact fit and fixed bucket is about
(9 + 361n2)/4096 8.4%. For small m (m < 26), the reduction ratio is achieved with
very high probability, in view of the small variance. In these cases, the asymptotic efficiency
is obtained in probability since the space of each method is asymptotic to its average in
probability.

(c) Buddy System Scheme. This memory management scheme allocates buckets with
sizes that are proper powers of two. The smallest example that illustrates partial filling is
the four-way branching with buckets of two, four, and eight words. We intend to present
this instance in some detail to put all the procedures and distributions already discussed in
perspective. This model may be suitable for internal memory use on a mainframe computer.
In each bucket, one word of memory is reserved for system use. The largest bucket size must
contain four pointers (four words on a mainframe computer). Thus the bucket with eight words
can accommodate three keys. In terms of keys, the capacities of the three types of buckets
involved are c 1, c2 3, and c3 3. The first two types are pointerless. The formula for
the average of the linear combination &’,, gives

A(n q- 1) -+- 231 . -ap 5
(-1

The function h (x) that appears in the linear system for the A’s is given by

ap (ap-1 ap)
(1 x)3h(x) -3(1 -x) 5

The characteristic equation is ,k(k + 1)(k + 2) 24 0 and has the roots

Here, G (0) 0, G’ (0) E[Xl] a,, G’ (0) 2E[X’2] 2a2. Thus the constants of
integration A1, A2, and A3 are determined by solving the linear system

1066 WILLIAM LEW AND HOSAM M. MAHMOUD

1)v2 .3 A2
-1()1 + 1))v2(2 + 1))v3(3 + 1) A3

(6.4) 0 --1/2a2--1a3
3 _14al a2 Ta3

2a2 ---a2 + 5a3
Solving this linear system with al 1, a2 a3 0, one gets

A, 2 A11 4- AI 4v/i"
1--’ 2 13 29 i’

13
+

299

thus,

E[X’)] -i- (n + 1)+ ,qi

Similar calculations with a 0, a2 1, a3 0, and al a2 0, a3 1, lead to

8 12E[X2)] -n and E[X3’] -n,
respectively. Consequently, the asymptotic average number of conversions of different types
are

6 4 12E[C."] ,, E[c?] g, r[cl’]
The formula for the variances of the linear combination X. follows from

Var[Xn] E[.-Y2] E2[X,],
where E[,V] has already been determined and E[&’] is given by

{}2K2{)v2)n apE[X2] K(n + 1)+ 2.qi q
n! 9

+ (--1)n+l
(ap2-1 ap2) () 4)n+ ()5

+ -(- (ap-1 ap)2

6(ap_ -ap)A1 (-2)n
x

5 n!

288(ap_l--ap)3i{5 1/t (2A2-4) x
()2 4}n}n!

()V2)n }+ + 31 + + 41. 0 + !

()v22) } 1441A212+ 144,q A x +
lp ()v22) n! ap (2.q/)v2 1)

(2.q{)v2)n
n!

JOINT DISTRIBUTION OF BUCKETS 1067

The function h2 (x) that appears in the linear systems for second moments is

h2(x)
2ap

9(1 -x)

2 2

)3 4 2 7ap_ ap
(1 x (ap-1 ap) (1 x)

2A3 144(ap_! ap)Aj
-4-)3

6(ap_l ap)Al
(1 x)2

_
5ap(kj 4)(1 x)zj-45

j=2 (1 x

2k2A1A2 23A1A3+ + +
(1 -x)z2+ (1 -x)3+

72AjAk

2<j,k<3 (1 x)ZJk(kjk)

.2Here, G2(0)- 0, G’2(0)- E[n] a2, G(0)- 2E[A:’2] 2a22. Thus the constants of
integration K, K2, and K3 are determined by solving the linear system

(6.5) ,1 2
(,k + 1))2()2 + 1)

.3 K2
)3()3 -[- 1) K3 2a2 h(O)

Solving this linear system with a 1, a2 a3 0, one gets

31 K, -35 /i K,,377’ 208

-35 + /-
208

thus,

4 n2Var[X(n’ - +
751

n+
635

+(-1
4901 4901

+ .N 208 2
n

13(n!) 13 4"/i) (-5 + "v/
299 2

4q/ -5
299 2

519
n.

4901

Similar calculations with various settings for a, 42, and a3 lead to

7586 2276
Var[X(2] 12252n’ Var[X(3] 122525

1068 WILLIAM LEW AND HOSAM M. MAHMOUD

5276
Yar[X("l’ + X(2)] 122525

126Var[Xn2) + Xn3)] 4901n,

19061Var[Xn3) + X(nl)] 122525

Hence, the asymptotic variance-covariance matrix for Xn is

/Ik3n

519 3057 381
4901 49010 24505

3057 7586 3356
--4901-------6 122525 122525 n

381 3356 2276
24505 122525 122525

and the corresponding asymptotic variance-covariance matrix for Cn is

186 207 33
4901 9802 4901

207 126 216J3A3J n 9802 4901 24505 n.

33 216 2276
4901 24505 122525

An exact computation of all variances and covariances for this example was carried out; for
details of these computations, see 14]. The essential behavior in all averages, variances and
covariances, is a linear component in n accompanied by very small periodic oscillations. In
view of Theorem 2, the vector (n1), n), -(,,3)) r converges in distribution to a multinormal

distribution with variance-covariance matrix A3 and the vector (((1), (2), (3))r converges
in distribution to a multinormal distribution with variance-covariance matrix J3A3,1’. More
generally, for higher branch factor m, the buckets are of size 2k words, with one reserved in
each bucket for system use. With numeric keys occupying one word each and one-word long
pointers, the pointerless buckets have capacities ci 2 1, p 1, and contain
a hidden tag. Like type p 1, the last bucket type, type p, contains a hidden tag and has
capacity Cp 2p-1 1, but it also contains 2p-1 pointers. By lumping together nodes in the
exact fit scheme that are collapsed into one bucket under the buddy system, we can obtain the
relative space economy achieved by the buddy system allocation scheme. Nodes containing
2k-1 2k-1 + 2k in the exact fit scheme are all implemented as buckets of type k
with capacity ck 2k under the buddy system. The space is not tight like the perfect
packing of the exact fit scheme, but for small k (these are the majority of nodes, on average)
only a small waste is still an improvement over the severe waste of the fixed-bucket scheme.

If JJ) is the number of nodes holding exactly j keys under exact fit, then the average number
of nodes under the buddy system, for type k, k 1, 2 p 1, is

2-E[X*nk)]= y. E[2J)], k-1,2 p-l,
j=21"-I

2k- n
Z (j + 1)(j + 2)(Hm 1)j=2’-I

n(Hm_l_l)(2k-l-+-I 2k-I-l)

JOINT DISTRIBUTION OF BUCKETS 1069

and the average number of nodes of type p is

nE[X(nP)] (m + 1)(Hm- 1)

Thus, Sn, the total actual space, has an average

p

E[s.]
k=l

2k+l +m+l
n ((Hzp-,- 1)

p +
2p_l p-2 1

2P-I + 2k+
n, (p 0.7645), for large p

(H2.-,-)

In2

, 1.44n.

We compare this scheme to the previous two schemes under the same environment (i.e., same
assumptions concerning the space for data, pointers, and hidden tag) and same branch factor.

nCompared with the fixed-bucket scheme, for which there is an average (Hzp-, 1) nodes,
each requiring 2p bytes, the efficiency of the buddy system is p/2p-1 which tends to 0 fast as
p --+ c. Compared to the exact fit scheme, when we take c word in formula (6.3) (i.e.,
when (6.3) is interpreted in units of words instead of bytes), the efficiency for large rn is about

(p/(Hm- 1))n p p p

(/4,,,/(/-/,,,-1),, lnm ln2P-1 (p 1) ln2

ln2

1.44.

This method is only 44% worse than exact fit on average but may suit computer systems where
exact fit is not available. The filling ratio (ln 2) -1 1.44 has been observed in a number of
data structures in comparison with the perfect packing and appears to be a universal constant
underlying data retrieval methods. Instances may be found in digital search trees (see [7]),
quadtrees (see [10]), B-trees (see [25] and [5]), hashing schemes (see [13] and [6]), and tries
(see [11] and [24]). These results are surveyed in [9].

7. Conclusion. A random search tree with branch factor rn and elastic buckets for keys
was discussed, and the case of buckets with general capacities was examined. Formulas were
derived for the expectations and variances of Xi), the number of buckets of type i, and for
the covariances between different types. For 3 < rn < 26, all variances and covariances were
found to be asymptotically linear in n, but for higher branch factors they experience a phase
transition and become a superlinear (but subquadratic) function of n. This phase transition
persists in all practical memory management schemes and seems to be independent of the

bucket sizes. The joint distribution of (-1 ,p)r, a vector of the normalized random
variables for Xi), was found to be asymptotically jointly multinormal for 3 < rn < 26.

1070 WILLIAM LEW AND HOSAM M. MAHMOUD

An illustrating example of the buddy system scheme, the four-way branching case with
bucket sizes of two, four, and eight words for data, pointers, and a hidden tag for system use,
is worked out in detail. For large branch factor, this method is shown to be only 44% worse
than exact fit but may suit computer systems where exact fit is not available.

An associated problem, the study of the number of conversions between bucket types can
also be found from the behavior ofthe random variables X(ng). In practical memory management
schemes, knowledge of the number of conversions between bucket types may be of use in
determining the associated cost in the storage and handling of data. The same properties
exhibited by Xn, a phase transition of all variances and covariances for rn > 26 and asymptotic
multinormality in the range 3 < m < 26, are also inherent in the conversions problem.

Appendix. The purpose of this appendix is to compute the particular solution, h2 (X), of
the equation

dm-1 m! G2(x)
G2(x) q- H2(x),
dxm-1 (1 -x)m-1

where

(m 1) 2 2ap(m)Gl(x)
Hz(x) e=f m! (m- 1)GZl(x) + .ap +

(1 --X)m-2 (| --X)m (1 --X)m-1

Observe that all the terms of Hz(x) have the general form c(1 x)-z-m+. Each term of
Hz(x) of the form c(1 x)-z-m+ contributes to the particular solution h2(x) a term Of the
form

provided that (X) 0. If 10 (X) 0, then a term of the form

7z,(,k---- (1 x) -z In (x
is contributed to the particular solution. Thus, hz(x) and its contribution to E[A’2] can be
obtained by organizing the terms of Hz(x) into the following cases:

(i) (m 1). ap2(1 x)-m For this term X with 7z(1) -(m 1). (m 1) :/: 0 for
all rn > 2. Thus this term contributes

to the particular solution and adds

2

(m 1)(1 x)

to E[,’2].

2

JOINT DISTRIBUTION OF BUCKETS 1071

(ii) (m 1)! (aZp_l ap2)cp,cp_,. For this term

.=-m+l, ap(,k) -(m 1)! [m + (-1)m] # O,

for all rn > 2. Thus this term contributes

(ap2_l ap2)Cp,Cp_l
[m + (--1)m]

to the particular solution which adds

(1 --X)m-1

(--1)n+l(ap2_l--ap2)Cp,Cp_l (m--l)[m + (--1)m n

to E[A’2], a term that disappears for n >_ m.
(iii) 2ap(m !)G (x)(1 x)-m+ Using the solution for G (x) from 3, this term presents

three subcases as follows"
(a) 2ap(m!)(1 x)-m+[-ap(m-l)-(1 x)-]=-2a2p(rn!)(rn-1)-(1 x) -m.

For this term ,k with p (1) -(m 1)! (m 1) - 0, for all m >_ 2. Thus this term
contributes

2aZpm
(m 1)2(1 x)

to the particular solution which adds

2a2pm
(m 1)2

to E[,n2].
(b) -2ap(m!)3Cp,Cp_ (ap_ ap)[m + (-1)m] -. Thistermcancelsoutwithasim-

ilar term that appears in m! (m 1)G(x)(1 x)-m+2.
(c) 2ap(m !)(1 x)-m+ [Aj(1 x)-X]. These terms cancel out with similar terms

that appear in m! (m 1)G(x)(1 x)-m+2.
(iv) m! (m 1)G2(x)(1 x) -m+2. Using the solution for G(x) from 3, this term

presents six subcases as follows"
(a) m. ap2(m-1)-(1-x)-m For this term k with 10 (1) -(m-1). (m-l)

0 for all rn > 2. Thus this term contributes

2map
(m 1)2(1 x)

to the particular solution, which adds

maZp
(m 1)2

to E[&’n2].

1072 WILLIAM LEW AND HOSAM M. MAHMOUD

2 ap)2[m + (--1)m]-2(l" X)m For this term)(b) m (m 1)6Cp,Cp_,(ap_l
-2m + but the smallest real part of any root of p(.) is no less than -m, so -2m +
cannot be a root. Thus this term contributes

rn (m 1)6Cp,Cp_, (ap-I ap)2 (1 x)2m-I

[m + (--1)m]2(--2m + 1)

to the particular solution, which adds

m!(m--1)6Cp,Cp_l(ap_l--ap)2(2m 1)[m _k_ (_)m]21p (_2m -_l_ -i
to E[A’ff], a term that disappears for n > 2m.

(C) --2ap(m !)(1 --x)-m+2[Aj(1 -X)-Z-I]. These terms cancel out with the terms
in subcase iii(c).

(d) 2ap(m !)3cp,cp_i (ap_ ap) [m + (- 1)m]-l. This term cancels out with the term
in subcase iii(b).

(e) m! (m 1)[-2Cp,Cp_,(ap_, -ap)Aj{m + (-1)m}-l(1 x)-ZJ+]. For these
terms ,k .j rn and the contribution, #j(x), to the particular solution is of the form

Oj(1--X)-’J+m{l[t(j-m)} -,
()#j(x)

Oj(1 -x)-ZJ+m{’(Zj-m)}-ln
x

where Oj -2(m!)(m 1)[(Cp,Cp_ (ap_ ap)Aj{m + (--1)m }-1]. The added contribution

is O(n;-m-+E) for every > 0. But 9t,kj _< 2 for j 1, m 1, i.e., this term is only
O(nE/nm-). As m _> 2, this contribution diminishes if >)’is small enough; for < rn 2
this term is O (n-) as n oz.

(f) m! (m 1)AjA,(1 -x)-Z-x*-m+2. Setting ,kj, Xj + , puts these terms
into the form m! (m 1)AjA,(1 x)-x*-m+ For these terms ,k ,kjk and the contribution,

rb.k(x), to the particular solution is of the form

Ijk(X)
/j(1 x)-X""[Tt’(’kJk)l-ln’"

x

where flj, m! (m 1)AjAk. The contribution of these terms into E[X’,2] can be classified
into four categories:

(1) The case j 1,k 1. For this pair ofindices) 3, (3) m! (m 1)/2, and
the contribution, Old(x), to the particular solution is

r (x) 2A2
(1 -x)3’

which adds

A(n + 1)(n + 2) AZn2 + 3AZn + 2A2
to E[X.2].

JOINT DISTRIBUTION OF BUCKETS 1073

(2) The case j 1, k > (symmetric with this case is k and j > 1). For this pair
of indices

)Vl,)vk + 1, ()vk + 1) m! (m 1))v 5 0,

for any m > 2 and the contribution, Ok(x), to the particular solution is

(1 --X)

which adds

AA() +)

to EIA’n2]. The collective contribution of all such terms to the expectation is

m

.qt_ 2A n
m-l ()k) Ak (Zk)n Ak

n nt n
k=2 k=2 k=2

The first term on the right is O(n-’), the second appears in Ez[x.], and thus this order of

magnitude disappears in V,r[,] E[] E[].
(3) The case 2 j, k 3. These terms are the causes of the aforementioned phase

transitions in the variances and covariances since its behavior for m < 26 is different from

that form > 26 as discussed next. For each of these terms and whether ln(} appears in it
or not, if < 3/2, then IXj 2 < 2 and for every e > 0.

[xn]ojl(X) O(nZJ*-1+)
o(n),

where the last equality holds for small enough e. But if c > 3/2, we have {jk 2or > 2
and so ()vj,) -J= 0 and the contributed solution is

AjAI
(1 x)-m(m-1) (j25j,k53

By the Stirling approximation of the Gamma function, this adds to E[Xff] the term

m (m 1) niZera(n)
def nZa_2 AjAk

2j,k3 (jk)r(jk)

where 1. This growth is superlinear for > 3/2 (but subquadratic as < 2 for all
m). The function Cm (n) is -periodic in In n.

(4) All the other indices: For these jk j + k and at least one index, j or k,
has to be greater than 2, i.e., Zjk < 2u 1. The coesponding solution therefore (whether
it has a logarithmic term or not) contributes o(n2U-2+e), for every e > 0. Putting all of the

above contributions to E[Xff] together and then subtracting E2[X], we get the variance as in
Theorem 1.

Acknowledgment. Our original proof of the asymptotic normality covered the range of
3 <_ m _< 15. The authors are indebted to Dr. Robert T. Smythe for suggesting an extension of
the proof for Theorem 2 to work in the entire range of the linearity of variances and covariances
(3 _< m < 26). We also wish to thank Ricardo Baeza-Yates for updating some references and
for several other helpful comments.

1074 WILLIAM LEW AND HOSAM M. MAHMOUD

REFERENCES

R. BAEZ,-YATES, Some average measures in m-ary search trees, Inform. Process. Lett., 25 (1987), pp. 375-381.
[2] R. BAEZA-YATES AND P. LARSON, Performance of B+-trees with partial expansions, IEEE Trans. Knowledge

Data Engrg., (1989), pp. 248-257.
[3] P. BILLINGSLEY, Convergence ofProbability Measures, John Wiley, New York, (1968).
[4] L. DEVIOYE, On the height ofrandom rn-ary search trees, Random Structures Algorithms, (1990), pp. 191-

203.
[5] B. EISENBARTH, N. ZIVIANI, G. GONNET, K. MEHLHORN, AND D. WOOD, The theory offringe analysis and its

application to 2-3 trees and B-trees, Inform. Control, 55 (1982), pp. 125-174.
[6] R. FaGIN, J. NIEVERGELT, N. PIr’PENGER, AND H. StrONG, Extendible hashing--afast access methodfor dynamic

files, ACM Trans. Database Systems, 4 (1979), pp. 315-344.
[7] E FLAJOLET ,ND B. RCHMOND, Generalized digital trees and their difference-differential equations, Random

Structures Algorithms, 3 (1992), pp. 305-320.
[8] G. FRDP,ICKSOrq, Improving storage utilization in balanced trees, Proc. Seventeenth Allerton Conf. Commun.

Contr. Comput., Monticello, IL, 1979, pp. 255-264.
[9] G. GONNET AND R. BAEZA-YATES, Handbook ofAlgorithms and Data Structures, 2nd edition, Addison-Wesley,

Reading, MA, 1991.
[10] M. HOSH aND E FIaJOIT, Page usage in quadtree indexes, BIT, 32 (1992), pp. 384-402.
11 E J,CQUET AND M. RGNIER, Normal limiting distribution ofthe size of tries, Proceedings of the Twelvth IFIP

WG 7.3 Symposium on Computer Performance Modelling, Measurement, and Evaluation, December
7-9, 1987, Brussels, Belgium, P. J. Courtois and G. Latouche, eds., North Holland, Amsterdam, 1988.

12] D. KNUTH, The Art ofComputer Programming: Sorting and Searching, Vol. 3. Addison-Wesley, Reading, MA,
1973.

[13] P. L,’,soN, Dynamic hashing, BIT, 18 (1978), pp. 184-201.
[14] W. Lw, ANt) H. MmMOUD, The joint distribution of elastic buckets in a data structure, Tech. Report #93-5,

Department of Statistics/Computer & Information Systems, The George Washington University, Wash-
ington, D.C., 1993.

15] D. LOMT, Partial expansionsforfile organizations with an index, ACM Trans. Database Systems, 12 (1987),
pp. 65-84.

16] H. MaHMOUD, On the average internalpath length ofm-ary search trees, Acta Inform., 23 (1986), pp. 111-117.
17] Evolution ofRandom Search Trees, John Wiley, New York, 1992.
[18] A law of large numbers for path lengths in search trees, Random Graphs, Vol. 2, John Wiley, New

York, 1992.
[19] H. MAHMOUD AND B. PITTEL, On the most probable shape ofa search tree grownfrom a random permutation,

SIAM J. Algebraic Discrete Methods, 5 (1984), pp. 69-81.
[20] On the joint distribution of the insertion path length and the number ofcomparisons in search trees,

Discrete Appl. Math., 20 (1988), pp. 243-251.
[21 Analysis ofthe space ofsearch trees under the randotn insertion algorithm, J. Algorithms, 10 (1989),

pp. 52-75.
[22] B. PTrZ, Note on the heights ofrandom recursive trees and random m-ary search trees, Random Structures

and Algorithms, 5 (1994), pp. 337-347.
[23] E POBLETE AND I. Murqlo, The analysis ofa fringe heuristicfor binary search trees, J. Algorithms, 6 (1985),

pp. 336-350.
[24] M. RGrqg, AND P. JACQUET, New results on the size of tries, IEEE Trans. Inform. Theory, IT-35 (1989),

pp. 203-205.
[25] A. YAO, On random 2-3 trees, Acta Inform., 9 (1978), pp. 159-170.

SIAM J. COMPUT.
Vol. 23, No. 5, pp. 1075-1091, October 1994

() 1994 Society for Industrial and Applied Mathematics
012

TIGHT BOUNDS ON THE COMPLEXITY OF THE BOYER-MOORE STRING
MATCHING ALGORITHM*

RICHARD COLE

Abstract. The problem of finding all occurrences of a pattern of length rn in a text of length n is considered. It
is shown that the Boyer-Moore string matching algorithm performs roughly 3n comparisons and that this bound is
tight up to O(n/m); more precisely, an upper bound of 3n 3(n m + 1)/(rn + 2) comparisons is shown, as is a
lower bound of 3n(1 o(1)) comparisons, as ---> cx and m --> :. While the upper bound is somewhat involved,
its main elements provide a simple proof of a 4n upper bound for the same algorithm.

Key words, string matching, character comparisons, Boyer-Moore algorithm, amortized analysis

AMS subject classifications. 68Q20, 68Q25, 68R15

1. Introduction. String matching is the problem of finding a pattern of length m in a text
of length n; often all occurrences of the pattern are sought. This problem is well studied and is
a staple of textbooks on algorithms (for instance, [3], [5], [12]). It is an important subproblem
in a number of domains including text editing, symbol manipulation, and data retrieval.

The best known algorithms for this problem are the Knuth-Morris-Pratt algorithm 19]
and the Boyer-Moore algorithm [7] (we refer to these as the KMP and BM algorithms, re-
spectively). Both these algorithms are linear time; the bound for the KMP algorithm is very
straightforward, the bound for the BM algorithm is considerably less so. An interesting aspect
of the BM algorithm is that on average (in probabilistic settings) it takes sublinear time; this
effect is observed in practice too. A recent study of this behavior is given in [6].

Many other types of string matching algorithms have been studied; these include matching
several strings simultaneously], real-time matching 15], matching in constant space 17],
[13], randomized algorithms [20], parallel algorithms [26], [27], approximate matching [21],
[16], [25], and two-dimensional matching [4].

Both the KMP and BM algorithms begin by computing a shift function. (We review the
shift function for the BM algorithm later.) Following the precomputation of the shift function,
the actual match is carried out. The complexity of the algorithm is usually stated in terms
of the number of comparisons required for the matching stage (excluding the precomputation
stage). The KMP algorithm requires 2n m comparisons in the worst case and this is a tight
bound for rn > 2. For the BM algorithm, the first linear bound was given by Knuth in [19]
as a bound of 7n comparisons (often misquoted as 6n comparisons); this proof is difficult. In
1980, Guibas and Odlyzko gave another proof [18], obtaining a bound of 4n comparisons;
their proof is also nontrivial. Guibas and Odlyzko also conjectured that 2n comparisons might
be the correct bound. Our contribution is twofold.

We give a bound, tight up to lower-order terms, of roughly 3n comparisons, thereby
disproving the just-mentioned conjecture.

In addition, the basic elements of this proofprovide a direct and straightforward demon-
stration of an upper bound of 4n comparisons.

The above bounds for the BM algorithm assume that the pattern is not periodic, i.e., of
the form wv, where w is a proper suffix of v and k >_ 2. Galil [14] showed how to modify the
BM algorithm so that a linear bound applies in this case too; in fact, using essentially Galil’s
modification, our bounds apply unchanged to such patterns.

*Received by the editors February 20, 1991" accepted for publication (in revised form) May 5, 1993. Supported
in part by National Science Foundation grants CCR-8902221, CCR-8906949, and CCR-9200290. A preliminary
version of this paper appeared in the Proceedings of the 1991 ACM-SIAM Symposium on Discrete Algorithms.

Courant Institute, New York University, 251 Mercer Street, New York, New York 10012 (cc]_e@c s.n:gu.edu).

1075

1076 RICHARD COLE

Another approach to improving the bound on the number of comparisons for the BM
algorithm is to modify the algorithm so that it no longer necessarily compares characters of
the pattern in consecutive right-to-left order. Such a modification was given in [2]; they thereby
obtained a bound of 2n m + character comparisons, at the cost of a more complex control
structure. Crochemore et al. [8] showed that remembering just the most recently matched
portion of the text reduces the upper bound of BM from 3n to 2n comparisons.

Recently algorithms that combine the left-to-right sweep of the KMP algorithm with the
right-to-left sweep of the BM algorithm have been studied. In particular, Galil and Giancarlo
analyzed and modified a string matching algorithm designed by Colussi 11]; they showed it

4makes at most 5 n comparisons. In fact, 11 give this bound in a sharper form as a function of

(min{z m z} + 2)/2m}.the period z of the pattern; the bound becomes n + (n m) min{,
Very recently, almost tight bounds on the comparison complexity of string matching algorithms
have been given by Cole et al. [9], [10]; they give an upper bound of n(1 + 8/(3(m + 1)))
character comparisons and a lower bound of n + 2(n m)/(m + 3) character comparisons
for infinitely many m.

However, their lower bound does not appear to cover algorithms of the BM type, which
can take advantage of a finite alphabet and perform a bad character shift (see 2). The
bad character shift can contribute substantially to the expected sublinear behavior of the BM
algorithm. Likewise, the algorithms ofColussi et al. and Cole and Hariharan do not incorporate
a shift of this type, nor is it clear whether these algorithms can be modified to incorporate
shifts of this type. So while the worst-case bound of these algorithms is better than that for
the BM algorithm, it is still of interest to understand the behavior of the BM algorithm.

The remainder of the paper is organized as follows. In 2, we briefly review the BM
algorithm. In 3 we show the lower bound of roughly 3n comparisons. In 4 we prove a
number of lemmas needed for both upper bound results. In 5 we complete the proof of the
4n upper bound for nonperiodic patterns; in 6 we extend this upper bound to an upper bound
of roughly 3n comparisons. In 7 we extend the results to periodic patterns.

2. TheBM algorithm: A review. We first describe BM-type algorithms and then specify
the BM algorithm itself. To find occurrences of the pattern in the text, a BM-type algorithm
tests whether given substrings, t’, of the text of length m match the pattern; each such test is
called an attempted match. An attempted match is performed as follows. The characters of
the pattern are compared one by one, in right-to-left order, with the corresponding characters
of substring t’ until either a mismatch is found or the match is complete. When an attempted
match completes (either by a mismatch or by finding a match) the pattern is shifted to the
right, ideally by the maximum distance consistent with not missing any potential matches; the
actual shift may be smaller than this maximum. The shift is determined by a shift function
associated with the algorithm. Following the shift, another attempted match is performed.
This procedure is continued until the pattern is shifted beyond the right end of the text. The
initial attempted match is with the leftmost m characters of the text.

The BM algorithm uses as its shift function the maximum of the following two shift
functions. If there is a mismatch, the first shift function, the bad character shift, implicitly
provides the location of the rightmost character, c, in the pattern, if any, that matches the
mismatched character in the text. If c is present the shift specified by the bad character shift
would cause c to become aligned with the mismatched text character. If c is not present the
shift aligns the leftmost character of the pattern with the text character immediately to the
right of the mismatched text character. The second shift function, the good suffix shift, is
illustrated in Fig. 1; it specifies the smallest shift such that the shifted pattern matches the
unshifted pattern on all the characters that were successfully matched, and fails to match the
unshifted pattern on the mismatched character. If there is no such shift then the smallest

ANALYSIS OF BOYER-MOORE ALGORITHM 1077

shift that causes a prefix of the shifted pattern to match a suffix of the matched characters is
specified. If there is no shift of this type either, then a shift of length m is specified.

Variants of the BM algorithm use the bad character shift only for a mismatch at the first
character, or indeed omit its use altogether. Whichever is done, our upper and lower bounds
apply. The presence of the bad character shift is desirable, however, since it helps ensure a
sublinear behavior in practice. The only difficulty is that the proof of the upper bound becomes
more involved, although the essentials are unchanged.

mismatch

xtext

pattern Yl x - y :)b_ z

shifted pattern IZl

FIG. 1. The good suffix shift.

Remark. The terms bad character shift and good suffix shift are due to 12].

3. The lower bound. We give example patterns p, of length m 2k 1, and texts t,
which demonstrate the lower bound of 3n(1 -o(1)) comparisons (as

__
cxz and m -+ c).

The basic idea is to have frequent shifts by k on attempted matches comprising 2k
comparisons. In addition, to have roughly three comparisons per text character, we also seek
to have short shifts on attempted matches of roughly k comparisons.

In particular, we choose p ak-1 ba- and a- (aba-)z. Let v’ aba-.
Consider a situation in which the b in the pattern is aligned with the left end of a v’ in the

text, denoted 7’. (See Fig. 2.) The attempted match will be of length k and it will cause
a shift of length 1. The next attempted match will have right(p) aligned with right(fi’). The
attempted match will be of length 2k and it will result in a shift of length k. We return
to the first situation. We note that has been chosen so that the initial situation is the first
situation. Thus we have shown the results given in Fig. 2.

text a b a ala b a ala b a a

pattern a a b a a mismatch ata

first shift a a b a a match

second shift a a b a a iterate

FIG. 2. The lower boundfor k 3.

THEOREM 3.1. There exist patterns of length m 2k and texts of length n
)(k + 1) + (k 1), for any integers k > 2 and , > 1, for which the BM string matching
algorithm performs

1078 RICHARD COLE

3k-2 m- 10
(n-k+l)=(n-)(3-)
k+l 2 m+3

comparisons. This is 3n(1- o(1))comparisons as _.+ cxz and m cxz.
m

For even length patterns, with p ak-2ba-1, for k > 2, and one character shorter at
the left end, we obtain a similar bound of

3k-3 m -2 12
(n k + 2) (n)(3)
k+l 2 m+4

comparisons.

4. Preliminary lemmas.
DEFINITION 4.1. A string u is periodic if u wv, where w is a proper suffix of v and

k > 2. u is3-periodicifk > 3. Ifw , u is said to be cyclic. Also, u is said to be,
respectively, periodic, cyclic in v. It is convenient to extend this terminology to allow the
wording u is periodic (respectively, cyclic) in v to include the case k 1; no ambiguity will
result, u is primitive if it is not cyclic. If u vk, with v primitive, k > 1, v is called the
generator of u. lfu wv, with v primitive, w a proper suffix of v, k > 2, v is called the core

ofu.
The following lemma and corollary are well known (see [22], for example).
LEMMA 4.2. Let x and y be two nonempty strings. If xy yx then there is a string z

such that both x and y are cyclic in z.

Proof The proof is by induction on Ix[+ [y[. If [x iYl, then take z x (= y); the
result follows. Otherwise, without loss of generality, suppose that Ix < Y[. Then x is a

prefix of y, so y xyl. Note that yl . Substituting gives xxy xyx, i.e., xyl ylX.

The result now follows by induction.]

COROLLARY 4.3. Suppose that v is a proper cyclic shift of w. If v w, v is cyclic.

Proof Since v is a proper cyclic shift of w, we can write to xy and v yx, where
x, y - . By Lemma 4.2, there is a string z with x z and y zJ for some i, j > 1. So
v z, for some k > 2, i.e., v is cyclic. 71

LEMMA 4.4. Let w be a string and let s <_ [wl be an integer Suppose that the prefix of
w of length w] s matches the suffix of w] of length]to] s. Then w is periodic in u, the
length s suffix of w.

Proof. Consider two instances of w, overlapping in]wl s characters, as shown in Fig.
3. Denote the leftmost instance by w and the rightmost by w. Then w zu, w ZlU,

for some identical strings zc, z. If]zel < lul, z is a suffix of u and the result is immediate.
Otherwise, as wc and w match on their aligned portions, w has u as its length s suffix" the
result then follows by an inductive argument applied to z and z. [3

The analysis will focus on one attempted match at a time" the attempted match AM being
analyzed is called the current attempted match. We introduce the following notation and
definitions.

DEFINITION 4.5. denotes the portion of text matched by AM. s denotes the length of
the good suffix shift for AM. u denotes the suffix of the pattern of length s. Suppose that
u v, k > 1, where v is primitive. An attempted match AM’, which precedes AM and
begins by comparing a character of t, is called an early attempted match (with respect to

A M). Throughout the paper, and v are defined with respect to the current attempted match.

Wr denotes the rightmost character of w. right(w, z) denotes the rightmost substring of w
equal to z. wt and left(w, z) are defined analogously. Let w and z be two overlapping strings;
character c in string w is said to be aligned with z if it is aligned with some character in z.

ANALYSIS OF BOYER-MOORE ALGORITHM 1079

WL

ZL

ZR U

tOR

FIG. 3. Overlapping instances of u.

LEMMA 4.6. (i) and the suffix w ofp oflength min{lt[+ [u[, [p[} are both periodic in u
and v.

(ii) Suppose [tl + [u[< [p[. Then p[m -It[- [u[] - p[m -It[- [u[+ Iv[] (i.e., the
character immediately to the left ofthe length It[+ [u[suffix ofp is not equal to the character
in p distance Iv[to its right. In addition, the character immediately to the left of differsfrom
t[v].

Proof. See Fig. 4. Because the good suffix shift has length [u[, w obeys the conditions of
Lemma 4.4; thus w is periodic in u. Because u is periodic in v, result (i) for w follows. And
because is a suffix of w, result (i) for follows also.

Result (ii) is immediate from the definition of the good suffix shift. E]

text

lul
pattern

U
shifted pattern

FIG. 4. is periodic.

LEMMA 4.7. Let AM be an early attempted match. Suppose that [p[> Itl. Then pr is
not aligned with Vr for any substring v in t.

Proof. See Fig. 5. Suppose that the pattern were so aligned. Let ta be the text character
immediately to the left of tt. By Lemma 4.6(i), the suffix of p of length min{[t[+ [ul, [p[} is
periodic in u; thus the character in p aligned with ta during AM is identical to the character
aligned with ta during the current attempted match. Consequently, the good suffix shift would
shift Pr to distance s to the right of t#, contradicting the fact that AM is an early attempted
match. (Any shorter shift by a multiple of Ivl would place the same character in the mismatch
location; this is not a good suffix shift. Any other shorter shift causes a proper cyclic shift
of v (in p) to be aligned with an instance of v in t, and this cannot be a good suffix shift by
Corollary 4.3, since v is primitive.) Cl

LEMMA 4.8. Let AM1 be an early attempted match. Suppose that either
(i) [p[> [t[, or

(ii) [p[It[and Pr is not aligned with f;r for any instance f of v in t.

1080 RICHARD COLE

text

mismatch

ta

pattern

resulting
shifted pattern

FIG. 5. Alignment of p.

Then AM performs at most Ivl comparisons with characters of t. Further, if there are
such comparisons, the last comparison is a mismatch.

Proof Pr is not aligned with Vr for any substring v in (by Lemma 4.7 for Pl > It and
by assumption for IPl Itl). Thus if Iol characters of were matched, by Corollary 4.3, v
would be cyclic, contrary to its definition.

LEMMA 4.9. Let AM be an early attempted match, lflpl > It], Pr is either aligned with
a character in right(v, t) or with one ofthe leftmost Ivl characters in t. This remains true

for Pl It I, on the condition that Pr is never aligned with Or for any instance of v in
apartfrom the rightmost instance.

Proof. See Fig. 6. If Pr is elsewhere, the first Ivl comparisons, if there were that many,
would be with characters in t. Then by Lemma 4.8, there must be a mismatch on or before
the Iv Ith comparison, i.e., there are at most vl comparisons. Let 5 denote the substring v of
with which Pr is aligned. But then the shift at most moves pr to r. (This shift would produce
a match with all the text characters compared in the attempted match and so is at least as long
as the actual match.) In fact, if Pr is shifted less far, eventually, following a sequence of such
attempted matches, pr is aligned with 1 But this contradicts Lemma 4.7.

text
mismatch

pattern

possible
shifted pattern

FIG. 6. Location of p,..

5. A simple upper bound: 4n comparisons.
LEMMA 5.1. Iflpl > Itl, prior to the current attempted match at most 3lvl 3 characters

of have been compared.
Proof. See Fig. 7. By Lemma 4.9, in the early attempted matches, pr is either aligned

with one of the rightmost I1 characters of or with one of the leftmost vl characters of t.

ANALYSIS OF BOYER-MOORE ALGORITHM 1081

By Lemma 4.8, each of the early attempted matches performs at most Ivl comparisons. Since

tr is not compared prior to the current attempted match, the lemma follows. [3

text

key: only characters that might
be read prior to current
attempted match

FIG. 7. Characters already read.

THEOREM 5.2. The BM pattern string algorithm performs at most 4n comparisons when
matching a non-3-periodic pattern oflength m against a text oflength n.

Proof. We will show that the number of comparisons performed in each attempted match
AM is bounded as follows.

Attempted match, bound. The attempted match bound equals the number of text characters
compared for the first time during AM plus three times the length of the ensuing shift.

It then follows that the total number of character comparisons is at most 4n.
Consider AM, the current attempted match. If Itl < 3s, because the number of characters

compared is Itl or Itl + 1, the attempted match bound holds for AM (since tr was compared
for the first time during the current attempted match).

So suppose that Itl > 3s. Since p is not 3-periodic, IPl > Itl. By Lemma 5.1, the
number of previously uncompared characters compared by the current attempted match is at
least Itl (31vl 3) >_ (Itl + 3) 3s; because the number of characters compared by AM is

It + 1, the attempted match bound holds in this case too.

6. An upper bound of roughly 3n comparisons. The 3n upper bound is proved using
an amortized analysis, an approach for analyzing algorithms due to Sleator and Tarjan [24].
The method is as follows. Following the ith shift performed by the algorithm a potential qi
is associated with the current state of the algorithm. 0 denotes the initial potential, before
any shifts. Let ti be the number of comparisons performed by the ith attempted match (i.e.,
between the (i 1)th and the ith shifts). Then the amortized cost of the ith attempted match,
in comparisons, is defined to be ti d- ti+l ti. The reason for using amortized costs is that
with a well-chosen potential function, they can be easier to bound than the actual costs.

The total number of comparisons performed by the algorithm is given by

i>_l i>l i>_l

where bf is the final potential, the potential at the end of the algorithm.
The 3n bound is proved using the following potential function.

4 2 the number of still-readable characters + the number of unmarked characters.

A character is readable if it is not yet to the left of the left end of the pattern. For
the purposes of analysis characters may be marked and then unmarked, possibly repeatedly.
Initially every character is unmarked.

1082 RICHARD COLE

Clearly q0 3n and qf > 0. We will show that the amortized cost (in comparisons)
of each attempted match is at most -1. Thus the total number of comparisons performed is
bounded by 3n. In fact, the negative bound on the cost of each attempted match leads to a
slightly tighter bound, as we will see.

Now we turn to the analysis of the BM algorithm. As in 5, we are assuming that the
pattern is non-3-periodic.

As in 5, we consider a current attempted match that matches a substring of the text
and either has IPl Itl or mismatches at character t, immediately to the left of t. We also
consider earlier attempted matches in which pr is aligned with t. Let s be the distance shifted
in the current attempted match. There are a number of cases to consider; in all the cases we
show an amortized cost of -1 or better for the current attempted match.

Before proceeding with the analysis, we specify the rules for unmarking text characters.
When an unmarked character is read it becomes marked. However, a marked character can be
unmarked again as follows. Whenever an attempted match would have an amortized cost less
than -2, if the shift made is due to the good suffix shift, then the leftmost characters compared
in the current attempted match are unmarked so as to increase the amortized cost to -2 (or
until all the characters read in the current attempted match are unmarked, whichever occurs
sooner). Actually, as we see below in Case 1, there is a special case for shifts of length 1. If
the shift of length s is due to the bad character shift and the good suffix shift had length s’ < s,
then the same characters are unmarked as for a good suffix shift of length s’. In addition, the
rightmost min{2(s s’), Itl -t- 1} characters compared are unmarked.

Case 1. s 1. Let t’ be the text read by the current attempted match. Then t’ ba j for
some j > 0, where a b. We claim that the characters of t’ had not been read previously.
This would give an overall amortized cost of-2 for the attempted match, except that we
unmark tr, giving an amortized cost of- 1. It remains to demonstrate the claim. If there had
been an earlier attempted match with pr aligned with t’, then the mismatch would have been
at character b of t’ and the resulting shift would have moved p,. beyond t; therefore there was
no such earlier attempted match, i.e., all of t’ was unmarked immediately prior to the current
attempted match.

Remark 6.1. Henceforth we can assume that at each attempted match the rightmost two
characters compared (if at least two are compared) are unmarked.

Case 2. It < 2s. The decrease in potential is at least 2s + 2. The cost of the current
attempted match is It / 1. So the amortized cost of the current attempted match is at most
--2.

Case 3. Itl >_ 2s and s > 1. Then by Lemma 4.6(i), wvk, for some k > 2, where w
is a proper suffix of v, v is primitive, and s is an integer multiple of Iv I. A little more notation
is helpful. Let w;, vL, vnl, vn2 denote, respectively, left(w, t), left(v, t), right(v, t), and the
second rightmost v in t. It may be that vL v2. (See Fig. 8.) There are five subcases to
consider.

text
w

FIG. 8. Further notation.

Case 3.0. There is no early attempted match.
Case 3.1. AM1, the first early attempted match, has pr aligned with a character of vg

other than (Vel)r.

ANALYSIS OF BOYER-MOORE ALGORITHM 1083

Case 3.2. AM is an early attempted match which results in a shift by distance greater
than IPl- Ivl.

Case 3.3. AM1 is an early attempted match in which Pr is aligned with wL and following
which pr becomes aligned with vR1. In addition, the resulting shift has length at most IPl- Ivl.

Case 3.4. AM is an early attempted match in which Pr is aligned with vL but not with
(V)r, and following which pr becomes aligned with vR1. In addition, the resulting shift has
length at most Pl [vl.

Case 3.5. AMI, an early attempted match, had Pr aligned with (v).
By Lemma 4.9, if IPl > It[, either case 3.0 applies or there is an early attempted match

falling into one of cases 3.1-3.4. If IPl Itl, p wvv, since p is not 3-periodic. If none of
cases 3.0-3.4 apply, the only remaining possibility is given by case 3.5. We analyze each of
the cases in turn.

Case 3.0. There is no early attempted match. Then the current attempted match has an
amortized cost of at most -2s + < -3 < -2.

Case 3.1. AM, the first early attempted match, has p aligned with a character ofv other
than (Vl)r. Then at most 2lvl 3 characters of will have been read and remain marked prior
to the current attempted match (because among the characters of v the rightmost two are
unmarked, and by Lemma 4.8, besides characters of v, only the Ivl rightmost characters
of vR2 can have been read). Thus the amortized cost of the current attempted match is at
most -2.

In the remaining subcases, the analysis will focus on the early attempted match that causes

Pr to become aligned with v.
Before considering the next case, we prove several lemmas.
LEMMA 6.1. Let AMI be an early attempted match for which the good suffix shift has

length S < Ipl Ivl.
(i) IfAM matches at least I1 characters, then Sl is an integer multiple of Ivl.
(ii) IfAM matchesfewer than I1 characters, then Sl < I1.

Proof. First note that the suffix of p of length s + IPl is periodic in v. This follows by
Lemma 4.6(i), since Sl < Itl and thus Sl + I1 _< min{lPl, Itl / lul}.

Now we prove (i). Let 5 be the string in the text which matches right(v, p) during
attempted match AM. Following the shift, the substring of p aligned with 5 must be
identical to the pattern v (since Sl < Ipl Ivl, exists). Furthermore, is part of the suffix of
p of length s + Ivl, and this suffix is periodic in v. Thus is a cyclic shift of v. By Corollary
4.3, because v is primitive this cyclic shift must be the trivial shift; hence Sl is an integer
multiple of I1.

We turn to (ii). Suppose that Sl > Ivl. Further suppose that c characters are compared
by AMI. (See Fig. 9.) Then a shift by s -Ipi would also be a legal shift, in that the
characters of the pattern aligned with the c text characters compared by AMI are identical in
a shift by sl and a shift by s Ivl (because the portion of p periodic in v has length at least
S1 -I-I1)l). Thus S IVl. But a shift by Ivl is not possible because this would replace the
mismatched character ofthe pattern by the same character, which is not a good suffix shift. Thus
Sl < Ivl.

LEMMA 6.2. Let AM1 be an early attempted match that shifts p so that Pr is aligned with
a character ofvn other than (Vnl)r. Suppose AM uses the bad character shift. Ifat least
characters are matched by AM, then the good suffix shiftfor AM1 also aligns Pr with Vil.

Proof. By Lemma 6.1, the shift due to the good suffix shift has length at least Ivl. If

IPl > Itl, by Lemma 4.9, Pr becomes aligned with a character of vn. If IPl Itl, p is
periodic in v and the bad character shift moves p so that p is to the immediate right of
the mismatched text character. (If not the shift would have length less than Ivl.) Similarly,

1084 RICHARD COLE

mismatch

text

pattern

shifted pattern
c Ivl

also a legal shift

S1--Ivl

FIG. 9. Case (ii): what ifsl > Ivl.

S1

the good suffix shift would shift p so that the mismatched text character was to the left of

Pt. (If not p would overlap the matched characters after the shift, and its length would
therefore be a multiple of Ivl; but then identical characters would be aligned with the mis-
matched text character before and after the shift, which would not be a good suffix shift.)
But then the good suffix shift would be at least as long as the bad character shift, contrary to
assumption.

LEMMA 6.3. Let AM1 be an early attempted match that uses the bad character shift and
compares at most Ivl characters. Then its shift has length either greater than IPl Ivl or less
than pl,

Proof Suppose that the shift has length at most IPl Ivl. Then after the shift a pattern
character Pa is aligned with the mismatched text character; consequently, Pa must be among
the rightmost Itl + Ivl characters of p. But because the suffix of p of length min{ltl + Ivl, IPl}
is periodic in v, by the definition of the bad character shift Pa is among the rightmost vl
characters in p. Thus in this case the shift has length less than vl.

Case 3.2. AMl is an early attempted match which results in a shift by distance more than

IPl Ivl. Then all but the rightmost I1 characters shifted over remain unmarked until
the current attempted match, by Lemma 4.8. Let w’ be the suffix of p overlapping at the
start of AM. Iw’l + Ipl- Ivl / < Itl _< Ipl; hence Iw’l _< Ivl 1. If Iw’l Ivl
then w’l characters of are marked at the time of the current attempted match; thus is has
amortized cost at most -2. If Iw’l Ivl 2 then after AM1 pr is aligned with one of the two
rightmost characters in VR1; the next and last early attempted match, if any, compares at most

vl characters. Thus for the current attempted match there are at most w’l + vl marked
characters in t; hence it has amortized cost at most (211 3 + 1) 2s < -2. If Iw’l _< Ivl- 3
there are at most [(Ivl- Iw’l- 1) 21 / Ivl / Iw’l _< 21ol- 3 marked characters for the
current attempted match. (The first term is the number of characters in to the right of Pr after
the shift due to AM1; -2 is due to the fact that the rightmost two characters in are unmarked
at the start of the current attempted match; vl is the bound due to Lemma 4.8 on the number
of characters that become marked that are aligned with or to the left of Pr after the shift due
to AM1; and Iw’l is for the characters marked by or before AM1.) This yields an amortized
cost of at most -2 for the current attempted match.

Case 3.3. AM is an early attempted match in which Pr is aligned with wL and following
which Pr becomes aligned with VRl. In addition, the resulting shift has length at most Ipl- Ivl.

ANALYSIS OF BOYER-MOORE ALGORITHM 1085

We show that at most 21vl 3 characters of are read in early attempted matches; it follows
that the current attempted match has amortized cost at most -2.

First we show that AM matches at least pl characters. Clearly the shift has length greater
than pl as pr shifts over the whole of vL. If the shift is due to the good suffix shift, then the
claim is immediate from Lemma 6.1 (ii). Likewise, if the shift is due to the bad character shift,
then the claim is immediate from Lemma 6.3.

Suppose that at the start of AM Pr is aligned with the rth rightmost character of wL.
We show that following AM, Pr is aligned with or to the right of the rth rightmost character
of yrs. Let s be the length of the good suffix shift due to AM. By Lemma 6.2, a shift by
distance s following attempted match AM1 would align Pr with vR1. By Lemma 6.1(i), s is
an integer multiple of v.

By Lemma 4.8, at most Ivl characters of the text immediately to the left of the
rth rightmost character of v can be read prior to the current attempted match, and then
only if r > 1. Thus the number of characters of that can be marked prior to the current
attempted match is bounded as follows: at most wl r + characters of wL, plus at most
max{(r 2) + (Ipl 1), 0} (r 2) / (Ipl 1) characters at the right end of (recall that
the two rightmost characters ofv are unmarked). This is a total of Iwl / I1 2 < 21vl 3
characters. Hence the current attempted match has amortized cost at most -2.

Case 3.4. AM is an early attempted match in which Pr is aligned with vz but not (Vc)r,
and following which Pr becomes aligned with v. In addition, the resulting shift has length
s <]p] Ivl. The characters matched by AM include at least all the characters up to t.
(If not a shift that aligns Pr and (v) would leave all the compared characters matched and
hence would be as long as the actual shift.) There are two subcases depending on the number
of characters matched by AM.

Case 3.4.1. At least vl characters are matched.
The following two lemmas will be useful.
LEMMA 6.4. Suppose that an early attempted match AM2 starts with suffix x of p over-

lapping Vl. Supposefurther that the maximum length suffix of v periodic in x is ff)x. Finally,
suppose that x is also a prefix of v. Then

(i) Itbxl <

(ii) AM2 mismatches at the (lxl / 1)th character compared.
(iii) Suppose AM2 produces a good suffix shift oflength s2. Let be the generator ofx.

Then s2 > Itbxl- I1 >_
Proof. See Fig. 10. By Lemma 4.8, AM2 compares at most Ivl characters. Since v and

p both have suffix tbx and vR has prefix x, it is clear that AM2 matches the first
characters compared; hence, Itbxl < Ivl. Since tbx is the longest suffix of v, and hence of p,
periodic in x it follows that AM2 mismatches at the (Itbxl / 1)th character compared.

Let z be the suffix of p of length s2. Suppose, for a contradiction, that Izl _< txl I I.
By Lemma 4.4, the suffix of p of length Iz(oxl is periodic in z as the good suffix shift due to
AM2 causes a match on the characters matched by AM2. Consider the suffix of length I1 of
the second rightmost instance of z in p; it lies within the suffix tx of p, which is periodic
in Y. By Corollary 4.3, any matching cyclic shift of this suffix of z is a trivial cyclic shift;
consequently, the length Izl suffix of tbx, and hence z itself, are cyclic in Y. Since v is also
a suffix of p and tbl / < Iv I, the rightmost tbl / characters of v are periodic in , thus
there is no mismatch by AM2 at the location assumed (the (lxl / 1)th character compared
by AM2). This is a contradiction. Consequently $2 Izl > Ixl 171.

Case 3.4.1.A. AM uses the good suffix shift. Let x be the suffix of p overlapping v
before attempted match AM1, let y be the suffix of p overlapping Vl after attempted match
AM, and let tbx be the longest suffix of v periodic in x. In turn, we show:

1086 RICHARD COLE

mismatch

text
toL l/R2 IR1

pattern
X

pattern after AM
<_x-y

tO

pattern after AM2
Z

FIG. 10. Attempted match A M2.

(i) Ixl lYl.
(ii) The attempted match AM2, immediately following AM, mismatches at the (lSx /

1)th character compared.
(iii) Let the good suffix shift due to AM2 have length s2. Then s2 > 151 >_ Iwl.
(iv) The amortized cost of the current attempted match is at most -2.
By Lemma 6.1(i), Sl is an integer multiple of I1. Thus x y. This shows (i). (ii) and

the first part of (iii) are immediate from Lemma 6.4. To see the remainder of (iii), consider
the characters matched by AM. It follows that v has suffix wx; in addition, by Lemma 4.4,
wx is periodic in x. Thus [t] > [w].

Prior to unmarking read nodes, the amortized cost of AM2 would be at most -2s2, since
all the characters compared by AM2 were previously unread (for]Sx] < Iv] by Lemma 6.4(i)).
Hence min{2s2 2, [tbx[+ > [t[characters are unmarked. Following this unmarking, the
Itb[> [wl characters immediately to the right of left(x, VR2) are unmarked; by Lemma 4.8,
these characters are not read again prior to the current attempted match. So the number of
marked characters in at the time of the current attempted match is bounded by the sum of:

(i) (Iv[- 2) characters in VR1,

(ii) If vR2 vL, (11 Iwl) characters in vR2, and otherwise Ixl characters in vL and
(11- Iwl- Ixl) characters in ve2,

(iii) Iwl characters in wL.
This is a total of at most 21vl 2 marked characters. Hence the amortized cost of the

current attempted match is at most -1. (This can be improved to -2 by a more elaborate
argument.)

Case 3.4.1B. AMl uses the bad character shift. Let x denote the overlap of p and v
prior to attempted match AM. Let AM2 be the first subsequent early attempted match that
compares a character of re2, if any.

We observe that the bad character shift overlaps ve by more than Ixl characters. By
Lemma 6.2, the good suffix shift of AM aligns Pr with Vel. Since the length of the good
suffix shift, in this case, is a multiple of Ipl (by Lemma 6.1(i)), following the good suffix shift
p would overlap vR by Ixl characters. Since the bad character shift is used, it results in a
larger overlap.

There are three subcases.
Subcase (i). AM2 does not exist, or in AM2, Pr is to the right of the leftmost wxl

characters of v. Then the number of marked characters in at the time of the current
attempted match is at most (Ivl- -Iwxl) + (Ivl- 2) + Iwl + Ixl _< 21vl 3 (Ivl- 2 bounds

ANALYSIS OF BOYER-MOORE ALGORITHM 1087

the number of marked characters in I)R1 Ivl Iwxl bounds the number in I)R2 marked
after the shift by AM, and wl / Ix bounds the number marked before the shift by AM1).
Thus the amortized cost of the current attempted match is at most -2.

text
L0L I)L /)R1

pattern
x

pattern prior to AM2

pattern after AM2
applies the matching shift

FIG. 11. Case 3.4.1 B-the bad character shift.

Subcase (ii). Pr is aligned with one ofthe leftmost Iwxl characters in vR1 and Ixl Ivl/2.
(See Fig. 11.) Let s2 be the length of the good suffix shift for AM2 and let z be the suffix of
p of length s2. Let x’ be the overlap of p beyond left(x, vR1) at the start of attempted match
AM2; by assumption, Ix’l _< Iwl. Let tbx be the longest suffix of v periodic in x. In turn, we
show the following.

(i) Let 2’ be the generator for x’. x is cyclic in Y’.
(ii) AM2 mismatches at the (Itbxl / 1)th character compared.
(iii) Il < Izl.
(iv) The amortized cost is at most -2.

(i) is shown as follows. Lemma 4.4 is applied to the prefix x of v and to the suffix xx’
of p, which match on their overlapping portion during AM2; because p has suffix x also, it
follows that xx’ is periodic in x’. Let Y’ be the generator for x’. Next, by applying Lemoaa
4.4 to the suffix wx of p and the string wL, which match on their overlapping portion during
AM1, it follows that wx is periodic in x. Since Iwl >_ Ix’l, x’ is a suffix of wL. Let ’ be
the substring of p aligned with right(wL, ’) during AM1; by Corollary 4.3, ’ is the trivial

cyclic shift of 2’. Thus x is cyclic in ’. It follows that w is cyclic in ’ and as p has suffix
wx, 151 >_ Iwl.

By Lemma 6.4, AM2 mismatches at the (Itbxl + 1)th character compared (to see this note
that the longest suffix of v periodic in ’ and hence xx’ has length Itbxl). (Note that tb has
different meanings here and in the lemma.) Also by Lemma 6.4, [zl > Itbxl 12"1 >_ Itbl.

To obtain the amortized bound we need at least wl + characters of ve2 to remain
unmarked aside from left(x, v2); then at most 21vl 3 characters of will be marked at

the time of the current attempted match, which yields the -2 bound on the amortized cost.

Following the shift due to AMz, the potential at hand for unmarking characters again is at

least 21zl Ixl Ix’l; to obtain Iwl + unmarked characters in v2 aside from left(x, vR2),
we need

(Ivl- Ixl) (ixl- Ixx’l + 1) + (21zl- Ixl- Ix’l) Iwl + 1.

(The first term is the number of characters in VR2 unmarked before AM2; the second term is the
number of characters in vR2 read by AM2.) Thus it suffices that Iv[2Ix[+ 2lz[>_ 2[tbl + 2,
which is true when [xl < Ivl/2.

1088 RICHARD COLE

Subcase (iii). Pr is aligned with one of the leftmost Iwxl characters in VR1 and Ixl > Ivl/2.
Let y be the generator of the suffix of p of length [vl [x l. In turn, we show the following.

(i) x has core y.
(ii) AM2 compares at most [y[characters of VR2.
(iii) AM2 is the last early attempted match for the current attempted match.
(iv) The number ofmarked characters for the current attempted match is at most 2Iv[- 3,

and hence the amortized cost is at most -2.
By Lemma 4.4, v and hence x have core y. (since x, a suffix of v, matches a prefix of

v). Any early attempted match AM2, subsequent to AM, which matches a character of vR2
will have matched a suffix of p of length greater than Ixl (> lyl) and at least Ix[characters
of vgt. Also, AM2 can compare at most lY[characters of v2 (this can be seen as follows" v
is not cyclic in y, by assumption, and at least one character of vgt is compared, thus the "y"
substrings in p and v2 cannot be aligned). The resulting good suffix shift will have a length
of a multiple of lyl, since y is primitive and v is periodic in y. Furthermore, the resulting shift
must align Pr and tr (since this is the least shift by a multiple of [y[that places a different
character in the mismatch location).

Consequently, the number of marked characters for the current attempted match is at most

Ivl / (Iwl / Ixl) 2 < 2lvl 3 (Iv] is the number of characters compared in the attempted
matches between AM1 and the current attempted match,]w] Ix is the number of characters
of compared by AM, and 2 is the lower bound on the number of characters unmarked due
to the bad character shift).

Case 3.4.2. Fewer than Iv[characters are matched. The shift is a good suffix shift. For by
Lemma 6.3 a bad character shift has length less than [vl. Thus the bad character shift would
align the rightmost instance in p of the mismatched text character with that text character,
thereby leaving Pr aligned with ohe ofthe leftmost [vl characters of t, contrary to the definition
of Case 3.4.

Let r be the number of characters matched. Note that r > [w[. We show that s > r and
then we upper bound the amortized cost by -2.

Suppose, for a contradiction, that s < r. Since S < Ii)l, lYl < Ixl. (See Fig. 12.) Since
a suffix of p, of length It l, is periodic in v (by Lemma 4.6(i)) and the shifted pattern matches
the text characters matched by AM, y must be a prefix of x.

Next, we show that there is a string z such that both x and y are cyclic in z. The portion
Y of the shifted pattern, aligned with the suffix x of p prior to the shift, must match the suffix
x. Note that Y yv’ where v’ is a prefix of v. Prior to the shift, xt is aligned with (VL)t, SO

v’ is a prefix of x also. By Lemma 4.4, applied to x reversed, x yi y, for some >_ where
y’ is a proper prefix of y. Because y is also a suffix of x (since they are both suffixes of p),
using Corollary 4.3, we conclude that there is a primitive string z such that both x and y are
cyclic in z.

In addition, the suffix of p of length r has core z. (Consider the portion of the pattern,
following AM, that is aligned with the r text characters matched by AM; it comprises the
prefix of v of length Ix[[y[, preceded on the left by the suffix of v of length r ([xl lyl).
Also, it matches the suffix of v of length r. By Lemma 4.4, the suffix of Iv[of length r is

periodic in its suffix of length Ix[lyl; in turn, this suffix is periodic in z.) The assertion
follows.

Finally, note that x is a prefix of v (consider the attempted match AM1 and the portion of
with which x is matched).

To avoid v being cyclic in z, we need that in 5 right(v, p), the suffix of length r overlaps
with left(x,) by fewer than Izl characters. Otherwise, by Corollary 4.3, the overlapping
portion would comprise aligned instances of string z; it would follow that v was cyclic in z.

ANALYSIS OF BOYER-MOORE ALGORITHM 1089

Thus we need r + Ixl < Ivl-+-Izl, which implies r < Ivl + lyl- Ixl s; this is a contradiction.
Thus the case s < r does not arise.

text w l)R2 1)R1

pattern sX zz

pattern after AM1
Y Y

FIG. 12. Case 3.4.2.

Following the shift due to AM, up to SI characters can be unmarked; hence all the
characters read by AM are unmarked. These unmarked characters include wL plus the
character immediately to the right of wL. By Lemma 4.8, these wl + 1 characters are not
reread until the current attempted match. So there are at most 2lvl 3 marked characters
in at the time of the current attempted match, and hence the amortized cost of the current

attempted match is at most -2.
Case 3.5. AM, an early attempted match, had Pr aligned with (vL)r. Because p is not

3-periodic, p Cow, wvv, where w is a suffix of tb, which in turn is a proper suffix of v.
The resulting shift has length vl. Hence the number of unmarked characters for the current
attempted match is at least vl. Thus the amortized cost of the current attempted match is
bounded by vl + wl + 21vl if tl > wl, and by vl + wl 21vl otherwise; these are
both at most -1.

In conclusion we have the following theorem.
THEOREM 6.5. The BM string matching algorithm performs at most 3n 3(n m +

1)/(m + 2) comparisons when matching a nonperiodic pattern of length m against a text of
length n.

Proof Clearly each pair of consecutive attempted matches, whose shifts have combined
length at most /3 + [] + 1, has amortized cost at most -2. We show that each pair
of consecutive matches, whose shifts have combined length [+] + 1 + s, s > 1, has
amortized cost at most -2- s. Let the initial attempted match result in a shift of length s’; then
it has amortized cost -2s’ if s’ > and if s’ 1. Thus the maximum total amortized cost
is obtained if all the attempted matches form pairs with associated combined shifts of length

m
3- + 3- + 1. This leads to a total amortized cost of at most 3n 2(n -m+ / 3- + 3- + 1)

which is bounded by 3n 3(n m + 1)/(m + 2).
In right-to-left order, each unpaired (long) shift of length [+ + r, r >_ 0, is paired

with the immediately preceding shift. This leaves at most one unpaired shift of length greater
mthan + 1, and if present it is the very first shift of the algorithm.

mConsider such a pair of consecutive shifts. Let the first shift have length l. If + r < 3-],
then the pair of attempted matches producing these two shifts has amortized cost at most
-2. If + r [] + s, s > 1, the amortized cost of the second attempted match is at

rnmost m 2(/3- + + r) -1 s r > -1 s. Because the first attempted match
has amortized cost at most -1, together the pair have amortized cost at most -2 s, as
claimed.

1090 RICHARD COLE

COMMENT. When matching the pattern p wvv against text wvk, where w is the
,,+1 2m + 3 comparisons arelength vl suffix of v and v is primitive, for k > 2, 3n 3--f

performed, a slight improvement on the lower bound given in 3. We do not state this lower
bound there, because variants of the BM algorithm avoid this case.

7. 3-periodic patterns. Suppose that the pattern, p, is of the form p wvi, where v is
the core of p, w is a proper suffix of v, possibly empty, and > 3.

One approach is to find instances of the pattern p’ wv. A sequence of such instances,
each separated by distance v I, corresponds to an instance of pattern p. It is not hard to de-
termine p’ in O(m) time. However, this is not a very attractive solution since p’ can itself
be periodic and thus a recursive use of this approach may be needed. Clearly this approach
performs no additional comparisons with text characters over what is implied by the bound of
Theorem 6.5, where the m in the theorem now denotes the length of the pattern that is actu-
ally being matched (i.e., the pattern obtained by the just-described recursive decomposition).
However, additional work is needed to keep track of the sequence of patterns p’ that have been
found; it can be shown that over all recursive levels of such patterns, this is an additional O (n)
work.

Instead, we use the fact that the bound of Theorem 6.5 applies when matching pattern
p’ wvv. Clearly there is no recursive decomposition in this case. To detect instances of
pattern p, the following index j is recorded. Let qj wvJ. (See Fig. 13.) We record the
largest j such that the text contains an instance q) of the pattern qj, where (@)r is aligned
with P’r"

text

pattern p’

If z has suffix w, j 3

Otherwise, j 2

FIG. 13. Periodic patterns.

Following a successful match of p’, j is modified as follows. If j 1, then a match
of p has been found; j is unchanged. If j < 1, then j is incremented. If the attempted
match is not successful j is set to one.

In conclusion, we have the following theorem.
THEOREM 7.1. Suppose the BM string matching algorithm is applied to a pattern p and

a text of length n. Let p wvi, where v is the core of p. Then the BM algorithm performs
atmost 3n 3(n m’ + 1)/(m’ + 2) comparisons, where m’ IP[ifi < 2, andm’ IwvZl
ifi>2.

Comment. Some further slight improvements to the bound are possible. Specifically,
note that p wv, with v the core of p, does not have another core v’, with p w’v’k, for
some k > 2 if [w[[vl or Ivl 2. Thus patterns p wv, k >_ 2, with Iw] Ivl or

lvl- 2 can be matched by matching p’ wv, as in this section. This then allows the amortized
bounds given earlier for cases 2 and 3 to be improved to -2 for each attempted match, giving
an upper bound of roughly 3n 6_n. Further improvements are much more intricate.

ANALYSIS OF BOYER-MOORE ALGORITHM 1091

Acknowledgments. I thank Rajamani Sundar for his comments. I also thank the referees
for their suggestions concerning the presentation of the result.

REFERENCES

A.V. AHO AND M. J. CORASIC, Efficient string matching: An aid to bibliographic search, Comm. ACM, 18
(1975), pp. 333-340.

[2] A. Ar’oSTOtIco AND R. GIANCARLO, The Boyer-Moore-Galil string searching strategies revisited, SIAM J.
Comput., 15 (1986), pp. 98-105.

[3] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The design and analysis of algorithms, Addison Wesley,
Reading, MA, 1973.

[4] A. AMIR, G. M. LANDAU, AND U. VISHKIN, Efficient pattern matching with scaling, Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 1990, pp. 344-457.

[5] G. BRASSARD AND E BRATLEY, Algorithmics. Theory & Practice, Prentice Hall, Englewood Cliffs, NJ, 1988.
[6] R. BAEZA-YATES, G. H. GONNT, M. RGNIER, Analysis of Boyer-Moore type string searching algorithms,

Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA,
1990, pp. 328-343.

[7] R. BOYER AND S. MOORE, A fast string matching algorithm, Comm. ACM, 20 (1977), pp. 762-772.
[8] M. CROCHEMORE, A. CZUMAJ, L. GASINIEC, S. JAROMINEK, T. LECROQ, W. PLANDOWSKI, AND W. RYTrER,

Speeding up two string-matching algorithms, Proceedings of the Ninth Annual Symposium on Theoretical
Aspects ofComputer Science, Cachan, France, Lecture Notes in Computer Science, 577, Springer Verlag,
Berlin, New York, 1992, pp. 589-602.

[9] R. COLE AND R. HARIHARAN, Tighter bounds on the exact complexity of string matching, Proceedings of
the Thirty Third Annual IEEE Symposium on the Foundations of Computer Science, Pittsburgh, 1992,
pp. 600-609.

10] R. COLE, R. HARIIaARAN, M. PATERSON, AND U. ZWICK, Which patterns are hard tofind, to appear, this journal.
11 Z. GALL AND R. GIANCARIO, On the exact complexity of string matching: upper bounds, SIAM J. Comput.,

21 (1992), pp. 407-437.
12] T.H. CORMEN, C. E. LESERSON, AND R. L. RVEST, htroduction to Algorithms, McGraw Hill, New York, 1990.
13] M. CROCHEMORE AND D. PERRN, Two-waypattern matching, Tech. report, Laboratoire Informatique, Th6orique

et Programmation, Universit6 Paris 7, 1989.
[14] Z. GALIL, On improving the worst case running time of the Boyer-Moore string matching algorithm, Comm.

ACM, 22 (1979), pp. 505-508.
[15] String matching in real time, J. ACM, (1981), pp. 134-149.
16] Z. GALIL AND K. PAR:, An improved algorithmfor approximate string matching, Proceedings of the Sixteenth

International Colloquium on Automata, Languages and Programming, Stresa, Italy, Lecture Notes in
Comput. Sci. 372, Springer-Verlag, Berlin, New York, 1989, pp. 394-404.

17] Z. GALII AND J. SEIFRAS, Time space optimal string matching, J. Comput. System. Sci., 26 (1983), pp. 280-294.
[18] L.J. GumAs AND A. M. ODLYZI,:O, A new proofofthe linearity ofthe Boyer-Moore string searching algorithm,

SIAM J. Comput., 9 (1980), pp. 672-682.
19] D.E. KNUTI4, J. MORRIS, AND V. PRATT, Fast pattern matching in strings, SIAM J. Comput., 2 (1973), pp. 323-

350.
[20] R. KARP AND M. O. RA3IN, Efficient randomizedpattern matching algorithms, IBM J. Res. Develop., 2 (1987),

pp. 249-260.
[21 G.M. LANDAU AND U. VISHKIN, Fastparallel and serial approximate string matching, J. Algorithms, 10 (1989),

pp. 262-272.
[22] M. LOTrAm, Combinatorics on Words, Addison-Wesley, Reading, MA, 1982.
[23] W. RYTTER, A correctpreprocessing algorithmfor Boyer-Moore string searching, SIAM J. Comput., 9 (1980),

pp. 509-512.
[24] D.D. SLEATOR AND R. E. TARJAN, Amortized efficiency oflist update rules, Proceedings of the Sixteenth Annual

ACM Symposium on Theory of Computing, Washington D.C., 1984, pp. 488-492.
[25] E. UI:ONEN, Finding approximate patterns in strings, J. Algorithms, 6 (1985), pp. 132-137.
[26] U. VSrKIN, Optimalpattern matching in strings, Informa. Control, 67 (1985), pp. 91-113.
[27] U. VSrIN, Deterministic sampling A new techniqueforfast pattern matching, Proceedings of the Twenty

Second Annual ACM Symposium on Theory of Computing, Baltimore, MD, 1990, pp. 170-180.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1093-1137, December 1994

() 1994 Society for Industrial and Applied Mathematics
001

A GRAMMAR-BASED APPROACH TOWARDS UNIFYING HIERARCHICAL
DATA MODELS*

MARC GYSSENSf, JAN PAREDAENS:!:, AND DIRK VAN GUCHT

Abstract. A simple model for representing the hierarchical structure of information is proposed. This model,
called the grammatical model, is based on trees that are generated by grammars; the grammars describe the hierarchy
of the information represented by the trees. Two methods for querying in this data model are given. The first,
called the grammatical algebra, is based on a set of primitive grammar-oriented operators, the second, called the
grammatical calculus, on local transformations on the trees. The semantics of both is formally defined. Decidability
issues regarding the grammatical calculus are investigated. Finally, the two querying methods are proved to be equally
expressive.

Key words, information base, grammars, trees, transformations, algebra, calculus

AMS subject classification. 68P 15

1. Introduction. Until the mid-1980s much attention was paid to the relational database
model (see, e.g., [17], [18], and [21]). We were intrigued by its simplicity, both for modeling
and manipulating data. Recently, however, we became aware of its drawbacks when trying to
model data applications beyond the traditional business-oriented applications, such as CAD-
CAM, office automation, and text-oriented and multimedia databases. Therefore, a great
number of data models have been proposed as a possible successor of the relational model.

Semantic data models, such as ER [7], FDM [19], SDM [12], Format [13], and IFO
[2], provide a rich set of design tools for representing the complex interrelationships of data.
These tools are typically variants of familiar aggregation, generalization, and set-formation
constructs. Although query languages have been defined for some semantic data models, their
main purpose is to provide database design tools that are more powerful than the modeling
tools of the relational model. The logic-based models, such as Datalog [21], LDM [16],
and LDL [4], zero in on the limited expressiveness of data manipulation languages of the
relational model, i.e., they generalize the relational calculus to express queries that can be
specified recursively. Finally, there are the relational extensions of the standard relational
model, such as RM/T [8] and the nested relational model [9], [14], [20]. These models try
to strike a balance between the elegance of the relational model and the expressiveness of
semantic data models. In other words, they are not as rich as the semantic models in their
modeling power, but they provide simple yet powerful extensions of the relational model.

Although there exist significant differences between all these models, they share the
property that they recognize as the most fundamental characteristic of data its hierarchical
structure. On the other hand, however, it is not quite clear whether they can effectively model
all data applications which exhibit a hierarchical nature. A good example are textbases 11],
which in addition to having a hierarchical structure, are constructed out of rules that follow
a grammatical structure. Grammatical structures are also implicitly present in, e.g., VERSO

], [5], a variation of the nested relational model, where at some level data are structured as
regular expressions.

It is the intention of this paper to use a simple and a well-known model as a unifying
skeleton to describe the hierarchy in an information base as well as the grammatical structure

*Received by the editors September 26, 1990; accepted for publication (in revised form) June 29, 1993.
tDepartment WNI, University of Limburg (LUC), B-3590 Diepenbeek, Belgium (gyssens@

charlie, luc. ac.be).
Department of Math and Computer Science, University of Antwerp (UIA), B-2610 Antwerpen, Belgium.
Computer Science Department, Indiana University, Bloomington, Indiana 47405-4101.

1093

1094 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

of texts. This model has been presented informally in 11]. It is called the grammatical model
and is based on grammars introduced some 30 years ago to study the syntax of programming
and formal languages (see, e.g., 10]). The grammatical model will benefit greatly from the
clear understanding of the grammars and from their major importance for computer science.

It seems natural to formalize a hierarchical structure by a tree. Therefore, we represent
information as a tree which can be generated by a grammar. Each leaf of the tree represents
an object, and the internal nodes represent the relationship between the objects. The grammar
specifies the scheme, i.e., the overall structure between these relationships. In this way, the
information about two employees (one manager and one worker) will be represented by the
tree in Fig. 1.

<Emps>

Ne><<Type> --...._ps>
/ <Arn> <Man> _(’.,,,.,.,<SaI>-I<Type>

Jo,h,n $ 3!0 /<Dep> M!rl iJ/<Am> <Wrk>
S 20]<Level>

Wl

FIG. 1. Tree representing information about employees.

This tree is generated by a grammar with the following productions:

PI: (Emps} --+ (Emp}(Emps)
P2 (Emp) -- (Name} (Sal) (Type)
P3: (Type) (Man}.

P4 (Type) (Work)
P5 {Man) -- (Dep)

P6 (Work)-- (Level)
P7 (Sal) -- $(Am)

Notice that production P1 specifies information as a list, which is used here to model a set.
Production P2 specifies an employee as the aggregation of his/her name, salary, and type.
Productions P3 and P4 define the type of an employee as either manager or worker, which
is an example of generalization, or, alternatively viewed, an example of specialization. This
example illustrates that the grammatical model allows for the three basic constructs of most
data models (set-formation, generalization, and aggregation) in a uniform way. Finally notice
production P7. The grammatical model allows, in a convenient way, for additional syntactic
features; e.g., the terminal symbol "$" indicates that the salary is expressed in dollar amounts.

For hierarchically organized data, the tree structure of the grammatical model also has
some advantages with respect to implementation. Contrary to the relational and the nested re-
lational models, for example, the straightforward implementation of the grammatical model is
feasible, yielding a physical representation that is fairly close to the conceptual representation.

Turning to the dynamical aspects of the grammatical model, we see that there are two
obvious ways to express queries by transforming the trees. A first method consists of defining
operators that locally transform the trees and the grammars. A second way consists of de-
scribing this transformation in a less procedural way, indicating the relationship between the
given trees and the result trees. For reasons that are evident these methods are called the algebra

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1095

and the calculus, respectively. They are proved to be equivalent. Although the calculus is the
more natural of both methods, its formal semantics need a detailed description to handle all
possible problems of cyclicity and ambiguity.

The paper is organized as follows. In 2, we give the basic definitions of the grammatical
model. In 3, we define an algebra to query and manipulate information bases defined over
the grammatical model. Section 4 introduces an alternative query mechanism called the
grammatical calculus. The grammatical calculus is based on pattern-matching. Section 5
briefly discusses some decidability issues regarding the grammatical calculus. In 6, we show
that the grammatical algebra and calculus are equivalent with respect to expressive power.
Finally, 7 proposes some directions for future research.

2. The grammatical model. Throughout this paper, we assume the reader is familiar
with the basic terminology concerning trees (e.g., [3]) and formal languages (e.g., [10]). As
stated in 1, we shall represent an information base as a tree, the structure ofwhich is controlled
by a formal grammar. We shall borrow the terms "scheme" and "instance" from the relational
model and use the former to indicate the grammar and the latter to indicate the tree.

DEFINITION 2.1. An information base scheme is a grammar (V, T, S, P) with
V being a finite set of attributes;
T being a finite set of constants;
S being a set of axioms, S

V;

P being a finite set of productions of the form A s where
-AV,
-s (V tO T)*,
-each attribute appears at most once in s.

Actual data will be represented in a tree the internal nodes of which are labeled by
attributes. Note that we do not require the leaves to be labeled by constants; if a leaf is labeled
by an attribute, this simply means there are no data known for that attribute.

DEFINITION 2.2. Let (V, T, S, P) be an information base scheme. A dam-tree
(D-tree) over is a tree whose nodes are labeled with elements of V tO T in such a way that
each internal node is labeled by an attribute. The set of all D-trees over is denoted 79(U).
The empty D-tree is denoted E.

In the upcoming sections, we shall frequently use some operations on D-trees, which will
be denoted as in Definition 2.3.

DEFINITION 2.3. Let (V, T, S, P) be an information base scheme, and let D be a
D-tree over . Then

if n is a node of D, lbl(n) denotes its label;
rt(D) denotes the root of D and rt(D) the label of the root of D;
if n is a node of D with n:/: rt(D), par(n) denotes its parent and par(n) the label of its

parent;
if n is a node of D, chin(n) is the sequence of all its children, ehtrs(n) is the sequence

of the subtrees of D whose roots are the children of n, and chln(n) is the sequence of the labels
of all the children of n.

Finally, a D-tree over an information base scheme that is also a derivation tree will be
called an information base instance.

DEFINITION 2.4. Let (V, T, S, P) be an information base scheme. A D-tree D over
is called an information base instance over if

rt(D) S;
for each internal node n in D, the production lbl(n) chln(n) is in P.

The empty string is denoted

1096 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

Example 2.5. Consider the information base scheme (V, T, S, .P) with
V {Fams, Fam, Father, Mother, Children, Child, String, Chr};
T {A Z,a z};
S-- {Families};
P {(Fams) (Fam)(Fams)

(Fam) (Father)(mother) (Children)
(Children) (Child)(Children)
(Father) ---+ (String)
(mother) (String)

(Child) ---+ (String)
(String) --+ (Chr) (String)
(Chr) -----+ A

Chr) ----+ z
representing the structure on information base concerning families with their children. Note
that this information base scheme also includes an "implementation" of strings. For example,
the string lan must be represented as the D-tree in Fig. 2.

<String,

ring>

<Ch
ng>

a[a
<L;nr>

<String-

FIG. 2. Representation ofa string.

However, we might have considered strings as elements of some set, sufficiently large
for our purposes, rather than as a sequence of characters. In the upcoming sections we shall
not bother with this low-level representation, since this is not our main concern. From now
on, we shall no longer write productions for attributes such as (String). With this in mind,
the D-tree in Fig. 3 represents an information base instance over showing two families, the
former composed of lan and Mary with children Brian and Wendy and the latter composed of
Nick and Brenda with no children.

<Fams>

Fams>
m"-’"-’------ams>

_/.:,.NN ,r’.hildron J \ <Children,<Father>

lan

Brian <Children> Nick Brenda

Wendy

FIG. 3. An instance ofan information base aboutfamilies.

Grammar-based models turn out to be highly appropriate for representing text-dominated
databases, as was observed by Gonnet and Tompa. The following example is inspired by 11].

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1097

Example 2.6. Consider an information base scheme with the following productions:
(Refs) (Ref) (Refs) (Source) (Journ) (Issue)
(Ref) ---+ (Auths) (Tit) (Source) (Year) (Source) (Book)
(Auths) (Auth)(auths) (Issue) ---+ (Vol) (Nr).

The attributes not mentioned in the left-hand side of some production are supposed to take
either a string or a number as a value. Part of some information base instance is represented
in Fig. 4.

<Refs>

<Ref>
<Refs>

<Auths> <Source> <Year>
<Auth> ssue>

The Format 1984

<Auth> Model <Vol>
<Nr>

Hull <Auths> JACM

Yap 31 3

FIG. 4. An instance ofa bibliographic information base.

We will also need the notion of isomorphic D-trees:
DEFINITION 2.7. Let (V, T, S, P) be an information base scheme, and let D1 and

D2 be D-trees over . D1 and D2 are said to be isomorphic, denoted Dl D2, if there exists
a mapping between the nodes of D1 and D2 that is one to one and onto, preserving the labels
and the tree structure. Isomorphism is extended to finite sequences of D-trees in the canonical
way.

3. An algebra for transforming information bases. In this section, we propose an
algebraic language for the manipulation of grammatically defined information bases that not

only allows us to formulate queries, but also to apply more general transformations. Each
operator is defined both on scheme and on instance level. Here we implicitly assume that only
one information base instance is considered at a time.

The algebra we propose consists of eight basic operators, defined below. At the same
time, we also define some derived operators, both as an illustration and because we need them
further on.

First, we define three types of substitutions, which do not alter the structure of an infor-
mation base instance, but only change (attribute) labels.

The parent substitution Err[A -+ s, B] substitutes by B all attributes A from which s is
derived.

DEFINITION 3.1. Let (V, T, S, P) be an information base scheme, and let D be an
information base instance over . Let A s 6 P, or A 6 V and s e. Let B be an attribute
(B does not have to be in V), and suppose that A and B never occur simultaneously in the
right-hand side of a production of P. The parent substitution is defined as follows:

Ezr[A --+ s, B]() ’ (V’, T, S’, P’) where
-v’= VU{B};
-ifA S, thenS’--SU{B},elseS’=S;
-Let P"= (P- {A s})tO {B -+ s}. Then

P’= P"U {C slBs21C V’, sis2 (V U T)*, and C --+ SlAS2

1098 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

Ezr[A -- s, B](D) is obtained by simultaneously relabeling by B each node n in D
with lbl(n) A and chin(n) s.

Note that the condition of A and B not occurring simultaneously in the right-hand side
of a production of prevents B from appearing more than once in the right-hand side of a
production of ’.

The child substitution Ex[A -- sBs2, B, C] substitutes by C all attributes B in a string
s Bs2 that is derived from A.

DEFINITION 3.2. Let (V, T, S, P) be an information base scheme, and let D be an
information base instance over . Let B 6 V, and let A -- s Bs2 P. Let C be an attribute
(C does not have to be in V), and suppose that C does not occur in ss2. The child substitution
is defined as follows:

Ex[A --+ siBs2, B, C]() ’ (V’, T, S, P’) where
v’= vu{c};
Let P" (P A --+ s Bs2 }) U A -+ s Cs2 }. Then

P’--- P"U {C -- sis (v’u T)* and B s 6 P"}.

Ex[A s Bs2, B, C](D) is obtained by simultaneously relabeling by C each internal
node n in D with lbl(n) B, par(n) A and chin(par(n)) s Bs2.

As before, the condition on C prevents illegal substitutions.
Finally, we define child equality substitution. The child equality substitution E[A

Sl Bs2, B --+ s3, C, D] substitutes by D all attributes B in a string s Bs2 that is derived from A
and from which s3 is derived, provided B has both a sibling and a child labeled C that define
isomorphic subtrees.

DEFINITION 3.3. Let (V, T, S, P) be an information base scheme, and let D be an
information base instance over . Let A sBs2, B s3 P. Let C 6 V, and suppose
that C occurs both in ss2 and s3. Let D be an attribute (D does not have to be in V), and
suppose that D does not occur in s s2. The child equality substitution is defined as follows:

E[A s Bs2, B --+ s3, C, D]() ’ (V’, T, S, P’) where
v’= v u

-if A B, then P’- P U {A -- s1Ds2, D-- s3, D--+ siDs2}, else P’=
P U {A --+ s Ds2, D s3}.

Let n be an internal node in D with lbl(n) B, par(n) A, chin(par(n)) s Bs2,
and chln(n) s3. Let m be the sibling and m2 be the child of n with label C and let D and
n2 be the subtrees of D with rt(D) m and rt(D2) m2. Then E[A --+ s Bs2, B --+

s3, C, D](D) is obtained by simultaneously relabeling by D each such node n for which

D1 D2.
Example 3.4. Consider an information base scheme (V, T, S, P) with V

{A, B, C, D}, T {a, b}, S {A}, and

P A-+ BA, A-- B,B--- CD, C-+ a,C--+ b,D--- a,D-- b},

and let D be the information base instance over shown in Fig. 5.
Then the parent substitution Er[A -- BA, E] yields the information base scheme ’(V’, T, S’, P’) with V’ {A, B, C, D, E}, S’ {A, E}, and

P’ E --- BA, A --- B, B --- CD, C --- a, C ---- b, D --- a, D --- b, E -- BE}

and the information base instance D’ in Fig. 6.
The child substitution X E -- BA, A, E] applied to the information base thus obtained

yields the information base scheme " (V’, T, S’, P") with

P" A -- B, B ---- CD, C --- a, C --+ b, D --- a, D --- b, E -- B E, E -- B}

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1099

a a
C D B

a a

b b

FIG. 5. An information base instance D.

E

C

a a
B

b b

FIG. 6. The information base instance D’ Err[A BA, E](D).

and the information base instance D" in Fig. 7.
Finally, the child equality substitution Ee [E -- BE, E BE, B, D] applied to the last

result yields the information base scheme "’ (V’, T, S’, P’") with

P’" A ---, B, B --+ CD, C -- a, C --+ b, D --+ a, D --, b,

E---, BE, E B,E---, BD, D-- BE, D-+ BD}

E

FIG. 7. The information base instance D" Ex[E BA, A, E](D’).

1100 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

and the information base instance D’" in Fig. 8.
Next, we define two operators that allow the introduction of new nodes and the removal

of existing ones.

E

B D

C

b b

FIG. 8. The information base instance D’" E[E B E, E B E, B, D](D").

The node insertion Nt[A --+ S1S2S3, S1Bs3] inserts in each derivation of SlS2S from A a
node B as a child of A and the father of s2.

DEFINITION 3.5. Let (V, T, S, P) be an information base scheme, and let D be an
information base instance over . Let A --+ SlS2S3 P, or A 6 V and ss2s3 e. Let B be
an attribute not in V. The node insertion is defined as follows:

Nt[A -- S1S2S3, S1Bs3]() ’-- (V’, T, S, P’) where
v’ v u {};

-P’--(P- {A -+ sis2s3})U {A --+ s1Bs3, B --+ $2}.
Let n be a node of D with lbl(n) A and chln(n) sszs3. Then Nt[A

SlSzS3, sBs3](D) is obtained by simultaneously inserting for each such node n a node n’
for which lbl(n’) B, par(n’) n, and chln(n’) is the subinterval of chin(n) corresponding
to s2.

The node deletion N3[A] deletes each subtree whose root is labeled by A.
DEFINITION 3.6. Let (V, T, S, P) be an information base scheme, and let D be an

information base instance over . Let A V. The node deletion is defined as follows:
N[A]() ’= (V’, T, S’, P’) where
-V’- V-{A};
-S’-S-{A};
-Let P"= {B s lB V’, s (V’U T)*, and B s 6 P}. Then

P’- P"U {B SlS2 B V’, sis2 (V’U T)*, and B --+ slAS2 P}.

N3[A](D) is obtained by deleting each subtree D’ from D with rt(D’) A.
Example 3.7. Consider an information base scheme (V, T, S, P) with V

{A, B, C, D, E}, T {a,b,c,d,e}, S- {A}, and

P {A BCD, B --+ abEd, C c, D --+ Bd, E --+ e},

and let D be the information base instance over shown in Fig. 9.
Then the node insertion Nt[B -- abEd, a Fd] yields the information base scheme ’(V’, T, S, P’) with V’ {A, B, C, D, E, F} and

P’ {A --+ BCD, B aFd, C --+ c, D --+ Bd, E e, F --+ bE}

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1101

A

e a b E d

FIG. 9. An information base instance D.

and the information base instance D’ in Fig. 10.
The node deletion N6[F] applied to the information base thus obtained yields the infor-

mation base scheme " (V", T, S, P") with V" {A, B, C, D, E} and

P" A --- BCD, B --+ ad, C -+ c, D --- Bd, E --+ e

and the information base instance D" of Fig. 11.

A

FIG. 10. The information base instance D’ Nt[B abEd, aFd](D).

A

B
D

a

a d

FIG. 1. The information base instance D" N6[F](D).

Note that N3[A] applied to any of the above information bases would yield the empty
information base.

We also need two operators that copy information from one place in an information base
to another. They are defined recursively.

Essentially, the downward duplication A[A s Bs2, B s3, C, D] copies the subtree
with root C in a string s Bs2 derived from A as the rightmost sibling of a string s3 which is

1102 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

derived from B, and renames the root of that copy to D. What makes the definition below
somewhat involved is that, for reasons of uniformity, we have to require that this duplication
is propagated into these subtrees as well.

DEFINITION 3.8. Let (V, T, S, P) be an information base scheme, and let D be an
information base instance over . Let A ---> SlBS2 E P, and let either B ---> s3 E P or s3 --e.
Let C 6 V, and suppose that C occurs in sis2. Let D be an attribute (D does not have to be in
V), and suppose that D does not occur in s3. The downward duplication is recursively defined
as follows:

A[A -+ sl Bs2, B -- $3, C, D]() ’ (V’, T, S, P’) where
-V’= VU{D};
-P’= PU{B ---> s3D}U{D---> sis (V U T)* and C ----> s P}.

Let n be a internal node in D with lbl(n) B, par(n) A, chin(par(n)) s Bs2, and
chln(n) s3. Let m be the node in chin(par(n)) with lbl(m) C. Let D" be the subtree
of D defined by rt(D") m, and let D’" A6[A ---> sl Bs2, B ---> s3, C, D](D"). Then
A[A ---> s Bs2, B --+ s3, C, D](D) is obtained by simultaneously adding to chin(n) for each
such node n a rightmost sibling n’ with lbl(n’) D. The subtree D’ of A3[A s Bs2, B -->

s3, C, D](D) defined by rt(D’) n’ is then determined by chtrs(n’) - chtrs(rt(D’")).
Example 3.9. Consider an information base scheme (V, T, S, P) with V

{A, B, C}, T {a, b, c,d}, S {A}, and P {A --+ BaC, B --+ bd, C ---> cA, C c},
and let D be the information base instance over in Fig. 12.

A

b d

b d

FIG. 12. An information base instance D.

Then the downward duplication A3[A ---> BaC, B ---> bd, C, D] yields the information
base scheme ’ (V’, T, S, P’) with V’ {A, B, C, D} and

P’ {A ---> BaC, B --> bdD, C --+ cA, C c, D cA, D --+ c}

and the information base instance D’ of Fig. 13.
The downward duplication copies information downward into the tree; the upward dupli-

cation is its upward counterpart.
DEFINITION 3.10. Let (V, T, S, P) be an information base scheme, and let D be an

information base instance over . Let A s Bs2, B --+ s3 P. Let C E V, and suppose
that C occurs in s3. Let D be an attribute (D does not have to be in V), and suppose that D
does not occur in s s2. The upward duplication is recursively defined as follows:

ArIA s Bs2, B s3, C, D]() ’ (V’, T, S, P’) where
-V’-- VU{D};
-P’= PU{A--+sBs2D}U{Ds Is E (V U T)* and C --+ s E P}.

Let n be a internal node in D with lbl(n) B, par(n) A, chin(par(n)) sl Bs2, and
chln(n) s3. Let m be the node in chin(n) with lbl(m) C. Let D" be the subtree of D
defined by rt(D")= m, and let D’"= ArIA Sl BS2, B -- s3, C, D](D"). Then ArIA -+

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1103

FIG. 13. The infortnation base instance D’ A[A BaC, B bd, C, D](D).

S1Bs2, B -+ $3, C, D](D) is obtained by simultaneously adding to chin(par(n)) for each such
node n a rightmost sibling n’ with lbl(n’) D. The subtree D’ of Av[A --+ s Bs2, B --+

s3, C, D](D) defined by rt(D’) n’ is then determined by chtrs(n’) chtrs(rt(D"’)).
Since upward duplication is very similar to downward duplication, we omit an example.
Using both downward and upward duplication, it is possible to simulate sidewise dupli-

cation, defined below.
DEFINITION 3.11. Let (V, T, S, P) be an information base scheme, and let D be

an information base instance over . Let A --+ s Cs2 P. Let D be an attribute (D does
not have to be in V), and suppose that D does not occur in ss2. The sidewise duplication is
recursively defined as follows:

Acr[A --+ siCs2, C, D]() ’ (V’, T, S, P’) where
V’= V tO {D);

-P’= PU{AsCs2D}U{D--->s Is 6 (V U T)* and C -+ s 6 P}.
Let n be a node in D with lbl(n) A and chin(n) s1Cs2. Let m be the node

in chin(n) with lbl(m) C. Let D" be the subtree of D defined by rt(D") m, and
let D’"= Acr[A -+ sCs2, C, D](D"). Then Acr[A --+ sCs2, C, D](D)is obtained by
simultaneously adding to chin(n) for each such node n a rightmost sibling n’ with lbl(n’) D.
The subtree D’ of Acr[A --+ sCs2, C, D](D) defined by rt(D’) n’ is then determined by
chtrs(n’) chtrs(rt(D’")).

THEOREM 3.12. Sidewise duplication can be expressed in terms ofnode insertion, down-
ward duplication, upward duplication, and node deletion.

Proof Let (V, T, S, P) be the scheme of some information base, and consider the
sidewise duplication Acr[A SlCS2, C, D] in which A, C, D, s, and s2 are as in Defini-
tion 3.11. Let E be an attribute not in V. Then Acr[A -+ sCs2, C, D] can be performed by
consecutively executing the following operations:

1. the node insertion Nt[A s Cs2, s CszE];
2. the downward duplication A3[A --+ SlCszE, E --+ e, C, C];
3. the upward duplication ArIA SlCSzE, E C, C, D];
4. the node deletion NA[E].

In step 1, the node E is actually created so that downward duplication can always be applied,
even if s $2 e. I-}

Note that the effects of downward duplication, upward duplication, and sidewise duplica-
tion can be easily undone by deleting D (using the notations used in the respective definitions).
This observation yields a natural "embedding" of the nodes of the original information base

1104 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

instance into the resulting instance. From the definitions of the above operations, the result
below follows in a straightforward manner.

THEOREM 3.13. Let D be an information base instance over some appropriate scheme,
and let D’ be the resulting instance after a downward duplication, an upward duplication, or
a sidewise duplication. Let n and n2 be two nodes in D, and let nt and n’2, respectively, be
the corresponding nodes in D’. Let D and D2 be the subtrees ofD defined by rt(D) n
and rt(D2) n2 and let D’ and D2 be the subtrees of D’ defined by rt(D’) n’ and
rt(D) n. Then DI D’2 if and only ifD D2. Suppose furthermore that in D’ the
subtree D’3 is a ’duplicate" of D2. Let D’3’ be any D-tree defined by rt(D) rt(D) and
chtrs(rt(D’)) chtrs(rt(D)). Then D’2 D’3’ whence D’ D’3’ ifand only ifD1 D2.

Theorem 3.13 will turn out to be essential in the proof of our main theorem, given in 6.
Finally, we introduce a permutation. Basically, a permutation recursively rearranges the

children derived by some production A --+ s.
DEFINITION 3.14. Let (V, T, S, P) be an information base scheme, and let D be

an information base instance over. LetA -- s 6 P, orA 6 V ands e, and let
s2 6 (V t T)* contain the same attributes as s. The permutation is recursively defined as
follows:

I-I[A sl, s2]() ’= (V, T, S, P’) where

P’= (P- {A --+ s})U {A -- $2}.

Let n be a node in D with lbl(n) A and chin(n) s. I-I[A --+ s, s2](I)) is obtained
by first simultaneously substituting new nodes for chin(n) such that chln(n) becomes s2. Now
let B be an attribute in s2, and let m be the node in I-I[A s, s2](I)) with lbl(m) B and
par(m) n. Then the subtree D’ of I-I[A -- s, s2](1)) defined by rt(D’) m is isomorphic
to II[A Sl, sz](D"), where the D-tree D" is the subtree of D defined by rt(D") B and
par(rt(D")) n.

Our notion of permutation is somewhat wider than what is usually understood by this
term. A permutation does indeed permute attributes, but can also insert, delete, and rearrange
constants.

Example 3.15. Consider an information base scheme (V, T, S, P) with V A, B },
T {a, b, c}, S {A}, and P {A aB, B -+ bBc}, and consider the information base
instance over shown in Fig. 14 left.

A

a
B

b B c

A

a b B

FIG. 14. An example ofa permutation.

Then the permutation I-I[B --+ bBc, abB] yields the information base scheme ’(V, T, S, P’) with P’ {A -- a B, B -- abB and the information base instance shown in
Fig. 14 right.

Parent substitution, child substitution, child equality substitution, node insertion, node
deletion, downward duplication, upward duplication, and permutation define the grammatical
algebra. Many other conceivable operators can be expressed in terms of these eight, meaning

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1105

there is a sequence of instance-independent grammatical algebra operations that returns the
same result at the instance level. In general, however, it is unavoidable that the scheme returned
by the algebra sequence defines a larger language than the scheme returned by the original
operator (although in Theorem 3.12, they are equal).

We already saw that sidewise duplication can be expressed in the grammatical algebra.
Below, we give two more examples of derived operations that are often needed in practical
applications.

First, we introduce node merging. The node merging N#[A --+ s1Bs2, B s3] is
obtained by pruning out each attribute B in a string s Bs2 which is derived from A and from
which s3 is derived. In this way, s s3s2 will be derived from A instead.

/’DEFINITION 3.16. Let (V, T, S, P) be an information base scheme, and let D be an
information base instance over . Let A sBs2 E P, and let B --+ s3 E P, or B 6 V
and s3 e. Suppose that no attribute in s3 appears in ss2. The node merging is defined as
follows:

N#[A -+ s Bs2, B s3]() ’ (V, T, S, P’) where

P’ P U {A --+ s1s3s2}.

Let n be a node of D with lbl(n) B, par(n) A, chin(par(n)) sBs2, and
chln(n) s3. Then N#[A -- s Bs3, B s3](D) is obtained by simultaneously substituting
each such node n in chin(par(n)) by chin(n).

Clearly, on instance level, a node insertion NL[A sszs3, s Bs3] can be undone by the
node merging N#[A --+ s Bs3, B s2]. We now show the following.

THEOREM 3.17. Node merging can be expressed in the grammatical algebra.
Proof Rather than giving a notationally cumbersome proof, we illustrate the general

techniques that are needed on an example.
Consider an information base with scheme (V, T, S, P) where V {A, B, C},

T {a,b,c}, S {A}, and P {A --+ aBc, B -+ bC, C c}. The node merging
N#[A a Bc, B --+ bC] can be expressed by consecutively performing the following
operations:

1. the child substitution E)[A aBc, B, B’];
2. the upward duplication ArIA aB’c, B’ --+ bC, C, C];
3. the child substitution E) [A -+ a B’cC, B’, B"];
4. the node deletion N6[B"];
5. the permutation 1-I[A --+ acC, abCc];
6. the child substitution E) [A -+ a B’c, B’, B].

We invite the reader to check our claim on a concrete instance.
In general, step 2 must be carried out for each attribute in s3. In step 5, all the copied

attributes must be arranged in the right order and all the constants in s3 inserted in the right
place. [3

Below, we give another example of a derived operator that will turn out to be very useful
in the proof of our main result in 5.

DEFINITION 3.18. Let (V, T, S, P) be an information base scheme, and let D be an
information base instance over . Let A --+ siC1s2C2s P with C A and C2 - A.
Let B be an attribute (B does not have to be in V), and suppose that A and B never occur
simultaneously in the right-hand side of a production of P. The parent equality substitution
is defined as follows:

Ecr[A siCis2C2s3, C1, C2, B]() t (V’, T, S’, P’) where
-v’= VU{B};
-ifA S, thenS’= SU{B},elseS’= S;

1106 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

-Let P"= P U {B s1C1s2C2s3}. Then

P’ P" U {C --+ s4Bss C e V’, $4S5 E (V U T)*, and C $4As5 E P"}.

Let n be a node in D with lbl(n) A and chin(n) sCs2C2s3. Let m be the child
of n with label C1 and m2 be the child of n with label C2 and let D1 and D2 be the subtrees
of D with rt(D) m and rt(D2) m2. Let i)3 be the D-tree defined by rt(D3) m
and chtrs(D3) chtrs(D2). Then Ea[A -- sCs2C2s3, C1, C2, B](D) is obtained by
simultaneously relabeling by B each such node n for which D - 1)3.

The reader may wonder why we have imposed the restriction C A and C2 : A.
Indeed, without this restriction, parent equality substitution would still be well defined. In
the upcoming sections, however, we only need the restricted parent equality substitution, and,
although Theorem 3.19 below still holds for the unrestricted parent equality substitution, the
proof would become very involved.

THEOREM 3.19. Parent equality substitution can be expressed in the grammatical algebra.
Proof Let (V, T, S, P) be the scheme of some information base, and consider the

parent equality substitution Ea[A sCs2C2s3, C, C2, B] (cf. Definition 3.18). Let D
and E be attributes not in V. Then Ea[A -- sCs2C2s3, C, C2, B] can be performed by
consecutively performing the following operations:

1. the node insertion Nt[A --+ siCs2C2s3, SlClS2Ds3];
2. the child substitution Ex[A -- SlClS2Ds3, C1, C2];
3. the child equality substitution E[A --+ SlC2s2Ds3, D --+ C2, C2, E];
4. the parent substitution Ezr[A SlC2s2Es3, B];
5. the child substitution Ex[B sC2s2Es3, C2, Cl];
6. the child substitution Ex[A sC2s2Ds3, C2, CI];
7. the node merging M#[B --+ SlCls2Es3, E --+ C2];
8. the node merging M/z[A SlClS2Ds3, D --+ C2].]

We now return to the bibliographical Example 2.6 to illustrate on a more realistic in-
formation base how the grammatical algebra can be used to solve queries or to perform
transformations.

Example 3.20. Reconsider the information base of Example 2.6. Suppose we want to
extract only the information on journal titles (between double quotes) with the name of the
journal and the volume. The instance of Fig. 4 would then be transformed into the instance
of Fig. 15.

The Format
Model

<Refs>

"’’ <Refs>

<Journ> <Volume>

JACM 31

FIG. 15. A transformation ofthe information base instance ofFig. 4.

The transformation can be accomplished by consecutively performing the following op-
erations:

1. N[Attths)];
2. N6[(Year)];
3. zXv[(Source) (Journ)(lssue), (Issue) --+ (Vol) (Nr), (Vol), (Volume)];

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1107

4. N3[(Issue)];
5. N#[(Ref) (Tit)(Source), (Source) --+ (Jou,)(Volume)];
6. Fl[(Ref) ---, (Tit) (Journ) (Volume)," (Tit)" (Journ) (Volume)].

Observe that the instance obtained in the above example can be considered as a repre-
sentation of a flat relational database model relation in the grammatical model. Below, we
show how unary relational algebra operators can be performed. Note that, in order to simulate
union, difference, and join, we need binary operators on information bases. This is beyond
the scope of the present paper, however.

Example 3.21. Consider the following relational database relation R:

A B C

al bl cl

a2 b2 C2

This relation can be represented as an information base with scheme (V, T, S, P) where
V {U, R, A, B, C}, T {a b c }, S {U}, and

P {U RU, R --+ ABC, A -- a B --+ bl C cl

and with instance the tree shown in Fig. 16.

U

U

c
Uo

a2 b2 c2

FIG. 16. A representation ofa flat relation instance in the grammatical model.

We now consider three typical examples of unary relational algebra operators:
The renaming of A to A’ can be expressed as the child substitution
Ex[R --+ ABC, A, A’].

The projection of R onto AB can be expressed as the node deletion N3[C].
The selection A C can be expressed by consecutively performing the following

operations:
1. the parent equality substitution Ea[R -- ABC, A, C, R’];
2. the node deletion NS[R];
3. the parent substitution Eyr[R’ ABC, R].

If desired, redundant U-nodes can be removed by repeatedly applying the node mergings
N/z[U --+ U, U RU] and N#[U --+ RU, U --+ U].

Notice in the last example that the grammatical algebra does not have an iteration construct.
The number of applications of the node mergings is therefore instance dependent (in this case,
linear in the size of the instance).

4. A calculus for transforming information bases. Whereas in the previous section
we defined a transformation language on information bases based on eight primitive operators

1108 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

which we claim to be sufficiently powerful to express a large class of queries, it is also possible
to define a more declarative transformation language inspired by the relational calculus.

An expression in the grammatical calculus we propose consists of a set of conditions and
a transformation clause, both built from variables. Informally, applying a calculus expression
to an information base means performing the required transformations for each "occurrence"
of the variables satisfying the set of conditions. Since the variables in a calculus expression
represent so-called rootless data tree, we first explain this notion.

DEFINITION 4.1. Let (V, T, S, P) be an information base scheme. A rootless data
tree (R-tree) over is a finite sequence of D-trees over . The set of all R-trees over is
denoted 7().

We have to introduce the following notations concerning R-trees.
DEFINITION 4.2. Let (V, T, S, P) be an information base scheme, and let R be an

R-tree over . Then
R-- (D D,,) denotes the sequence of D-trees of which R consists;
top(R) (rt(D) rt(D,,)) denotes the sequence of the roots of the D-trees of

which R consists;
F denotes the empty R-tree.

Obviously, the isomorphism between D-trees defined in Definition 2.7 can be extended in
a natural way to R-trees. The definition of R-trees also leads us to the following straightforward
conclusions.

PROPOSITION 4.3. Let (V, T, S, P) be an information base scheme.
Any interval ofan R-tree over is also an R-tree over .
Let D be a D-tree over . Then (D) is an R-tree.
Let D be a D-tree over . Then chltrs(rt(D)) is an R-tree.

It follows from Proposition 4.3 that R-trees can be contained in D-trees.
DEFINITION 4.4. Let (V, T, S, P) be an information base scheme. Let D be a D-tree

and R be an R-tree over . R is called a rootless subtree of D if R-- (D Dn), D D,,
are subtrees of D and top(R) is a sequence of consecutive siblings of D. The common parent
of these siblings is denoted par(R). The set of all rootless subtrees of D is denoted rst(D).
The R-tree R is called a maximal rootless subtree of D if, in addition, top(R) is a maximal
sequence of consecutive siblings of D, i.e., if top(R) chin(par(R)).

Finally, we need two simple operations on R-trees.
DEFINITION 4.5. Let (V, T, S, P) be an information base scheme.

Let R1 (i)l Din) and Re (Dm+l D,,) be R-trees over . Then the
concatenation RR2 is the R-tree defined by R1R2 (D1 Dn).

Let R be an R-tree over and let n be an arbitrary node. If lbl(n) is an attribute or R
is empty, then the completion nR is the D-tree defined by rt(nR) n and chltrs(n) R.

As mentioned, variables in a calculus expression represent rootless subtrees of the infor-
mation base instance under consideration. From these variables, terms are built using con-
catenation and completion. As a consequence of Proposition 4.3, these terms in turn represent
R-trees. The set of conditions in a calculus expression consists of declarations of variables
by terms and of equations between variables and terms; the substitution clause consists of a
variable and the term by which that variable has to substituted. Of course, the variables in the
substitution clause have to occur in the set of conditions. Before formalizing the syntax of a
grammatical calculus expression, we clarify the concept by an example.

Example 4.6. Reconsider the information base of Example 2.6 and the query of Exam-
ple 3.20, described in the grammatical algebra. This query can also be solved by the following

2By an interval of a sequence we mean a subsequence consisting of consecutive elements.

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1109

grammatical calculus expression:

[/92 <___it ((Tit)p4)"((Journ)pv)((Volume)p9)
{/91 :’-" ((Ref)/92)
P2 :-- ((auths)p3)((Tit)p4)((Source)ps)((Year)p6)
P5 :-- ((Journ)pv)((lssue)p8)
P8 := ((Vol)p9):((Nr)plo)}].

Another similar grammatical calculus expression that has the same effect on information bases
over the scheme of Example 2.6 is the following:

[/92 _.t, ((Tit)p4)"((Journ)p7)((Volume)p9)
{/91 :’-" ((Ref)/92)
P2 :-- ((Auths)p3)((Tit)p4)((Source)ps)P6
P5 :-- ((Journ)pv)((Issue)p8)
P8 :--((Vol)p9):((Nr)plo)}].

In both expressions, the four declarations in the right-hand side specify a "pattern" in the
bibliographic information base; each time that pattern is found in the instance, it must be
changed according to the substitution clause.

We now formally define the syntax of the grammatical calculus. Throughout this expo-
sition, we assume that V {Pi > is an infinitely enumerable set of variables.

DEFINITION 4.7. Let (V, T, S, P) be an information base scheme.
A basic term over has one of the following three types:

-type 0: a (a 6 T);
-type 1: Pi (Oi
-type 2: (Api) (A V, Pi

A term over is a finite sequence of basic terms over that contains at most one basic
term of type and in which each variable and each attribute appears at most once. The empty
term is denoted e. The set of all variables occurring in a term is denoted var(t).

DEFINITION 4.8. Let (V, T, S, P) be an information base scheme.
A declaration over has the form ioi :-- with lOi "12 and a term over in which Pi

does not occur.
An equation over has the form Pi IOj with ioi, IOj

DEFINITION 4.9. Let (V, T, S, P) be an information base scheme. Let D {Pi :=
ti 6 I}, I a set of indices, be a finite set of declarations over in which no variable
appears in the left-hand side of more than one declaration and in the right-hand side of more
than one declaration. Let var(D) denote the set of all variables occurring in 79. Consider the
associated directed graph (79) with set of nodes var(79) and set of edges {pj
I and p, 6 var(tj)}. 79 is called hierarchical if (79) is a tree, and, furthermore, the root Proot
has a declaration of the form Proot :-- (Apt) for some A 6 V and Pl

For a hierarchical set of declarations it makes sense to define the following.
DEFINITION 4.1 0. Let (V, T, S, P) be an information base scheme, and let 79 be a

hierarchical set of declarations over .
Let Pi vat(79) be a variable which is not the root of (79). Then/9 is said to be of

type (oftype 2) if the unique basic term containing Pi in the right-hand side of a declaration
of 79 is of type (of type 2).

Let Pi var(79) be an arbitrary variable. The depth d(pi) of Pi is recursively defined
as follows, using the hierarchy in (79):

1110 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

1. If Pi is the root of (D), then d(pi) 0;
2. If Pi is of type and pj is the parent of Pi, then d(pi) d(pj);
3. If Pi is of type 2 and pj is the parent of Pi, then d(pi) d(pj) + 1.
Observe that, given a hierarchical set of declarations 79, the root of (79) has no type.
Example 4.1 1. Consider the set of declarations in the right-hand side ofthe first expression

in Example 4.6:

{Pl := ((Ref)p2)
P2 :--- ((Authslp3)((Tit)p4)((Source)ps)((Year)p6)
P5 :-- ((Journ)p7)((Issue)p8)
P8 :--((Vol)p9):((Nr)plo)}.

Obviously, this is a hierarchical set of declarations. Its associated tree is shown in Fig. 17.

Pl

P3 P4 P5 P6

/\
P7 Pa

,/\
Pg PlO

FIG. 17. The tree associated with the hierarchical sets ofdeclarations in Example 4.11.

All variables (except of course for Pl) are of type 2. Furthermore, d(p) 0, d(p2) 1,
d(p3) d(p4) d(ps) d(p6) 2, d(p7) d(p8) 3, and d(p9) d(pl0) 4. Now,
consider the set of declarations in the right-hand side of the second expression in Example 4.6:

{p := ((Ref)p2)
P2 := ((Auths)p3)((Tit)p4)((Source)ps)p6
P5 :- ((Journ)pv)((Issue)p8)
P8 :-- ((Vollp9) ((Nr)plo)}.

This is a hierarchical set of declarations with the same associated tree as the previous one.
However, P6 is now of type with d(p6) 1.

We now have all the ingredients to define an expression.
DEFINITION 4.12. Let (V, T, S, P) be an information base scheme. An expression

over has the form [pj -- u 79 LJ g] with pj. 6]2, u a term over 7 with pj q[var(u), 79 a
hierarchical set of declarations over , and ,5’ a set of equations over , satisfying the following
conditions:

1. All variables in the expression occur in 79;
2. No variable in u is an ancestor of pj in (79);
3. If, in addition, pj is the root of (79), then u (Bpk) for some B 6 V and pk 6 V, or

We invite the reader to check that the expression (without equations) in Example 4.6
satisfies Definition 4.1 2.

Before formally defining the semantics of a grammatical calculus expression, we show
with examples how the grammatical algebra operators can be expressed in the calculus. As in

GRAMMAR-BASED HIERARCHICAL DATA MODELS 111

the previous section, we are not concerned with the resulting information base schemes (about
which we have not yet said anything with regard to the calculus).

Example 4.13. Reconsider Examples 3.4, 3.7, 3.9, and 3.15.
The parent substitution Ezr[A BA, E] can be expressed by

[Pl +’- (EP2) I{P :-- (Ap2), P2 :-- (Bp3)(Ap4)}].

The child substitution EE[E BA, A, E] can be expressed by

[P2 (Bp3)(Ep4) I{Pl :-- (Ep2), P2 := (Bp3)(Ap4)}].

The child equality substitution EE[E BE, E -- BE, B, D] can be expressed by

[P2 +-- (BP3)(Dp4) {Pl :-- (Ep2),/92 :--- (Bp3)(Ep4), [94 := (Bps)(Ep6), P3 Ps}].

The node insertion Nt[B --+ abEd, aFd] can be expressed by

[P2 -" a(Fp3)d {Pl :-- (Bp2), P2 :--- ap3d, P3 := b(Ep4)}].

The node deletion N3[F] can be expressed by [p +-- e P := (Fp2)}].
The downward duplication A3[A -- BaC, B --> bd, C, D] can be expressed by

[P3 --bd(Dp4)l{pl :--(Ap2), P2 :--(Bp3)a(Cp4), P3 := bd}].

The permutation FI[B -+ bBc, abB] can be expressed by

[P2 ab(Bp3) {Pl :-- (Bp2),/92 := b(Bp3)c}].

Describing the semantics of the grammatical calculus should consist of two parts: ex-
plaining what happens with schemes and explaining what happens with instances. Since, as
observed earlier in this paper, it is unrealistic to compare information base operations at the
scheme level with respect to expressiveness, we shall not elaborate on how calculus expres-
sions work on information base schemes. The example below, however, should nevertheless
convince the reader that calculus expressions can be applied to the schemes as well.

Example 4.14. Consider the calculus expression

[P2 -- (Dp4) I{P := (Ap2), P2 :-" (Bp3)(Cp4)}]

and let (V, T, S, P) be an information base scheme to which this calculus expression
is applied. Let ’ (V’, T’, S’, P’) denote the resulting scheme. Then V’ V U {D} and
T’ T since there are no other attributes or constants in the substitution clause not occurring
in one of the declarations. Furthermore, S’ S, since the attribute in the term defining the
root variable is not altered. Finally, if A --+ BC 6 P, then P’ P U {A D} U {D --+ s
Cs6 P},elseP’=P.

Note that, for the sake of generality, the application of a calculus expression to an infor-
mation base scheme can only result in adding new productions.

We now formally define the semantics of a grammatical calculus expression at the instance
level. Although it is conceptually simple, as should be clear from the examples given thus far,
the formalism itself is rather involved. This stems mainly from the fact that, when rearranging
subtrees in applying a calculus expression, one must be able to describe how this rearrangement
is "propagated" downward into these subtrees.

The evaluation of a calculus expression on a given information base instance can be
described in two distinct stages.

1112 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

1. First, the variables in an expression are "valuated" as rootless subtrees of the considered
information base instance, satisfying the declarations and equations in that expression.

2. Then, the D-tree representing the information base instance is transformed according
to these valuations and the transformation rule in the left-hand side of the expression.

The first stage is described in Definition 4.15, the second one in Definition 4.1 8.
DEFINITION 4.1 5. Let (V, T, S, P) be an information base scheme, and let D be an

information base instance over . Let 79 be a set of declarations and a set of equations over
such that all variables in ,5’ occur in 79. Let f: var(79) -+ rst(D) be a total mapping from

variables in 79 to rootless subtrees of D. f is called a valuation of 79 and in D if
1. for each declaration Pi :-- e in 79, f (Pi) F;
2. for each declaration Pi :-- in 79 with t... tk, t tk being basic terms,

f(Pi) R R with, for each j k,
1. if tj a for some a 6 T, then Rj is a single-node rootless tree the node of which

is labeled a,
2. if tj IOk for some pk 6 V, then Rj f (pk),
3. if tj (Ap) for some A V and Pk 6 "12, then there is a node n in D with

lbl(n) a such that Rj (nf (pk)),
3. for each equation Pi Pj in E, f (Pi) f (Pj).

The set of all valuations of 79 and E in D is denoted .T’(79 U E, D).
Example 4.16. Consider the information base instance D ofFig. 8 (over some appropriate

scheme) and let E be the following calculus expression:

[P5 +’- (Cp7)P8 I{P := (Ap2), P2 := p3c(Ap4), P3 := (Bps)p6, P4 := p7c(Aps),

/95 :-- (Cp9)(Dplo), P7 := (Bpll)Pl2, Plo := , Pll := (C1013)P14, P9 =/913}].

There are three valuations of 79 and E in D. For each such valuation f, the node n satisfying
top(f(p)) (n) has been marked by a square in Fig. 8. We leave it to the reader to check
that these markings completely determine the corresponding valuations.

D d c
A C B A

B A A C
b c a
B B A

C D b c A b c b
B

C D C D b c A

C D

FIG. 18. An information base instance D.

For later use, we used dots to mark all nodes in Fig. 8 that occur in top(f (Ps)), for each
valuation f of D and ,5" in D.

In Example 4.1 6, it turned out that the valuations under consideration can be completely
characterized by indicating to which rootless subtree the root variable of the expression is

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1113

mapped. Lemma 4.17 says even more: it suffices to specify a rootless subtree of which the
valuation ofone arbitrary variable is an interval. In particular, Lemma 4.17 ensures that the way
in which f(Ps) was indicated in Example 4.16 is unambiguous. More generally, it excludes
that images of the same variables under different valuations "overlap." This will allow us to
define the result of a calculus expression by performing a transformation on the information
base instance under consideration for each valuation of its hierarchical set of declarations and
set of equations.

LEMMA 4.17. Let (V, T, S, P) be an information base scheme, and let D be an

information base instance over . Let 79 be a hierarchical set ofdeclarations over , and let
be a set of equations over such that all variables in occur in D. Let Pi be an arbitrary

variable in 79, and let R be a rootless subtree ofD. There exists at most one valuation f ofD
and e in D such that f (Pi is an interval ofR.

Proof. Suppose there exists a valuation f such that f (Pi) is an interval of R. We first show
that for some variable pt 6 var(D), f (pt) is unambiguously determined by this condition. If

Pi is the root of (D), we know there exists a declaration in 79 of the form Pi :--- (Apj). Since
R contains at most one subtree with a root labeled A, f(Pi) is unambiguously determined.
Now suppose Pi is not the root of (D). Then there exists a sequence of variables in 79, say

Pio Pi, k > 1, that satisfy the following conditions:
1. Pio Pi’,

2. For all k there is a declaration in 79 of the form Pi, :- Pi_t ...;
3. There is a declaration in 7) of the form Pi (Api_,)

Note that the second condition is voidlessly satisfied if k 1. The last condition can always
be satisfied because a similar condition holds for the root of (D). Now let R’ be the unique
maximal rootless subtree of D containing R. Then, by condition 2 above, f(pi) being an
interval of R implies that f(Pio) f(Pi_) are all intervals of R’. Since a declaration of
the form Pi :-- (Api_) is in 79, it now follows that f (Pi._,) equals R’.

Up to now, we have shown there exists some variable Pt in 79 for which f (pt) is a fully
determined rootless subtree of D. Since it is easily shown that whenever f is unambiguously
determined for a certain variable it is also unambiguously determined for both the parent
and all children of that variable, a straightforward induction shows that f is unambiguously
determined for all variables in 79. [q

We now define how an expression transforms D-trees. First, Definition 4.18 introduces
so-called E-transformations. Theorem 4.19 then establishes the uniqueness of these E-
transformations. Finally, Definition 4.20 points out how the unique E-transformation must be
used to define the result of the calculus expression E.

We start with the notion of E-transformation. When rearranging rootless subtrees of a

given D-tree in applying a calculus expression, we must be able to describe how the rear-

rangement is "propagated" downward into these subtrees. Intuitively, the resulting tree will
therefore have to be constructed "bottom-up." Thus we cannot just define the effect of a

calculus expression on D-trees alone; we need to define the effect on all rootless subtrees as

well. The effect of a calculus expression on a rootless subtree is context-sensitive, however.
Therefore, we introduce the notion of E-transformation, which defines the effect of a calculus
expression E on an R-tree R in the context of a D-tree D of which R is a rootless subtree.

DErINITION 4.18. Let (V, T, S, P) be an information base scheme and let E
[pj +-- u 79 tO] be an expression over . A partial mapping g: "R.() /9() --+ 7",.()/
is an E-transformation of if it satisfies the following conditions:

3For reasons of convenience, the conditions are formulated as if g(R, I)) were an arbitrary representation of the
class under consideration.

1114 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

1. g (R, D) is defined if and only if R 6 rst(D);
2. For all D 6 9(), g(F, D) F;
3. For some D 6 D(), let (nR) 6 rst(D) be a rootless subtree such that for no valuation

f 6 .T’(D to L’, D), f (pj) (nR). Then g ((nR), D) (rig (R, D));
4. For some D 6 D(7), let R 6 rst(D) be a rootless subtree such that for no valuation

f .T’(79U, D), f(pj) is an interval ofR. ThenifR RIR2, g(R, D) g(Rl, D)g(R2, D);
5. For some D 6 "D(), let R 6 rst(D) be a rootless subtree such that for some valuation

f .T’(79US, D), f(pj) R. Let u ul...u, with u Un basic terms. Then
g(R, D) R Rn with, for k n,

1. if uk a for some a 6 T, then Rk is a one-node rootless tree labeled a,
2. if uk Pt for some Pt 6 , then we distinguish two cases:

1. if Pt is of type in 79, and f(Pl) (D Din), then

R g((D), Dr)... g((Dm), Din),

2. if Ps is of type 2 in 79, and n par(f (Pt)), then

R g(f (pt), nf (pt));

3. if uk (Apt) for some A 6 V and pt 6 "12, then we distinguish two cases:
1. if pt is of type in 79, and f(pt) (D1 D,,,), then Rk (n’R’) with

lbl(n’) a and R’ g((D1), D1)... g((Dm), Din),
2. if p1 is of type 2 in 79, and n par(f (pt)), thenR (n’R’) with lbl (n’) A

and R’ g(f(Pt), nf(pt));
6. For some D 6 D(), let R R1RzR3 6 rst(D) be a rootless subtree such that for

some valuation f 6 .T’(79 to L’, D), f(pj) R2. Then g(R, D) g(R1, D)g(R2, D)g(R3, D).
We now establish the uniqueness of E-transformations.
THEOREM 4.19. Let (V, T, S, P) be an information base scheme and let E =-- [pj +--

u 79 to e] be an expression over . Then there exists a unique E-transformation of.
Proof. The proof goes by double induction. For the empty D-tree E, we know that g(F,E)

F. We now assume that g is uniquely defined on all pairs (R, D) with R being a rootless
subtree of D and the depth of D at most, say p (outer induction hypothesis). Now let D be a
D-tree over with depth p + 1. We know that g(F, D) F. We now also assume that g is

uniquely defined on all pairs (R, D) with R being a rootless subtree of D and the depth of R
at most, say q (inner induction hypothesis). Now let R be a rootless subtree of D with depth
q + 1. We distinguish two cases.

Case 1. There is no valuation f .7(79 to , D) for which f (pj is an interval ofR. Let
R (D1 D,) with, for n, Di niRi for some Ri 6 rst(D) with the depth of

Ri at most q. Items 2, 3, and 4 of Definition 4.18 and the inner induction hypothesis guarantee
that g(R, D) is uniquely defined.

Case 2. For some valuation f .T’(79 tO , D), f (pj) is an interval ofR. By Lemma 4.17,
we know this f is unique. Let R R1RzR3 with R2 f(pj). By item 6 of Defini-
tion 4.18, g(R, D) g(R1, D)g(R2, D)g(R3, D). By the first case of this proof, g(R, D) and
g(R3, D) are uniquely determined. Let u u u with u u,, basic terms. By item 5 of

4Recall from Definition 4.2 that F is the empty R-tree.
5The reason for this distinction is the following. If a variable is part of a basic term of type 2, then we are

interested in the entire tree this basic term represents, as opposed to merely the R-tree the variable represents.
6See footnote 5.
7The depth of F is 0; the depth of another R-tree is defined as the maximum of the depths of the D-trees of which

it is composed.

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1115

Definition 4.18, we know that g(R2, D) R21 ...R2,, for some R-trees R21 R2n. It
remains to show that, for k n, R2 is uniquely determined. To do this we distinguish
five subcases.

Subcase 1. uk a with a T. By item 5.1 of Definition 4.18, Rzt, is unambiguously
determined.

Subcase 2. uk Pt with Pt a type variable in 79. Let f (Pt) (D1 Din). By
item 5.2.1 of Definition 4.18, we know that Rzk g((D1), D)... g((Dm), Din). Since, by
Definition 4.12, the depth of pt in (79) is at least 1, it follows that, for all j m,
the depth of Dj is at most p. Hence the desired conclusion follows from the outer induction
hypothesis.

Subcase 3. u Pt with Pt a type 2 variable in 79. Let n par(f(pt)). By item 5.2.2
of Definition 4.18, we know that Rzk g(f(Pt), nf(pt)). If n is not the root of D, then the
depth of nf(pt) is at most p. Hence the desired conclusion follows from the outer induction
hypothesis. However, if n rt(D), then D nf(Pt), whence the depth of f (Pt) is at most
p. Moreover, by Definition 4.1 2, it follows that f (pj) (D) R2 R, whence n k
and p q. So, f (Pt) has also depth at most q. The uniqueness of R2, R21 now follows
from the inner induction hypothesis.

Subcase 4. u (Apt) with A V and pt a type variable in 79. Let f (Pt)
(D1 Din). By item 5.3.1 of Definition 4.18, we know that R2/ (n’R’) with lbl(n’) A
and R’ g((D1), D)... g((Dm), Din). The remainder of this case is now analogous to
subcase 2.

Subcase 5. u (Apt) with A V and Pt a t3’pe 2 variable in 79. Let n par(f(pt)).
By item 5.3.2 of Definition 4.18, we know that R2 - (n’R’) with lbl(n’) A and R’
g(f (Pt), nf (Pt)). The remainder of this case is now analogous to subcase 3.

Using the unique transformation defined above, we finally define the result of a calculus
expression.

DEFINITION 4.20. Let (V, T, S, P) be an information base scheme and let D be
an information base instance over . Let E be an expression over . Let g be the unique
E-transformation of . Then E(D) is (the class of) the D-tree D’ for which g ((D), D) (D’),
if this D-tree is in turn an information base instance, and undefined otherwise.

We conclude this section with a final example.
Example 4.2 1. Reconsider the information base instance D and the calculus expression E

of Example 4.16. Recall that in Fig. 8, for each valuation f, the (unique) node in top(f(p))
is marked by a square and all nodes in top(f(ps)) are marked by dots (p is the root of the
expression and P5 is the left-hand side ofthe substitution clause). The reader is invited to check
that the result E (D) of applying the calculus expression E to the information base instance D
indeed equals the instance of Fig. 19.

5. Properties of the grammatical calculus. The definition of the grammatical calculus
given in the previous section raises several decidability issues. Since a full treatment of these
decidability issues would go beyond the scope of the present article, we shall deal with these
here only briefly, in a fairly informal manner.

The key construct of this section is that of a condition tree of a calculus expression, or
more precisely, of the set of hierarchical declarations and equations of a calculus expression.
We first define this notion for the case in which no equations are present.

DEFINITION 5.1. Let (V, T, S, P) be an information base scheme, and let 79 be a
hierarchical set of declarations.

The condition tree C(79) of 79 is constructed as follows. First, initialize C(79) to a tree
consisting of one node labeled with the root of (79). Then, as long as there is a node n in
C(79) labeled with a variable Pi that is not a leaf in (79), i.e., for which there exists some

1116 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

A

B A

C A

B A

C
a

B

C D

FIG. 19. The information base instance E(D).

hierarchical declaration pi :-- t tm in 79, substitute n by the rootless subtree (C Cm)
where, for k 1 m,

1. if tk a with a 6 T, Ck consists of one node which is labeled a;
2. if t pt with pl a type variable in 79, C consists of one node which is

labeled pt;

3. if t (Apt) with A 6 V and pt a type 2 variable in 79, C is a two-node tree the
root of which is labeled A and the leaf of which is labeled Pl.

Let E =-- [pj +-- u 79] be an expression over without equations. Then C(E) C(79).
Notice that C(79) in Definition 5.1 above is indeed a tree since the right-hand side of the

declaration for the root in 79 consists of only one basic term, which is of type 2.
Example 5.2. Let 7) be the set of hierarchical declarations in Example 4.1 6. The condition

tree C(79) of 79 is shown in Fig. 20.

P9

A

914 P8

913

FIG. 20. The condition tree C(79).

Intuitively, the condition tree of an expression shows the pattern that must be present in
an information base instance for the expression to have an action on that instance.

The notion of condition tree can be extended to the case in which both hierarchical
declarations and equations are present. We shall informally explain how. Thereto, sup-

GRAMMAR-BASED HIERARCHICAL DATA MODELS 11 17

pose that in addition to the assumptions of Definition 5.1 we have a set of equations E
over .

If the equations only involve variables that are leaves in C(79) and hence also in (79),
then the condition tree C(79 U E) of 79 and S is straightforwardly constructed from C(79)
by equating labels according to the equations in E. For instance, if E is the expression in
Example 4.16, then C(E) is obtained from the condition tree in Example 5.2, Fig. 20, by
equating P9 and P3.

In the perhaps more pathological case in which variables are equated that are not necessar-
ily leaves of C(79), the construction is somewhat more involved. To illustrate this, let 79 be the
hierarchical set of declarations in the expression of Example 4.16 and consider the equation
/95 /911. The rootless subtrees corresponding to P5 and/911 in C(79) in Example 4.16 are
shown in Fig. 2 left and right, respectively.

C
3 C

913

P14

FIG. 21. The rootless subtrees corresponding to P5 and

We can now try to expand in both rootless subtrees the nodes corresponding to variables in
a minimal way such that the R-trees become isomorphic. In our example, this can be achieved
by substituting/914 by D and equating P9 and P3. The R-tree thus obtained is actually the
most general unifier of P5 and p. Finally, the condition tree C(79 U {p5 pl}) of 79 and
{P5 P} is obtained by substituting P5 and p by their most general unifier.

Of course this most general unifier need not exist, e.g., because the two rootless subtrees
involved are incompatible. Also, the unification process might result in an infinite tree. The
latter case would occur if we tried to compute C(79 U {p2 p4}). During the unification
process we would find that ,08 must be equated to an R-tree strictly containing ,08 as a rootless
subtree, whence the resulting tree would be infinite. Finally, it is possible that the resulting
tree is not a legal D-tree in the sense that it contains sibling nodes labeled by the same attribute,
whence the tree cannot be considered as an information base instance over some scheme.

Each time the construction of a condition tree requires an impossible unification process or
a unification process resulting in an infinite tree, or does not result in a legal D-tree, we say that
that the condition tree is undefined. Obviously, this property is decidable. The undefinedness
of a condition tree corresponds to the fact that any associated expression is not applicable to

any information base instance.
Several decidability results regarding the grammatical calculus can be proved by using

condition trees. The techniques employed in these proofs in essence come down to applying
expressions to their own condition tree and are therefore reminiscent of similar techniques
used in the relational model for conjunctive queries [6], [2].

The first decidability result is concerned with checking whether or not a calculus expres-
sion represents the identity.

LEMMA 5.3. Let (V, T, S, P) be an information base scheme, and let E [,oj <---

u 79 t.J] be an expression over . Then E represents the identity if and only if either the
condition tree of E is undefined or E(C(E)) C(E).

Proof Obviously, if E represents the identity and the condition tree of E is defined, then
E(C(E)) C(E), whence the "only if." To see the "if," we need to distinguish two cases. If

8If E [pj +- u 79 U] is an arbitrary expression over , then C(E) C(79 U g).

1 8 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

the condition tree of E is undefined, then E obviously represents the identity, since it is not
applicable to any information base instance. Thus suppose the condition tree of E does exist
and satisfies E(C(E)) C(E). Let f be the valuation of 79 and E in C(E). If f is extended
to terms in the natural way, then E(C(E)) C(E) is equivalent to f(pj) f(u). Using this
latter condition, the proof can be completed by a straightforward double induction, as in the
proof of Theorem 4.1 9.

Using Lemma 5.3, we can prove the following necessary condition for two expressions
to be equivalent.

THEOREM 5.4. Let (V, T, S, P) be an information base scheme. Two expressions
over are equivalent only ifeither they both represent the identiO, or their condition trees are
isomorphic upon renaming ofvariables.

Proof. Let E1 [p) -- Ul D1 to ,f] and E2 [p +- u2 D2 tO g2] be two equivalent
expressions that do not represent the identity. By Lemma 5.3, the condition trees of E1 and E2
exist and satisfy El (C(E2)) - C(E1) and E2(C(E2)) C(E2). Hence, by the equivalence
of E1 and E2, E2(C(E)) - C(E) and E (C(E2)) C(E2). In particular, this implies there
must exist a valuation of C1 and 791 in C(E2) as well as a valuation of C2 and 792 in C(E1).
Using this fact, the theorem is now easily shown. El

Given Theorem 5.4, it is now tempting to conjecture that two grammatical calculus ex-
pressions that do not represent the identity are equivalent if and only if they yield the same
result when applied to their common condition tree. Unfortunately, this condition is not suf-
ficient because of the special way in which type 2 variables in a substitution term are handled
in the calculus. Example 5.5 gives a counterexample.

Example 5.5. Let 79 t_J E be the following set of hierarchical declarations and equations
(over some appropriate scheme):

{p :-- (Ap2), P2 :-- (Bp3)(Ap4)(Cps), /93 :’-" (Ap6), /96 :-’- P7b, /94 /97}.

The condition tree of 79 and g is shown in Fig. 22.

A

B A ,C
4 P5

P4 b

FIG. 22. The condition tree C(79 LJ E).

Now consider the expressions

E [P5 p4 179 tO c];

E2 =-- [/95 +--/97

Notice that/94 is of type 2 while/97 is of type 1.
Obviously, E (C(79Ug)) Ez(C(79Ug)), because these resulting trees are both obtained

by substituting/95 by/94 in the tree of Fig. 22. Nevertheless, E and E2 are not equivalent.
To see this, we replace the nodes in Fig. 22 that are labeled P4 with the rootless subtree obtained

9By the definition of condition tree, there is a unique valuation f 6 F(D U , C(E)) determined by f(Proot)
(C(E)), Proot being the root of G(D).

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1119

by chopping off the root from a copy of the condition tree. The result of this modification is
shown in Figure 23.

A

A P5

A b

B A C

P4 b

FIG. 23. The modified condition tree.

The purpose of this modification was substituting the tree rooted in the parent of P4 by
its most general unifier with a copy of the entire condition tree.

Applying expression E2 to the tree in Fig. 23 results in the straightforward substitution
of P5 by the rootless subtree identified by A, as shown in Fig. 24 bottom.

A

B A C

P4 b

134

FIG. 24. The results ofapplying E1 (top), respectively, E2 (bottom), to the tree ofFig. 23.

In contrast, the application of E1 results in the substitution of P5 by A’ where A’ is
obtained from A by applying E1 to the tree rooted in the parent of/94. This asymmetry is due
to the fact that/94 is of type 2, while/97 is of type 1. The result of applying E1 to the tree in
Fig. 23 is shown in Fig. 24 top.

In general, given an expression and its condition tree, one has two choices for each type 2
variable in the substitution tree: one can either leave the corresponding node or rootless
subtree in the condition tree unchanged, or one can transform it in the sense of Example 5.5.
This procedure leads to a number of trees that is potentially exponential in the number of
type 2 variables in the substitution term.1 To facilitate our further discussion, we shall

In most cases, however, the number of trees obtained will be significantly smaller because the transformation
described in Example 5.5 requires a unification whose result may well be undefined.

1120 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

call the set of legal D-trees thus obtained the set of representative instances of the given
expression.

Intuitively, the set of representative instances of a calculus expression is constructed
in such a way that for every possible valuation of the expression’s set of declarations and
equations in a concrete information base instance, there is a representative instance whose
transformation by the expression "models" the way in which the information base instance is
transformed locally.

Therefore, we conjecture that equivalence of nonidentity expressions can be decided
by considering all trees in their sets of representative instances and verifying whether both
expressions yield the same results for all those trees.

Finally, the set of representative instances can also be used to decide whether or not the
result of a calculus expression is always defined, independent of the information base instance
to which the expression is applied. Now, the result of a calculus expression applied to a
concrete information base instance can only be undefined if the resulting tree is no longer an
instance, i.e., if this tree contains sibling nodes labeled with the same attribute in V. By what
has been said above, it suffices to apply the calculus expression to all representative instances
to verify whether or not undefinedness can occur. Thereto, one has to check whether or not

1. one of the resulting trees contains sibling nodes labeled by the same attribute;
2. in one of the resulting trees it is possible to substitute a variable by a sibling attribute.

The latter case occurs precisely when a variable in a resulting instance has a sibling attribute
that is not a sibling to that variable in the original representative instance. Hence we have the
following theorem.

THEOREM 5.6. It is decidable whether or not the result of a calculus expression over a
given information base scheme is always defined.

6. The equivalence between algebra and calculus. In 3, we presented the grammatical
algebra as a query language for transforming information bases. In 4 and 5, we introduced
and discussed grammatical calculus expressions. We can now consider the grammatical cal-
culus as the language consisting of all finite sequences of calculus expressions. Note that, in
contrast to the relational calculus, we cannot hope such a sequence will always be equivalent
to a single expression, since in general there is no way to combine the various condition trees
of the expressions in the sequence into one single condition tree that could be used to de-
scribe the net effect of the transformation. Since each grammatical algebra operation can be
expressed by a single calculus expression, the grammatical calculus will nevertheless allow a
more succinct representation of queries than the algebra.

In this section, we compare the expressive power of the grammatical algebra and calculus.
Inspired by the classical result in the relational model, we were able to prove their equivalence.
In view of the technical complexity of this proof, we use Example 4.16 as running example
throughout the proof in order to improve its readability.

THEOREM 6.1. The grammatical algebra and grammatical calculus are equivalent with
regard to expressive power.

Proof. In Example 4.13, applications of all algebra operators (except for upward du-
plication, which is analogous to downward duplication) are expressed in the calculus. It is

straightforward to generalize the techniques used in these examples. Hence the algebra can
be simulated in the calculus. The more involved part of the proof consists of showing that a

calculus expression can be simulated in the algebra. In order to show this, we shall simulate
in the algebra the various steps needed to evaluate a calculus expression of which, without
loss of generality, we assume it does not represent the identity. (This assumption is needed
to guarantee, by Lemma 5.3, the existence of the expression’s condition tree, which in turn is
needed to validate some of the constructions made below.)

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1121

Therefore, let (V, T, S, P) be an information base scheme, let D be an instance
over , and let [pj +-- u 79 U ,f] be a calculus expression with var(D) {Pl p,, and
79 {Pi := ti I}, I c__ {1 n}. Without loss of generality, we assumethat p, being an
ancestor of Pt in (79) implies k < I. (Observe that Example 4.1 6 satisfies this requirement.)
We further assume that Pl is the root of (79) and that the unique declaration for p in 79 has
the form pl (Ap2).

We also number the equations starting from n+ 1" ,5’ {en+l e,,+t }. Since, obviously,
a nontrivial equation involving pl can never be satisfied, we may assume, again without loss
of generality, that p is not contained in an equation of

Let J be an arbitrary set of nonnegative integers. For each B 6 V, we assume that B J

denotes an attribute; similarly, for each a 6 T, we assume that a J denotes a constant. We
also assume that Ni, 1, 2, 3 are attributes not in V. Finally, we also assume that

N/J denotes an attribute. Informally speaking, the superscripts of the labels will be used to
remember which variables can be valuated into which rootless subtrees. The N/are auxiliary
attributes which will be used for copying information in D from one place to another in
the tree.

The proof is basically a construction that consists of the following steps:
Step 1. Initialization. We index all node labels in D with the empty set. This is done by

using parent substitution (for the attribute nodes) and permutation (for the constant nodes).
Step 2. Determination of all valuations of 79 in D. We shall relabel by AI1 all nodes n

for which there exists a valuation f of 79 in D with top(f(p)) (n). (Remember that A is
the attribute in the declaration for the root p of (79).) Therefore, we do the following steps:

Substep 1. Transforming 79. From 79 we construct 79t as follows. 79’ contains p
(Ap2) as well as one declaration for each type 2 variable. The right-hand side ofthis declaration
contains only type 2 variables and type variables that are leaves in (79). These right-hand
sides are obtained from the original right-hand sides in 79 by subsequent substitutions. For
example, if 79 is the set of declarations in Example 4.1 6, then

79’= {Pl "= (Ap2), P2 "= (Bps)p6c(Ap4), P4 (BplI)Pl2C(Ap8),

P5 "= (Cp9)(Dplo), PlO "= e, Pll "= (Cpl3)Pl4}.

Note that 79’ actually describes the structure of the condition tree C(79) (see Defini-
tion 5.1).12 Obviously, the restriction to var(79 ’) of a valuation of 79 in D is a valuation of 79’
in D; conversely, each valuation of 79’ in D can be extended to a valuation of/9 in D.

Substep 2. hdicating all rootless subtrees in D to which type 2 leafnodes in (79) can be
mapped. We shall indicate these rootless subtrees by adding to the superscripts of the labels
of their parent nodes the indices of the corresponding variables. Thereto, we perform, in any
order, the following operation for each type 2 leaf node Pi in (79 ’), until no further action
is possible. If there is no declaration lOi e in 79’, we do Ezr[B J s, B Jt{i}] for each
BJ S with ’ J and either BJ -- S a production in the current scheme or B J an attribute
in the current scheme and s e; if Pi e is in 79’, we only do Ezr[B s --+ e, BJU{i]].

In our example, P0 is the only type 2 leaf node in (D) that has a declaration with an
empty right-hand side. Consequently, an index 0 must be added to the D-labels of leaf nodes
in the current instance: there are six such nodes. The other type 2 leaf nodes of (D) are
/98,/99 and P3. Consequently, an index 8 must be added to all A-labels and indices 9 and 13
to all C-labels of nodes in the current instance. The result of these operations is shown in
Fig. 25.

For the time being, we ignore the equations in g.
2Since by assumption the condition tree C(D) exists, it follows that the substitutions performed cannot yield

illegal terms, i.e., terms containing two basic terms of type 2 with the same attribute.

22 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

A{8

C19,13} D{10} C{9.13} D{I}A b(I) c(1) A{s}

0{9,13} D110}

FIG. 25. The result ofmarking all rootless subtrees in D to which type 2 leafnodes in (79) can be mapped.

Substep 3. Iteratively building up all valuations ofD in D. Let Pi Pim be (in ascending
order) all type 2 variables in 79 ’. Let, for < p _< m, 79p be the set of all declarations of 79’
involving only variables whose index is at least p. We will relabel the nodes in the current
instance in such a way that, for each p m,

the superscript of the label of a node n contains the index p if and only if there exists a
valuation f of79 p in D with par(f (pie)) n (condition (p)).

Note that, by the construction in the previous step, the current instance already satisfies all
conditions (p) for which Pip is a leaf node in (79 ’). By a downward iterative procedure, we
now enforce the conditions (p) for which Pie is not a leaf node in (79 ’). Thereto, we perform
the following operation for those p m down to for which Pip is an internal node of (79 ’).
Let Pip tl tl be the declaration for Pie in 79’ with the tq, q l, basic terms. Let
Pk (Bpip)... be the declaration in 79’ containing pi in its right-hand side. Then, in
any order and until no further action is possible, we do Err[B J

s1 Sl, B Ju{ip}] for each
production BJ

s1 st in the current scheme in which ip

_
J and, for q l, the Sq

have the following form:

a if tq a, a E T;
Sq CK if tq--(Cpr), C V, Dr var(79’), and r 6 K

(Sq is arbitrary if tq is of type 1).
The current instance for our example is now as shown in Fig. 26.
Observe that, by necessity, 2. Hence the superscript of the label of a node n

contains the index 2 if and only if there exists a valuation f of 79’ {p +- (Ap2)} in D with
par(f (P2)) II.

Substep 4. Indicating all rootless subtrees ofD to which pl can be mapped by a valuation
of 79. We will add an index to the superscript of the label of all nodes n for which there
exists a valuation f of 79 in D with top(f(pl)) (n), or, equivalently, for which there exists
a valuation f of 79’ in D with top(f (pl)) (n). Now, a valuation f of 79’ {p +-- (Ap2)}
can be extended to a valuation of 79 in D if and only if par(f(p2)) is labeled A. Therefore,
in any order and until no further action is possible, we have to perform Err [AJ -- s, AJll
for each AJ --+ s with 2 6 J, ’ J, and either AJ --+ s a production in the current scheme
or AJ an attribute in the current scheme and s e.

GRAMMAR-BASED HIERARCHICAL DATA MODELS 23

FIG. 26. Recursively building up all valuations of79 in D.

Substep 5. Cleaning up. Using parent substitution, we rename all node labels A J with
1 6 J to A {1} and all other node labels BJ with B 6 V and ’ J to Be.

All nodes n labeled A for which there exist a valuation f of 79 in D with top(f(p)) (n)
are now indexed by }; all other nodes are indexed by the empty set.

The current instance for our example is now as shown in Fig. 27. There are four valuations
of D in D.

A{1

c* D

FIG. 27. Determination ofall valuations of79 in D.

Step 3. Evaluation ofall type 2 variables under the valuations of79 in D. Once again, let

Pi Dim be the type 2 variables in 79’ (or, equivalently, in 79). We will relabel the nodes
in the current instance in such a way that, for each p m,

the superscript of the label of a node n contains the index ip if and only if there exists a
valuation f of79’ in D with par(f (pip)) n (condition (p’)).

1124 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

Since we will need approximately the same procedure on several other occasions in the
following parts of this proof, we will describe it in slightly more general terms than needed
right now. Recalling that Pi P2, we can easily satisfy condition (1’) by doing, in any
order, until no further action is possible, the parent substitution Ezr[B I11 s, B {1’2}] for
each B {1} --+ s with either B {! --+ s a production in the current scheme or B I1 an attribute
in the current scheme and s e. 13 By an upward iterative procedure, we now enforce
conditions (2’)-(m’).

Thereto, we perform the following operation for p := 2 up to m. Let p (Bpip)...
be the declaration in 79’ containing [kip in its right-hand side. Then, in any order and until
no further action is possible, we do E x[CK ---+ SlBJs2, B J, B Ju{ip}] for each production
cK _+ s1BJs2 in the current scheme with C 6 V, k 6 K, and p . J.

The current instance of our example is now as shown in Fig. 28.

A{1,2}

O{3} D C{9} D{o} be ce

C{3} D

FIG. 28. Evaluation ofall type 2 variables under the valuations of79 in D.

Step 4. Evaluation ofall type variables under the valuations of79 in D. We will relabel
the nodes in the current instance in such a way that for each type variable [ki, the superscript
of the label of a node n contains the index if and only if there exists a valuation f of 79 in D
with top(f ([ki)) containing n. Therefore, we do the following steps:

Substep 1. Transforming 79. From 79 we construct 79" as follows. 79" contains one
declaration for each type variable. This type variable is contained in the right-hand side
of the declaration. The left-hand side is a type 2 variable. As for 79 ’, the declarations of 79"
are obtained by subsequent substitutions. 14 For example, in our example,

79"-- {P2 :-- p3c(A[k4), P2 :-- (Bp5)P6c(A[k4), [k4 :-- pvc(Ap8),

P4 :-- (Bpll)PlzC(Ap8), Pll :-- (Cpl3)Pl4}.

Clearly, a valuation of 79 in D is also a valuation of 79’ U 79" in D; conversely, the extension
of a valuation of 79’ in D to var(79) is a valuation of 79 in D if and only if it is a valuation of
79’ U 79" in D.

3Note that, at this stage ofthe proof, the attribute B will always equal A, the attribute in the declaration Pl :-- (Ap2)
for the root of G(79).

14Again, these substitutions cannot yield illegal terms.

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1125

Substep 2. Relabeling. In order to enforce for each valuation of 79 in D and for each type
variable ioi that each node in top(f (lOi)) contains the index in the superscript of its label, we
perform the following operations. For later use, they will be once again described in slightly
more general terms than required right now. Let Pk :-- q... tt be the unique declaration in
79" containing Pi in its right-hand side. Let in the above declaration tq, < q < l, be the
basic term with tq Pi. Let Pr (Bpk)... be the unique declaration in 79’ containing p
in its right-hand side. Then, by step 3 of the construction in this proof, each node n occurring
in f(toi) for some valuation of 79 in D is the child of a node labeled B J with k 6 J.

We first relabel all nodes occurring in f (lOi) for some valuation of 79 in D labeled by a
constant. Thereto, we introduce the following notation. Let s c... Otw be an arbitrary
word over the current attributes and constants. (For v w, cv is an attribute or a
constant.) Then we denote by g the word ff oTw with, for v w,

a KU{i} if otv a K a T"
oto otherwise.

The relabeling of the constant nodes is now achieved by performing, in any order and until no
further action is possible, the permutation

1-1[n J s .Sq_lSqSq+l .SlSl+l, s1. .Sq-lqSq+l .SiSl+l]

for each production B J -- s... Sq_lSqSq+l... stst+ in the current instance with k 6 J, in
which forr-- q-l,q+l l,

I a x iftr a,a T;
Sr ! Cx if tr (Cpu), C V,

for some set K of nonnegative integers, st+ is a (possibly empty) string of symbols Nx,15 and
Sq is an arbitrary word in which the index does not yet occur as a superscript. Finally, the
attribute-labeled nodes occurring in f (Pi) for some valuation of 79 in D are labeled by per-
forming, in any order and until no further action is possible, the child substitution E) [B J --S1. .Sq_ISq,ICLSq,2 .Sl, CL, CLt3{i}] for each production B J --+ sl ...Sq-lSq,lCLSq,2 .Sl
with k 6 J and ’ L and in which, for r q 1, q + 1, + 1, sr is as above
while Sq, and Sq, 2 are arbitrary.

The current instance of our example is now as shown in Fig. 29.
Step 5. Duplication ofrootless subtrees corresponding to variables occurring in equations

ofg. We will now take into account the set ofequations g {e+ e,+t }. For each variable
pi occurring in an equation ofg and each valuation f of 79 in D, we will add to chin(n), n being
the node with top(f(pl)) (n), a node rn with ehtrs(m) a "duplicate" of f(Pi). Therefore,
we do the following steps, keeping in mind that the root p of (79) does not occur in "Substep 1. Duplicating rootless subtrees corresponding to type variables. For each
type variable pi occurring in g, we perform the following procedure. Let p :-- Pi be
the unique declaration in 79" containing Pi in its right-hand side and let ,or "= (Bp)...
be the unique declaration in 79’ containing the type 2 variable p, in its right-hand side.

In order to be able to apply sidewise duplication on rootless subtrees f (Pi), f a valuation
0f79 and g in D, we first have to insert a node p satisfying chin(p) top(f(pi)). So we do, in
any order and until no further action is possible, the node insertion Nt[B J --+ SlSzS3, Sl N}s3]
for each B J --+ s1s2s3 with (i) k 6 J, (ii) either B J -- s1s2s3 a production in the current
scheme or B J an attribute in the current scheme and sszs3 e, and (iii)

SRecall that Nu V are some of the auxiliary attributes introduced at the beginning of this proof. At this stage
of the proof, however, the information base scheme does not yet contain auxiliary attributes, whence by necessity
Sl+ 8.

1126 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

1,2}

{13, D{14, {9} D{10}Iy{7,12} c’ 8,

C{13}
0
{14}

FIG. 29. Evaluation ofall type variables under the valuations of79 in D.

for each symbol ot K in s2, 6 K,
N/ not in s s3, and
for each symbol cK in ss3,

immediately followed by the sidewise duplication Acr[BJ --+ sN}s2, N)}, N/] and the

node merging N/z[BJ sN]ls2Ni, N} $3]. 16

Substep 2. Duplicating rootless subtrees corresponding to type 2 variables. For each
type 2 variable Pi occurring in E, we perform the following procedure. Let Pk (BDi)
be the unique declaration in D’ containing o in its right-hand side.

First, we do, in any order and until no further action is possible, the node insertion
Nt[B J --+ s, N}] for each B s with J, s not containing N, and either B J --+ s
a production in the current scheme or B J an attribute in the current scheme and s ,
immediately followed by the sidewise duplication Ao-[B J --+ N}, N)}, N/] and the node

merging N#[B --+ N)} N/, N)} s].
The current instance of our example is now as shown in Fig. 30.
Substep 3. Eliminating the undesired side effects of the duplication. For each variable

Di occurring in an equation of E and for each valuation of 79 in D, it is now our intention
to propagate upward the "duplicate" of f(Pi), the parent of which is labeled N/, until that
parent node becomes a child of the node n with top(f(p)) (n). Unfortunately, we may
run into trouble if the duplicate of f (Di) contains a "copy of the duplicate" of g (p,), g another
valuation of 79 in D and p, an arbitrary variable, without containing a corresponding "copy"
ofg(p). Such copies of duplicates will be called undesired copies ofduplicates.

For example, in our example, "copies of duplicates" occur. For instance, if f is the val-
uation of 79 in D for which f(p) (D) and g is the valuation of 79 in D for which g(p)
is the leftmost subtree of D of which the root is labeled A (see Fig. 29), then the rightmost
occurrence of A in Fig. 30 is the duplicate of f(p3). Clearly, the leftmost occurrence of
A in Fig. 30 contains g(P9) (which is empty) as well as the duplicate of g(P9). Hence the

16Observe that if f(Pi) is the empty rootless subtree, then, by the first operation, one N]l-labeled leaf node is

inserted in an arbitrary place between the children of the corresponding BJ-node, not necessarily corresponding with
the place of Pi in the right-hand side of the declaration p, Pi in 79 ". Fortunately, this nondeterminism gets
immediately eliminated by the subsequent sidewise duplication and node merging.

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1127

A1 A{1,2)

o{9}/ \ B"’,P" / \

FIG. 30. Duplication of rootless subtrees corresponding to type and type 2 variables.

duplicate of f(Pl3) contains a copy of the duplicate of g(P9). However, the duplicate of
f(P3) also contains a copy of g(p) (namely the duplicate of f(P3) itself). Such copies of
duplicates do not cause problems later; in fact, we will need them in order to generate the correct
result. Undesired copies of duplicates do not occur in our example, and, as a consequence,
the operations described below will not alter the instance in Fig. 30. An example in which
undesired copies of duplicates do occur is given in the Appendix. There, it is also shown why
these undesired copies of duplicates cause trouble.

We now remove undesired copies of duplicates as follows. 7 First, we remove all indices
except the index from the superscripts of the node labels using the cleaning-up procedure in
step 2.5 of this construction. Then, we reintroduce the other indices by repeating steps 3 and 4.
The way the auxiliary attributes Nx are treated there prevents the indexing to be propagated
downward through the parent nodes of duplicates.

Next, we will add an index 0 to the Nff corresponding to undesired copies of duplicates. 8

They are recognized as follows. For each tpe variable Pi occurring in ,f, we do the child
substitution Ex[BJ -+ SlNuKs2, N, Uff{ 1] for all productions BJ SlNuKs2 in the current

17Of course, desired copies of duplicates can in turn contain undesired "copies of copies of duplicates," and so

on, down to arbitrarily deep levels in the information base instance. While we choose not to complicate this already
involved proof any further by explaining the problem only at the highest level where it can occur, the procedure
described here is nevertheless general and removes undesired copies at any level in the information base instance.

18Note that, even if step 5.3 is initiated with an instance in which the superscripts of auxiliary attributes are

arbitrary finite sets of nonnegative integers, we always have at this point that either K or K 0, so K never

contains 0.

28 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

scheme for which the superscript of no symbol in s contains the index i. Similarly, for each
type 2 variable/9 occurring in ’, we do the child substitution E) Bs ._ s Nfs2, Nf, NfUll

for all productions Bs _+ s Nfs2 in the current scheme with ’ J. Finally, undesired copies
of duplicates are now removed by the node deletions N3[N,r,] with Nk in the current scheme,
Nu an auxiliary attribute, and 0 6 K.

If for some type or type 2 variables/9 and Pk and for some valuation f of 79 in D,
f(Pi) and f(pk) are isomorphic, then all their respective duplicates are also isomorphic, by
Theorem 3.1 3. In general, some of these duplicates will have disappeared and some others will
have been "trimmed" after step 5.3. However, the operations in step 5.3 preserve isomorphism.

Substep 4. Propagating duplicates upward in the instance. For each variable ,o occurring
in an equation of,5’ and for each valuation of 79 in D, we will now move upward the "duplicate"
of f (Pi), the parent of which is labeled N/, until that parent node becomes a child of the node
n with top(f(p)) (n). This is achieved by performing, in any order and until no further
action is possible, the upward duplication A1)[Cx sIDLs2, DL --). s3N s4, N;, N+,,],
immediately followed by the node deletion Ni[N], and this for all productions CK ._ Sl DLs2
and DL --+ s3Ns4 in the current scheme with k dip n + 2 _< d(p/modn). As a consequence of
this condition, duplicates of variables of depth in (79) are not moved upward; indeed, they
already are in their right position.

Finally, in order to be able to immediately recognize the variable to which an Nff-labeled
node corresponds, we perform, in any order and until no further action is possible, the child
substitution E X [As s N $2, N, N,modn for each production AJ sN $2 in the current
scheme with k > n.

For each variable oi occurring in an equation of c and for each valuation of 79 in D the
A-labeled node n with top(f(p)) (n) has a child m labeled N/ with chtrs(m) a "duplicate"
of f (Pi). Because ofTheorem 3.1 3, it suffices to compare these "duplicates"’in order to decide
the isomorphism of the original f (Pi)’s.

The current instance of our example is now as shown in Fig. 3 1.
Observe that the N/-labeled nodes always occur to the right of each of their siblings

labeled by another symbol.
Step 6. Determination of all valuations of 79 and c in D. We will relabel by AIll all

nodes n for which there exists a valuation f of 79 and g’ in D with top(f(p)) (n). (The
superscript of the label of all other nodes will be replaced by the empty set.) Therefore, we
do the following steps"

Substep 1. Indicating the equations of satisfied by the valuations of 79 in D. For each
equation e, ------ p, P,2 in g’, n + _< k < n + and for each valuation f of 79 in D,
we will add the index k to the superscript of the label of the node n with top(f (,o)) (n)
if and only if f satisfies e,, i.e., if f (p,,) and f(P,2) are isomorphic. This is achieved by
performing, in any order and until no further action is possible, the parent equality substitution
Ecr[a s --+ s, N, N, AsU(kl] for all productions as -- s in the current scheme with NkO
and N, in s and k ’ J.

In our example, we only have one equation: e5 =-/99 /913. Three of the four valuations
of 79 in D satisfy this equation. Their corresponding A-nodes see an index 15 added to the
superscript of their label. The current instance in our example is now shown in Fig. 32.

Substep 2. Relabeling and cleaning up. In any order and until no further action is

possible, we perform Err [A s ._+ s, AII] for each production A s ._+ s in the current scheme
with{n+l n+l}_ J.

Using parent substitution, we now rename all attribute node labels BJ with B 6 V and

’ J to B" using permutation, we rename all constant node labels as with a T by a.
Finally, we remove all N/, as well as the subtrees of which they are the root, using node
deletion.

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1129

FIG. 31. Duplication of rootless subtrees corresponding to variables occurring in equations ofE.

m3
A{1,2,1s}

B{3
Ao N9 N3

C’9} g’10}/kb",’2} ce A{8}

0{13} t14}
D

FIG. 32. The result ofmarking the equations ofE satisfied by the valuations ofD in D.

1130 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

Now, all nodes n for which there exists a valuation f ofDUE in D with top(f (Pl)) (n)
are labeled A{11; all other nodes are labeled with an attribute or a constant indexed by the empty
set.

Comparing the instances obtained at the end of step 2 and this step respectively, we have
now eliminated all valuations of 79 in D that are not valuations of 79 and g in D. in our example,
one of the valuations identified in Fig. 27, namely that for which the corresponding A-node
did not receive an index 15 in Fig. 32, is eliminated.

Step 7. Evaluation ofall variables under the valuations of79 and in D. We will relabel
the nodes in the current instance in such a way that

for each type 2 variable Pi, the superscript of the label of a node n contains the index
if and only if there exists a valuation f of 79 and E in D with par(f (Pi)) 11;

for each type variable Pi, the superscript of the label of a node n contains the index
if and only if there exists a valuation f of 79 and E in D with top(f (Pi)) containing n.

Thereto, it suffices to repeat steps 3 and 4 of the construction of this proof, starting from
the current instance. In our example, the resulting instance is then as shown in Fig. 33.

FIG. 33. Evaluation ofall variables under the valuations ofD and E. in D.

Step 8. Duplication of rootless subtrees corresponding to variables in u. Now that all
valuations of 79 and g in D have been fully specified, we can start with the simulation of
the actual transformation. Thereto, for each variable Pi in the substitution term u and each
valuation f of 79 and , in D, we will add to chin(n), n being the node with top(f (pl)) (n),
a node m with chtrs(m) a "duplicate" of f (Pi). Therefore, we do the following steps, keeping
in mind that p does not occur in u:

Substep 1. Duplicating rootless subtrees corresponding to type variables. Thereto, we
simply repeat step 5.1 of the construction in this proof.

Substep 2. Duplicating rootless subtrees corresponding to type 2 variables. In order to

duplicate type 2 variables, we cannot simply repeat step 5.2. This is because of the different
ways in which type and type 2 variables are treated in Definition 4.1 8. Indeed, if Di is a

variable of type 1 in u, f is a valuation of 79 and g in D with f(Pi) (D Do), and g is
an E-transformation, then we have to compute g((D), D1)... g((Dm), I)m). If, on the other
hand, Pi is a type 2 variable, we have to compute g(f(Pi), Pf(pi)), where p par(f(pi)).

Therefore, if Pi is a type 2 variable in u and f is a valuation of 79 and ,5’ in D, we will
duplicate the completion of f (Pi) with its parent node, rather than f (Pi) itself. Thereto, we

GRAMMAR-BASED HIERARCHICAL DATA MODELS 131

perform the following procedure for each type 2 variable Pi in u. Let Dk (Bpi)... be
the unique declaration in D’ containing Pi in its right-hand side.

First, we do, in any order and until no further action is possible, the node insertion
Nt[B J s, N/ul}] for each BJ s with 6 J, s not containing N/J, and either B J --+ s
a production in the current scheme or BJ an attribute in the current scheme and s e,
immediately followed by the sidewise duplication Ao[B N/ull, NiJull, N/] and the

node merging N/z[BJ N/u{} N/a, N/U{} ---, s].
In comparison with step 5.2, we now also duplicated the superscript of the label of the

parent node of f (Pi).
Substep 3. Eliminating the undesired side effects of the duplication. We repeat step 5.3

of the construction in this proof.
Substep 4. Propagating duplicates upward in the instance. We repeat step 5.4 of the

construction in this proof.
For each variable pi in the substitution term u and for each valuation of 79 in !), the

A-labeled node n with top(f(p)) (n) has a child m labeled N/ for some J

_
n}

with ehtrs(m) a "duplicate" of f (pi).
The current instance of our example is now as shown in Fig. 34.

A{1,2}

c / g"" L B’.... ’1 1% A

A5 /C a A5 b*

b*

A{1,2}
{3 5

""IX
C{13} D{14} C{13} D{14}

FIG. 34. Duplication of rootless subtrees corresponding to variables in u.

Observe that the N/J-labeled nodes always occur to the right of each of their siblings
labeled by another symbol.

Step 9. Downwardpropagation ofduplicates to the place where they have to be inserted.
If pj, the left-hand side of the substitution clause pj ,-- u, equals p, the root of (79), then
no alterations are made.

Otherwise, for each variable Pi in u and for each valuation of 79 and E in D, we will move
downward the "duplicate" of f (Pi) until it becomes a "sibling" of f (pj). Therefore, we do
the following steps:

1132 MARC GYSSENS, JAN PAREDAENS, AND DiRK VAN GUCHT

Substep 1. Identifying the paths for the downward propagation of duplicates. We will
identify these paths with the sequence of variables pq Pqa(pj) where, for <_ <_ d(pj),
pq is the unique ancestor of pj in (D) that is of type 2 and has depth 1.

Remembering that p :-- (Ap2) is the declaration of the root of (D), we always have
Pq P2. In our example, we have pj P5, d(ps) 2, and pq P2, Pq2 PS.

Substep 2. Propagating duplicates downward in the instance. For each variable Pi in
u and for each valuation of 79 and in D, we will now move downward the "duplicate" of

f (Pi) along the path identified in the previous step, until it becomes a "sibling" of f (pj), i.e.,
until it has the same parent node as f (pj), or, equivalently, until it has the same parent node
as f (Pqd(pj))"

This is achieved by performing, in any order and until no further action is possible, the
downward duplication A6[BK -, sCLszNs3, CL --+ s4, N, N+,,], immediately followed
by the node deletion N6[NJ], for each production BK __+ s CL

S2Ns3 in the current scheme
with C 6 V, k div n + 2 < d(pj), and qkdivn+2 G L (whence qkdiv,,+l K), and for each
CL

__
s4 with either cL __+ s4 a production in the current scheme or s4 e.

Finally, in order to be able to immediately recognize the variable to which an N-labeled
node corresponds, we perform, in any order and until no further action is possible, the child
substitution E X BK __+ slN$2,

JNkmodn] for each production B K ---, SlNS2] with q,l(pj 6 K
andk > n.

The current instance of our example is now as shown in Fig. 35.

6
A{ ,2}

C{13} D{14}

FIG. 35. Downwardpropagation ofduplicates to the place where they have to be inserted.

Observe that step 9.2 does not produce alterations if 1, i.e., if pj =_ p2. Indeed, in
that case, all duplicates already have the same parent node as f(pj) =- f(p2), namely the
A-labeled node n with top(f(pl)) (n).

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1133

Step 10. The actual transformation in the case when in the substitution clause pj - u,

pj =- p. We distinguish two cases.
Case 1. The substitution clause is p +-- e. Then, in any order and until no further action

is possible, we do the node deletion N[AJ] for each attribute in the current scheme with
E J. Finally, we remove the superscripts from all labels using parent substitution (for the

attribute nodes) and permutation (for the constant nodes).
The resulting instance is [p +-- e 79 U](D).
Case 2. The substitution clause has theform p +-- Bpi with B V and Pi par(79).

First, we mark the subtrees to be deleted with the index n + by doing, in any order and until
no further action is possible, the child substitution

DK DK DK{n+I)],)(. [C g
---+ s1 $2,

for each production CJ --> s1DKs2 in the current scheme with 6 J (whence C A or
C Ni), n + q/K, and D :/: Ni. Then, we actually remove these subtrees using the node
deletions N3[DK for all attributes D in the current scheme with n + 6 K. Next, we remove
the auxiliary attributes by applying, in any order and until no further action is possible, the
node merging N#[AJ -+ Nix, Nix --+ s] for all productions aJ UiK and N/K ---> s in
the current scheme with 6 J. Finally, in any order and until no further action is possible,
we perform the parent substitution Tr[AJ -+ s, B] for each AJ S with E J and either
AJ --+ s a production in the current scheme or A J an attribute in the current scheme and s e.
Using parent substitution (for the attribute nodes) and permutation (for the constant nodes),
we remove the index sets from all other labels.

The resulting instance is [p - (Bpi) 79 LJ](D).
Step 1. The actual transformation in the case when in pj +- u, pj is of type in 79.

Let k qd(pj) and let Pk t... t be the unique declaration in 79" containing Pi in its
right-hand side. Let in the above declaration tq, <_ q <_ l, be the basic term with tq pj.
Let Pr (Bpk)... be the unique declaration in 79’ containing p in its right-hand side.
Let u u uo with u u0 basic terms. We then do the following steps"

Substep 1. Identifying and removing subtrees to be deleted. In any order and until
no further action is possible, we do the node insertion Nt[CJ --+ s1s2s3, s1Nos3] for each
production CJ ---> sszs3 in the current scheme with k 6 J, s2 the substring of s1szs of all
symbols containing the index j in the superscript of their label, and s2 - e, immediately
followed by the node deletion Ng[N0]. 9

Substep 2. Rearranging subtrees to be substituted. In any order and until no further action
is possible, we perform the permutation FI[C J ---> sszs3, S1S4S2] for each CJ --+ sszs3 with
(i) k 6 J, (ii) either CJ --+ SSzS3 a production in the current scheme, or CJ an attribute in the
current scheme and sszs3 e, and (iii)

the superscript of no.symbol in sszs3 contains the index j;
s consists of q- symbols;
s2 consists of q symbols;
s3 only consists of symbols NiK with Ni an auxiliary attribute; and
s4 o/1 o/l with, for v l,

a if uo a;
uo- N/K ifuo--piandN/xisins3;

N/K if u (Dpi) and Nf is in s3.

(Observe that s4 is uniquely defined by the above conditions.)

9Observe that, inthe above production, either C B (B being the attribute in the declaration Pr (Bp)...)
or C is an auxiliary attribute.

1134 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

Substep 3. Cleaning up. For each indexed attribute N/x in the current scheme with toi a
variable that occurs in u as a basic term of type 2, say (Dpi), we do the parent substitution
7r[NiK --+ s, D] for each production Nix s in the current scheme. Then, for each indexed
attribute NiK in the current scheme with Di a variable that occurs in u as a basic term of type 1,
we do the node merging NIz[B J s,UiXs2, Ui -- s3] for all productions B J s,Us2
and NiK --+ s3 in the current scheme with k 6 J (B being the attribute in the declaration

Pr (Bpk)...). Finally, we remove all remaining index sets from node labels using
parent substitution (for the attribute nodes) and permutation (for the constant nodes).

The resulting instance is [pj U 79 LI
Step 12. The actual transformation in the case that in pj +- u, pj is of type 2 in 79. If

pj is of.type 2 in. 79, .then qap.j j. Let Pr "= (Bpj)... be the, unique declaration in 79’
contaimng pj in its right-hand side. Let u u u,o with u Uw basic terms. We then
do the following steps:

Substep 1. Identifying and removing subtrees to be deleted. In any order and until no
further action is possible, we do the node insertion Nt[CJ

s1s2, NoS2] for each production
CJ

Sl s2 in the current scheme with j 6 J, s2 the substring of Sl s2 of all auxiliary attributes,
and Sl e, immediately followed by the node deletion N6[No]?-Substep 2. Rearranging subtrees to be substituted. In any order and until no further action
is possible, we perform the permutation FI[CJ --+ Sl, s2] for each CJ

sl with j 6 J, either
CJ -- s a production in the current scheme, or CJ an attribute in the current scheme and
S e, and $2 Of Cl with, for v l,

a if uv a;
Otv NiK if U Pi and NiK is in s l;

Ni1 ifuv--(Dpi) andN/xisins

(Observe that S only consists of auxiliary attributes and that s2 is uniquely defined by the
above conditions.)

Substep 3. Cleaning up. We repeat step 1.3 in the construction of this proof.
The resulting instance is [pj +-- u 79 U g]. Particularly, in our example, the operations

above finally yield the information base instance shown in Fig. 19.
Finally note that all constructions in this proof were done at scheme level, i.e., they do

not depend on the instance under consideration.
Hence the grammatical algebra and the grammatical calculus are equivalent. As Codd

concluded for the relational model, this equivalence gives a naturalness to both languages.
However, it still requires further investigation to find a precise language-independent charac-
terization for the expressive power of the grammatical algebra and calculus.

7. Conclusions and future work. In this paper a simple model for representing the
hierarchical structure in information is proposed. Two methods for querying in this data model
are given and shown to be equivalent. The expressive power of these querying methods is not

yet clear, however. In particular, it is not known how these methods are related to querying
facilities in other data models, that can be simulated by the grammatical model. Furthermore,
we are looking for a well-adapted interface that is integrated in a more general environment.
It is remarkable that there seems to be no fundamental distinction between updating and
querying in this model. Other aspects, such as transforming several given trees into one result
tree, constraint checking, and implementation strategies, are under investigation.

Although it can be considered as an extension of the relational model, the grammatical
model, because it is hierarchical in nature, is of course not suited for all database applications.

2Observe that, in the above production, either C B (B being the attribute in the declaration Pr (Bpj)...)
or C is an auxiliary attribute.

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1135

In particular, the notion of "shared component" is difficult to express in a tree. It is therefore
interesting to look for a characterization of the semantic expressiveness of the grammatical
model. On the other hand, one could also look for "network-like" extensions of this model,
using the theory of graph-grammars (e.g., [15]).

Appendix. As promised in step 5.3 of the construction in the proof of Theorem 6.1, we
shall now exhibit an example in which duplication yields undesired side effects.

Example. Consider the information base instance D of Fig. 36 (over some appropriate
scheme), let

79- {Pl (Ap2), P2 (Ap3)(Bp4)(Cp5), P3 := (Ap6)(Bp7)(Cp8)},

and let E be an arbitrary calculus expression involving 79 and the set of equations g
{/96 PS}.

A

a b c

FIG. 36. The information base instance D.

If we apply the construction in the proof of Theorem 6.1 to the instance D up to step 4,
i.e., until all valuations of 79 are determined and fully specified, we obtain the instance
in Fig. 37.

A{1,2}

A !,4,7}{5,8;
//B{7} ;18}

FIG. 37. The instance D after determination andfidl specification ofall valuations of79 in D.

Clearly, there are two valuations of 79 in D. One of this, say f, is determined by f (/91)
(D). For the other one, say g, g(p) is the leftmost component of chtrs(rt(D)). Since/96 and

P8 are the only variables occurring in an equation of g, the only subtrees to be duplicated are

f(P6), f(ps), g(p6), and g(P8). The result of applying steps 5.1 and 5.2 to the instance of
Fig. 37 is shown in Fig. 38.

Now observe that the duplicate of f(P6) contains a "copy" of the duplicate of g(P6) as
well as a "copy" of the duplicate of g(P8). Clearly, the duplicate of f(P6) does not contain a

duplicate of g (p).

1136 MARC GYSSENS, JAN PAREDAENS, AND DIRK VAN GUCHT

FIG. 38. The instance of Fig. 37 after duplication of f(P6), f(Ps), g(P6), and g(P8).

If we now would try to apply step 5.4 of the construction in the proof of Theorem 6.1
straight away, we would have to move all duplicates (and hence also all copies of duplicates)
two levels upward. We leave it to the reader to verify that, for p6, this would result in two
nodes at the same level (more concrete, as children of the root) with the same attribute label
N24, which would imply that the result is undefined, and this is obviously not what we want.
Clearly, a duplicate of g(p6) does not belong at that level. Luckily, the relabeling procedure
of step 5.3 reevaluates the valuations of 7) in D and prevents them from being propagated
downward through nodes labeled by auxiliary attributes. The result of the relabeling is shown
in Fig. 39.

FIG. 39. The instance ofFig. 38 after relabeling.

The undesired node with label N6 (as well as the undesired node with label N8) is now

easily recognized from the fact that the label of its parent node no longer contains the index 6,

GRAMMAR-BASED HIERARCHICAL DATA MODELS 1137

and hence, by step 5.3, the undesired copy of the duplicate of g(p6) (as well as the undesired
copy of the duplicate of g(P8)) will be deleted.

Acknowledgments. The authors are indebted to Peter Peelman who produced the figures
in this article and to Jan Van den Bussche whose critical comments on a previous version of
this paper were very helpful.

REFERENCES

[1] S. ABITEBOUL AND N. BIDOIT, Non first normal form relations to represent hierarchically organized data, in
Proceedings 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, ACM Press,
New York, 1984, pp. 19 l- 198.

[2] S. ABITEBOUL AND R. HULL, IFO: Aformal semantic database model, ACM Trans. Database Systems, 12 (1987),
pp. 525-565.

[3] A. AHO, J. HOPCROFT, AND J. D. ULLMAN, Data Structures and Algorithms, Addison-Wesley, Reading, MA,
1983.

[4] C. BEERI, S. NAQVl, R. RAMAKRISHNAN, O. SCHMUELI, AND S. TSUR, Sets and negation in a logic database
language (LDL1), in Proceedings 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, ACM Press, New York, 1987, pp. 21-37.

[5] N. BIDOIT, The Verso algebra or how to answer queries with fewer joins, J. Comput. System Sci., 35 (1987);
pp. 321-364.

[6] A. K. CHANDRA AND P. M. MERLIN, Optimal ilnplementations of conjunctive queries in relational databases,
in Proceedings 9th Annual ACM Symposium on the Theory of Computing, ACM Press, New York, 1977,
pp. 77-90.

[7] P. CHEN, The Entity-Relationship Model: Toward a unified view of data, ACM Trans. Database Systems,
(1976), pp. 9-36.

[8] E. E CODD, Extending the database relational model to capture inore meaning, ACM Trans. Database Systems,
4 (1979), pp. 397-434.

[9] P. DADAM, E KUESPERT, E ANDERSEN, H. BLANKEN, R. ERBE, J. GUENAUER, V. LUM, P. PISTOR, AND G. WALCH,
A DBMS prototype to support extended NF2 relations: An integrated view on fiat tables and hierarchies,
in Proceedings ACM SIGMOD International Conference on Management of Data, ACM Press, New York,
1986, pp. 356-364.

i0] S. GINSBURG, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.
11 G. H. GONNET AND E W. TOMPA, Mind),our grdmrnar: A new approach to modelling text, Technical Report,

University of Waterloo, 1988.
[12] M. HAMMER AND D. MCLEOD, Database description with SDM: A semantic database model, ACM Trans.

Database Systems, 6 (1981), pp. 351-386.
[13] R. HULL AND C. YAP, The Format Model: A theory of database organization, J. Assoc. Comput. Mach., 31

(1984), pp. 518-537.
[14] G. JAESCHKE AND H.-J. SCHEK, Retnarks on the algebra on non first normalform relations, in Proceedings 2nd

ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, ACM Press, New York, 1982,
pp. 124-138.

[15] D. JANSSENS AND G. ROZENBERG, On the structure ofnode label controlled languages, Inform. Sci., 20 (1980),
pp. 191-216.

[16] G.M. KUPER AND M. Y. VARDI, A new approach to database logic, in Proceedings 3rd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, ACM Press, New York, 1984, pp. 124-138.

17] D. MAIER, The Theory ofRelational Databases, Computer Science Press, Rockville, MD, 1983.
[18] J. PAREDAENS, P. DE BRA, M. GYSSENS, AND D. VAN GUCHT, The Structure of the Relational Database Model,

EATCS Monographs on Theoretical Computer Science, 17, Springer-Verlag, Berlin, 1989.
19] D. SHIPMAN; The Functional Data Model and the data language DAPLEX, ACM Trans. Database Systems, 6

(1981), pp. 140-173.
[20] S. J. THOMAS AND P. C. FISCHER, Nested relational structures, in Advances in Computing Research III: The

Theory of Databases, E C. Kanellakis, ed., JAI Press, Greenwich, CT, 1986, pp. 269-307.
[21 J. D. ULLMAN, Principles ofDatabase and Knowledge-Base Systems, Vols. and II, Computer Science Press,

Rockville, MD, 1988, 1989.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1138-1151, December 1994

1994 Society for Industrial and Applied Mathematics
002

SELECTING HEAVILY COVERED POINTS*

BERNARD CHAZELLE’f, HERBERT EDELSBRUNNERt, LEONIDAS J. GUIBAS, JOHN E.
HERSHBERGER RAIMUND SEIDELII, AND MICHA SHARIR**

Abstract. A collection of geometric selection lemmas is proved, such as the following: For any set P of n points
in three-dimensional space and any set ,9 of m spheres, where each sphere passes through a distinct point pair in P,

there exists a point x, not necessarily in P, that is enclosed by f2 (m ! (n log6)) of the spheres in S. Similar results
apply in arbitrary fixed dimensions, and for geometric bodies other than spheres. The results have applications in
reducing the size of geometric structures, such as three-dimensional Delaunay triangulations and Gabriel graphs, by
adding extra points to their defining sets.

Key words, discrete geometry, computational geometry, selecting points, covering, intervals, boxes, spheres,
Delaunay triangulations, finite-element meshes, Gabriel graphs

AMS subject classifications. 05B99, 51M99, 52A99, 68Q20, 68R05

1. Introduction. The research that led to the results reported in this paper was originally
focused on a problem about Delaunay triangulations for finite point sets in three-dimensional
space. For such a set P {p, P2 p,,}, the Delaunay triangulation, 7)(P), consists of all
tetrahedra whose circumscribed spheres enclose no points of P [7], 10], [17]. Depending on
how the points are distributed, the number of edges can vary between linear and quadratic in n.
Euler’s relation for three-dimensional cell complexes implies that the number of triangles and
tetrahedra, and therefore the total combinatorial size of 7)(P), is proportional to the number
of edges. We considered the question whether for every set of n points P there exists a point
set Q so that 7)(P t3 Q) is guaranteed to have only a small number of edges. This question
is motivated by the use of Delaunay triangulations in the discretization of three-dimensional
objects [4], for finite-element analysis and related applications, where the size of the analysis
has a strong effect on the efficiency of the analysis 18]. Of course, any set of n points in three
dimensions admits a linear-size triangulation [10]; however, the Delaunay triangulation is
preferred in these applications, because its tetrahedra are, in a certain sense, the most "round"
possible, a property that affects the quality of the finite-element analysis.

A fairly intuitive approach to the problem is to identify a point that lies inside a large num-
ber of spheres circumscribing the tetrahedra ofthe current Delaunay triangulation. Adding this
point will remove all corresponding tetrahedra and replace them by at most a linear number
of new tetrahedra. Thus, the problem of slimming Delaunay triangulations can be attacked by
showing that if there are many circumscribing spheres then there must be a point enclosed by
many of them. It turns out that this is indeed true, for certain quantifications of "many," and

*Received by the editors April 16, 1990; accepted for publication (in revised form) October 4, 1993. A preliminary
version of this paper has appeared in Proc. 6th ACM Symp. on Computational Geometry (1990), pp. 116-127.

Department of Computer Science, Princeton University, Princeton, New Jersey 08544. The work of this author
has been supported by National Science Foundation grant CCR-87-00917.

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. The
work of this author has been supported by National Science Foundation grant CCR-87-14565.

DEC Systems Research Center, Palo Alto, California 94301, and Computer Science Department, Stanford
University, Stanford, California 94305.
DEC Systems Research Center, Palo Alto, California 94301.
IIDepartment of Electrical Engineering and Computer Science, University of California, Berkeley, California

94720. The work of this author was supported by National Science Foundation grant CCR-88-09040.
**School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. The work of this author has been

supported by Office of Naval Research grant N00014-87-K-0129, by National Science Foundation grants DCR-83-
20085 and CCR-89-01484, and by grants from the U.S.-Israeli Binational Science Foundation, the Israeli National
Council for Research and Development, and the Fund for Basic Research of the Israeli Academy of Sciences.

1138

SELECTING HEAVILY COVERED POINTS 1139

that similar results can be obtained in more general settings, involving various other geometric
objects, in two, three, and beyond three dimensions. We now summarize the main results and
present the outline of this paper.

objects

intervals

rectangular boxes

diameter spheres

general spheres

TABLE
Sumtnary ofcombinatorial results on tnultiply covered points.

dimension bound

(m2/n2)

d f2 (m2/(n2 ’og2d-2))

.
2.2

3.1

3.2

Sections 2 and 3 present the main results of the paper. They are combinatorial in nature
and show how to select multiply covered points in collections of rectangular boxes (2) and
spheres or more general convex bodies (3). Table lists these results. In each case, the
problem is defined for a set of n points in d dimensions, and for a subset of rn of the (2) point
pairs, where each of these pairs defines a geometric object of some kind. The bound given in
the third column of the table is f2 (f (n, m)) if there is always a point enclosed by at least that
many of the m objects. In all cases, the bounds are nontrivial only if the number of objects is
significantly larger than the number of points.

Sections 4 and 5 discuss the problem of reducing the combinatorial size of certain geo-
metric structures by adding new points. The combinatorial result for general spheres is used
in 4 to show, using a constructive proof, that for any set P of n points in three dimensions
there is a set Q of O(nl/2 log3 n) points so that the Delaunay triangulation of P t.) Q has at

most O(n3/2 log n) edges. Section 5 studies the case of Gabriel graphs. The Gabriel graph
of a set P of n points in d > dimensions, denoted by (P), has an edge between two points
p and q in P if and only if the sphere whose diameter is pq encloses no point of P. We show
that the size of (P) in three dimensions can be f2 (n2), and that it can be slimmed down by
adding extra points, as in the case of Delaunay triangulations.

The idea of adding points to slim down the size of Delaunay triangulations has already
been used in a paper of Chew [6], where he triangulates polygons without small angles, by
finding sharp triangles in the constrained Delaunay triangulation of the polygon, and by adding
new points at their circumcenters. After the original appearance of this paper [5], an improved
and fairly complete solution to the slimming problem has been given by Bern, Eppstein, and
Gilbert [3] (see also [2]), who showed that, in any fixed dimension, O(n) points can always
be added to any given set of n points, to reduce the size of the Delaunay triangulation of the
combined set to linear in n. The technique of [3] is not really comparable to the approach taken
here, and it does not supercede our main selection lemmas, which, as we believe, provide useful
machinery for tackling other, unrelated geometric problems. Indeed, our selection results have
been used in a companion paper [1 to derive an improved bound on the number of halving
planes of a point set in three dimensions.

2. Selecting a point within rectangular boxes. The primary combinatorial tool used to

prove the results of this paper is what we call the "selection lemma" (Lemma 2.1). This section
formulates and proves this lemma and demonstrates its generalization to rectangular boxes in

1140 CHAZELLE ET AL.

d > 2 dimensions. Although we phrase the results in geometric terms, they are combinatorial
in nature.

2.1. The selection lemma. To state the selection lemma we make the following defini-
tion. For two points p < q on the real line we call pq {X P < x < q} the interval of
{p, q }. For any set V, we denote by () the set of all unordered pairs {p, q }, for p - q 6 V.
The following lemma can also be found in], where generalizations different from the ones
in this paper are studied.

LEMMA2.1. Let V be a set of n points on the real line and let E c_ () be a set of
rn edges. For a point x not necessarily in V, let E(x) denote any subset of the edges in E
whose intervals contain x, define m(E(x)) IE(x)l, and let n(E(x)) be the number ofpoints
incident to (i.e., endpoints of) edges in E(x).

(i) There is a point x and a set E(x) with m(E(x)) > m2/4n2.
(ii) There is a point y for which there is a set E (y) with

m(E(y))/n(E(y)) > m/ (6n log)
Both bounds are tight up to multiplicative constants.

Proof. We assume that rn > 2n; otherwise both assertions hold trivially. In order
to show (i) choose k points, none of which are in V, cutting the line into k intervals
so that each contains no more than [< + points of V (k will be specified later).
The number of edges whose intervals contain none of the k points is therefore at most

k(fl) < (n2 / nk)/Zk. Each of the remaining intervals contains at least one of the k
m if we choosepoints and there are at least m (n2 -k- nk)/2k such intervals, which is at least -k [nZ/(m n)]. By the pigeonhole principle one of the chosen points is contained in at

least m/2(k 1) > (m2 mn)/2n2 > mZ/4n2 intervals (it is only in the last inequality that
we needed the assumption rn >_ 2n).

It is easy to see that this bound is tight, up to the multiplicative constant. For given m and
n let V consist of about n2/2m groups of about 2, consecutive points each, and let E contain
only edges within but not across groups. Any point x can only be covered by the intervals
within one group and there are at most about m2/n2 such intervals covering a common point.

To prove (ii), build an ordered minimum height binary tree whose nodes are the k
chosen points (for the same k chosen in (i)), so that the tree inorder gives the points sorted from
left to right. The height of the tree is h [log(k 1)1 < 2 log n2 /m, as is easily verified. For
a node y define E (y) as the set of edges in E whose intervals contain y but no ancestors of y.
In this way each edge whose interval contains at least one of the k points is counted exactly

rn Because each point canonce. By what we said above we therefore have y m(E(y)) > -.
be incident to edges of at most one node per level we also have -]y n(E(y)) < n(1 + h). Now
suppose that m(E(y))/n(E(y)) < m/(2n(1 + h)) for each node y. But then

m m

Y

m(E(y)) <
2n(1 + h)

n(E(y)) < -,
which is a contradiction. This implies that there is a point y with m(E(y))/n(E(y)) >

m/(2n(l + h)) > m/ 6nlog
The remainder of the proof shows that the lower bound in (ii) is tight, up to the multiplica-

tive constant. The argument consists of two steps. For the first step consider the graph defined

by the set of points W 1, 2 and the set of edges F {i, j j is a power of 2}.

All logarithms in this paper are to the base 2.

SELECTING HEAVILY COVERED POINTS 141

Notice that FI O(log e). We show that the edges whose intervals contain some arbitrary
point y form a forest by arguing that these edges cannot form a cycle. So assume there is a
cycle ofedges {i0, ii }, {i, i2} {i,, i0} whose intervals all contain y, and let i0 be the point
closest to y (we may assume that y is not an integer multiple of so i0 is uniquely defined).
By definition we have lijyl < lij+yl for j 0 and we now argue that this is true in general.
Assume it is true up to j. Because lijyl < lij+yl and the lengths of all intervals are powers of
2, lij+ij+2l > 21ijij+l unless ij+2 ij, which is impossible because this would mean that an
edge is reused. Consequently, the distances of the ij from y strictly increase with increasing
index, which contradicts the assumption of a cycle. Since every subgraph of a forest is again
a forest and since every forest has more vertices than edges the above argument proves that
the lower bound in (ii) is asymptotically tight for m (R) (n log n). Nothing has to be proved
if m is even smaller than that.

The second step covers other ratios of m and n as follows. For each point 6 W let
V contain a group, Gi, of tc consecutive points, for x some fixed positive integer. We also
define E {{p,q} P 6 Gi, q Gj, {i, j} F}. Now, n IVI xe and m IEI-"

m(R)(tc2e log e) and therefore - (R)0c log e). We show below that m(E(y))/n(E(y)) < tc for
every point y and every subset E(y) of the set of edges in E whose intervals contain y. But
this is equivalent to showing that (ii) is asymptotically tight because

m to log)log

To show m(E(y))/n(E(y)) < c let E(y) be a subset of the edges whose intervals contain y
and let ni be the number of points in Gi incident to at least one edge in E(y). Define F(y)
as the set of pairs {i, j} 6 F so that E(y) contains an edge {p, q} with p Gi and q Gj.
Clearly, m(E(y)) IE(y)I _< -,li.jlVy ninj. By the argument of the previous paragraph,
F(y) defines a forest which implies the existence of a leaf whose contribution to ninj is
therefore at most nix. Since we can reduce a forest to the empty graph by repeatedly removing
a leaf with its incident edge, we get ninj < x ni cn(E(y)), thus proving that (ii) is

asymptotically tight.]

Remarks. (1) Part (ii) of the selection lemma implies an inequality that is only slightly
weaker than (i). To see this note that m(E(y))/n(E(y))2 < 1, which implies n(E(y)) >

(().m 6n log using (ii). Using (ii) again gives m(E(y)) > m2/ 36n2 log2 ,2

(2) The proofs of the lower bounds in the selection lemma are constructive. Assume the
graph (V, E) is given with the points sorted from left to right. Point x can be found in time
O(m) by a single scan from left to right that keeps track of how many intervals cover the gap
between the current two adjacent points. By a slightly more complicated algorithm we can
also find a point y satisfying (ii) in time O(m). The idea is to build explicitly the binary tree
described in the proof above (see also [9]). We first build the tree in time O(k) and then assign
the endpoints of the edges to the gaps between the k points in time O(m) during a left to

right scan. From the gaps of its endpoints we get the leftmost and rightmost of the k points
that lie in the interval of the edge and we get the lowest common ancestor of the corresponding
two nodes, all in constant time (see 14]). It now remains to traverse all nodes of the tree and
to select the best one. If the points in V are not presorted then points x and y can be computed
in time O(m + n log n).

2.2. Rectangular boxes. For two points p (rr,
in d dimensions we define

ipq {X (1, 2 d) Yri < i < i or i < i < wi for < < d}

1142 CHAZELLE ET AL.

and call it the box of {p, q}. We now generalize Lemma 2.1 from intervals to boxes in d
dimensions.

THEOREM 2.2. Let V be a set ofn points in d > dimensions, so that no two coordinates

ofany two points in V are the same. Let E c_ (v2) be a set ofm > 2n edges. For a point x not

necessarily in V, let E (x) denote any subset ofthe edges in E whose boxes contain x, define
m(E(x))]E(x)], and let n(E(x)) be the number ofpoints incident to edges in E(x). Then
there exists a constant Cd > 0 depending only on d such that the following holds.

 ,.ere ,sa,,o,,.,,, a,.,ase,
(ii) Tere is a poi Sfor wi <re is a se (y) wih

m(E(y))/n(E(y)) > m/ c,nloge-
m

Proof. We prove the theorem for c 6e- using induction over d; the base case, d 1,
is settled by the selection lemma. We remark that no effort is made to minimize ca.

If d > 2 then project all points orthogonally onto the (d 1)-dimensional hyperplane
x 0. By the inductive assumption there is a point y’ in this hyperplane and a subset E (y ’)
of the edges in E whose (d 1)-dimensional boxes (the projections of the boxes/) contain
y so that

m(E(y ’)) m

n(E(y’)) ce_n loga-1 Z"

The edges whose (d 1)-dimensional boxes contain y’ are such that their d-dimensional
boxes intersect the line parallel to the dth coordinate axis that goes through y’. On this line
we have a one-dimensional problem with m (E (y’)) intervals defined by n (E (y’)) endpoints.
The selection lemma thus implies that there are points x and y with

m(E(x)) >

because 4c,_ < ca, and

m(E(y’))2 m2

4n(E(y,))2 cdn2 1ogZd-2 n

m(E(y)) m(E(y’)) m

n(E(y)) 6n(E(y’)) log ’<Y’)) can loga ’5
m(E(y’)) m

because 6Cd-1 log(n(E(y’))Z/m(E(y’))) < 6ca-1 log((n2/m) ca-i loga-l(n2/m)) <

Cd logd (nz/m) if d > 2.
Remarks. (1) Here is a purely combinatorial formulation of Theorem 2.2" Take a graph

with vertex set 1,2 n} and a set of m edges, and consider d permutations of the vertex
set. Then it is possible to cut each permutation into a left and a right part so that there are
"many" edges {i, j with and j separated in each permutation. How many such edges there
are is quantified as in Theorem 2.2.

(2) A noninductive proof of Theorem 2.2 can be given by choosing some k points in d
dimensions and then using the pigeonhole principle directly. If the point set is based on the
so-called d-fold rectangle or interval tree [9] then the same bounds as above can be derived.

(3) We have seen that the lower bounds of the (one-dimensional) selection lemma are
tight up to the multiplicative constants. This is equivalent to saying that Theorem 2.2 is
asymptotically tight for d 1. Are the bounds of Theorem 2.2 asymptotically tight also for
d>2?

SELECTING HEAVILY COVERED POINTS 1143

(4) Note that (ii) implies (i) up to a polylogarithmic factor. This is because m(E(y))/

(n(E(y))2) < and therefore n(E(y)) > m (can loga "--)m using (ii). Using (ii) again gives

m(E(y)) > m2/ (cn2 log2a !
(5) Given a graph (V, E) with the points sorted along each axis, a point y satisfying

Theorem 2.2 (ii) can be computed in time O(m). The algorithm that finds y within this
time bound iterates the one-dimensional algorithm mentioned in remark (2) after the selection
lemma, once for each dimension. A point x satisfying (i) can be constructed in the same amount
of time. If no presorting is assumed then the time to find points x and y is O(m + n log n).

3. Selecting a point within spheres. This section extends the selection lemma to circles,
spheres, and other geometric objects. In 3.1 we consider spheres defined by antipodal point
pairs. In 3.2 we generalize the result to the case where the sphere defined by two points is

arbitrary as long as it passes through the two points. We say that a sphere encloses a point, or
the point lies inside the sphere, if the point belongs to the open ball bounded by the sphere.
Section 3.3 studies a sufficient but fairly general condition that allows a similar result as for
spheres. Finally, 3.4 presents a curious application of our methods to a problem about points
and angles.

3.1. Diameter spheres. Let V be a set of n points in d > 2 dimensions. The diameter
sphere of a point pair {p, q}, pq, for p, q 6 V, is the smallest (d 1)-sphere that passes
through both points. Thus, z (p + q)/2, the midpoint between p and q, is its center and
p _[e, half the distance between p and q, is its radius. Observe that for all points x in the
box ipq the distance to z is smaller than p. In other words, ipq is enclosed in pq. Moreover,
if we rotate the coordinate axes, as necessary, we may assume that no two coordinates of any
two distinct points in V are the same. The following result is therefore an immediate corollary
of Theorem 2.2.

COROLLARY 3.1. Let V be a set ofn points in d > 2 dimensions and let E c_ (v2) denote
any set ofm > 2n edges. For a point x not necessarily in V, let E (x) be a subset ofthe edges
whose diameter spheres enclose x, let m(E(x)) IE(x)l, and let n(E(x)) be the number of
points incident to edges in E (x).

(i) There is a point x and a set E(x) with m(E(x)) > m2/ (can2 log2a-2

(ii) There is a point y for which there is a set E (y) with

(n2)m(E(y))/n(E(y)) > m/ canlogam
m

Remark. This result can also be interpreted in terms of angles/pxq, where p and q are

points of V and x is an observation point. We consider all pairs {p, q} and thus set m (2)"
Point x lies inside pq if and only if/pxq > . Thus, Corollary 3.1 implies that it is always
possible to find a point x so that f2 (n2) point pairs define an obtuse angle at x. Section 3.4
will elaborate on this interpretation and show a similar result for angles larger than -2"3.2. General spheres. Next we extend the result for diameter spheres to general spheres.
For this extension we let V be a set ofn points in d > 2 dimensions and E be a set of undirected
edges between the points as usual. For each edge {p, q} E we let O’pq be an arbitrary but
fixed (d 1)-sphere that passes through p and q. Unless O’pq pq, O’pq intersects pq in a

great-(d 2)-sphere of pq. Therefore, exactly half of pq is enclosed by O’pq and at least half
of the ball bounded by pq lies inside Crpq. If we are lucky then point x (or y) of Corollary 3.1
lies in the halves enclosed by the spheres cr for a constant fraction of the diameter spheres.

1144 CHAZELLE ET AL.

In this case, the bounds of Corollary 3.1 are the same, up to a constant multiplicative factor,
as for general spheres. Otherwise, almost all spheres do not contain x. We call crpq anchored
if this is the case, that is, x does not lie inside crpq but it lies inside pq. All anchored spheres
must lie fairly close to x in the sense that the cone with apex x tangent to any such sphere has
opening angle at least -. We will show how to select another point that is guaranteed to lie
inside many of the anchored spheres. More precisely, we show the following theorem.

THEOREM 3.2. Let V be a set ofn points in d > 2 dimensions, and let E

_
(v2) be a set of

m > 2n edges. For a point x not necessarily in V let m(E(x)) be the number ofedges whose
spheres enclose x.

(i) There is a point x with m(E(x)) >_ m2/ (cn2 log2‘/n2),--;, where ca’’ is a positive
constant that depends only on d.

(ii) There is a point y and a subset E (y) of the edges in E whose spheres enclose y so
that

m(E(y))
>

m

n (E (y)) c‘/n-’" log‘/+ --n
’" is some positive constant.where m(E(y)) and n(E(y)) are defined as usual and

Proof. We prove only (i); claim (ii) can be proved in a similar manner, using Lemma 2.1
(ii) instead of (i). Let y be a point that lies inside many diameter spheres of the edges in E,
where "many" is quantified as in Corollary 3.1 (ii). Thus, there is a subset E (y) of the edges
in E whose diameter spheres enclose y so that

m(E(y)) m
() >

n(E(y)) c‘/n log‘/
m

where m(E(y)) IE(y)I and n(E(y)) is the number of points incident to edges in E(y). Let
S be the set of spheres of edges in E (y) that do not enclose y" so all spheres in $ are anchored
and we can assume that IS[> 2

To argue about y’s view of the world we consider a sphere cry with center y and centrally
project all centers of spheres in ,9 onto cry. We can assume that no two centers project onto
the same point on Cry. Define a cap of Cry as its intersection with a closed cone with apex y
whose opening angle is , that is, the cone consists of all points p so that the angle between the
cone’s axis and the half-line through p that starts at y is at most . By a standard compactness
argument, Cry can be covered by a finite (i.e., constant) number, c, of caps [12]. Therefore,
there exists a cap that contains a constant fraction of the projected centers. Let R be the
half-line that is the axis of the corresponding cone C and let $ be the set of spheres in $
whose centers lie in C (that is, project to points in the cap). Since the opening angle of the

r it easily follows that R intersectscone with apex y tangent to any sphere cr in $ is at least ,
cr in two points which delimit an interval that is at least as long as the radius of cr. To see this
it suffices to consider the two-dimensional cross section of cr with the plane spanned by R and
by the center of cr. In this plane, the angle 6 between R and the tangent from y to Cr that is

r

_
However, 3 s s where s and s’nearer to R (see Fig. 1) is at least 2 6" are the

two arcs of Cr, measured in radians, delimited between R and the tangent line. In particular,
’ from which it follows triviallythis implies that the smaller arc cut off Cr by R is s + s’ > 3,

that R intersects Cr in a chord whose length is at least the radius of
At this point we face a one-dimensional problem on R. Intersect R with all open balls

bounded by spheres in S. This gives a set of at least m(E(y))/(2ct) intervals, and we want
to show, using the selection lemma, that there is a point in many such intervals and therefore
inside many spheres. The difficulty we have to cope with is that the intervals can have many

SELECTING HEAVILY COVERED POINTS 1145

R

FIG. 1. R intersects r in a long chord.

more than n(E(y)) endpoints. In fact, most likely there are twice as many endpoints as there
are intervals. We show below that it is possible to replace each interval by an interval contained
in it so that the total number of endpoints of the new intervals is at most 6n(E(y)). Using
Lemma 2.1 (i) it follows then that there is a point x contained in

m(E(x)) >
m(E(y))2

4(2c)2 (6n (E (y))) 2

intervals. Together with (1) this implies

m(E(x)) >
m2

cdn,, 2 log2 ,,’m
where c (24cdc1)z.

We now show how to reduce the number of endpoints to 6n(E(y)). Take all spheres in

SR that go through a common point p 6 V and intersect them with the (two-dimensional)
plane h that contains R and p. Let o- 6 SR go through p and denote by d the closed ball
bounded by or. Clearly, the radius of the circle h cr is smaller than or equal to the radius of
or. Furthermore, the interval R O is at least as long as the radius of cr because of the way
R is chosen. Let a and b be the endpoints of this interval. Then the angle/apb is at least
(see Fig. 2). Hence, 12 half-lines starting at p suffice to stab all these angles, and at most six
of them intersect R. These at most six half-lines stab all intervals of the form R 6pq with

O’pq SR, p fixed, and q arbitrary.
For the final argument we place at most six points for each one of the n(E(y)) points

incident to edges in E(y), which gives at most 6n(E(y)) points on R. The interval R f3 pq
is guaranteed to contain at least one of the at most six points generated by p and at least one
of the at most six points generated by q. We can thus replace R fq 6pq by one of the at most

1146 CHAZELLE ET AL.

FIG. 2. The angle formed by a, p, and b is equal to half the angleformed by a, the center of the circle, and b.
Since the interval ab is at least as long as the radius ofthe circle, the latter angle is at least -.

36 intervals defined by the 12 points generated by p and q and apply the selection lemma as
described above. [3

Remark. The proofofTheorem 3.2 is constructive and leads to an algorithm that computes
a point x with the desired properties in time O(m + n log n). The first step of this algorithm
finds a point y within the required number of diameter spheres (see remark (5) after Theorem
2.2). This takes time O(m + n log n). Second, a ray R that intersects many anchored spheres
sufficiently close to their centers is determined by projecting centers of spheres onto the sphere
Cry around y, covering ay with a constant number of caps, and choosing the cap that contains
the largest number of projected points. This takes time proportional to the number of projected
centers, which is O(m). Finally, the spheres whose centers project onto the chosen cap are
intersected with R, thus the defined intervals are replaced by smaller intervals as described,
and point x is selected in time O(m / n log n) in a single scan along R.

3.3. Round objects. A result similar to Theorem 3.2 can be established for a more general
class of objects than just spheres. Let p and q be two points in d > 2 dimensions, let pql
denote their euclidean distance, and let co and Co be two positive constants. A convex set 75pq
is said to be (co, Co)-round (or simply round) for {p, q} if

(i) p and q lie on the boundary of rpq, and
(ii) 75pq contains a d-dimensional ball pq whose radius is at least colpql and whose

center is at a distance at most Co lpql from p and from q.
l)-round, and itFor example, the ball bounded by the diameter sphere tpq of p and q is (,

is fairly easy to see that any ball with p and q on its boundary is (1/2,)-round. With this
definition we can show the following generalization of Theorem 3.2.

THEOREM 3.3. Let V be a set ofn points in d > 2 dimensions and let E c_ (v2) be a set of
m > 2n edges {p, q }, each associated with an round object "Cpq. For a point x not necessarily
in V let m(E(x)) be the number of edges {p, q} with x rpq. Then there is a point x with

m(E(x)) > m/ cn log where c is a positive constant that depends on d, co, and Co.
Proof. To describe where this proof differs from the one of Theorem 3.2 we introduce

two auxiliary objects" the ball/q and the cone ?’pq. The ball pq has the same center as pq
and its radius is half of the radius of pq; the cone ?’pq is the convex hull of pq and p (see
Fig. 3). Clearly, we have Z’pq ’pq D ipq

_
itpq.

When we construct the half-line R out of point y (defined as in the proof of Theorem 3.2),
we make sure it intersects many of the balls pq associated with edges in E (y). Because of
condition (ii), R can be found so that it intersects at least a constant fraction of the/,q.

SELECTING HEAVILY COVERED POINTS 1147

FIG. 3. The edge {p, q} defines an round object r that contains t’, , and 1. The half-line R intersects ’; its
intersection with y is alb and with r it is ab.

Let us now fix our attention on a particular r gpq and let a and b be the endpoints of
the interval R tq r. In order to complete the proof in the same way as the proof of Theorem
3.2 we need to show that the angle/apb (and analogously Zaqb) is at least some constant
fraction of Jr.

Notice that the boundary of), ,pq consists of a fan of line segments that form the tan-
gents from p to/3 flpq, as well as part of the boundary of/3 itself (see Fig. 3). Let a’ and b’ be
the endpoints of R N V; we will prove the stronger result that the angle/a’pb’ is at least some
fixed fraction of Jr. If one of the points a’ or b’ lies on one ofthe line segments that form the tan-
gents from p to/3 then the result is immediate: the angle subtended at p goes from the boundary
of/3 at least as far as to some point of fl’. By condition (ii) the balls fl and/3’ look big from p, so
this angle cannot be too small. On the other hand, if both a’ and b’ lie on the boundary of/3 then
the result follows because a’b’ cannot be too short--in particular, it is longer than the radius

off.
We omit all further details, as they are the same as in the proof of Theorem 3.2. lq

Remarks. (1) As follows from the above proof, it is not necessary to require that Vpq be
convex and that p and q lie on its boundary. All that is needed is condition (ii) and that "gpq
contains the cones ypq and qp defined by pq and points p and q.

(2) It is also interesting to observe that condition (ii) is not sufficient to prove Theorem
3.3. Indeed a counterexample exists already in one dimension. Let V {Pi 2i < < n
be the set of n points and for < j define vii {xl(2pi + pj)/3 < x < (Pi d- 2pj)/3}.
Thus, "tgij has the same midpoint as the interval ij delimited by Pi and pj and its length
is one third of that of fij. However, for any < j < k we have Vij (q rik t1 because
(2 -t- 2Jt-1)/3 < (2TM -t" 2k)/3. Thus, the set of () intervals "gij can be partitioned into n
subsets so that two intervals are disjoint if they belong to the same subset. It follows that there
is no point x contained in more than n intervals rij.

3.4. A problem about points and angles. For points p and q in d-dimensional space
and for angle ct, -f < ot < Jr, define the a-football of {p, q as the set

(pq(Ol) {x Apxq >_ c}.

For example,)pq (-) is the closed ball bounded by the diameter sphere (pq, and pq (Jr) is the
line segment pq. For general c, dppq (a) is the intersection of all closed balls that contain p and
q and have a fixed radius depending on IPql and or. If ot < Jr is fixed, then)pq(Ol) contains
a ball centered at the midpoint between p and q whose radius is some fixed positive fraction

48 CHAZELLE ET AL.

of IPql. Hence, ,(pq(tY) is round for Co and co > 0 (co goes to zero if ot approaches rr)
and Theorem 3.3 applies. We reformulate this result for the case where every pair of points
defines an u-football and phrases it in terms of angles.

r be afixedCOROLLARY 3.4. Let P be a set ofn points in d > 2 dimensions and let ot > -angle strictly smaller than re. Then there exists a constant c depending on d and ot and a point
x so that/pxq > ot for at least cn2 pairs {p, q} (e2).

Loosely speaking, point x is almost collinear with a constant fraction of the .point pairs
if ot is insignificantly smaller than zr, for example ot 79. In other words, x almost lies on
each one of a constant fraction of the lines defined by the points.

4. Slimming down spatial Delaunay triangulations. This section deals with Delaunay
triangulations for point sets in (three-dimensional) space. Let P be a set of n points in space
and let 79(P) be its Delaunay triangulation. For simplicity we assume that no five points are
cospherical so that 79(P) is uniquely defined. If this is not the case then it is always possible to
enforce it by simulating an arbitrarily small perturbation of the points; see]. As mentioned
in the introduction, abcd is a tetrahedron of 79(P) if and only if the sphere through points a,
b, c, and d does not enclose any points of P.

For 0 < < 3, let fi be the number of/-dimensional faces of D(P), that is, fo n is
the number of vertices, fl is the number of edges, f2 is the number of triangles, and f3 is
the number of tetrahedra of 79(P). By Euler’s relation we have f0 fl + f2 f3 (see
Hopf 5] for an elementary proof of this relation). Because every tetrahedron is bounded by
four triangles and every triangle bounds at most two tetrahedra we also have 2f3 < f2. This
implies

(2) f3 < fl n + and f2 _< 2f 2n + 2.

We thus see that f, the number of edges of 79(P), is a good measure of the combinatorial
complexity of 79(P). We call f the size of 79(P).

Depending on how the points are distributed, the size of 79(P) can vary between linear in
n and quadratic in n. An extreme example is when the points of P lie on the positive branch
of the moment curve, A/[{(x, x2, x3) x > 0}. Because a sphere intersects WI in at most
four points, which can be shown using Descartes’ sign rule for the polynomial that arises,
every point pair defines an edge of D(P). It follows that the size of 79(P) is () (see also [8]).
The goal of this section is to show that no matter how badly P is distributed, there is always
a small set Q of points in space so that 79(P t3 Q) has size a.t most O(n3/2 log n).

A sphere is called a Delaunay sphere of P if it is the circumscribed sphere of a tetrahedron
abcd of 79(P). Using Theorem 3.2 we can show that if there are many Delaunay spheres,
then there are many that enclose a common point.

LEMMA 4.1. Let P be a set of n points in space defining Delaunay spheres. There

is a point x enclosed by rn E (x > t2 / (cn2 log6) Delaunay spheres, for some positive
constant c.

Proof. Note that an edge ab is incident to as many Delaunay spheres as there are tetrahedra
in 79(P) that share ab; this number can be as large as n 2. In order to apply Theorem 3.2
we match the edges of 79(P) with the Delaunay spheres so that the Delaunay sphere matched

Delaunay spheres have a matchingwith an edge passes through its endpoints and at least g
edge. We do this as follows. By definition, each Delaunay sphere is incident to six edges,
and, by (2), there are at least edges. Match an edge with an incident sphere arbitrarily and
remove both from further consideration. Thus, there are at most five more edges that can no

matched pairs aslonger find a matching sphere. If we iterate this process we get at least
required.

SELECTING HEAVILY COVERED POINTS 1149

We thus arrive at a situation where we have n points and m > g edges with a unique
corresponding sphere each. Theorem 3.2 implies that there is a point x enclosed by at least

m2 2 2

c’3’n2 lg6 ’m 62c’n2 log6 --i-
6’12 cn2 lg6 5-"2

spheres, e.g., for c 6 c." 71
If we add x to P then all tetrahedra whose circumscribed spheres enclose x disappear by

definition. Lemma 4.1 thus impliesthat it is possible to destroy f2",(t2/",(n2 log))tetrahedra
at once. However, x also gives rise to new tetrahedra. Because all new tetrahedra are incident
to x we can bound their number from above as follows.

LEMMA 4.2. Let P be a set ofn points in space and x a point not in P. Then x is incident
to at most 2n 4 tetrahedra in 79(P tO {x}).

Proof Let cr be a sufficiently small sphere with center at x. If we intersect cr with the
edges, triangles, and tetrahedra of 79(P) we get a planar graph. Each vertex of this graph
corresponds to an edge of 79(P), and if cr is sufficiently small all such edges are incident to x.
Because x is incident to at most n edges (at most one per point in P), the planar graph has at
most n vertices and, by Euler’s relation, at most 2n 4 regions. These regions correspond to
the tetrahedra incident to x. 71

What we said about Delaunay triangulations in space suggests the following algorithm
for reducing the size of a Delaunay triangulation by adding points at well-chosen locations.
Recall that m (E (x)) is the number of Delaunay spheres destroyed by adding point x.

Input. A set P of n points in space.
Output. A set Q of points in space so that 79(P U Q) has at most O(n3/2 log n) edges.
Algorithm.

Construct 79(P) and set Q "= 0;
loop find a point x that maximizes m(E(x)) in 79(P Q);

if m(E(x)) > 4n then Q "= Q tO {x} and update 79(P Q) accordingly
else exit

endif
forever.

Using Lemmas 4.1 and 4.2, one can establish the following result.
THEOREM 4.3. For any set of n points P in three-dimensional space there is a set Q

of at most 0 (n 1/2 log n) points so that the Delaunay triangulation of P tO Q has at most
O (n3/2 log n) edges. Such a set Q can be computed in time 0 (n2 log7 n).

We omit here details of the analysis, because this result is less significant now, in view
of the recent results of Bern et al. [3]. Interested readers are referred to an earlier and fuller
version of this paper [5].

5. The size of Gabriel graphs. The Gabriel graph of a finite point set is a subgraph of
the Delaunay triangulation that has applications in zoology and geography [1 3], [16]. Let P
be a set of n points in d > dimensions. The Gabriel graph of P, denoted by (P), has
an edge between two points p and q in P if and only if their diameter sphere, pq, encloses
no point of P. The definition implies that the edges of (P) are a subset of the edges of the
Delaunay triangulation. Thus,](P) has only O(n) edges when d < 2, and trivially at most
O(n2) edges, otherwise. The bound is tight for d < 2, since each point is incident to at least
one edge. The following lemma shows that the bound is also tight for d > 2.

1150 CHAZELLE ET AL.

LEMMA 5.1. The maximum number of edges of the Gabriel graph of n points in d > 3
dimensions is f2 (n2).

Proof We exhibit a set P of 2n points in three dimensions such that (P) has at least n2

edges. Embedding this example in higher-dimensional space proves the lemma for d > 3.
We place the points in two groups {ai} and {bj on interlocking, orthogonal circles. Each

circle passes through the center of the other, and the points on each circle are located near the
center of the other circle. Each circle has radius 2. The points ai lie near (0, 1,0) on a circle
in the xy-plane centered on (0, -1,0). The bj lie near (0, -1,0) on a circle in the yz-plane
centered on (0, 1, 0). To quantify "nearness" we use a small parameter "

ai (f (i), i, O) and bj (O, -l + j, f (j)),

where _< i, j < n and f(k) x/4k k22 < 4x/. We show that for > 0 sufficiently
small, the diameter sphere determined by a pair {ai, bj contains no other points of P. The
center of the sphere is

ai + bj
cij

2 -(f (i), (j i), f (j)).

We prove that the distance from Cij to a point ak (or bk) is minimized when k (k j).
The square of the distance is

(ak cij)2 ((2f(k) f(i))2 + (2 2k6 j + i)2 + f(j)2)

-; (16ks 4f(k)f(i) + 4i + 4 8k 4je + 4ie + 4je) + O(62)

+ 2(k + i) f(k)f(i) + O(2).

Because f(k)f(i) 4/’ + O(62), we have

(a, cij)2 + 2(k 2x/ + i) + O(62) + 2(x/ x//)2 q-- O(2).

For small enough, this quantity is minimized only when k i.
We can use Corollary 3.1 to reduce the size of Gabriel graphs. In three dimensions this

gives a better bound than the one for Delaunay triangulations, which is based on Theorem 3.2.
THEOREM 5.2. For any set of n points P in d > 3 dimensions there is a set Q of

O(n 1/2 logd-1 n) points so that the Gabriel graph of P to Q has at most O(n3/2 logd-1 n)
edges.

Proof. Here is a sketch of the proof. By Corollary 3.1, if m > 2n, m the number of
edges of (P to Q), then there is a point x whose addition to Q deletes m(E(x)) edges from
(P tO Q), where

m(E(x)) >_
m2

Cdn2 log2d-2 n"
m

Adding a point to Q adds at most P to Q] edges to (P tO Q). Using an argument similar to that
of 4, one can show that the number of edges of(P t_J Q) can be reduced to O(n3/2 log- n)
by adding points to Q. By reasoning similar to that used in the proof of Theorem 4.3, one
can show that the algorithm of 4, modified for Gabriel graphs, produces a set Q of size
O(n 1/2 logO- n). [3

SELECTING HEAVILY COVERED POINTS 151

REFERENCES

1] B. ARONOV, B. CHAZELLE, H. EDELSBRUNNER, L. J. GUIBAS, M. SHARIR, AND R. WENGER, Points and triangles
in the plane and halving planes in space, Discrete Comput. Geom., 6 (1991), pp. 435-442.

[2] M. BERN AND D. EPPSTEIN, Mesh generation and optimal triangulation, in Computing in Euclidean Geometry,
D.-Z. Du and E K. Hwang, eds., World Scientific, Singapore, 1992, pp. 23-90.

[3] M. BERN, D. EPPSTEIN, AND J. GILBERT, Provably good mesh generation, in Proc. 31st IEEE Symp. on Foun-
dations of Computer Science, 1990, pp. 231-241; J. Comp. Systems Science, to appear.

[4] J. C. CAVENDISH, D. A. FIELD. AND W. H. FREY, An approach to automatic three-dimensional finite element
mesh generation, Internat. J. Numer. Methods Engrg., 21 (1985), pp. 329-347.

[5] B. CHAZELLE, H. EDELSBRUNNER, L. J. GUIBAS, J. HERSHBERGER, R. SEIDEL, AND M. SHAR1R, Slinming down by
adding; selecting heavily covered points, Tech Report UIUCDCS-R-90-1574, Department of Computer
Science, University of Illinois at Urbana-Champaign, Illinois, March 1990.

[6] L. E CHEW, Guaranteed-quality triangular meshes, Tech. Report TR-89-983, Department ofComputer Science,
Cornell University, Ithaca, NY, 1989.

[7] B. DELAUNAY, Stir la sphkre vide, Izvestia Akademii Nauk SSSR, VII Seria, Otdelenie Matematicheskii
Estestvennyka Nauk, 7 (1934), pp. 793-800.

[8] A.K. DEWDNEY AND J. K. VRANCH, A convex partition ofR with applications to Crum ’s problem and Knuth’s
post-office problem, Utilitas Math., 12 (1977), pp. 192-199.

[9] H. EDELSBRUNNER, A new approach to rectangle intersections, part I, Intern. J. Comput. Math., 13 (1983), pp.
209-219.

10] Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, Germany, 1987.
11 H. EDELSBRUNNER AND E. P. MOCKE, Simulation of Simplicity: a technique to cope with degenerate cases in

geometric algorithms, ACM Trans. Graphics, 9 (1990), pp. 66-104.
[12] L. FEJES Tt3TH, Lagerungen in der Ebene, attf der Kugel und im Raum, second ed., Springer-Verlag, Berlin,

1972.
[13] K. R. GABRIEL AND R. R. SOKAL, A new statistical approach to geographic variation analysis, Systematic

Zoology, 18 (1969), pp. 259-278.
[14] D. HAREL AND R. E. TARJAN, Fast algorithms forfinding nearest common ancestors, SIAM J. Comput., 13

(1984), pp. 338-355.
[15] H. HOPF, Ober Zusammenhiinge zwischen Topologie und Metrik im Rahmen der elementaren Geometrie,

Mathematisch-Physikalische Semester Berichte, 3 (1953), pp. 16-29.
16] D.W. MATULA AND R. R. SOKAL, Properties of Gabriel graphs relevant to geographic variation research and

clustering ofpoints in the plane, Geographical Analysis, 12 (1980), pp. 205-222.
[17] E E PREPARATA AND M. I. SHAMOS, Computational Geometryan Introduction, Springer-Verlag, New York,

1985.
[18] G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, NJ,

1973.

SIAM J. COMPUT.
Vol.23, No.6, pp. 1152-1178, December 1994

1994 Society tbr Industrial and Applied Mathematics
003

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS*
YEHUDA AFEK AND ELI GAFNI

Abstract. This paper addresses the question of distributively computing over a strongly connected unidirectional
data communication network. In unidirectional networks the existence of a communication link from one node to
another does not imply the existence of a link in the opposite direction. The strong connectivity means that from
every node there is a directed path to any other node. The authors assume an arbitrary topology network in which
the strong connectivity is the only restriction. Four models are considered, synchronous and asynchronous, and for
each node space availability, which grows as either O(1) bits or O(log n) bits per incident link, where n is the total
number of nodes in the network, is considered.

First algorithms for two basic problems in distributed computing in data communication networks, traversal, and
election, are provided. Each of these basic protocols produces two directed spanning trees rooted at a distinguished
node in the network, one called in-tree, leading to the root, and the other, ota-tree, leading from the root. Given these
trees, the authors efficiently transform bidirectional algorithms to run on unidirectional networks, and in particular
solve other problems such as the broadcast and echo [E. J. CHANG, Decentralized Algorithms in Distribtted Systems,
Ph.D. thesis, University of Toronto, October 1979] in a way that is more efficient (O(n2) messages) than direct
transformation (which yields O(nrn) messages algorithm). The communication cost of the traversal and election
algorithms is O(nm + n log n) bits (O(nm) messages and time), where m is the total number of links in the network.
The traversal algorithms for unidirectional networks of finite automata achieve the same cost (O (rim + n log n) bits)
in the asynchronous case, while in the synchronous case the communication cost of the algorithm is O(mn) bits.

Key words, unidirectional, distributed algorithms, traversal, election

AMS subject classification. 68Q22

1. Introduction. Distributed network protocols research has focused most of its efforts
on bidirectional networks. However, unidirectional networks appear more often than expected.
Unidirectional networks appear as a result of a failure of a link or a subset that disrupts com-
munication in one direction but not in the other. For example, the modem circuit at one
end could fail to receive (or send) data but still be operating correctly in the other direction.
Networks with unidirectional links are also found in radio networks with asymmetric trans-
mission matrices due to differences in transmission power of the stations, in fiber optics, and
in very-large-scale integration (VLSI) [ELW90].

In this paper w, consider both asynchronous and synchronous unidirectional networks.
For election, a prob!em that we solve over these networks, each node needs at least O (log n)
bits of memory, where n is the total number of nodes in the network. Our algorithms require
as much. However, in solving the traversal problem we consider two possibilities of memory
space availability. In one case a node has memory that grows logarithmically in n. In the
other case the memory stays finite. More precisely, in the first model O (log n + d) bits of
memory are available for the algorithm in node v, where d is the degree of node v. In the
second model only O(d) bits of memory are available at each node. Note that any distributed
algorithm for a strongly connected unidirectional network is obviously also an algorithm for
a bidirectional network.

1.1. Unidirectional network traversalubackground. In the traversal problem, one
node, called the root, creates a token, which has to visit all the nodes in the network one at a
time.

*Received by the editors May 29, 1992; accepted for publication (in revised form) June 21, 1993.
rComputer Science Department, Tel-Aviv University, Ramat-Aviv 69978 Israel (afek@matzh. tau. ac. +/- 1).
Computer Science Department, University of California, Los Angeles, California 90024. The work ofthis author

was supported by the National Science Foundation Presidential Young Investigator Award under grant DCR84-51396
and matching funds from Xerox Corp. under grant W881111.

1152

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1153

When the token arrives at a node the algorithm has to make two decisions: first, whether
there are any more unvisited nodes in the network and second, in case there are, to which
outgoing neighbor the token should be passed. This is similar to an on-line version of the
"Chinese postman" problem: A postman is placed in a new city in which some or all the streets
are one way. The postman has to traverse all the streets of the city but he has no map or any
global information on the topology of the city. The question is to devise a strategy by which
he will traverse the minimum number of streets, retracing streets as few times as possible.

There are two ways in which we can view the token. One view is that of a mail letter. It
is going from place to place. The decisions about the route are made by a sequence of local
post offices, while the letter may carry on it some "control information," e.g., an address. This
view supports the traversal as handing over a token from node to node. The other is that of
the postman above. It is the actual route decision-maker who passes from node to node, while
being allowed to leave "marks" in various nodes. This view supports viewing traversal as a
process (single thread of control program) that passes from node to node reading from and
writing to the nodes. For convenience we will use these two views interchangeably.

Clearly, to be able to traverse a bidirectional network, the network has to be connected.
Similarly, to traverse a unidirectional network, the network has to be strongly connected, i.e.,
there should be a directed path from every node to every other node. Message complexity
of f2 (m) is obviously a lower bound to any traversal algorithm, where m is the total number
of links in the network, since every link in the network has to be traversed. Otherwise an
untraversed subnetwork could reside in the midst of any untraversed link.

The problem of distributively traversing a bidirectional network has been thoroughly
investigated. One such obvious algorithm is based on the depth-first-search (DFS) algorithm
[Tar72], [HT73]. In the resulting DFS traversal the process makes 2. m hops, and the number
of memory bits it uses at each node is linear in the degree of the node.

In solving the unidirectional traversal problem we would like to adapt the bidirectional
DFS traversal. However, DFS employs backtracking, i.e., a step in which the DFS process
backtracks a link previously traversed in the forward direction. It is not obvious how to
emulate backtracking in a unidirectional network. One of the contributions of this paper is
such a backtracking scheme. It is facilitated by constructing, on the fly, a structure called
an in-directedforest. With the help of the in-directed forest the process identifies a path that
brings it from the head of the link which is to be backtracked to its tail. The construction of the
in-directed forest is reminiscent of the strongly connected components algorithm of Hopcroft
and Tarjan [HT73] (see also [Eve79]).

In 2, three traversal algorithms are presented. Traversal-1 is simple but inefficient.
In many network instances the process of Traversal-1 makes an exponential number of link
traversals before terminating. Traversal-2, which is based on the DFS algorithm, makes at most
O (n m) link traversals on any network (i.e., its time complexity is O (n m)). Furthermore,
we show that f2 (n m) is, in general,a lower bound on the number of link traversals (time
complexity). Both in Traversal-1 and Traversal-20(log n + dr) bits of memory are required
at each node v, and the traversing process carries along O (log n) bits. Both achieve the same
complexity for synchronous and asynchronous networks.

In some applications, such as VLSI, memory size and message length are restricted and
the question then arises, could a unidirectional traversal be implemented using only a constant
number of bits in every node and with the traversing process carrying some finite amount of
information (i.e., in a unidirectional network of finite automata).

Traversal-3 is the variant of Traversal-2 for finite automata network. In the asynchronous
case it makes at most O(n m / n2 log n) link traversals, which is optimal in the worst

case (dense networks, in which m f2 (n log n)). In the synchronous case it makes at most
O(n m) link traversals. Traversal-3 in the case of a unidirectional ring is an example of

1154 YEHUDA AFEK AND ELI GAFNI

a problem whose complexity depends on whether the underlying system is synchronous or
asynchronous [AFL83].

All the traversal algorithms yield a spanning infrastructure of the network consisting of
two rooted spanning trees, one called an out-tree, in which paths are directed away from the
root, and another called an in-tree, in which paths are directed to the root.

1.2. Unidirectional network election--background. In 3 we present a distributed
algorithm for election in strongly connected unidirectional networks. The algorithm re-
quires O(log n) bits of memory in each processor and its communication complexity is
O (n m + n2 log n) bits.

To design an election algorithm for strongly connected networks we employ
Traversal-2. As a first attempt, consider the following straightforward approach: every
initiator starts a traversal. Whenever a lower ID traversal learns about the existence of
a higher ID one, it stops. The worst case communication complexity of this algorithm
is O((n m + n log n) n) bits, since O(n) traversals could be initiated such that each
spends O(n m + n log n) bits. Clearly this approach is inefficient. As a second attempt,
one can improve on it by using the modular technique of Korach, Kutten, and Moran [KKM85]
to economically eliminate traversals. Using their technique, the communication complexity
is reduced to O ((n m + n log n) log n) bits, which is still a logarithmic factor away from
our complexity. The election algorithm we design employs Traversal-2 as the underlying
mechanism but uses it in a more sophisticated way to achieve a communication complexity
of O(nm + n log n) bits and O(nm) time.

1.3. Related work. Although most of the results in this paper were derived in [GA84],
before other works explicitly investigated unidirectional networks [ELWg0], [GK84], [Kut88],
[Kut84] (with the exception of [Kob78]), two bidirectional algorithms, the shortest path al-
gorithm of Gallager [Ga176] and the connectivity checking algorithm of Segall [Seg83], both
easily suggest unidirectional election algorithms. In [Seg83], Segall presents a connectivity
checking algorithm in which at termination every node knows the IDs of all the other nodes in
its connected component. The shortest path algorithm in [Ga176] exhibits the same property
when it terminates. The communication complexity of the two algorithms is O (n m log n)
bits, and each node is assumed to have O (n log n) bits of memory.

The suggested unidirectional variation of the two algorithms proceeds in two phases. In
the first phase, every node acquires the IDs of its incoming neighbors; in the second, it acquires
the IDs of all the other nodes in the network.

More specifically, let an incoming neighbor of node v be a node at the other end of an
incoming link of v, and let in-neighbors of u be the set of all the incoming neighbors of u.
Let the record of node u be a two-field data structure, of which the first contains the ID of v
and the second the IDs of v’s in-neighbors. In the first phase, every node transmits its ID on
all its incident outgoing links and receives the IDs of its in-neighbors. In the second phase,
every node broadcasts its record, via flooding, to all the other nodes in the network. For this
purpose, each node maintains two sets of IDs, the received set and the known set. The
received set contains the IDs of the nodes whose records were already received by v. The
known set contains IDs which appeared in a record of at least one node from the received
set, i.e., IDs of nodes whose existence is known to u. Initially, at the beginning of the second
phase, the received set of node v contains the ID of v, and the known set contains the IDs of
v and of v’s in-neighbors. Clearly, when the two sets in a node are identical, they contain the
IDs of all the nodes in the network (which can easily be proved by induction).

The communication complexity of the algorithm thus described is O(m log n) bits;
however, assuming that messages sent over one link are received in the order transmitted, i.e.,
FIFO links, the communication complexity can be reduced to O (n. m. log n) bits by avoiding

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1155

repeated transmission of the same ID over the same link. Note that for these algorithms each
node is assumed to have O(n log n) bits of memory. Similar adaptation and analysis applies
to [Ga176].

Our election algorithm is thus an improvement on the algorithms of Gallager and Segall in
terms ofboth communication complexity and the number ofmemory bits required at each node.
Furthermore, our algorithm produces the infrastructure of the in-tree and out-tree mentioned
above, which neither Segall’s FIFO link case nor Gallager’s algorithms provide.

Following publication of this work Kutten [Kut84] independently developed a traversal
algorithm for unidirectional networks. He considered only the logarithmic memory asyn-
chronous model, for which he derived an O(nm) messages algorithm [Kut88]. Gafni and
Korfhage [GK84] designed an election algorithm for unidirectional Eulerian networks whose
message complexity is O(m log n). A preliminary version of most of the results reported in
this paper appear in [GA84].

More recently Even, Litman, and Winkler [ELW90] proposed a new approach to the
problem of traversing a unidirectional synchronous network of finite automata. Assuming
that the degree of each node in the network is constant (implying M O (n)) they derive a
traversal algorithm that runs in O(n2) time. They also study the firing squad problem in the
synchronous network of finite automata, which is not addressed in this paper.

Interestingly, the results in this paper and in [ELW90] suggest that the unidirectional
network of finite automata is inherently sequential. In the traversal algorithm of [ELW90]
more than one message is sent in the network in a given time. However, it does not improve
the time complexity or the communication complexity of our synchronous traversal algorithm
for a network of finite automata, which sends at most one message in the network at any given
time. Furthermore, notice that for increased space complexity at each node we were not able
to improve the time complexity of the traversal algorithm. However, for the election problem
and when the space at the nodes is increased to O(n log n) bits, the methods of Gallager
and Segall can be used to improve the time complexity of our election algorithm but have
worse communication complexity. It is interesting to consider whether there is a spectrum of
time-space trade-off here.

Perhaps the first paper to consider the traversal problem in a unidirectional network
of finite-automata was that of Kobayashi [Kob78], in which he presented an exponential
complexity traversal algorithm that is based on the directed depth-first-search idea.

Organization ot" the paper. In the next section we present four traversal algorithms and,
in 3, an election algorithm. In 4 we show how the traversal algorithms may be derived from
the election algorithm and we discuss other applications ofthe various algorithms. Concluding
remarks are given in 5.

2. Traversal of unidirectional networks.

2.1. Traversal-l: A simple traversal algorithm. The first traversal algorithm presented
is similar to the centralized algorithm ofFraenkel [Fra70] and is composed oftwo mechanisms:
a termination detection mechanism, and a routing mechanism. The termination detection
mechanism enables the traversing process to detect when it has traversed all the links in the
network. The routing mechanism is used at each node to select the next link on which to send
the process such that in a finite number of link traversals the process will detect termination.

The termination detection mechanism is implemented by a counter, called the debt-
counter, which is carried by the process. The root starts the traversal by initializing the
debt counter to zero and sending the process to itself. The counter is incremented by one
as soon as the process arrives at a node for the first time (i.e., when the process is initially
received by the root the counter is incremented to one). Then the counter value is tested; if

1156 YEHUDA AFEK AND ELI GAFNI

its value is zero then the process is stopped at this node (see Fig. 1). Otherwise, the counter
is decremented by one just before leaving a node through its last untraversed outgoing link.
After leaving a node at least once through each of its outgoing links, the debt counter is never
changed again at this node.

Response to receiving process(Debt-counter) at node v
/* Also performed by the initiator with Debt-counter 0 */

1. If v is unmarked
then begin

2. mark v
3. Debt-Counter :-- Debt-Counter +

end
4. else if Debt-Counter 0 then stop;

5. let be the next link in the cyclic order of v’s incident links.

6. If is unmarked
then begin

7. mark
8. If is the last unmarked link of v
9. then Debt-Counter := Debt-Counter-

end
10. Send the process(Debt-Counter) over

FIG. 1. Traversal- 1.

LEMMA 2.1. The debt-counter is equal to zero when it is tested (in line 4 in the code of
Fig. 1) ifand only if all links have been traversed.

Proof. (+--) Clearly, for each newly visited node the process increments the counter by
one. Similarly, for each visited node whose outgoing links have been all traversed, the process
decrements the counter by one. Hence, when all links are traversed, the counter has been
incremented and decremented the same number of times and is therefore back to its initial
value.

(--+) Assume that the counter is zero but not all the links in the network have been traversed.
Since the network is strongly connected there is a directed path from a visited node to the tail
node of any untraversed link. Let be the first untraversed link on one of these paths. Thus,

is untraversed and its tail node v was visited. Hence, the counter was incremented at least
once more (at v) than it was decremented, which leads to contradiction. 1

The mechanism implied by Lemma 2.1 may serve as a termination detection mechanism.
However, the process needs to employ a routing rule that will lead to termination. We present
different routing rules, which lead to different traversal algorithms. These algorithms are
presented in this and the next section.

The routing rule used by traversal-1 is as follows: every node orders its outgoing links
cyclically, i.e., the first link in the order follows the last one. Each time that the process arrives
at a node it is sent on the next outgoing link according to the cyclic order.

LEMMA 2.2. Using the above routing rule the process eventually traverses all the links.

Proof. Assume the contrary. Then, since the network is strongly connected and finite,
there must exist a set S of nodes that have been visited infinitely many times. Thus by the
routing rule each of the outgoing links of a node in S has been traversed infinitely many times.

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1157

Consequently, any node reachable from S has been visited infinitely many times. Since the
network is strongly connected S is the whole set of nodes. Since each of the links outgoing
from S has been traversed infinitely many times, and in particular each of the links has been
traversed at least once, we have a contradiction.

Lemmas 2.1 and 2.2 suggest the traversal algorithm of Fig. 1. Initially all nodes and
links are assumed to be unmarked. To start the algorithm the root initiates a process with a
debt-counter set to zero and sends the process to itself (i.e., it places the process in its input
queue).

Figure 2 is an example of a network on which Traversal-1 requires 2"- link traversals.
Let Nt be the number of traversals over link in some execution of the algorithm. Clearly,
No 2. NIL 2. Nlt and NiL 2. N(i+I)L 2. N(i+I)R for/ n 1. Since NnL
and N,,R are both equal to by the end of the traversal, No 2

IR
0

n

FG. 2. An examplefor the exponential complexity of Traversal- 1.

2.2. Traversal-2: Simulating directed depth first traversal. The source of Traversal-
l’s inefficiency is the routing procedure. A different routing rule is employed in this section
to derive a traversal which requires O (n m) link traversals.

We present the algorithm of Traversal-2 in three stages. First, a bidirectional depth
first traversal algorithm is described. Second, a unidirectional implementation of the first
algorithm is presented by assuming that a structure, called a spanning in-directed tree, is
available. Finally, a mechanism to build the in-directed tree on the fly is given, thus providing
a unidirectional traversal algorithm.

2.2.1. Bidirectional directed depth first traversal. Throughout the rest of the section
we make a distinction between unidirectional and directed networks. A unidirectional net-
work, as defined before, is a network in which some or all the links are unidirectional links.
A directed network is a bidirectional network in which a unique direction is associated with
each link. The link directions are given as part of the problem definition. Here we assume that
the directed graph induced by the directions associated with the links is strongly connected.

In the bidirectional directed depth first search algorithm [HT73], the root spawns a process
which visits all the nodes in the network. Upon arriving at node v for the first time, say through

1158 YEHUDA AFEK AND ELI GAFNI

link l, the process marks v as active, as the parent link of v, and iteratively traverses each
of v’s incident outgoing links. If the process arrives at an already marked node, it backtracks
to the node from which it came. After backtracking on all of v’s incident outgoing links, the
process marks v as fully backtracked and backtracks from v on the parent incoming link, I.
The traversal is completed when the root is marked fully backtracked.

A formal description of the algorithm is given.in Fig. 3. Note that the process passed
between the nodes is merely a token. It does not carry any information except its actual
presence. Unlike this traversal, in the next sections we will use the process to carry control
information between the nodes.

Initially all nodes and links are unmarked.
To start, the root s performs:

mark s active
select a link l’, outgoing from s
mark l’ active
send the process over l’

Response to receiving the process at node v over incoming link
If v marked
then send the process back over
else

mark v active
mark parent
select a link, I’, outgoing from v
mark 1’ active
send the process over 1’

end

Response to receiving the process at node v over outgoing link
mark backtracked
If there is an unmarked outgoing link I’
then

mark l’ active
send the process over I’

else
mark v fully backtracked;
If there is no parent link
then stop
else send the process over the parent incoming link

end

FIG. 3. The bidirectional directed depth-first traversal algorithin.

The proof of the algorithm is a simple modification to the proof given in [Eve79]. The
interested reader is referred to [Afe85] for the detailed proof. Here we state only the lemmas
and corollaries.

LEMMA 2.3. The bidirectional directed depth-first process traverses every link in the
network at most once in each direction.

COROLLARY 2.4. The above traversal algorithm eventually terminates.

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1159

LEMMA 2.5. The bidirectional depth-firstprocess traverses every link in the network once
in each direction.

COROLLARY 2.6. The number of link traversals made by a traversing process in the
bidirectional depth-first search is exactly 2. m.

2.2.2. Unidirectional depth first traversal, using a spanning in-directed tree. The
following two observations are used in this section to implement the bidirectional depth first
traversal on a unidirectional network in which an in-directed spanning tree is defined. The
resulting traversal makes n rn link traversals in the worst case.

Let the parent node of every node v, except the root, be the node from which the process
arrived at v for the first time. At any given time, the link through which the traversing process
left an active node most recently is called the active link.

Observation 1: The active nodes together with the active links form a directed path, called
the active path. The first node on the active path is the root and the last link in the
path either closes a cycle of active links (see Fig. 4), or leads to a node that is either
fully backtracked or newly discovered. The most recently marked node among the
active nodes is called thefocal point of the traversal (e.g. see Fig. 4).

LEGEND

Fully backtracked

O Active node

Active link

--->" Traversed link

root

FOCAL POINT

intree

FOCAL POINT

FIG. 4. The active path.

Observation 2: All backtracking is over the last link of the active path, i.e., either from
an active node, or from a fully backtracked node to the last active node on the active
path.

Observation follows inductively from the fact that every node has at most one active out-
going link, and if it has one it must have an active incoming link (the parent link). Observation
2 follows immediately from Observation and the algorithm.

An in-directed tree (or in-tree) is a subnetwork in which every node except one, called the
root, has exactly one outgoing link, the underlying undirected graph is a tree, and all links are
directed towards the root. An in-directed spanning tree is an in-tree which spans the network.

The difficulty in emulating the directed depth first traversal on a unidirectional network is
that of emulating the backtrack, since links are unidirectional. In [Kob78], Kobayashi devised
a solution to this problem with an exponential overhead, i.e., each backtracking incurred an

1160 YEHUDA AFEK AND ELI GAFNI

exponential number of messages. To construct a linear overhead per backtracking, we note that
whenever the process wants to backtrack over link l, a directed cycle, called the backtracking
cycle is defined by concatenating l, the unique path in the in-tree from the head node of to
the root, and the active path. Thus, to backtrack over link (from the head node of to its tail
node) the process goes along the backtracking cycle until it arrives at the tail node of I. To this
end, the unique IDs of each node are used by the process to identify the tail node of 1. Note
that shortcuts are possible if the unique path of the in-tree intersects the active path before
reaching the root (i.e., whenever the cycle is not simple). In particular, if the head node of is
active the process needs to follow only the active path in order to backtrack to l’s tail node.

A formal description of the traversal algorithm is given in Fig. 5. The lines marked "I"
are the code that the initiator has to execute in order to start the traversal.

To implement the backtracking mechanism, whenever the traversing process traverses
link from node v to node u it carries the ID of v. If u is unmarked (unvisited yet) then node
u remembers that v is its parent. If node u is already marked, the process follows the cycle
until it arrives back to v. When node u becomes fully backtracked the traversing process is
sent along the backtracking cycle to u’s parent.

LEMMA 2.7. The number of link traversals made by a traversing process in the unidirec-
tional depth-first traversal is a most n m.

Proof. In Lemma 2.2 we saw that every link is backtracked exactly once. The lemma fol-
lows since in each such backtracking the process goes around a cycle of length at
most n.

In 2.5 it will be shown that f2 (n m) is also the lower bound on the number of link
traversals.

2.2.3. On-the-fly in-tree construction. In this section we do away with the assumption
that an in-tree is available by constructing the in-tree on the fly, while the process is traversing
the network.

The essential use of the in-tree in the previous section was to backtrack from a fully
backtracked node. Backtracking from an active node is accomplished simply by following the
active path. While a node is active it computes its unique outgoing link in the in-tree, called
intree as described below. While an active node may change its choice of the intree link, a
fully backtracked may not. In this section we will maintain the following property throughout
the algorithm execution.

Property 1: From any fully backtracked node, the unique path defined by following the
intree marked links leads either to an active node, or if there are no active nodes, to
the root.

The basic idea of the intree link selection is based on Property 1, above. We observe that
the property is provided by maintaining a simpler property.

Property 2: From any fully backtracked node v the unique path defined by following the
intree marked links leads to a node that was discovered before v (i.e., a node that
would have a lower depth first number if such were assigned).

That is, at the time that v becomes fully backtracked (i.e., when its parent is still active) the
intree links lead from v to some node u that is still active. The observation is that recursive
applications of Property 2 ensure Property (i.e., apply Property 2 to u, etc., as is formally
stated and proved in Lemma 2.8).

Since the network is strongly connected, a path like the one required by Property 2 exists.
Consider each backtracking cycle. Each such cycle consists of zero or more intree links and
zero or more active links. If a backtracking cycle goes over an active link (t h), and it is
the first time that a backtracking cycle goes over this active link, then from h’s point of view,
this cycle contains a path that leads from h to a node that was discovered before h was. Thus,

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 161

Response to receiving the traversal process, P, at node v"

If v is an unvisited node:
v.parent := P.PreviousNode

I v.activelink := any unused outgoing link [The ’T’ mark lines that are executed}
I mark v active {by the root to start the algorithm}
I P.PreviousNode := v.ID
I send P over v.activelink

If v is an Active node and P is in the Forward mode:
P.mode :-- backtrack
P.FocalPoint :: P.PreviousNode
P.PreviousNode :: v.ID;
send P over v.activelink

If v is an Active node and P is in the backtrack mode:
if v.ID P.FocalPoint
then begin v is the destination of the backtracking

if there are unused outgoing links
then begin

v.activelink :: any unused outgoing link
P.mode := Forward

end
else begin;

mark v fully-backtracked
if v has no parent then STOP"
P.FocalPoint := v.parent

end end
P.PreviousNode :-- v.ID
if v is still marked active
then send P over v.activelink
else send P over v.intree

{No more unused outgoing links

{v is the root

If v is a Fully Backtracked node:
if P.mode Forward
then begin

P.mode :: backtrack
P.FocalPoint :-- P.PreviousNode

end;
send P over the intree link

FIG. 5. Traversal-2, the unidirectional depth-first traversal algorithln.

the active links along the cycle, from h to the focal point, should be marked as intree links.
Clearly such demarcation would not violate the property for descendants of h on the active
path because this new intree path also provides them with Property 2.

To implement the above idea every node remembers whether or not its parent incoming
link has already participated in a backtracking cycle. When the parent incoming link of node
v participates in a backtracking cycle for the first time all the active nodes from v to the end

1162 YEHUDA AFEK AND ELI GAFNI

of the active path select their present active link as their intree link. In the rest of this section
a parent link which has never participated in a backtracking cycle is called a bridge.

Aside from the in-tree construction, the traversal is the same as the depth first traversal
given in the previous subsection. It is assumed here that whenever a shortcut in the backtracking
cycle is possible it is done, i.e., the backtracking cycle is a simple directed cycle.

The mechanism to construct the in-tree can be viewed as an approximation of the mech-
anism to determine the low-points of vertices in a directed graph, which was introduced by
Hopcroft and Tarjan [HT73], [Eve79] in their algorithm for strongly connected components.

A formal description of the traversal algorithm, with the in-tree construction, is obtained
by adding the code in Fig. 6 to the code in Fig. 5. The codes are combined in the following
way. In case the traversal process arrives at an active node in the backtracking mode, then
first the corresponding code in Fig. 6 is executed, and only then is the corresponding code of
Fig. 5 executed. The lines that are marked by an ’T’ are the steps which the root executes in
order to start the traversal.

Response to receiving the traversal process, P, at node v"

If v is an unvisited node:
v.BrdgHd := true; {BrdgHd since v’s parent link have not yet been on a cycle
Continue with the code of Fig. 5 for the same case (unvisited v)

If v is an Active node and P is in the backtrack mode:
if (v.BrdgHd) and (P.PreviousNode =v.parent)
then begin 1-st time that u’s parent link is on a backtracking cycle}

P.XBrdg := true
v.BrdgHd := false

end
if P.XBrdg then v.intree :: v.activelink
if v.ID P.FocalPoint
then P.XBrdg := false {v is the destination of the backtracking
Continue with the code of Fig. 5 for the same case (Active v and

P in the backtrack mode)

FIG. 6. Traversal-2, the additional codefor the in-tree construction.

In this algorithm node v knows which of its incoming links is the parent link by recording
the ID of the node on the other side of the parent link; this is the parent node of v. The first time
that a parent incoming link of node v participates in a backtracking cycle is easily detected,
because it is exactly the second time that the process arrives at v through this link. To this end,
a boolean variable, called BrdgHd (Bridge Head), is used at every node to indicate whether
its parent incoming link is a bridge (i.e., if it has already participated in a backtracking cycle).
Another boolean variable, called XBrdg (crossed bridge), is used on the traversing process
to indicate whether the current backtracking cycle goes over a bridge. Whenever the process
arrives at an active node v in the backtracking mode, and the XBrdg indicator is on, v selects its
active link to be its intree link. Aside from BrdgHd, every node v has the following fields: ID,
which is the ID of v; parent, which is the ID of the parent node of v; activelink, which points
to the activelink of v; and intree, which points to the intree outgoing link of v. Aside from
XBrdg, the traversing process p, has the following fields: mode, which indicates whether the
process is now backtracking or not; PreviousNode, which is the ID of the node that p visited

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1163

last; and FocaIPoint, which is used in the backtracking mode and is the ID of the backtracking
destination node.

It remains to prove that the intree links selected by any fully backtracked node span all
these nodes and always lead to an active node.

Let us define an in-directedforest as a collection of disjoint in-trees.
LEMMA 2.8. The intree marked links of the fully backtracked nodes constitute an in-

directedforest.
Before proving the lemma we note the following two implications of its proposition.

First, if there are still active nodes, then the roots of in-trees in the forest must be active nodes,
which is exactly what we need for the backtracking process. This is because all the fully
backtracked nodes have an intree outgoing link which obviously cannot lead to an unvisited
node. Second, the proposition implies that when the algorithm terminates, the intree links
constitute a spanning in-directed tree rooted at the traversal initiator, the root.

Proof ofLemma 2.8. The claim will be proved by induction. Clearly, the lemma holds
when the algorithm starts at a time when no node is fully backtracked. It is also clear that
the lemma holds when the first node to become fully backtracked, becomes fully backtracked,
since one node with one outgoing link make up a legal tree. Assume that the claim holds just
before node v becomes fully backtracked, and we will prove that it holds after v becomes fully
backtracked.

If v is the root then the claim certainly holds, since v selects no in-tree link. Henceforth
assume v is not the root, and when v becomes fully backtracked there is at least one active
node in the network (the root).

Assume to the contrary that after v becomes fully backtracked the claim does not hold.
Let B be the set of nodes which were already visited before v was visited for the first time. Let
A be the set of nodes that includes v and all the nodes that were visited for the first time after
v was, and before v became fully backtracked. Let L be the set of links which are directed
from a node at A to a node at B. Clearly, L -7/: t3 since the network is strongly connected. By
the definition of A and B there is no traversed link from B to A except the parent link of v,
before v becomes fully backtracked. Thus, all the in-trees in B are rooted at active nodes in
B and each backtracking cycle, Ct, which is associated with each 6 L passes from B to A
on the parent link of v. Clearly, at least one CI, L, passed on a bridge (the parent link of
v was a bridge when v was visited for the first time). Let link l* (a b) be that link in L
whose associated backtracking cycle, Ct,, was the last cycle among the backtracking cycles
associated with the links in L to pass over a bridge before v becomes fully backtracked.

Cycle Ct, is used as a backtracking cycle for the first time when l* is traversed for the
first time, which is when a is still active. Since at this time Ct, passes over a bridge, all the
links from v to b on Ct, must have been marked as intree links. Since no node in B becomes
fully backtracked after v is visited and before v becomes fully backtracked, no intree mark
of a node in B is changed at that period. Also, since Ct, is the last backtracking cycle to
pass over a bridge before v becomes fully backtracked, all the intree marks along Ct, do not
change before v becomes fully backtracked. Hence, the intree links that have been selected
by v when v becomes fully backtracked cannot close a cycle of fully backtracked nodes and
intree marked links, which is a contradiction.

2.2.4. Reducing the communication complexity of’lYaversal-2 to O (n m + n2 log n)
bits. In this section Traversal-2 is modified so in at most 2n 2 of its backtracking cycles the
process will carry O (log n) bits around the backtracking cycle. In the rest of the backtrackings
the process need not carry more than a constant number of bits. Thus the bit complexity is
reduced from O(n. m. log n) to O(n m + n2. log n). A variation of the traversal presented
here is also presented in 4 in a much different setting.

1164 YEHUDA AFEK AND ELI GAFNI

The modification of the algorithm is as follows:
1. Every active node uses a boolean variable, called thefocal point, to assert whether or

not it is the focal point of the traversal. If the focal point variable of node v is false
then v is not the focal point of the traversal. When v is visited for the first time it
sets its focal point to true. When v becomes fully backtracked it sets its focal point
to false.

2. Whenever the process arrives in the forward mode at an already marked node (i.e.,
an active node), v, a two-phase backtracking is started. In the first phase the process
is sent around the backtracking cycle and back to v, counting whether there are one
or more nodes on the backtracking cycle whose focal point is true. To this end only
a constant number of bits has to be carried around by the process.

3. If only one node on the cycle has its focal point "on," then this node must be the node
preceding v on the cycle (see Fig. 7, case 1), i.e., it is the backtracking destination.
In this case, the process is sent around the backtracking cycle again with a constant
number of bits, to the unique node which asserts itself as the focal point. Hence, a
complete backtracking is performed with the process carrying only a constant number
of bits.

FOCAL POINT

Case Case 2

FIG. 7. Backtracking in Traversal-3.

4. If more than one node on the backtracking cycle has its focal point "on.," then a
bridge was included in the backtracking cycle (see Fig. 7, case 2) and a backtracking
identical to the one used in Traversal-2 is initiated by v (with XBrdg set to true). In
this phase of the backtracking all the nodes, aside from the last one on the active path,
set their focal point to false. A bridge is included since the active link leaving any
node whose focal point is true, aside from the last one, must have led to a new node

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1165

(i.e., it is the parent link of the next node on the active path) and has never been on a
backtracking cycle before (otherwise the focal point would not have been true).

5. The backtracking from a fully backtracked node remains the same as in Traversal-2
except that the focal point of the destination is set to true.

The main claim of this subsection is given in the following lemma.
LEMMA 2.9. By the above modification the process will have to carry 0 (log n) bits around

a backtracking cycle only 2n 2 times.

Proof. The process has to carry O(log n) bits around the backtracking cycle either when
it backtracks from a fully backtracked node to its parent, or when the backtracking cycle goes
over some bridge for the first time. Thus we can associate one such backtracking with each
node that becomes fully backtracked, and one with each bridge. Clearly there are n nodes
which become fully backtracked (except the root from which the process never backtracks).
Similarly, there are n bridge links since each such link is the unique incoming parent link
of some node (except the root which has no bridge link entering it). 1

In the remaining m 2n + 2 backtrackings the process carries only a constant number of
bits. Since every backtracking requires at most n link traversals we get the following corollary.

COROLLARY 2.10. The communication complexity of the modified Traversal-2 is

O(n m + n2. log n) bits.

2.3. Traversal-3: An algorithm for a network of finite automata. In this section the
assumption that every node has O(log n) bits of memory is relaxed. Instead, every node is
assumed to be a finite automaton, i.e., to have constant size memory regardless of the network
size, in which case the nodes do not have unique IDs. Since each node has a constant number
of memory bits, the traversing process has to be of constant size too. We will show that with a
constant size process the traversal requires at most O (n. m + n2. log n) link traversals, which
is also the bit complexity of the algorithm. Note that the only nonconstant space used by
Traversal-2 is the usage of O (log n) bits to carry the identity of the backtracking destination
(this is also the only usage of the unique IDs) in each of the backtrackings considered in Lemma
2.9. Here we show how each of these backtrackings can be implemented by a constant size
process which will go around the backtracking cycle O (log n) times.

To recognize the preceding node on the backtracking cycle using a constant size process,
we use a solution to the following "last in the ring" puzzle: In a unidirectional ring of finite
automata, design an algorithm by which a designated node, v, will distinguish the node
preceding it, u, from all other nodes.

LEMMA 2.11. The bit communication complexity of the "last in the ring" puzzle in an
asynchronous ring is (R) (n log n).

Proof A solution to the puzzle works in log n phases. Initially, all nodes except v are
candidates for the position. In each phase we eliminate half of the remaining candidates
by sending a token around the ring, alternately marking the candidate nodes even and odd.
When the token arrives at v, it remembers the parity of the candidate preceding v. In the next
phase, the token eliminates all candidates whose parity differs from the parity of the desired
node. The last phase is detected by the token when it sees that only one node has not been
eliminated. Thus, the token carries one more bit to indicate whether there are one or more
nodes that have not yet been eliminated on the cycle. Hence, O(n log n) is an upper bound
on the bit complexity of the puzzle.

To prove that this is also the lower bound we first claim that the sequence ofbits transmitted
over each link must be unique. Otherwise, there must be two distinct links, u0 u and
v0 -+ v, such that both have seen the same sequence. Since the network is asynchronous,
u and v are in the same state and both have generated the same sequences on their outgoing
links, which implies that their down neighbors u2 and v2 are also in the same state. Continuing

1166 YEHUDA AFEK AND ELI GAFNI

this argument inductively, we conclude that the node preceding the designated one has to be
at an equal distance from both u0 and v0. This is a contradiction; hence, the sequence of
bits transmitted over each link is unique. Since with [log(n)l bits at most n/2 unique
sequences can be written, over at least n/2 of the links f2 (log n) bits were transmitted. Thus,
f2 (n log n) is also the lower bound.

Thus, whenever node v becomes fully backtracked, or a backtracking cycle with more
than one focal point is closed at v, v starts the algorithm described in the proof of Lemma 2.11
to send the process to the node preceding it. The total bit complexity of the traversal does not

change with this modification; however, the number of link traversals made by the process is
linear with the bit complexity of the traversal, i.e., O (n m + n2 log n).

2.4. Traversal-4: An algorithm for a synchronous network offinite automata. Traver-
sal-3 can be run on a synchronous network without any modification, in which case it will
exhibit the same performances. The question arises whether any gains can be achieved in
the synchronous model. To answer that question positively, we provide an O(n m) time
and bit complexities traversal algorithm for an arbitrary topology, unidirectional synchronous
network, which matches our general case lower bound.

Following the proof of Lemma 2.9 and in the same spirit as 2.3, we show here how each
backtracking from Lemma 2.9 can be implemented by a constant size process which goes
around the backtracking cycle O (1) times.

LEMMA 2.12. The bit complexity of the "last in the ring" puzzle in a synchronous ring is

(R)(n).
Proof (n) is clearly a lower bound since a signal has to go around the ring from the

designated node to the node preceding it.

An algorithm to match this lower bound uses two tokens that start moving around the
ring from the designated node. The synchronous mode of communication is used to move one
token at half the speed of the other token. The fast token makes one hop in each round of the
computation, while the slow token makes one hop every two rounds. Both tokens are moving
for 2n rounds, after which the node preceding the designated node removes them from
the ring. The fast token catches up with the slow token at the node preceding the designated
node after going around two times. The node preceding the designated node is the first node
to receive the fast token for the second time while holding the slow token (each node holds the
slow token one extra round). To see this let ft and st be the indices of the nodes holding the
fast and the slow tokens, respectively, at round t. Clearly ft mod n and st [mod n.
The result follows since n is the lowest positive value of at which ft st. {q

2.5. Lower bounds. After arriving at the upper bounds of O (n. m + n2 log n) bits and
0 (nm) bits on the communication complexity for traversal, we determine the lower bound.
Much research is still needed on establishing tight lower bounds on the unidirectional traversal
problem in general. In this section we present one step in this direction. We show that f2 (n. m)
is a lower bound on the number of link traversals required by a single token traversal, i.e.,
when the traversal is restricted to send at most one message at a time.

LEMMA 2.13. f2 (n .m) bits is the lowerbound to a single token traversal ofa unidirectional
graph ofarbitrary topology.

Proof. The proof is by example; see Fig. 8. The result follows since each traversal of a
link from A to B must be followed by a traversal of the path C.

Lemma 2.13 proves that our traversal algorithm is optimal for dense networks (in
which m f2 (n log n)) and under the restriction that the traversal has at most one out-

standing message at a time. Furthermore, it suggests that the algorithm is optimal in the
general case.

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1167

B A

C ".. ,s-- n/3 nodes

FIG. 8. A networkfor the f2 (n m) lower bound.

2.6. Producing a spanning out-tree. Traversals 2, 3, and 4, which are different imple-
mentations of the same algorithm, can be modified to produce a useful structure, called an
infrastructure, on the network. The infrastructure is the combination of an in-directed span-
ning tree and an out-directed spanning tree. The in-tree construction was detailed in 2.2.3.
Here we will describe how an out-tree may be produced by Traversal-2. Note that the defined
infrastructure is a strongly connected subnetwork which spans the network and has 2n 2
links. The infrastructure proves to have several practical applications, outlined in 4.3.

An out-directed tree (or out-tree) is a subnetwork in which every node except one, called
the root, has exactly one incoming link and the underlying undirected graph is a tree. Since
every node in the out-tree has exactly one incoming link, there is a unique path from the root
to every node in the out-tree. An out-directed spanning tree is an out-tree which spans the
network. An example of an out-tree is given in Fig. 9.

FIG. 9. An example ofan out-tree.

We now explain how every node in the network marks some of its outgoing links outtree

during the traversal algorithm such that, when the algorithm terminates, the collection of
outtree marked links constitutes a spanning out-tree of the network rooted at the traversal
initiating node.

To construct an out-tree we make the following observation: the collection of parent links
constitutes an out-tree. To prove it note the following: (1) every node, except the root, has

1168 YEHUDA AFEK AND ELI GAFNI

exactly one parent incoming link, and (2) going backward on the path defined by the parent
links from any node v, we always arrive at the root. Note that (2) follows from the fact that
the incoming parent link of any node v connects v to a node which was explored before v,
thus we cannot close a cycle and we must arrive at the root.

To detect the parent outgoing links of node v we observe the following: the traversing
process leaves node v twice or more through link (in Traversal-2) while v is active if and
only if is a parent link. Thus, every active node counts whether or not each of its outgoing
links has been on a backtracking cycle more than once. If a link participated in a backtracking
cycle more than once while v is active then it is a parent link and is marked outtree.

3. Election in unidirectional networks. In this section we present a recursive distributed
algorithm for election in unidirectional strongly connected networks. One version ofTraversal-
2 (where an intree is assumed to exist in the network, see 2.2.2) is used as a tool in the
construction of the election algorithm, while Traversals 2 and 3 with no a priori structures are
a special case of the election algorithm, as shown in the next section.

3.1. Definitions and outline. The election algorithm is based on the following recursive
properties of strongly connected directed multigraphs:

1. The set of links, defined by selecting one outgoing link from every node, contains a
nonempty set of disjoint directed cycles.

2. The subgraph, obtained from G by contracting any of the cycles defined above into
one node, results in a strongly connected multigraph.

3. Repeated application of the operation in and 2 contracts G into a single node.
The distributed algorithm proceeds in conceptual phases, which follow the above con-

traction process. When a cycle is detected, its nodes are grouped into a cluster. Similar phases
are used in [Hum83]. Initially we consider each node to be a single node cluster. The phases
of the algorithm are selection of an outgoing link from each cluster, called a selected link,
detection of cycles among clusters, and contraction of cycles of clusters.

A cluster is recursively defined as follows:
1. A single node is a cluster.
2. A set of clusters that are joined in a ring by their selected outgoing links is a cluster.

Recursively we assume that every cluster satisfies the following four properties (see
Fig. 10):

1. A unique node in the cluster is distinguished as the cluster-head.
2. All the nodes in the cluster know the ID of the cluster-head, which is also the ID of

the cluster.
3. Each node in the cluster, except the cluster-head, has one outgoing link marked as

intree link. The collection of intree links forms a directed incoming tree, spanning
the cluster and rooted at the cluster-head.

4. A strongly connected subnetwork which spans the cluster, called the infrastructure
of the cluster, is defined on the cluster.

The cluster head of the unique final cluster that contains the whole network is the elected
leader. Clearly, a single node cluster satisfies the inductive assumptions. It is the cluster-
head of itself, a single node in-tree, and a strongly connected subnetwork. To describe the
algorithm we will describe the inductive step, i.e., we assume that a set of clusters which satisfy
the assumptions already exists and explain how a bigger cluster which satisfies the inductive
assumptions is composed out of this set.

To select a cluster outgoing link, each cluster head initiates a depth-first traversal (DFT)
process (Traversal-2). The traversal process is used to search for a link which is potentially
outgoing from the cluster. For the depth-first traversal algorithm we use the traversal algorithm
developed in 2.2.2.

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1169

To detect a cycle, we use a simple algorithm for election on a unidirectional ring. Each
cluster forwards the largest ID it has seen. When a cluster receives the same ID twice it has
detected a cycle.

The contraction of a cycle is accomplished by first electing one of the cluster-heads on
the cycle to be the cluster-head of the expanded cluster. Then, the newly elected cluster-head
synchronizes the cluster by broadcasting the new cluster-ID to all the nodes and constructing
all the inductive requirements on the new cluster.

The most expensive phase is the DFT in a search for a cluster outgoing link, because in
the contraction phase we lose the DFT information accumulated by all the clusters around the
cycle except one. When the cluster-head initiates a DFT in the next phase, the search will
have to spend much effort regaining all the lost DFT information. However, by selecting the
cluster-head of the largest cluster on the ring to be the new cluster-head, we minimize the
amount of information lost. Thus, we limit the rate of information loss to the rate of cluster
growth (i.e., if a large cluster were contracted with a small one, the amount of information lost
is proportional to the size of the small one). In fact, we are able to show that the cost of all the
DFTs conducted during the algorithm is within a constant factor of the cost of a single DFT.
Since this point is critical to the complexity calculation, but rather minor to the description of
the algorithm, we postpone a detailed discussion of it until the complexity section.

After a cluster is formed, its nodes are synchronized to search for an untraversed link
outgoing from the cluster. To achieve this synchronization, the in-tree rooted at the cluster-
head is used. When a cycle of clusters is contracted into a bigger cluster, all their in-trees
are merged into one in-tree, spanning the new cluster. The operations of merging in-trees and
searching clusters utilize each other alternately. The structures left by the DFTs are used to
modify and merge the separate in-trees around the cycle into one in-tree. In turn, the in-tree
in a cluster is used for routing purposes, by its DFT process (see 2.2.2.).

In the next three subsections we present the three phases of the algorithm, starting with
the cluster outgoing link selection (see Fig. 10). During the algorithm, links are in one of
three states: new, elementary, or killed. A new outgoing link is one which has not yet been
traversed. An elementary link is a link which was a cluster selected outgoing link during one
of the previous stages. The set of elementary links within one cluster forms the infrastructure
of the cluster. A killed link is an already traversed link that has never been selected as the
outgoing link of a cluster (i.e., an intra-cluster link that is not elementary).

3.2. Selection of a cluster--outgoing link. Once a cluster is formed, its head node
initiates a DFT algorithm to search the cluster’s infrastructure for a node with an untraversed
outgoing link. The first such link to be found is selected as the cluster’s outgoing link. If it
turns out to be an intra-cluster link, the DFT continues where it was stopped in the search of
another untraversed outgoing link. If no cluster outgoing link is found, the cluster contains all
the nodes of the network and the algorithm terminates.

The cluster outgoing link selection phase begins after the synchronization of the cluster
has terminated. The head node of the new cluster initiates a DFT token on the cluster’s
infrastructure. The token carries the ID of the cluster which created it and the maximum
cluster-ID observed so far (maximum-ID). The cluster-ID is used to distinguish between
inter- and intra-cluster links, and the maximum-ID is used to detect a cycle of clusters. The
DFT token searches the cluster for a new link, i.e., a link that has never been used by the
algorithm, in doing so, the DFT token leaves behind a trail of active links, which leads from
the cluster-head to the token location (which is the traversal focal point).

Upon finding a new outgoing link, l, the token traverses link to node v on the other end
of I. if v belongs to the same cluster, the token returns to. l’s tail via the in-tree and the active
path. Link is then marked killed, and it wilI never again be traversed. If, on the other hand,

1170 YEHUDA AFEK AND ELI GAFNI

LEGEND

Cluster-head

Node

Cluster selected
outgoing link

Link of the intree

,. Link on the active path

Newly electe

Cluster-head

FIG. 10. Clusters in the election algorithm.

the token arrives at a different cluster, the information it carries and the newly selected link it
has established enable the cycle detection to continue as described below.

3.3. Cycle detection. For the sake of simplicity, we have selected an inefficient algorithm
for cycle detection. Since its complexity is, in general, not the bottleneck, we have avoided
discussing an improved mechanism for cycle detection (the improvements are a generalization
of [Pet82], [DKR82], with which our algorithm will perform optimally on rings).

After each cluster selects an outgoing link, the network contains at least one cycle which
consists of two or more clusters (see Fig. 10). Let each cluster send its ID on the cluster
outgoing link. A cluster forwards another cluster-ID only if it is larger than all the cluster-IDs
it has received in the past. Eventually, one and only one cluster in each cycle will receive
the same cluster-ID twice, thus detecting a cycle. The cluster-head that detected the cycle
synchronizes the new cluster.

The operation of cycle detection is carried out by the cluster-heads. To implement it, each
node receiving a message from a different cluster forwards it to its cluster-head through the
cluster’s in-tree. To forward a maximum-ID from a cluster-head to the next cluster, the cluster-
head broadcasts the maximum-ID over the infrastructure of its cluster. All nodes (including
the cluster-head) retain a maximum-ID variable, which is updated by the maximum-ID of
the broadcast message. The DFT token updates its maximum-ID to the largest it encounters
along its way. If a cluster outgoing link has been selected, the broadcast message is simply
forwarded over the outgoing link to the next cluster.

When a cluster-head receives a maximum-ID which is equal to its own, it has detected a
cycle and it is elected to start the synchronization phase.

3.4. Cycle contraction and cluster synchronization. In the cycle detection phase a
new cluster with an elected cluster-head was found. In this phase the elected cluster-head
establishes the remaining three inductive assumptions on the new cluster. The elected cluster-
head thus (1) notifies all the nodes in the clusters around the cycle of their new cluster-ID,

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1171

(2) combines the in-trees of all the clusters into one in-tree which spans the new cluster and is
rooted at the elected cluster-head, and (3) combines the infrastructures into one infrastructure
spanning the new cluster. After receiving a positive acknowledgment that all the nodes have
completed these constructions, the elected cluster-head starts the next phase ofcluster outgoing
link selection. The synchronization phase is carried out by a broadcast with echo mechanism
on the cluster new infrastructure.

Upon receiving the first copy of the broadcast message, every node performs the following
five operations in the following order: (1) It updates its own cluster-ID. (2) If one of its links
is a selected cluster-outgoing link then it marks that link as elementary and sends a message
to this effect over that link. Every node maintains a list of its incoming elementary links,
which it updates on the reception of such messages (this list is necessary for the echo phase
of the broadcast and echo described below). (3) It updates (if necessary) its intree mark.
(4) It forwards copies of the broadcast message over its elementary outgoing links. (5) It
acknowledges the reception of the message through the in-tree. Any duplicate copies of the
message are discarded.

The second operation combines the infrastructures into one infrastructure which spans
the new cluster.

Merging the in-trees. To merge all the in-trees around the cycle, we use the active paths
in each cluster which lead from the cluster-heads to the head nodes of the selected outgoing
links. The active paths are constructed during the DFT in the cluster’s outgoing link selection
phase (see 2.2.2).

We notice that if each node of a cluster that has an active outgoing link puts its intree mark
on the active link, then the incoming spanning tree is rerooted to the head node of the cluster
outgoing link (see Fig. 11). (Note that the head node of the cluster outgoing link belongs to the
next cluster on the cycle of clusters.) To obtain a directed in-tree which spans all the clusters
around the cycle, we perform this operation in all the clusters around the cycle except for the
elected cluster. Thus, the in-tree formed is rooted at the elected cluster-head. This in-tree is
used by the nodes to notify their new cluster-head of the contraction termination.

After Before

FIG. 11. Rerooting an in-tree.

Acknowledging the broadcast. To notify the cluster-head that all the nodes in the new
cluster are aware of their new cluster-ID, every node sends an acknowledgment as follows.
After receiving the first copy and making all the necessary updates, every node sends an
acknowledgment over all the elementary outgoing links aside from the intree marked link. An

1172 YEHUDA AFEK AND ELI GAFNI

acknowledgment is sent over the intree marked outgoing link only after an acknowledgment
has been received on all the elementary incoming links.

When the elected cluster-head has received the acknowledgment message over all of its
elementary incoming links, the contraction has terminated, and a new phase of cluster outgoing
link selection is started.

To prevent messages with new and larger maximum-IDs from being lost during the con-
traction phase we specifically forward them as follows. First, every node that receives a new
and larger ID forwards it to its cluster-head in a special message. Second, when a cluster-head
broadcasts a new and larger maximum-ID it also does it in a specifically marked message.
These messages are not destroyed by the contraction operations unless they encounter a node
with a larger maximum-ID. Moreover, any new and larger maximum-ID which arrives at the
cluster-head that has detected the cycle (in such a special message) during the synchronization
phase is held back by this cluster-head. It is redelivered to the cluster-head upon termination
of the synchronization broadcast and echo.

Termination. The algorithm terminates when a cluster fails to select a cluster-outgoing
link. This cluster spans the whole network; its cluster-head is the elected node and its
maximum-ID is the largest ID.

3.5. Complexity of the election algorithm. Communication complexity analysis in-
volves counting the total number of bits transmitted over all the network links. The commu-
nication cost of the algorithm has three components: the cost of cluster synchronization, the
cost of cycle detections, and the cost of cluster-outgoing link selection.

We observe the following two facts.
Fact 1: The number of cycle detections is at most n 1.
Fact 2: In a cluster of size k, there are at most 2k elementary links.

Fact holds because the contraction of a cycle strictly reduces the network size. Fact 2 follows
from Fact and the observation that there exists a one-to-one correspondence between clusters
and elementary links.

LEMMA 3.1. The total cost ofsynchronizing the clusters is at most 0 (n2 log n) bits.

Proof. According to Fact there are at most n cluster synchronizations. The synchro-
nization messages propagate on the infrastructure of a cluster which contains at most 2n
links. In each synchronization one broadcast message and one echo message are transmitted
on each elementary link. Since each message is of size O(log n) bits the result follows. [q

LEMMA 3.2. The total cost ofall cycle detections is at most O(n2 log n) bits.

Proof Each time a new cluster-head is elected a new maximum-ID is sent around a cycle
of clusters. Thus, by Fact 2, there are at most 2n 2 maximum-ID initiations. Each such
initiation is sent over the infrastructure of some cluster. The same maximum-ID is forwarded
at most three times on the same link in a particular cluster: once when it enters the cluster
and the link is an in-tree link on which it was forwarded to the cluster-head; once when the
cluster-head broadcasts the maximum-ID; and once on its return to that cluster-head (which
then detects a cycle). Since a link forwards the same maximum-ID at most three times for
each cluster it belongs to, the result follows. [3

The cost involved in selecting outgoing links consists of the cost of killing inter-cluster
links and the cost of the DFTs.

To kill link l, the algorithm transmits one message of O(log n) bits over and a kill
message of size O(1) bits over a path from the head of to its tail. The kill message goes
down the in-tree to the cluster-head and then along the active path to the tail of I. This node is

distinguished from other nodes on the active path since it is the focal point of the DFT. Thus,
the killing of one link costs O(n) bits. Since the algorithm kills, at most, m links, the killing
of intercluster links adds up to, at most, O (n rn) bits.

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1173

As mentioned, the cost of one DFT on a network with n nodes and m links is O (n m
log n) since there is one backtracking for each link of the network and each backtracking
costs O(n log n). The DFT operation is employed in the election algorithm to search the
infrastructures of different clusters. Since there are, at most, twice as many links as nodes
in an infrastructure, the cost incurred by each DFT of a cluster with k nodes is O(k2 log n).
As the DFT could be used n times by the algorithm, the total cost of all DFTs might be
O(n log n).

To reduce the total cost of all DFTs from O(n log n) bits, a special cluster-head election
phase is added after the cycle detection and before the synchronization phases. In this phase
the cluster-head which is elected in the cycle detection phase synchronizes the election of the
cluster-head of the largest size cluster around the cycle. The new cluster-head then proceeds
with the cluster synchronization phase as described before. After synchronizing the cluster,
the cluster-head resumes its DFT process from the previous stage, i.e., from the head node of
its former cluster outgoing link, thus avoiding re-searching nodes that were already searched.
The head node of its former cluster outgoing link is now the last node on the active path.

Cluster-head election. To elect a cluster-head of a largest size cluster (ties are resolved by
cluster-IDs), the cluster-head detecting the cycle sends an elect-message around the alternating
sequence of active paths and in-trees which form a directed cycle (see Fig. 10). On its way,
the elect-message finds out which cluster has the largest number of nodes and what the total
number of nodes in all the clusters around the cycle is. This information is updated on the
elect-message by the cluster-heads along the directed cycle.

Once the elect message returns to the originating cluster-head, the control of cluster
synchronization is passed to the newly elected cluster-head. Any new and larger maximum-ID
which arrives at the cluster-head detecting the cycle during the election and the synchronization
phase is held back by this node. It is delivered to the new cluster-head upon the reception of
the synchronization broadcast.

After being elected, the new cluster-head resumes its DFT of the previous cluster outgoing
link selection phase. In doing so it uses the active path and the node marks which its DFT
had left. The algorithm thus can be viewed as a process in which all the cluster-heads are
candidates for leadership. When clusters owned by different candidates form a cycle, the
candidate which owns the largest size cluster eliminates all the other candidates. In doing so
the candidate merely has enlarged its cluster to include the clusters of the candidates it has
eliminated. The DFT structures it had in its original cluster are now extended to search the
enlarged cluster. Henceforth, we refer to the clusters which did not change their cluster-ID as
one cluster which has consumed other clusters during the algorithm.

The above scheme is similar in principle to the capturing rule of [Ga177] and algorithm
A in [AG91]. There we enabled the largest candidate, in terms of captured nodes, to kill and
take nodes from a smaller candidate. To see that the above scheme does not add more than a
constant factor to the complexity of a single DFT, we will use a lemma which was introduced
in a similar context by Gallager [Ga177].

LEMMA 3.3. For any given k, the number of clusters that own n/k nodes or more is, at

most, k.

Proof. Let C1 and C2 be any two clusters which had size n/k at some point of time.
We shall show that each of C1 and C2 must have had n/k nodes disjointly. If they have
never consumed each other, we are done, since the clusters were certainly disjoint. If,
w.l.o.g., C has consumed C2, then C1 must have already had n/k nodes at the time of
eliminating C2. [-1

COROLLARY 3.4. The largest cluster to be consumed by another cluster owns at most n/2
nodes, the next largest at most n/3, etc.

1174 YEHUDA AFEK AND ELI GAFNI

Thus, we arrive at the following lemma.
LEMMA 3.5. The total cost of the DFT is 0 (n2 log n) bits.

Proof The cost oftraversing a cluster of size k is at most k2 log n bits. Hence, the total cost
-’[log nJ 2i)2 --llog n]")2messages. Buty’4n--l()2 </--,/=0 7 i=0 (-Y) < 2n2is bounded by il (7 "(

Hence, the bit complexity of the depth-first traversals is O (n2 log n) bits. I-1

Adding the bit costs of all three components, we arrive at a total communication com-
plexity of O(n2 log n + n m) bits for the whole algorithm. By the arguments presented in

2.5 we conjecture that this is also the lower bound on the communication complexity of the
election problem on arbitrary topology, strongly connected unidirectional networks.

4. The traversal algorithm as a special ease of the election algorithm. In this section
we show how Traversals 2 and 3 can be derived as a special case of the election algorithm.
Imagine the behavior of the election algorithm when it is started by a single node. In this
case, the initiator initiates a process which visits all the nodes in the network and terminates.
In the first subsection we show that the process can be modified to behave exactly like the
process in Traversal-2. In 4.2 we show how Traversal-3 can be derived from the election
algorithm.

The process of deriving the traversal algorithms from the election algorithm provides a
constructive proof of Lemma 2.8.

4.1. Deriving Traversal-2 from the election algorithm. Assuming that only one node
initiates the election algorithm, we make the following observations.

Observation 1: At any given time, at most one cluster is searched, i.e., no messages are
exchanged in any of the other clusters.

Observation 2: All the clusters and their selected outgoing links form a simple directed
path in which each cluster is a node and each link is a selected outgoing link. This
path, called the clusters active path, occasionally closes on itself (see Fig. 12). When
the path closes either a cycle of clusters is formed, or the last link on the path is
an intra-cluster link (in the last cluster on the path, see Fig. 12, cases 2 and 1,
respectively).

Observation 3: Consider the cluster’s active path when it does not close on itself. Then,
the nodes at which the cluster’s active path enters other clusters are the first nodes to be
explored in each cluster. Therefore, if these nodes were selected as the cluster-heads
of their clusters, the active paths of all the clusters would form a single contiguous
path at all times.

We now modify the election algorithm according to the above observations, that is, in
each cluster the first node to be explored is elected as the cluster-head. Cycle detection (case 2
in Fig. 12) occurs when the token leaves one cluster C (by traversing its selected outgoing
link for the first time) and arrives at another, previously explored, cluster C2. Recalling the
third observation, the cluster-head of C2 is the "oldest" node on the newly formed cycle of
clusters. This cluster-head (h) synchronizes the cycle of clusters and is elected to be the
cluster-head of the new cluster. Also (from the third observation), the active paths around the
cycle form a single contiguous path. If the synchronization phase is modified to leave all the
active paths intact, the distinct DFTs may be considered as one DFT. Thus, the newly elected
cluster-head h resumes a DFT which already has an active path going through all the clusters
around the cycle. As a result, no node in the network is searched more than once during
the whole algorithm. The cluster-head resumes the DFT at the node in which the cycle was
detected (the LOOP node in Fig. 12, case 2).

The above variation of the election algorithm can be viewed as a traversal process. One
node spawns the process which terminates at the initiator after it visits all the nodes in the

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 1175

network one at a time. This traversal process can be further modified to work on a unidirectional
network of finite automata, as we show in the next section.

LEGEND

Node

Cluster-head

Focal point

LOOP node

Cluster outgoing link

intree link

Active link

initiator

Case

Case 2

FIG. 12. Clusters in the traversal algorithtn.

4.2. Deriving Traversal-3 from the election algorithm. Two operations in the preced-
ing traversal algorithm require O (log n) bits memory in each node. The first is distinguishing
an intra-cluster from an inter-cluster link. The second (which occurs during the DFT of the
infrastructure) is backtracking from the last node on the active path.

In the first operation, the O (log n) bits are used to distinguish between the case where a
newly traversed link, 1, is an intra-cluster link and the case where closed a cycle of clusters.
This operation was accomplished in the preceding algorithm by comparing the ID carried by
the token with the cluster-ID of the head node of I. To perform the operation without IDs, we
note that, in both cases, closed a directed cycle of nodes and links (composed of an active
path followed by a path in an in-tree, see Fig. 12). In the first case, exactly one cluster-head
resides on the cycle, while in the second case, at least two cluster-heads reside on the cycle
(see Fig. 12).

1176 YEHUDA AFEK AND ELI GAFNI

We now explain how the token decides whether there is more than one cluster-head on
the cycle. The last node on the active path in each cluster is marked as the focal point (it is
the focal point of that cluster’s DFT, see 2.2.2). The head node of a newly traversed link
is marked LOOP if it is an already explored node. Upon arriving at a LOOP node, the token
is sent around the cycle to find out whether there is more than one cluster-head on it. Since
there is exactly one LOOP node on such a cycle, the walk around it utilizes a finite number
of bits on the token. The token then walks around to the focal point, kills 1, and resumes the
DFT. If, on the other hand, more than one cluster-head was found, a cycle of clusters was
identified. The token then makes another trip around the cycle in order to synchronize its
clusters. On the second round, the token first erases all the focal point marks. Second, it
erases all the cluster-head marks, aside from the first. Third, the token modifies the in-trees of
all clusters, aside from the first one, to be rerooted at the LOOP node (in the same way as was
done in the election algorithm). Notice that the active path of the first cluster lies between the
first and the second cluster-head. When it arrives at the LOOP node for the second time, the
synchronization phase terminates. The LOOP mark is removed, the focal point mark is put
on, and the DFT is resumed.

The backtracking in the DFT is performed without using node IDs by using the same
solution suggested in 2.3.

The communication cost of the cycle detection and synchronization phases does not
change in the modified algorithm. The cost of the cluster outgoing link selection phases is
O(n2 log n) bits since the DFT searching for outgoing links requires one backtracking for each
link of the infrastructure. Thus, the communication complexity of the traversal algorithm is
the same as that of the election algorithm.

4.3. Applications.

4.3.1. Applications of the traversal algorithm. In this section we show how the traver-
sal algorithms and their resulting infrastructure can be used to solve other problems. In
particular we apply the traversal algorithm to perform broadcasting, route messages, and
systematically emulate any bidirectional algorithm on a unidirectional network. Each of the
applications can be solved by a traversal; however, after executing the traversal, the application
problems may be solved more efficiently using the infrastructure produced by the traversal.

4.3.2. Broadcast with echo. In the broadcast with echo problem one node, the root, has
a piece of information which it sends to all the nodes in the network, and the root gets a positive
acknowledgment that all the nodes have received the information.

A straightforward solution to the problem will use a traversing process to carry the in-
formation on it. The message complexity of this solution is the message complexity of the
traversal algorithm, O(n rn).

After one traversal, the next broadcast with echo can be more efficiently performed by
traversing only the infrastructure links. Since the infrastructure defines a strongly connected
network, any node (not only the root) may start a traversal for this purpose. The complexity
of this traversal is O (n2) since the number of links in the infrastructure is at most 2n 2.

After one traversal was performed, a further improvement can be achieved as follows.
Every node that wants to start a broadcast with echo first sends the information of the broadcast
to the root node along the out-tree marked links, and then the root node starts a broadcast with
echo as described below. After receiving the echo, the root node will broadcast an echo on
the out-tree links.

The infrastructure can be used for an efficient broadcast with echo from the root as
follows. The root sends the broadcast message on all its outgoing links in the infrastructure.
Upon receiving the broadcast message for the first time, every other node sends the message

DISTRIBUTED ALGORITHMS FOR UNIDIRECTIONAL NETWORKS 177

to all its outgoing neighbors in the infrastructure. Any other copy of the broadcast message
is discarded. This implements the broadcast part of the algorithm. To notify the root that all
the nodes in the network have received the broadcast message, every node v sends an echo
as follows. After sending the copy of the broadcast message, v sends an echo over all of its
infrastructure outgoing links except the link marked intree. Node v sends an echo over the
intree marked outgoing link only after an echo has been received on all of its infrastructure
incoming links. When the root has received the echo over all of its infrastructure incoming
links, the notification has been completed, and a message to this effect is sent on the outtree
marked links.

The average message complexity of the resulting broadcast with echo algorithm is 6n
(averaging out the first broadcast, which is a regular traversal). Sending the broadcast message
from the initiating node to the root of the infrastructure costs at most n messages. The
broadcast message is then transmitted once over each infrastructure link, which adds at most
2n 2 messages to the complexity. The echo message is also sent once over each infrastructure
link, hence another 2n 2 messages. Then, to pass the echo to the initiating node, another
n messages are transmitted on the outtree marked links.

4.3.3. Message sending. The in- and out-trees which result from the traversal algorithm
enable us to efficiently send a message from every node to every other node. To pass a message
from node v to node u, node v sends the message along the intree marked links to the root,
which then broadcasts the message on the out-tree. Thus, at most 2n 2 messages are sent in
the routing mechanism, in order to send a message from any node to any other node.

4.3.4. Transforming bidirectional distributed algorithms to unidirectional networks.
The above routing mechanism can be used as a means to emulate any bidirectional distributed
algorithm on a strongly connected unidirectional network. Whenever a node has to send a
message on an incoming link, it will use the above message passing mechanism. Thus, if a
problem has a bit complexity O (P (n)) on a bidirectional network, then its complexity on the
unidirectional network is upper bounded by O (n P (n) + n2 log n + n rn) (the last two
terms entail the construction of the infrastructure).

In case when the bidirectional algorithm is for a network of finite automata, i.e., if nodes
are anonymous, then we can send a message backward from node v to its incoming neighbor u
by adapting the solution to the "last in the ring" puzzle. However, the adaptation costs O (m)
messages (bits) in the synchronous network and O(m +n log n) messages in the asynchronous
network for each message sent backward. The solution is adapted by performing the algorithm
on the cycle defined by the unique path from v to the root in the in-tree concatenated with the
unique path from the root to u and with the u -+ v link. The messages of the protocols in the
proofs of Lemmas 2.11 and 2.12 are marked differently when they go from v to the root and
when they travel from the root down to v via the out-tree. Messages going from v to the root
behave exactly the same as in the original solutions. Each node participates in the algorithm
for a message it receives in the "down" mode over its parent link in the out-tree, and sends
the message it would have sent as a response on a ring on all its outgoing links. Any message
received by a node other than v, not on the parent out-tree, is ignored, and v responds only to
messages it receives from u. This guarantees that messages cycle only on the desired cycle.
On all other potential cycles, starting at v the messages are eliminated when they reach a leaf
of the out-tree.

5. Concluding remarks, An interesting observation is that the amount of communica-
tion in the unidirectional election algorithm, O (n. m + n2 log n) bits, is n times the number of
messages in the optimal bidirectional algorithm. We would obtain the same cost if we were to

simulate the bidirectional algorithm [GHS83], with each acknowledgment charged as n bits,

1178 YEHUDA AFEK AND ELI GAFNI

on a unidirectional network. Together with Lemma 2.13, this leads to the conjecture that our
election algorithm is as efficient as possible in terms of communication cost.

Acknowledgments. We would like to thank Shimon Even and Peter Winkler for en-
couraging us to rewrite the results reported here. We would also like to thank an anonymous
referee for many helpful corrections.

REFERENCES

[Afe851

[AFL83]

lAG91]

[Cha791

Y. AFEK, Distributed Algorithms for Election and Traversal in Unidirectional and Complete Networks,
Ph.D. thesis, University of California, Los Angeles, October 1985.

E. ARJOMANDI, M. J. FISCHER, AND N. m. LYNCH, Efficiency ofsynchronous versus asynchronous distributed
systems, J. Assoc. Comput. Mach., 30 (1983), pp. 449-456.

Y. AFEK AND E. GAFNI, Time and message boundsfor election in synchronous and asynchronous complete
networks, SIAM J. Comput., 20 (1991), pp. 376-394.

E. J. CHANG, DecentralizedAlgorithms in Distributed Systems, Ph.D. thesis, University ofToronto, October
1979.

[DKR82] D. DOLEV, M. KLaWE, AND M. RODEH, An O(nlogn) unidirectional algorithm for extrema finding in a

circle, J. Algorithms, 3 (1982), pp. 245-260.
[ELW90] S. EVEN, A. LITMAN, AND P. WINKLER, Computing with snakes in directed networks ofautomata, In Proc.

of the 31 st IEEE Annual Symp. on Foundation of Computer Science, Research Triangle Park, NC,
pp. 740-745, October 1990.

[Eve79] S. EVEN, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
[Fra70] A.S. FRaENKEL, Economic traversal oflabyrinths, Math. Mag., 43 (1970), pp. 125-130.
[GA84] E. GaFNI AND Y. AFEK, Election and traversal in unidirectional networks, In Proc. of the 3rd Annual ACM

Symp. on Principles of Distributed Computing, August 1984.
[GaI76] R.G. GaLLaGER, A shortest path routing algorithm with atttomatic resynch, Unpublished note, March

1976.
[GaI77] R.G. GALLAGER, Finding a leader in a network with (e) + (n log n) messages, Unpublished note, 1977.
[GHS83] R.G. GaLLaGER, P. A. HUMBLET, AND P. M. SPlRa, A distributed algorithmfor minimum weight spanning

trees, ACM Trans. Program. Lang. Syst., 5 (1983), pp. 66-77.
[GK84] E. GaFN1 AND W. KOgFHaGE, Distributed election in unidirectional eulerian networks, In Proc. Twenty-

Second Annual Allerton Conference on Communication, Control, and Computing, Allerton, IL,
October 1984.

[HT73] J. HOPCROVT AND R. TagJaN, Algorithm 447: Efficient algorithmsfor graph manipulation, Comm. ACM,
16 (1973), pp. 372-378.

[Hum83] P.A. HUMBLET, A distributed algorithmfor minimum weight directed spanning trees. IEEE Trans. Comm.,
COM-31 (1983), pp. 756-762.

[KKM85] E. KORACH, S. KUTTEN, AND S. MORAN, A modular techniquefor the design ofefficient distributed leader
finding algorithms, In Proc. of the ACM Symp. on Principles of Distributed Computing, Minacki,
Ontario, Canada, August 1985.

[Kob78] K. KOBAYASHI, Thefiring squad synchronization problemfor a class ofpolyautomata networks, J. Comput.
System Sci., 17 (1978), pp. 300-318.

[Kut84] S. KUTTEN, Personal communication, 1984.
[Kut88] S. KUTTEN, Stepwise construction of an efficient distributed traversing algorithm for general strongly

connected directed networks, In Proceedings of the Ninth International Conference on Computer
Communication, J. Raviv, ed., pp. 446-452, October 1988.

[Pet82] G.L. PETERSON, An (n log n) unidirectional algorithm for the circular extrema problem, ACM Trans.
Program. Lang. Syst., 4 (1982), pp. 758-762.

[Seg83] A. SEGALL, Distributed network protocols, IEEE Trans. Inform. Theory, IT-29 (1983), pp. 23-35.
[Tar72] R. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., (1972), pp. 146-160.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1179-1192, December 1994

() 1994 Society for Industrial and Applied Mathematics
004

SIMPLE AND FAST ALGORITHMS FOR LINEAR AND INTEGER PROGRAMS
WITH TWO VARIABLES PER INEQUALITY*
DORIT S. HOCHBAUM AND JOSEPH (SEFFI) NAOR

Abstract. The authors present an O(inn log m) algorithm for solving feasibility in linear programs with up to

two variables per inequality which is derived directly from the Fourier-Motzkin elimination method. (The number
of variables and inequalities are denoted by n and m, respectively.) The running time of the algorithm dominates
that of the best known algorithm for the problem, and is far simpler. Integer programming on monotone inequalities,
i.e., inequalities where the coefficients are of opposite sign, is then considered. This problem includes as a special
case the simultaneous approximation of a rational vector with specified accuracy, which is known to be NP-complete.
However, it is shown that both a feasible solution and an optimal solution with respect to an arbitrary objective
function can be computed in pseudo-polynomial time.

Key words, linear programming, integer programming

AMS subject classifications. 05C85, 68Q25, 90C05, 90C 10, 90C27

1. Introduction. In this paper we examine linear and integer programming problems
with two variables per inequality. The problem of computing a feasible solution in the linear
(or fractional) case has been investigated extensively. Shostak [18] suggested that a linear
program with two variables per inequality can be represented as a graph" since each inequality
contains two variables, one can represent the linear program by a graph which has a vertex
for each variable, and an additional vertex x0. Any inequality involving two variables is
represented as an edge between the respective pair of vertices. As for inequalities involving
only one variable (upper and lower bounds on variables), these are represented as edges to
and from vertex x0. We denote the number of variables by n, and the number of inequalities
by m. (W.l.o.g. we can assume that m > n.) The graph consists therefore of n + vertices
and m edges, and there may be multiple edges between any pair of vertices.

Shostak 18] proved that feasibility can be tested by following paths and cycles in this
graph, and thus laid the foundation for all subsequently considered algorithms for the problem.
This feasibility test was refined to a polynomial algorithm by Aspvall and Shiloach], and
later still to an O(mn logm) strongly polynomial algorithm by Megiddo [14]. Recently,
Cohen and Megiddo [4] obtained new algorithms for this problem: (i) they presented a new
O(mn2(log m +log2 n)) time algorithm; (ii) they also gave a randomized algorithm for finding
a feasible solution in the special case of monotone inequalities (to be defined later) with
an expected running time of O(n log n + mn log m log n + mn log n). (This randomized
algorithm was later generalized to hold for the non-monotone case as well in [2]; however, it
follows from [5] that the non-monotone case can be reduced to the monotone case at no extra
cost.) The main feature common to all of these algorithms is determining upper and lower
bounds for each variable by following paths and cycles in the graph.

The first result we present is an O (mn2 log m) algorithm for the feasibility problem. This
algorithm is faster (although only for m < n(lg")), and moreover it is simpler than all other
known algorithms. The backbone of our algorithm is the Fourier-Motzkin elimination method

*Received by the editors July 1, 1993; accepted for publication July 9, 1993. A preliminary version of this paper
appeared in the Proceedings of the 2nd "Integer Programming and Combinatorial Optimization" Conference (IPCO),
CMU, 1992, pp. 44-59.

Department of Industrial Engineering and Operations Research, University of California, Berkeley, California
94720 (dori t@hochbaum, berke i ey. edu). This research was supported in part by Office of Naval Research
grant ONR N00014-91-J-1241.

tDepartment of Computer Science, Technion, Haifa 3200, Israel (naor@cs. technion, ac. i 1). Most of
this work was done while the author was at the Computer Science Department, Stanford University and supported by
contract ONR N00014-88-K-0166. The author was also supported in part by contract ONR N00014-9 l-J-1241.

1179

1180 DORIT S. HOCHBAUM AND JOSEPH NAOR

(Introduced by Fourier (1827), and discovered later by Dines 1918-1919) and Motzkin (1936);
see [17] for details.) In general, this algorithm does not run in polynomial time because it
may generate an exponential number of inequalities in the process of eliminating variables.
However, we show how to implement this algorithm efficiently for linear programs where each
inequality may contain at most two variables. First, at each elimination step, the number of
inequalities on every edge adjacent to the variable currently to be eliminated is reduced to two.
This serves to control the exponential growth of the number of inequalities. In addition, we
maintain the inequalities corresponding to two variables as upper and lower envelopes, where
the envelopes (which are piecewise linear functions) are characterized by their breakpoints.
This representation allows us to dispose of redundant inequalities in each elimination step
quickly by examining all breakpoints associated with the variable currently to be eliminated.

The analogue of the Fourier-Motzkin procedure in computational logic is resolution.
Using resolution, one obtains a satisfying assignment to a set of clauses (in, say, propositional
logic) by eliminating the variables one by one. It is known that resolution can be efficiently
implemented for the case of 2-SAT clauses, i.e., the satisfiability problem, where each clause
may contain at most two literals. This follows since every elimination step generates 2-SAT
clauses, and the total number of 2-SAT clauses is always bounded by a polynomial. Our
algorithm may be viewed as an efficient implementation of resolution for the case of linear
constraints with two variables per inequality.

A linear program with two variables per inequality is called monotone if each inequality
is of the form Ctxi bxj < c, where both a and b are positive. We will consider integer
programming problems on monotone inequalities. We note that the aforementioned reduction
from the non-monotone case to the monotone case does not preserve integrality.

Lagarias 11 has shown that the problem of deciding whether a given rational vector c has
a simultaneous approximation of specified accuracy with respect to the maximum norm, with
denominator Q in a given interval _< Q _< N, is NP-complete. The problem of deciding the
feasibility of a monotone system in integers is a generalized form of this question and hence
NP-complete as well (it is obviously in NP).

The set of feasible solutions of a monotone system can be shown to form a distributive
lattice where the join and meet operations are defined to be maximum component-wise and
minimum component-wise, respectively. This has been observed before by Veinott [20]. We
present an algorithm that computes the solution vectors corresponding to the top and bottom
of the lattice. The lattice structure is crucial for the algorithm, and the manner in which
the search for a feasible solution is conducted guarantees that if one exists, then we are go-
ing to find the solution which is at the top (or bottom). The running time of this algorithm
is a polynomial which depends on the sum of the number of integer valued points in each
one-dimensional projection of the feasible polytope in the fractional case. Hence, this algo-
rithm is pseudo-polynomial in the case when the variables in the integer program are bounded.
Also, in this case the problem is weakly NP-complete.

It is interesting to note that the strongly polynomial feasibility algorithm for linear inequal-
ities with two variables per inequality does not extend to a strongly polynomial optimization
algorithm over such inequalities. (It is only known that when the objective function consists of
d variables, then there is a strongly polynomial algorithm when d is fixed, i.e., it is exponential
in d.)

In contrast, for the integer case, we present a pseudo-polynomial algorithm for the op-
timization problem over a monotone system with an arbitrarily long objective function (that
is, with up to n variables in the objective). We note that the optimization problem over a
non-monotone system is NP-complete in the strong sense, since the vertex cover problem is a

special case of it. The algorithm hinges on the following two observations:

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 181

The elements of a distributive lattice can be represented as closed subsets of a directed
graph (of pseudo-polynomial size) which is derived from the lattice.
A linear objective function defines a modular function on the lattice which in turn

implies that the lattice element of optimal cost corresponds to the closed subset of
optimal cost (when costs are properly defined).

The complexity ofcomputing the closed subset of optimal cost is bounded by a polynomial
in the size of the graph, i.e., it can be computed in pseudo-polynomial time. Even though
the directed graph that represents the lattice is of pseudo-polynomial size, it has a succinct
description, i.e., it can be encoded in polynomial space. This provides a compact encoding of
the complete feasible solution set of a mono’tone system of inequalities.

Finally, we present an application of our Fourier-Motzkin algorithm to identifying fat
polytopes. Fat polytopes are those containing a sphere which circumscribes a unit hypercube,
and hence must contain an integer point. For polytopes derived from inequalities with two
variables per inequality, the procedure for identifying fat polytopes runs in strongly polynomial
time, and thereby can be viewed as an efficient heuristic for finding a feasible integer solution.
A strongly polynomial algorithm for a related problem of finding the largest sphere contained
in a polytope is presented as well.

2. Efficient implementation of the Fourier-Motzkin algorithm. In this section we
show how the Fourier-Motzkin elimination method for finding a feasible solution of a linear
program can be implemented efficiently when the number of variables in each inequality is at
most two. We begin by an informal description of the method for a general linear program.
(The reader is referred to [17, pp. 155-156] for more details.)

Let the variables of the linear program be x x,, and let the set of inequalities be
denoted by E. The variables are eliminated one by one. At step i, the linear program will only
contain variables xi x,,; the set of inequalities at step is denoted by Ei, where initially
E1 E. To eliminate variable xi, all the inequalities in which xi participates are partitioned
into two sets, L and H. The set L contains all the inequalities which are of the form xi >_ 1,
and the set H contains all the inequalities which are of the form xi <_ h, where and h are
linear functions. To obtain the set Ei+l, for all L and h H, a new inequality < h is
added to Ei, and all the inequalities in L and H are eliminated from it. The number of new
inequalities produced is HI ILl. The next theorem is immediate.

THEOREM 2.1. The linear program Ei+I has a feasible solution if and only if the linear
program Ei has a feasible solution.

Hence, a feasible solution can be computed recursively for Ei+I and then extended to Ei.
The main drawback of this method is that the running time is not necessarily polynomial, i.e.,
in general the number of inequalities may grow exponentially.

The discussion henceforth is restricted to inequalities that contain at most two variables
per inequality. It is interesting to note that Nelson [15] proved that when implementing the
Fourier-Motzkin method in this case, the total number of inequalities is bounded by m. nlg n.

As mentioned in the introduction, an equivalent representation of the linear program
is by the graph G (V, E). The vertex set V contains vertices x0, x xn; an edge
between vertex xi and xj (for _< i, j < n) represents the set of inequalities in which xi and
xj participate. The vertex x0 is needed to represent inequalities that contain precisely one
variable, i.e., an edge from xi to x0 denotes an inequality of the form xi <_ a or xi >_ a for
some constant a.

The main feature that allows for the efficient implementation of the Fourier-Motzkin
algorithm is the following. The set of inequalities that correspond to an edge between xi
and xj is represented in the (xi, xj) plane as two envelopes, an upper envelope and a lower
envelope. The feasible region of xi and xj is in between the two envelopes and it is not hard to

1182 DORIT S. HOCHBAUM AND JOSEPH NAOR

see that each envelope is a piecewise linear function that can be represented by its breakpoints
(see Fig. (a)).

x

(5,4)

(3
4

3

(i,
(7,2)

1

2

(.5,o.) o.

-3.5
(2,-3.5)

(a)

x

(b)

FIG. 1. (a) The feasible region defined by the inequalities containing X and x] is a piecewise linearfunction
defined by its breakpoints. (b) The set Bj {-3.5, 0.5, 1, 2, 3, 4} is the set ofbreakpoints projected on the xi axis.

The following procedure of Aspvall and Shiloach plays a crucial role in our algorithm.
This procedure was used by [14] and [4] as well. Let xin and xi

max denote the respective
minimum and maximum feasible values of xi. That is, any value assigned to xi from the
range [xin, xnax] can be complemented to a feasible solution. If the feasible range of some
of the variables is unbounded, then there exist numbers bounded by a polynomial in the binary
representation of the data [17], such that if Xnin and x/nax are set to them, the existence of a
feasible solution is assured.

PROCEDURE 2.1 [1]. Given a variable xi and a value), it can be decided in O(mn)
operations whether (i) ,k < xnin, (ii) ,k > xnax, or (iii) Xnin _< Z _< Xnax.

The main idea underlying Procedure 2.1 is propagating the implications of the equality
xi ,k in a manner very similar to the Bellman-Ford algorithm for computing all shortest
paths from a single source. We remark that even if the linear program in hand is infeasible,
the procedure may still provide one of the above three answers. In this case, infeasibility will
be detected by our algorithm at a later stage. (Note for example the case in which the linear
system consists of two independent subsystems, one feasible and one infeasible.)

We are now ready to provide a high-level view of the algorithm. The main idea is that
the number of inequalities in which xi (the variable to be eliminated) participates can be
significantly reduced using Procedure 2.1. It should be mentioned that a similar idea was used
by Megiddo [14] to obtain upper and lower bounds on the feasible values of variables. The
following is performed at step of the Fourier-Motzkin algorithm. Let G denote the graph
corresponding to the linear program Ei.

1. Let the neighbors of X in the graph Gi be xi, Xid.
Let Bj (1 < j < d) denote the set of breakpoints of the edge (xi, xij) projected on
the xi coordinate (see Fig. (b)).

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1183

2. Merge the d sorted sequences Bi into a sorted sequence B. (Let the sorted sequence
be bl b,.)

3. Perform a binary search on the sequence B. The aim of the search is to obtain either
(a) a breakpoint bt B such that X/nin. < bt < -’timax, or

min and xax(b) an interval [bt, bt+] (1 < < k) such that bt < J6 < bl+l.
4. In step 3a, variable xi is assigned the value bl and "contracted" with vertex x0 in

graph Gi.

In step 3b, the number of inequalities on each edge adjacent to xi is reduced to at
most two (see Fig. 2). Now, the generic Fourier-Motzkin elimination step is applied
to variable xi.

Let us further elaborate on how the algorithm is implemented and analyze its complexity.
The following invariant is maintained throughout the algorithm; we defer its proof to the end
of the discussion. It is obviously true initially.

INVARIANT 2.1. The nttmber of breakpoints on an edge is at most 0 (m).
By the invariant, the cardinality of the set B is at most O(mn). The binary search at step

3 is performed by successive calls to Procedure 2.1. At each call, either a breakpoint which
is feasible for xi is discovered, or the number of breakpoints to be examined is reduced by
half. Hence, the complexity of sorting the set B and performing the binary search is at most
0 (mn log m). We should remark that in the course of the elimination process, to bound the
running time of Procedure 2.1 by O(mn), we run it on the original graph G and not on the
current graph Gi. However, G is updated as follows. For each eliminated variable (say x)
that was assigned a value (say a) at step 3a, two inequalities are added to graph G" x < a and
x > a. If x is already connected to x0, then the respective bounds are updated according to
the most restrictive bound, or an inconsistency is detected and the algorithm terminates with
a discovery that the system is infeasible.

In step 3a, the linear program Ei+l is obtained from Ei by assigning the value bt to the
variable xi. Otherwise, in step 3b, the generic Fourier-Motzkin elimination step is applied.
Notice that the number of inequalities on each edge adjacent to xi is reduced to at most two
(see Fig. 2). (We assume that the intersections of the upper and lower envelopes (up to two)
are also counted among the original breakpoints.) In addition, two more inequalities, bt < xi
and X <_ bt+, are added to the linear program Ei.

Let xi, and Xiq be any two variables that are adjacent to xi. The edge (xi, xiq) and the
edge (xi, xi,) may each contain at most two inequalities" hence, at step 4, the Fourier-Motzkin
elimination step adds up to four new inequalities between the variables xi and xi. These four
inequalities are added to the set of inequalities that already exist between them. The running
time of adding a new inequality to an already existing envelope is O (log m) time. This follows
since the existing set of inequalities includes at most O (m) inequalities (Invariant 2.1), which
is represented as an (upper and lower) envelope, i.e., as a sorted sequence of breakpoints.
Adding a new inequality amounts to identifying where to insert the newly created breakpoint
in the existing sequence, which can be done using a binary search. We note that it may be the
case that, as a result of adding a new breakpoint, many other breakpoints can disappear. Since
there are at most () pairs of neighbors, the complexity of this step is at most O (n2 log m).

To prove Invariant 2.1, notice that for each variable that is eliminated, the number of
breakpoints added to an edge is a constant, and hence the invariant is maintained. In fact, the
number of breakpoints on an edge will never exceed m -!- 4n throughout the execution of the
algorithm.

At the end of the elimination step, we are left with two variables, x0 and x,,. We now
backtrack and assign values to the inequalities as follows. Choose any feasible value in the
feasible range for xn. Now choose a feasible value for xn_ 1, that satisfies the inequalities w.r.t.

1184 DORIT S. HOCHBAUM AND JOSEPH NAOR

x

4

3

2

1
0.5

-3.5

FIG. 2. Step 3b of the algorithm: for example, bt 2 and bt+l 3. Consequently, the number of inequalities
involving xi and xj is reduced to two. In addition, there are two more inequalities." 2 <_ xi and xi < 3.

xn and x0. Continue inductively by determining a value for Xi, based on the inequalities of X
and xj for j > i, and the range determined by the upper and lower bound inequalities with

x0. Since there are now at most two inequalities on each edge, the running time for the entire
backtracking process is O (n2).

The correctness of the next theorem follows from the above discussion.
THEOREM 2.2. The complexity ofeliminating a variable in the algorithm is O(mn log m).

Hence, the complexity of the entire algorithm is 0 (mn2 log m).

3. Integer programming on monotone inequalities. A linear program with two vari-
ables per inequality is called monotone if for every inequality, the coefficients of the two
variables have opposite signs. We begin by studying the properties of the set of feasible vec-
tors in the case of m.onotone inequalities. This set can be looked upon as a partial order under
the following definition of dominance. Given two feasible vectors, L and L2, we say that
L1 L2 if for all components i, L1 (i) _> L2(i). Let denote the set of all feasible vectors of
a monotone system. We prove that has the nice property that it forms a distributive lattice.
This property will turn out to be very useful for finding a feasible solution and optimizing with
respect to an objective function. It was previously observed by Veinott [20]. A distributive
lattice is a partial order in which

1. Each pair of elements has a greatest lower bound, or meet, denoted by a A b, so that
a A b -< a, a m b -< b, and there is no element c such that c _< a, c -< b and a A b -< c.

2. Each pair of elements has a least upper bound, or join, denoted by a v b, so that
a -< a v b, b <__ a v b, and there is no element c such that a c, b -< c and c -< a v b.

3. The distributive laws hold, namely a v (b A c) (a V b) A (a V c) and a A (b v c)
(a A b) v (a A c).

To prove that is, in fact, a distributive lattice, we define appropriately the meet and join
operations. The meet of two vectors L1 and L2 is defined to be the vector where each
component is the minimum of the two corresponding components in L1 and L2. The join of
two vectors is defined similarly where minimum is replaced by maximum. (See Fig. 3 for an
example.)

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1185

THEOREM 3.1 [20]. The partial order (E, _) offeasible vectorsforms a distributive lattice
under the above definitions ofmeet andjoin.

Proof We first establish that (, _) is a lattice. To do that, we prove one case, other
cases follow similarly. Let L1 (u un), L2 (Vl vn), and let L L1 x/L2
(w w,,). We show that L is also a feasible solution vector. For a particular inequality
axi bxj < c, we know that

aui buj < c; al)i bvj < c.

If, for example, wi ui and wj vj, then since b is positive, buj <_ bvj, and the inequality
holds for solution vector L as well.

Let a, b, and c be any integers. Then, min(a, max(b, c)) max(min(a, b), min(a, c))
and max(a, min(b, c)) min(max(a, b), max(a, c)). Hence, the distributive laws hold for
the lattice/2. 71

(2,2,2)

2)

(0,2,2) /g1,2)
(0,1,2 ’1)

(0, /(1,1,0)
(0,0,1)/V(O,1,0)

(0,0,0)

y-x<_2
x-y<_O
2z-y<_3
2y-z<_2

O<x, y, z<2

FIG. 3. The sublattice of integral solutions ofa monotone system. Each solution vector is of theform (x, y, z).

Notice that the lattice property holds in both the fractional and the integer case, and in fact
the set of integer feasible solutions is a sublattice of the lattice of feasible solutions. From now
on/2 will denote the lattice in the integer case and we restrict the discussion to this lattice. It is
easy to see that the lattice properties imply that a lattice has a unique minimum and maximum,
denoted by B (bottom) and T (top), respectively.

The problem of checking whether an integer monotone system has a feasible solution was
shown to be NP-complete by Lagarias [11]. This was shown by proving that the following
problem, good simultaneous approximation, is NP-complete. An instance of this problem
consists of a vector of rationals, ot (a/b a,,/bn), and positive integers N, s, and $2.

The question is whether there exists an integer Q, _< Q < N, such that

s1
max {Oai/bi} <--,
<i <n S2

where {fl denotes the distance of/3 to the closest integer. This problem can be expreseed as
an instance of finding an integer feasible solution (x, xn, Q) for the following monotone
system:

1186 DORIT S. HOCHBAUM AND JOSEPH NAOR

--sl .B <_s2(ai.iB Q B. Xi) < SI" B, l<_i<n,

where B --bl. b2... b,, and < Q < N.

However, we will show in 3.1 and 3.2 that for the case of bounded variables, both the
feasibility problem and the optimality problem with respect to an arbitrary objective function
can be solved in pseudo-polynomial time over a monotone system of inequalities. Con-
sequently, integer programming over monotone inequalities with bounded variables is only
weakly NP-complete.

3.1. Integer feasibility over monotone inequalities. In this section we show how a
feasible integer solution can be found. More specifically, our aim is to compute the feasible
solution which corresponds to the top of the lattice, i.e., the feasible vector whose components
are maximal. The same procedure with a slight modification can be applied to find the solution
corresponding to the bottom of the lattice.

During the course of this procedure a current solution vector L (x x,,) (which is
infeasible) is maintained with the invariant that L >- T. The initial value of L is the top of the
fractional lattice where each component is rounded downward to the nearest integer.

It should be noted that in the monotone case, the top (or bottom) of the lattice in the
fractional case can be computed via a simple modification of the algorithm defined in 2. In
step 3a of the algorithm, instead of assigning a value to the variable that is eliminated, two
consecutive breakpoints are computed with the following property. One breakpoint belongs
to the feasible region, and the other breakpoint (the larger one) does not belong to it. The
algorithm continues similarly to step 3b. In the backtracking process, the highest feasible
value is chosen for each variable.

The generic step in the algorithm is as follows. Traverse all the inequalities in the linear
program in some arbitrary order. If an inequality aXi bxj <_ c is invalid, then it is validated
by updating the value of xi as follows"

x
a

The algorithm terminates if either all inequalities traversed in a single step are valid, or L

_
B.

THEOREM 3.2. The algorithm tests in time O(mn2 logm + rn -"7=1 (xnax xnin -[-- 1))
whether a monotone system of inequalities has a feasible solution.

Proof. Assume that the given system of inequalities has a feasible solution. We show that
the invariant that L >- T is maintained throughout the algorithm. Given an invalid inequality
axi bxj < c, where xi ui and xj uj, it is validated by decreasing xi. Assume that the
values of xi and xj in T are 2i and Jj, respectively. By the invariant, uj > 2j. Hence,

.i < < ui

and the invariant is maintained.
It follows from the invariant that we will never need to backtrack, and since the value of

a variable is always decreased by at least one unit whenever an inequality is validated, the
running time of the algorithm is bounded by O(mn2 logm + m. Y’=(x’ax xnin -[- 1)).
This running time is pseudo-polynomial since the feasible range of the variables is bounded.

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1187

If the monotone system does not have an integer feasible solution, this will be detected
when L -< B, since T B must hold. 13

Recently, T. Feder (private communication) observed that an integer feasible solution can
be computed in pseudo-polynomial time in the non-monotone case when the variables are
bounded.

3.2. Integer optimization over monotone inequalities. In this section we consider the
following integer optimization problem:

min 11) X

i=1

subject to akxi bkxj < Ck, k m,

<i,j <n and a,, bk >0.

We show that the optimal solution can be computed in pseudo-polynomial time where the
polynomial depends on ’i=n (xaax. xnin). Recall that the optimization problem over a non-
monotone system is NP-complete in the strong sense since vertex cover is a special case of
it.

DEFINITION 3.3. Let f be afunction defined on a lattice ., and let a, b .. Thefunction
f is called modular iff(a) + f(b) f(a x/b) + f(a/x b).

It is straightforward to verify that any linear objective function defined on an integer
monotone system is modular.

DEFINITION 3.4. For a directed graph G, a subset S is said to be closed iffor every s S,
all its predecessors, i.e., all vertices s’for which there exists a directedpathfrom s’ to s, belong
to the subset S.

We first review our scheme for minimizing with respect to an objective function. The
following theorem in lattice theory (see [6, p. 72, Thm. 9] and [7, Thm. 2.2.1]) is relevant to
our result.

THEOREM 3.5. Given a distributive lattice ., a partial order can always be associated
with it, such that a one-to-one correspondence can be established between its closed subsets
and the elements of.

The proof of this theorem is constructive and it implies an algorithm for constructing the
partial order. In general, there may be more than one partial order that has the above property;
we denote by I (Z2) the partial order obtained by following the proof of Theorem 3.5 and call
it the generic partial order.

Suppose now that a modular function f is defined on the lattice/2. It can be shown
that in this case, the elements of the partial order can be assigned costs in such a way that
the lattice element of optimal cost would correspond to the closed subset of I (/) of optimal
cost. Computing a closed subset of optimal cost in a partial order is a well-known problem
and its complexity is bounded by a polynomial in the size of I () [16]. (The size of I (/) is
pseudo-polynomial in the case of our lattice.)

The disadvantage of computing with the generic partial order I () is that its structure
is rather complicated, and it seems that it cannot be described compactly, i.e., in polynomial
space (as opposed to pseudo-polynomial space). Instead, we present a directed graph, denoted
by G (/2), that also has the property that a one-to-one correspondence exists between its closed
subsets and the elements of/2. The advantage of this graph is that it can be encoded in
polynomial space via an algorithm which has a short (polynomial) description.

1188 DORIT S. HOCHBAUM AND JOSEPH NAOR

The rest of the section is organized as follows. In 3.2.1 we define the directed graph
G() and prove that it has the desired properties. In 3.2.2 we show how to compute a closed
subset of minimum cost in G (/). For the sake of completeness, we discuss in 3.2.3 how to
obtain the graph G(Z3) from the generic partial order I ().

It should be noted that similar methods were used by Gusfield and Irving [7] to compute
efficiently an egalitarian solution for the Stable Marriage problem. See also [9], [19] for an
application of these methods.

3.2.1. Constructing the directed graph. In this section we define a directed graph G(/2)
such that a one-to-one correspondence can be defined between its closed subsets and the
elements of/2. (See Fig. 4 for an example.)

Let the set Vi be defined as the set of integers that are contained between the largest and
smallest integer feasible values of variable xi. The vertex set of G(/2) is V U t2 V,,, i.e.,
a vertex is created for each v E V/, where _< < n. In addition, there is a special vertex
denoted by s. The edge set of G(/) is defined as follows.

For each variable xi, a directed chain is defined on the set Vi in sorted order. That
is, for each pair of vertices representing two consecutive values, v and v + 1, there
is an arc (v, v + 1). Such a chain is called an xi-chain.
For each inequality axj bxi <_ , the following "ladder" is defined between the

xi-chain and the xj-chain. For all v E Vj, there is an arc from the value corresponding
to ’---- in the xi-chain, to the vertex corresponding to v in the xj-chain. Intuitively,
the arcs can be thought of as constraints, i.e., if the value of variable xj is v, then the
value of variable xi must be at least a-___ in any feasible solution
For each xi-chain, there is a bidirectional edge connecting the vertex corresponding
to the smallest value in Vi to the vertex s. The purpose of these edges is to ensure
that any closed set contains at least one vertex in each xi-chain.

x-chain y-chain z-chain

2 2

FIG. 4. The directed graph G(E) corresponding to the set of inequalities of Fig. 3. For example, the arc

connecting the "0" value in the x-chain to the "2" value in the y-chain is implied by th.e inequality y x < 2.

The next theorem states that this construction is valid.
THEOREM 3.6. There is a one-to-one correspondence between the closed subsets of G(fl_,)

that contain vertex s and the elements of E.

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 1189

Proof. We first prove that every feasible solution vector L defines a closed subset in G (/2).
Let L (ul u,,). The corresponding subset SL in G(/2) is defined by taking for all i,
all the vertices corresponding to integers that are smaller or equal than u in Vi, and s 6 SL.
Assume now that SL is not a closed subset. Then there exist two vertices, v 6 Vi and w 6 Vj,
such that

w SLandv SL, and,
there is an arc from v to w in G().

This arc can only be generated by the inequality axj bxi <_ c. (We now abuse terminology by
treating v and w as both vertices and integers.) Thus, by the construction ofG (/2), v mW-b=-

ajsince u > I--T-] and w _< uj, we get that v < u and hence v SL, contradicting our
assumption.

We now prove the other direction. Let SL be a closed subset in G(Z2). The solution
vector L (Ul u,,) corresponding to SL is defined by taking ui to be the largest integer
belonging to SL in Vi. Since s SL, then every xi-chain in the graph G(Z2) has at least one
representative in the closed subset SL. Suppose L is infeasible, i.e., there exists an inequality
axj bxi <_ C such that auj bui > c. By the construction of G(), there is an arc from the

aujvertex in Vi corresponding to I---T-] to the vertex in Vj. corresponding to uj. Since SL is a
[alj--c attj--cclosed subset, the vertex corresponding to b must belong to SL, and hence, ui > [--],

which contradicts the invalidity of the inequality.
REMARK 3.1. Notice that G(.) has a succinct description and can be encoded in poly-

nomial space. This implies that the complete set of solutions of a monotone system can be
completely encoded in polynomial space.

3.2.2. Minimizing with respect to a modular function. In this section we discuss how
to compute a lattice element minimizing an objective function Yi=l tOiXi" AS mentioned
earlier, this objective function also defines a modular function on the lattice. We first show how
to assign costs to the vertices of G (/2) such that a closed subset of minimum cost corresponds
to a lattice element of minimum cost. Then we briefly review Picard’s algorithm [16] for
finding a closed subset of minimum cost in a directed graph.

The cost of every vertex in G(Z;) is determined as follows. Let the smallest value in Vi
be bi. The cost of the vertex corresponding to bi is wi bi, and the cost of the other vertices
in Vi is wi. It is not hard to see that finding the optimal solution with respect to an objective
function is equivalent to finding the closed subset of minimum cost in G(I2), where the cost
of a closed set is defined to be the sum of the costs of its members. The problem of computing
the minimum cost closed set can be reduced to computing the minimum cut in the following
graph (of pseudo-polynomial size), denoted by G, which is derived from G(12). (Computing
the minimum cut in G can be done by finding the maximum flow from the source to the sink.)

Connect all positive cost vertices to a source and all negative cost vertices to a sink.
The capacity assigned to edges adjacent to the source or sink is equal to the absolute
value of the cost of the vertices to which they are adjacent.
All other edges in G() have infinite capacity in G.

By our construction, the minimum cut must either contain edges adjacent to the source or
to the sink. (Other edges have infinite capacity.) The sink-set of a cut is defined to be the set
of vertices that can be reached from the source only via the cut. Picard 16] proved that the
sink-set defined by the minimum cut in G corresponds to a closed subset of minimum cost in
G(/2). To see that, let N be the sum of the capacities of the edges adjacent to the source in G.
It is not hard to see that the cost of the vertices in the sink-set of any finite cut is equal to -N
plus the capacity of the cut. Hence, a minimum cut defines a closed subset of minimum cost.

Since a minimum cut can be identified in a graph G (V, E) in O(IEIIVI log IVI), e.g.,
[8], and in our graph IVI o(;= IV/I) and IEI < O(m 7=1 IV/I), we have the following
theorem.

1190 DORIT S. HOCHBAUM AND JOSEPH NAOR

THEOREM 3.7. The integer optimal solution of a monotone system of inequalities with
respect to an arbitrary linear objectivefunction can be computed in pseudo-polynomial time,
in O(m(7= IVl)2 log(,n.= IVl))time.

3.2.3. The generic construction. In order to motivate the construction of G (/2), we now
present without proof how it can be obtained from the generic partial order I (E).

Let E[xi a] denote the set of all feasible solution vectors for which xi a. Obviously,
E[xi a] induces a sublattice of/2. We call a lattice element irreducible if for some variable

xi and integer a, it is the bottom element of the sublattice ,[xi a]. The partial order
(I (), -<) is defined as follows" the vertex set is the set of irreducible elements of the lattice
/2; for elements a, b 6 I (Z2), there is an edge from a to b, if a

_
b in/2. The following

theorem is proved in [6, p. 72, Thm. 9] and [7, Thm. 2.2.1].
THEOREM 3.8. There is a one-to-one correspondence between the nonempty closed subsets

of I () and the elements of . Moreover, if closed subsets S and S’ of I () correspond to

vectors L and L’, respectively, then L’ dominates L ifand only if S c_ S’.
However, the partial order I () has a "complicated" structure which we now show how

to simplify and make more regular. (This generalizes the construction in [10].)
The elements L and L2 are called consecutive elements in the lattice E if L2 covers

L1, i.e., there is no element M such that L < M < L2. Suppose elements L and L2 are
consecutive and L1 < L2. The minimal difference between L and L2 is defined to be the "set
of changes" between L and L2. More formally, by a single change we mean the difference
between the value of a variable in L and L2. We denote by 7) the set of all minimal differences
in 79

A maximal chain in a lattice is a chain of consecutive elements that starts at B and ends at
T. An interesting property of distributive lattices is that each maximal chain contains all the
minimal differences. The minimal differences appear on each maximal chain in some order
and each minimal difference appears exactly once.

We can now define the partial order (T (), __%). Let D, D2 7); then D < D2 if and
only if D1 precedes D2 on every maximal chain in 7. We are now ready for the next theorem,
whose proof follows from [7, Thm. 2.4.4] and which relates the partial orders I (Z) and T (/2).

THEOREM 3.9. There is a one-to-one correspondence between the closed subsets of I
and T (E.).

In fact, the partial order T() is very similar to G(). Let ’i denote the set of integer
feasible values of variable xi. Notice that the elements of 9 do not necessarily form a
consecutive interval, in contrast to the fractional case, where all values k such thatxi" < k <

xi
ma" are feasible. Notice that T (E) is the structure we obtain if we follow the definition of

G() except that the set Vi is replaced by ’i. For example, if i 1, 5, 6}, then there is an
arc from the vertex corresponding to "1" to the vertex corresponding to "5", and an arc from
the vertex corresponding to "5" to the vertex corresponding to "6."

The difficulty in constructing the partial order T() is that we need to generate the elements
of the sets V one by one, since they are not necessarily sets of consecutive integers. This
can be done in pseudo-polynomial time; however, T (/2) does not have a succinct description
which motivates the construction of G(E).

4. Identifying fat polytopes. This section presents an application ofthe Fourier-Motzkin
algorithm for identifyingfat polytopes.

Even though it is NP-hard to decide whether a set of inequalities has an integer feasible
solution, one can use a fast preprocessing stage to compute an integer feasible solution in
certain cases. This preprocessing stage runs in strongly polynomial time for the case of linear
programs with two variables per inequality. It checks whether the polytope isfat, i.e., whether

LINEAR PROGRAMMING WITH TWO VARIABLES PER INEQUALITY 191

it contains a sphere circumscribing a unit hypercube. Since a unit hypercube must contain at
least one integer lattice point, an integer feasible point is found by rounding the coordinates
of the center of the sphere to the nearest integer. This procedure is a heuristic for finding a
feasible integer point, since there may exist a feasible integer point in the polytope, yet the
polytope does not contain a large enough sphere. Lenstra [12] uses a similar procedure that
works in polynomial time and may identify a feasible integer point; however, in his procedure
the running time depends on the ellipsoid method and is therefore not strongly polynomial.

The idea of the procedure is to shift all constraints by a distance of r. Any feasible point
in the resulting set of inequalities is at a distance of r from all the faces of the polytope, and
hence a sphere of radius r around any such feasible point is contained in the polytope. In order
to obtain a sphere large enough to contain a unit hypercube, we need to set r c/2.

Shifting a constraint by a distance r is done as follows. Given an inequality ’-i--1 aixi < ,
the shifted inequality is 7= aixi < ’, where

c c ai.

i=l a i=1

In the case of two variables per inequality, the sum includes at most two terms. The new set
of inequalities, each with a constant c substituted by i, is also a set of inequalities with two
variables per inequality, and hence is solvable in the running time reported in 2. Consequently,
we can test whether a polytope is fat and find an integer feasible point in O (mn2 log m) time.

Although the running time is polynomial, the procedure involves the manipulation of
square roots, which may be difficult in practice. Since this algorithm only finds a feasible
integer point in a special case, it is satisfactory for this purpose to truncate g to a small number
of accuracy bits, where the small number depends on the machine word length or on other
implementation considerations.

An interesting related problem is to find the largest sphere contained in a polytope. For this
we need to maximize the value of r such that the system still has a feasible solution. Although
such a problem has three variables per inequality, it is still solvable in strongly polynomial
time. This follows from the results of [3] and [13], where it is shown that a problem can be
solved in strongly polynomial time if, by deleting a constant number of columns (in this case
the constant is equal to one), it can be converted to a problem which is solvable in strongly
polynomial time. Since treating r as a variable adds only one more variable to the problem,
the problem of finding a largest sphere in the polytope defined by a set of inequalities with
two variables per inequality is solvable in strongly polynomial time.

Adnowledgments. We thank the two anonymous referees for clarifying the presentation
ofthe paper. We thank Arik Tamir for pointing out that the running time ofthe integer feasibility
algorithm is pseudo-polynomial only in the case where the variables are bounded. We would
also like to thank Edith Cohen for helpful remarks. Many thanks to Yossi Friedman for his
help in making the figures.

REFERENCES

B. ASPVALL ArqD Y. SHILOACH, Polynomial time algorithm for solving systems of linear inequalities with two
variables per inequality, SIAM J. Comput., 9 (1980), pp. 827-845.

[2] E. COHErq, Combinatorial Algorithms For Optimization Problems, Ph.D. thesis, Stanford Technical Report,
STAN-CS-91-1366, June 1991.

[3] E. COHEN AND N. MEGIDDO, Strongly polynomial time and NC algorithns for detecting cycles in periodic
graphs, J. Assoc. Comput. Mach., 40 (1993), pp. 791-830.

1192 DORIT S. HOCHBAUM AND JOSEPH NAOR

[4] E. COHEN AND N. MEGIDDO, hnproved algorithms for linear inequalities with two variables per inequali.
Proceedings of the Twenty Third Symposium on Theory of Computing, New Orleans, 1991, pp. 145-
155. SIAM J. Comput., this issue, pp. 1313-1347.

[5] H. EDELSBRUNNER, G. ROTE. AND E. WELZL, Testing the necklace condition for shortest tours and optimal

factors in the plane, Theoret. Comput. Sci., 66 (1989), pp. 157-180.
[6] G. GRATZER, Lattice Theory: First Concepts and Distributive Lattices, W. H. Freeman and Company, San

Francisco, 1971.
[7] D. GUSFIELD AND R. W. IRVING, The Stable Marriage Problem, MIT Press, Cambridge, MA, 1989.
[8] A.V. GOLDBERG AND R. E. TARJAN, A new approach to the maximumflow problem, J. Assoc. Comput. Mach.,

35 (1988), pp. 921-940.
[9] M. Ira, Structural theoryfor the combinatorial systems characterized by submodularfunctions, in Progress in

Combinatorial Optimization, Academic Press, New York, 1984, pp. 197-219.
10] S. KULLER, J. NAOR, AND P. N. KLEIN, The lattice structure offlow in planar graphs, SIAM J. Disc. Math., 6

(1993), pp. 477-490.
[11] J. C. LAGARIAS, The computational complexity of simultaneous diophantine approximation problems, SIAM

J. Comput., 14 (1985), pp. 196-209.
[12] H.W. LENSTRA JR., Integer programming with afixed number of variables, Math. of Oper. Res., 8 (1983), pp.

538-548.
[13] C. HAIBT-NORTON, S. PLOTKIN, AND E. TARDOS, Using separation algorithns in fixed ditnension, Proceedings

of the First Symposium On Discrete Algorithms, San Francisco, 1990, pp. 377-387.
14] N. MEGIDDO, Towards a genuinelypolynomial algorithmfor linearprogramming, SIAM J. Comput., 12 (1983),

pp. 347-353.
15] C.G. NELSON, An nlg algorithmfor the two-variable-per-constraint linearprogramming satisfiability prob-

lem, Technical Report AIM-319, Stanford University, 1978.
[16] J. C. PCARD, Maximal closure ofa graph and applications to combinatorial problems, Management Sci., 22

(1976), pp. 1268-1272.
17] A. SCHRIJVER, Theory ofLinear and btteger Programming, John Wiley, New York, 1986.

[18] R. SHOSTAK, Deciding linear inequalities by computing loop residues, J. Assoc. Comput. Mach., 28 (1981),
pp. 769-779.

[19] D. TOPKS, Minimizing a sltbmodularfunction on a lattice, Oper. Res., 26 (1978), pp. 305-321.
[20] A. F. VEINOTT, Representation of general and polyhedral subsemilattices and sublattices ofproduct spaces,

Linear Algebra Appl., 114/115 (1989), pp. 681-704.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1193-1215, December 1994

() 1994 Society for Industrial and Applied Mathematics
005

COMPUTING THE ORDER OF A LOCALLY TESTABLE AUTOMATON*
SAM M. KIM AND ROBERT McNAUGHTON

Abstract. A locally testable language is a language with the property that, for some positive integer j, whether or
not a string x is in the language depends on (1) the prefix and suffix ofx of length j 1, and (2) the set of substrings of
x of length j, without regard to the order in which these substrings occur or the number of times each substring occurs.
For any j for which this is true, it is said that the language is j-testable. For a given locally testable language, the
smallest such number j is called the order of the language. Locally testable languages are regular and therefore these
concepts apply to the finite automata that recognize the languages. The authors show that computing the order of a

given locally testable deterministic automaton is NP-hard and present a polynomial-time -approximation algorithm
for computing it. In addition, an upper bound of 2n + on the order of a locally testable automaton of n states is
obtained, and the co-NP-completeness of the problem of whether, for a given j, a given deterministic automaton is

j-testable is proven.

Key words, finite state automaton, regular language, local testability, algorithm, NP-hard

AMS subject classifications. 68Q25, 68Q45, 68Q68

1. Introduction. The concept of local testability is rooted in the study of pattern recog-
nition. It is best understood in terms of a kind of computational procedure used to classify a
two-dimensional image: a window of relatively small size is moved around on the image and
a record is made of the various attributes of the image that are detected by what is observed
through the window. No record is kept of the order in which the attributes are observed and the
positions of the image, where each attribute occurs, or how many times it occurs. We say that
a classification on the possible images is locally testable if a decision about how the image
is classified can be made simply on the basis of the set of attributes that occur. Certainly,
some patterns involve global constraints and therefore cannot be recognized by local testing.
Nevertheless, for many patterns, local testing is sufficient, in [8], local testability is discussed
in terms of diameter-limited perceptrons.

The one-dimensional analogy to this concept has been well studied and is the subject of
this, paper. If we think of such an image as a character string, then the classification becomes
a language. Formally, a locally testable language is defined as follows [2], [9].

DEFINITION 1.1. Let E be a finite alphabet. For an integer k > 0 and x E* such that
Ix[>_ k + 1, define fk(x) as the prefix ("front end") ofx oflength k, tk(x) as the suffix ("tail")
of x of length k, and I+1 (x) as the set of ("intermediate") substrings of x of length k + 1,
i.e., {vlv]k+l and x uvw, for some u, w E*}. For Ixl < k, f(x) tk(x) x and

I+l 0 (the empty set). Let SVk+l(X) denote the triple (f(x), I+l(x), tk(x)), called the
substring vector ofx. For L E*,

(a) L is O-testable ifand only if it is E* or O.
(b) For an integer k > O, L is (k + 1)-testable if and only if for all x, y E*,

SV+l (x) SV+l (y) implies that either both x and y are in L or neither is in L.
(c) An automaton is j-testable if it accepts a j-testable language.
(d) A language or an automaton is locally testable, if it is j-testable for some j > O.

*Received by the editors July 29, 1991; accepted for publicaton (in revised form) July 15, 1993. Partial support
for this research was provided by National Science Foundation grants CDA-8805910 and CCR-9114725.

fComputer Science Department, Rensselear Polytechnic Institute, Troy, New York 12180. Cur-
rent address, Department of Computer Engineering, Kyungpook National University, Taegu, Korea
(kims@bh. kyungpook, ac. kr).

*Computer Science Department, Rensselaer Polytechnic Institute, Troy, New York 18120
(mcnaught@cs. rpi. edu).

1193

1194 SAM M. KIM AND ROBERT McNAUGHTON

It is well known that all locally testable languages are regular. The only automata con-
sidered in this paper are DFAs (deterministic finite automata). Throughout this paper we let
M (Q, E, 6, qst, F) be a DFA, with the understanding that Q is the set of states, E the
input alphabet, 6 the state-transition function, qst E Q the initial state and F _c Q the set of
final (or accepting) states. For any q E Q and w 6 E*, by 6(q, w) we mean the state that
results when input w is applied to M in state q. For notation we follow [4].

Clearly, if a language or an automaton is j-testable, it is j’-testable for any j’ > j. We
say a locally testable language or automaton has testability order j (order, for brevity) if it is
j-testable but not (j 1)-testable. In the early 1970s, these languages and their finite state
automata were extensively investigated [2], [9], 10], [12]. However, there were several open
problems concerning locally testable automata that did not yield to practical solutions. (1) Is
a given deterministic finite automaton locally testable? (2) If it is locally testable, what is the
order? (3) What is the largest order that a locally testable finite automaton with n states can
have?

Brzozowski and Simon [2] introduced the following characterization theorem for locally
testable automata. Much of the theoretical work in this paper is based on part (b) of this
theorem.

THEOREM 1.2 [2]. For any M
(a) M is locally testable ifand only if for all q Q, x E +, y, z 6 E*, and n > Ol,

(i) 6(q, xnyxn) 6(q, xnyxnyx"), and
(ii) 6 (q, x yx zx") (q, x zx yx").

(b) M is (k + 1)-testable, ifand only if for all q Q, y, z E* and x Ek,
(i) xy zx implies 3(q, xy) 6(q, xyy), and
(ii) 6(q, xyxzx) 6(q, xzxyx).

In Fig. 1, we illustrate situations in which part (b) of Theorem 1.2 is not true. The falsity
of condition (i) is illustrated in parts (a) and (b) of that figure; the falsity of condition (ii) is
illustrated in part (c). Thus, 6(p0, xy) qm rm 6(po, xyy) in both (a) and (b), and

3(po xzxyx) in (c).6(po, xyxzx) rm rm
In [2] and [10], another characterization of locally testable automata was introduced in

terms of algebraic properties of the semigroups of locally testable automata. (The semigroup
concept will not be used in this paper.) The papers suggested algorithms for problems (1) and
(2), which simply check whether the semigroup ofthe given automaton satisfies the appropriate
algebraic properties. However, both algorithms take exponential time in the worst case, since
the size of the semigroup of a deterministic automaton can be exponential in the number of
states of the automaton. The papers left open whether it was possible to find better algorithms
for problems (1) and (2). There was an answer to problem (3) in [2], which was a bound equal
to the size of the semigroup of the automaton, which is also exponential in the number of states
in the worst case. The answer we give in the present paper (Theorem 2.8) is polynomial in the
size of automaton. Recently, in [6] we gave a characterization of locally testable deterministic
finite automata and introduced an O(n2) time algorithm for problem (1), the local testability
problem, where n is the number of states of the automaton. Using the abbreviation SCC to
mean a maximal strongly connected component of a directed graph, i.e., a subgraph that is
strongly connected and is not a proper subgraph of another strongly connected subgraph, we
restate this characterization theorem.

THEOREM 1.3 [6]. An automaton M is locally testable if and only if its state transition

graph satisfies thefollowing two properties:
(a) No SCC ofthe state transition graph ofthe automaton has a pair ofdistinct states p

and q such that 6(p, x) p and 6(q, x) q, for any x E +.
(b) For every pair ofSCCs ml and m2 such that ml is an ancestor ofm2, either

COMPUTING THE ORDER 1195

’m

)x

(a) (b) (c)

FIG. 1. Typical transitionsfor part (b) of Theorem 1.2.

(i)notwostates p inml andq inm2 existsuchthat6(p, x) pand6(q, x) q,
for any x E+, or

(ii) for every such state pair p and q, there is a path from 3(p, w) to q if and
only if3(q, w) is in m2, for every w E*.

This paper shows that problem (2), i.e., the problem of computing the order of a locally
testable deterministic automaton, is NP-hard but has a polynomial-time e-approximation al-
gorithm. The algorithm, given a constant e > 0 and a locally testable deterministic au-
tomaton, computes an approximate order/ of the automaton such that if k is the order then
/ > k and (k k)/k < . For any constant e the algorithm runs in polynomial time, the
degree of the polynomial depending on e. In order to deal with NP-hardness we define the k-
testabilityproblem: given a deterministic finite automaton M, and a nonnegative integer k, is M

1196 SAM M. KIM AND ROBERT McNAUGHTON

k-testable? Following some preliminaries and a bound on the order in 2, 3 establishes that
the k-testability problem is co-NP-complete. Sections 4 and 5 lay the theoretical groundwork
for the approximation algorithm, 6 presents the algorithm itself and its analysis, and finally,
7 makes some concluding remarks.

2. Preliminaries and a bound on order. We assume throughout this paper that a prob-
lem instance is given in terms of the state transition graph of a reduced deterministic finite
automaton M. This paper deals with edge-labeled directed graphs exclusively. The label on
each edge is a letter of . By path we mean a sequence of nodes poP p,, such that if
immediately follows Pi in the sequence then there is a directed edge from pi to pi+l in the
graph. The length of the path is one less than the length of the sequence. The string aa2...
is a span of this path if and only if for each i, <_ <_ n, ai appears on the edge from Pi-i to

Pi. For p 6 Q, if 6(p, w) p, for some w 6 Y+, then we say that p has a w loop.
We shall use qe andq to denote, respectively, the accepting sink state and the nonaccepting

sink state (or dead state) ofthe automaton; thus 6(qe, a) q and (q,, a) q, for all a
It is trivial to identify 0-testable deterministic automata, i.e., those accepting * or 0.

Theorem 2.1 below shows a simple characterization of 1-testable deterministic automata,
which can thereby be identified by a simple algorithm whose time complexity is on the order
of the square of the size of the state transition graph.

Recalling Definition 1.1, note that fo(x) to(x) , for all strings x. Consequently,
for all x and xr, SVl(x) SVl(x’) if and only if ll (x) ll (x’). Thus a language L is
1-testable if and only if the following holds" for all x and x’, if the set of letters occurring in
x equals the set of letters occurring in x’ then x 6 L if and only if x’ 6 L. In the proof of the
following theorem, however, we do not use this characterization of 1-testability, but rather the
characterization of part (b) of Theorem 1.2.

THEOREM 2.1. A reduced automaton M is 1-testable if and only if for all q Q and
a,b 52,

(1) 3(q, a) 3(q, aa), and
(2) 3(q, ab) 6(q, ba).
Proof. Assume first that M is 1-testable. We can show that in each case, since M is

reduced, a violation of (1) or (2) would imply that the automaton is not 1-testable.
If 6(q, a) :/: 6(q, aa), then we have 3(q, xax) (: 3(q, xaxax), for x e. By letting

y ax and z xa, we have xy zx and 6(q, xy) : 3(q, xyy). The automaton does not
satisfy Condition (i) of Theorem 1.2(b) for x of length zero, and so it is not 1-testable.

If 6(q, ab) :/: 6(q, ba) then, for x e, we have 3(q, xaxbx) 7A 6(q, xbxax). The
automaton does not satisfy Condition (ii) of Theorem 1.2(b) for x of length zero, and so it is
not 1-testable.

For the proofof sufficiency, suppose that M satisfies conditions (1) and (2) of our theorem.
We note that, using mathematical induction on [y [, it can easily be proved that (2) implies

(a) for all a Z,, y *, q Q, 6(q, ay) 6(q, ya).
From (1) and (a), for any u, v *, we get 3(q, uav) 6(q, uaav) 6(q, uava). Hence,
by taking y as uav, we get

(b) for all y 6 *, q 6 Q, if a is a letter in y then 3(q, y) 6(q, ya).
From (b) and (a), respectively, we get, for all q 6 Q and y, z I*,

(c) 3(q, y) 3(q, yy) and
(d) 6(q, yz) 3(q, zy).

Finally, by part (b) of Theorem 1.2, (c) and (d) above imply that M is
1-testable.

The test that Theorem 2.1 gives us is, as far as we know, the most efficient test to determine
whether a given reduced deterministic finite automaton is 1-testable. We now proceed with the

COMPUTING THE ORDER 1197

theoretical development needed to achieve our announced objectives for this section, which
will not make use of Theorem 2.1.

We need the following well-known theorem (e.g., [3, p. 7]).
THEOREM 2.2. For all strings x, y, z, xy zx ifand only if there are strings u and v and

integer h > 0 such that z uv, y vu and x (uv)hu.
DEFINITION 2.3 (periodic string). Let x a la2.., am be a string over a finite alphabet

E. String x is periodic with period d, < d <_ m 1, ifai ai+d, for all i, < < m d.
Notice that if a string x of length m is periodic with a period d, then x zku, where z

is the prefix of x of length d, k [m/d] and u is the prefix of z of length m modd. The
following lemma directly follows from Definition 2.3.

LEMMA 2.4. If a string x is periodic with period d, then x has the following properties.
Let z and y be, respectively, the prefix and suffix of length d ofx.

(a) x zw wy, for some string w.
(b) x zhu, where h [Ixl/d] and u is the prefix of length Ixl modd ofz.
(c) every substring of length > d ofx is also periodic with the same period d.

In order to establish that the k-testability problem is in co-NP we use the fact that a locally
testable automaton M is k-testable for some k < 2n2 + 1, where n is the number of states of
M. This polynomial bound on k will be established in Theorem 2.8 below.

LEMMA 2.5. Let M be reduced and locally testable. Let qo and ql be a pair ofstates such
that 3(qo, z) qo and 3(ql, z) ql for some z E +. If3(qo, w) q, then, for every > 0
and any prefix u of w, all nodes in the path corresponding to (ql, wiu) are in the same SCC
with ql.

Proof Since q0 has a loop and ql also has a loop, each must be in an SCC. If q0 ql

the matter is trivial, so we assume q0 :/: q. But then, since M is locally testable, q0 and
q must be in distinct SCCs. Let m be the SCC which includes q, and for each j >_ 1, let
(q0, wj)

Since 6(qo, w) ql and there is a path from q to ql, by condition (ii) of Theorem
1.3(b), 6(q, w) q2 is in m. Since 3(q, w) 3(q0, w2) is in m, by the same theorem,
3(ql, w2) q3 is in m. Continuing in this way, we see that all the qj’s, for j > 1, are in m,
as are all nodes in the path corresponding to (ql, wJ) Thus, for any prefix u of w, all nodes
in the path corresponding to (q l, wJ-u) are also in m.

LEMMA 2.6. Let M have n states (not necessarily reduced) and let x E*, Ixl >_ n2.
Then, for any states p and r, there exist x’, w and x" such that x x’wx", Ix’wl < n2,
[wl >_ 1, 6(p, x’w) 6(p, x’), and 6(r, x’w) 3(r, x’) (viz., 6(p, x’) and 6(r, x’) both have
a loop with the same span w).

Proof Let Ix[k, p p0 and r r0. For 0 <_ <_ k, let cri (6(p0, ti), 3(ro, ti))
(Pi, ri), where ti is the prefix of x of length i. Since k > n2, by the pigeonhole principle there
exist l, i2, 0 _< < i2 _< n 2 _< k, such that O’i O’i2 viz., Pi Pi: and ri ri. Set
x’, w and x" so that Ix’l il, Iwl i2 i and x’wx" x. Then the required equations are
satisfied.

LEMMA 2.7. Let m be an SCC ofa locally testable automaton, and let h be the number

ofstates in m. For u, v, x *, Ixl > h2, and a pair of states s and both in m, which are

not necessarily distinct, if 6(s, ux) and 6(t, vx) are both in m, then 6(s, ux) 6(t, vx).
Proof Let M be the subautomaton of the given automaton whose state transition graph is

m. Let p 3(s, u) and r 3(t, v). Since Ixl > h2, by Lemma 2.6 there exist x’, w, and x"
such that x x’wx", Ix’wl <_ h 2, 6(p, x’) 6(p, x’w), and 3(r, x’) 3(r, x’w). Thus, both
(p, x’) and (r, x’) have a loop with span w. Since m is an SCC of a locally testable deter-

ministic automaton, by condition (i) of Theorem 1.3(b), it must be 3 (p, x’) 6(r, x’), which
gives (p, x’wx") (r, x’wx"), i.e., (p, x) (r, x). Thus (s, ux) 6(t, vx).

1198 SAM M. KIM AND ROBERT McNAUGHTON

THEOREM 2.8. If M is a reduced locally testable finite automaton with n states, then
M is (2n2 + 1)-testable. In other words, the upper bound on the order ofa locally testable
automaton with n states is 2n2 + 1.

Proof For the proof by contradiction, suppose that M is not (k + 1)-testable for some
k > 2n2. Then, by part (b)of Theorem 1.2, there exist q e Q, y, z e E* and x 6 Ek, such
that either xy zx and 6(q, xy) 6(q, xyy), or 3(q, xyxzx) :/: 6(q, xzxyx).

Case I. xy zx and 3(q, xy) :/: 3(q, xyy). By Theorem 2.2, there exist u, v 6 E* such
that y vu, z uv and x (uv)hu, for some h > 0. Let a lyl Izl. Note that a > 0;
consequently, 2n2 < Ixy] k + a < Ixyyl k + 2a.

Let q0 q and, for each i, < < k + 2a, let qi 6(qo, ti), where ti is the prefix ofxyy
of length i. Note that xyy zxy zzx, 3(qo, z) qa, 3(qo, x) qk, and t3(qa, X) qk+a.

Applying Lemma 2.6 with x, q0, and q,, we find x’, or, and x" such that x x’cx", Ix’otl < n2,
Io1 >_ 1, 3(q0, x’) 6(q0, x’a), and (qa, x’) (qa, x’ot). Letting il Ix’l, we have
6(qi, or) qi and (qa+i, or) qa+i. We illustrate this in Fig. 2(a). Note the following,
which we shall use later.

(a) x"y z’x", for some z’ (i.e., x" is a suffix of x"y), since xy x’ex"y zx’ax".
(b) Ix"l >_ n 2, since Ixl >_ 2n2 and Ix’cl <_ n2.
(c) 6(qo, zx’ot) 6(qo, zx’) qi,+a.

Since x"yy is a substring of length > [z[of the periodic string x’x"yy, by part (c) of
Lemma 2.4 it is also a periodic with period a. Let/3 be the prefix of x"yy of length a, so that
(qi, fl) qa+it. By part (b) of Lemma 2.4 we have x"yy h’u’, for some h’ >_ 1, where
u’ is a prefix of/3.

We note that Lemma 2.5 can be applied as follows. Take , fl, qi, and qi+a, respectively,
as the z, w, q0, and ql of Lemma 2.5. We have (qi, or) qi, (qi,) qi+a, and
6(qi+a, Or) qi+a, which establishes the application. Let m be the SCC with qi+a. From
Lemma 2.5 we infer that all nodes on the path from qi+a having the string fli u’ (for any value
of > 0) as a span are in the same SCC m. But this set includes all the nodes on the path
corresponding to the transition 3 (qi +a, x"y). Since x"y z’x" from (a) above, all the nodes
in the transition (qi+a, Z’X") are in SCC m.

Recalling that Ix"l >_ n from (b) above, we apply Lemma 2.7 with s qi+a, qi+a,

x") z’x").u e v z’ and x x" and conclude that (qi+a, (qi+a, But from (c)
x") ’x") z’x")above we get 6(qi+a, 3(qo, zx 3(qo, zx) 3(qo xy) and 6(qi+a,

x"y6(qi+a, (qo zx’x"y) 3(qo, zxy) 3(qo, xyy) It follows that 6(q0, xy)
6(qo, xyy), a contradiction.

Case II. 6(P0, xyxzx) 6(Po, xzxyx) (using P0 in place of q). For < < k, let

Pi (po, ti)where ti is the prefix ofx of length i. Thus, pk 6(po, x). Let 6(pk, y)--q0,
Finally, for3(pk, z) qo, 6(qo, x) qk, 3(q, x) q, 3(qk, z) ro, and 6(q, y) ro.

_< < k, let qi, q, ri, r be, respectively, ; (qo, ti) (q ti) (ro, ti) (r ti), where ti
6(po, xzxyx). All this isis the prefix of x of length Thus r 3(Po, xyxzx) and rk

summarized in Fig. 2(b).
.Applying Lemma 2.6 with states Po and ro and string x, we find x’, w, and x" such that

x x’wx", Ix’wl <_ n2, Ito] >_ l, 3(Po, x’) 3(Po, x’w), and 3(ro, x’) 6(ro, x’w). Letting
Ix’l i, we have (Pi,, 11)) Pi, and (ri, to) ri. Let Cp and Cr be the SCCs containing

Pi and ri, respectively.
By condition (ii) of Theorem 1.3(b), since there is a path from 6(pi, x"yxzx’w) ri

x"yxzx’w) is in Cr Since 6(ri, w) ri, and [wk[> n2 we canto ri, the node s 6(ri,
apply Lemma 2.7, taking s and of the lemma to be s and ri, respectively; we infer s ri.
Thus ri has a x"yxzx’w loop. Since (rit, x") r is on this loop, it is in the SCC Cr.

COMPUTING THE ORDER 1199

,:x Y

x "’""’,x x

xotx" y

x

(a) (b)

FIG. 2. ProofofTheorem 2.8. (a) Case I; (b) Case II.

Again, we apply condition (ii) of Theorem 1.3(b) with Pil and ri. Since there is a path
from rk 6(Pi, x"yxzx’wx") (Pi, x"yxzx) to ri, the node s’ (ri, x"yxzx) is in
Cr. Thus, we have rk (ri, x"), s’ (ri, x"yxzx), and (ri, x"yx) all in SCC
Cr. Since x x’wx" and Ix"l >_ n2, by Lemma 2.7, we have rk S’ t. It follows that
(r, yx) 6(r, zx) r. Since 6(ri, x"zxyx) r is in SCC Cr, by condition (ii) of
Theorem 1.3(b), there must be a path from (Pi, X"ZXyX) r’ to rk.

In summary, we have proved that (1) 3(r, yx) rk, (2) 6(r, zx) r, and (3) there is a
for each i) we canpath from rk to r. By symmetry (interchanging y and z, qi and q, ri and r

whichand (3) there is a path from rk to rkprove that (1) 8(r, zx) rk, (2) 8(rk, yx) rk,
is in an SCC Cr,.

It follows that rk and r are in the same SCC, i.e., Cr C’r. Since 6(r, yx) r and
6(r, yx) rk; by Lemma 2.7 we get rk r, a contradiction.

Both Case I and Case II having been proved contradictory; the proof of our theorem is
complete.

Since k-testability implies U-testability for any k’ > k, we have the following corrollary.
COROLLARY 2.9. IfM has n states and is reduced, then M is locally testable ifand only

if it is (2n2 + 1)-testable.
As far as we know 2nz -+- is the best upper bound on the order of a reduced locally

testable DFA. We conjecture that the order is no greater than O (n 1.5) when the alphabet size

1200 SAM M. KIM AND ROBERT McNAUGHTON

is 2, and no less than O(n2) in the general case. Figure 3 shows an idea for constructing a
locally testable automaton whose order approaches a bound that is O(n5). The automaton
has order 128 with 29 states, including the nonaccepting sink state q/ not shown in the
figure. Let x aZ6baZSbaZ3baZba16ba 11, y bax, and z xba. Then xy zx and
3(p, xy) :/= 3(p, xyy) qd. It is not difficult to show that for any state q of the
automaton and x’, y’, z’ 6 {a, b}+ such that x’y’ z’x’ and Ix’l > Ixl, it satisfies 3(q, x’y’)
3(q, x’y’y’) qa and 3(q, x’y’x’z’x’) 3(q, x’z’x’y’x’) qt. Since Ixl 126, by part (b)
of Theorem 1.2 the automaton is not 127-testable, but we are satisfied that there is no similar
situation with any x of length 127. Thus the order is 128. We think that this is the largest order
achievable with 29 states and two input symbols. (In [6] we discussed this example, stating
erroneously that the automaton had 28 states and had order 127.)

b

FIG. 3. A DFA whose order is 128 with 29 states.

3. Proof of co-NP-completeness. With the groundwork established in 2, this section
shows that the problem of computing the order of a locally testable deterministic automaton
is NP-hard by proving that the k-testability problem is co-NP-complete. Before we show the
main result, we need some working lemmas.

LEMMA 3.1. IfM has n states and y is a string, such that 3(p, y) ql and3(p2, y) q2,

then there is a Yl such that lYl[< n2 1, 3(pl, Yl) ql, and 3(p2, yl) q2.

Proof We prove the lemma by proving instead that if y satisfies the hypothesis but does
not satisfy lYl < n2 1, then there is a shorter yl satisfying the hypothesis.

So, suppose lYl > n2. Then, by Lemma 2.6, there exist y’, w, and y" such that y y’wy",
ly’w] < n2, and Iwl >_ 1, and both 3(pl, y’) and (p2, y’) have w loops. It follows that

yty,,) yty,,(p ql and 6(p2, y’y") q2 Then Yl satisfies the hypothesis.
LEMMA 3.2. Let M have n states and let k > 1, q Q, x Zk-, and y, z *. If

xy zx and 3(q, xy) 3(q, xyy), then there exist y’, z’ such that lY’I, Iz’l < k + n2 2,
xy’ z’x, and 3(q, xy’) 3(q, xy’y’).

Proof. Clearly, lYl Izl. Assume that lyl > k + n2 2. Then lY] > Ix] and the equation
zx xy implies the existence of yl such that z xyl and y ylx. Hence, xy xyx
and xyy xyxyx. Let 3(q, x) ql, 3(q, y) q2, (q2, x) q3, (q3, Yl) q4, and
6 (q4, x) q5 - q3.

n2Applying Lemma 3.1 with states ql and q3, and string yl, we find y’, lYll < 1,
yx and xy’ we getsuch that 3(q, y) q2 and 6(q3, y) q4. Putting y’ z’

lY’[[z’[< k + n2 2, z’x xy’, and 3(q, xy’) q3 q5 3(q, xy’y’).
LEMMA 3.3. Let M have n states, q 6 Q, andx, y, z *. lf3(q, xyxzx) =/= 3(q, xzxyx)

then, for some y’, z’ where [Y’I, [z’[< n2 1, 6(q, xy’xz’x) =/= 3(q, xz’xy’x).
We omit the proof, which makes straightforward use of Lemma 3.1.

COMPUTING THE ORDER 1201

THEOREM 3.4. The k-testability problem is in co-NP.
Proof For given deterministic automaton M and nonnegative integer k, the nondeter-

ministic algorithm for the co-problem of the k-testability problem is shown in Fig. 4. This
polynomial time procedure will terminate negative without reaching step 3 or will terminate
negative for some allowable choice in step 3 if and only if M is not k-testable. We leave
the proof to the reader, noting only that Theorem 1.2(b), Theorem 2.8, and Lemmas 3.2 and
3.3 are involved; in particular, the two lemmas justify restricting the choice of n and n2 to

integers less than k

Procedure CO-NP (M, k);
(//n is the number of states of M//)

begin
1. ifk=0then

begin
if M is 0-testable

then output "M is k-testable" and terminate
else output "M is not k-testable" and terminate

end;

2. Nondeterministically choose x e]k-1, q E Q, nonnegative integers
n, n2 <_ k + n2 2 and strings y E E"1 and z

3. if xy zx and 3(q, xy) 5/: 3(q, xyy)
then output "M is not k-testable"
else if 3(q, xyxzx) 3(q, xzxyx) then output "M is not k-testable"

end.

FIG. 4. The nondeterministic algorithmfor the co-k-testability problem.

Our proof of co-NP-completeness involves reducing SAT (the satisfiability problem of
a propositional formula in conjunctive normal form) to the complement of the k-testability
problem in polynomial time.

Let A C1C2... Cm, rn > 4, be a propositional formula in conjunctive normal form
(CNF) having r > 4 variables Vl, v2 yr. We shall show how to construct a locally
testable deterministic automaton M that is not 5rm-testable if and only if A is satisfiable. The
idea is best understood by an example; Fig. 5 depicts the automaton for A CIC2C3C4,
where

CI Vl v vv v-v 195,

C2 V v 1)- v v4 v -,
C3 -v 1;--,
C4 v--i-v 1)- v v4.

The figure does not show the rejecting sink state qd or the transitions to it.
In general, we construct the automaton M (Q, {a, b}, 3, qst, F) from A as follows. The

automaton has the nonaccepting sink state qd and the accepting sink state qe. For each clause
Ci, the state transition graph has two parallel paths Pi,oPi,1 Pi,r-1 and qi, lqi,2 qi,r, each
having r states. Among these states 6 is defined as follows. For all j, 0 _< j _< r 1, if Ci has
variable vj+ then 3(Pi,j, b) qi,j+l and t(Pi,j, a) Pi,j+I or qd if j r 1. If Ci has l)j+l
then 6(Pi,j, a) qi,j+l and 6(Pi,j, b) Pi,j+ or qa if j r 1. But if Ci has neither Vj+l
nor vj+l then 3(Pi,j, a) 3(Pi,j, b) Pi,j+l or qd if j r 1. For all j, _< j < r 1,
(qi,j, a) (qi,j, b) qi,j+l. We call the resulting graph Gi the clause-graph (CG) for Ci.

1202 SAM M. KIM AND ROBERT McNAUGHTON

b

,. ,b

b /a,b

,b

alObO

alOb

a,b

lO/

{a, b}45

FIG. 5. Constructing a locally testable DFAfrom aformula.

Now, we link all CGs into a single chain by establishing a path with span c a2rb2r

from qi,r to Pi+I,0, < < m, and we link qm,r of Gm to the accepting sink state qe by a
nonbranching path of length 21c1 + r 9r. To say a path P qlq2.., q,, is nonbranching is
to say that for all i, < < n 1, (qi, a) (qi, b) qi+l. (The reason for the string c
will be made clear in the following lemmas.) All transitions not so far defined go to the dead
state qa. Finally, we complete the construction by defining the start state qst to be pl,0 and
reducing the automaton. Notice that in the reduced automaton qe is the only accepting state,
there is a path from the initial state to every other state, and there is a path from every state,
except qa, to qe.

COMPUTING THE ORDER 1203

Let us make some observations about M and the language L that it accepts. Since
every path from Pl,0 to qe has length 5r(m + l) and qe is the only accepting state, we have
L c_ {a, b}5r(m+l){a, b}*. There is only one path from qm,r to qe, and all nodes on this path
are nonbranching; this implies that, whenever Izl Iz’l, 5(qm,r, z) (qm,r, Z’). Finally, we
note that the graph is acyclic except for qe and qd. Clearly, by Theorem 1.3, M is a locally
testable automaton.

Now let tl tr be truth value assignments, respectively, to variables v vr, and
let to -’]r be the string tr2... tyr, where, for each j, tj b if tj is true, and tj a if tj is
false. Observe that there is a path in Gi from node Pi,o tO node qi,r with span to if and only if
the clause Ci is true under this assignment. Therefore, the formula C1C2... Cm is satisfiable
if and only if there exists a string to such that (toa)m/! is in the language of M. In Lemmas 3.5
through 3.8 below, M refers to the automaton that has just been constructed and ot a2rb2r.

LEMMA 3.5. Let w, to3 *, WE C= r, and x tolOfto2o,to3 lf x has period d, then
d>Sr.

Proof Let s IWll and let x[i], <_ <_ Ixl, denote the ith symbol in x. Then we have
the following:

(a) x[i] a for all i, s + _< _< s + 2r, and for all i, s + 5r + _< _< s + 7r.
(b) x[i] b for all i, s + 2r + _< i _< s + 4r, and for all i, s + 7r + _< _< s + 9r.
If x has period d then x[i] x[i + d], for all i, _< _< Ixl d. We prove our lemma

by exhibiting a contradiction for each d, _< d _< 5r 1.
Case 1. <_ d <_ 2r. Thenx[s + 2r] a butx[s + 2r + d] b.
Case 2.2r_<d_<4r-l. Thenx[s+l]=abutx[s+l+d]=b.
Case 3.4r_<d<5r-l. Thenx[s+2r+l]=bbutx[s+2r+l+d]--a. [3

LEMMA 3.6. For x E*, if Ix[> 5rm- then, for all z, y E* and q Q,
(q, xyxzx) (q, xzxyx) c= M.

Proof If Ix[>_ 5rm 1, by the construction of M, ;(q, x) is either qd or a node on the
nonbranching path from qm,r to qe. (Indeed, this would be true even if Ix were as small as
5rrn 4r.) Thus, for all z and z2, Izl Iz21 implies 3(q, XZl) 3(q, xz2), which gives us
the lemma.]

The folldwing lemma is immediate from Theorem 1.2(b) and Lemma 3.6.
LEMMA 3.7. IfM is not 5rm-testable, then there are q, x, y, z such that Ix] 5rm 1,

xy zx, and 6(q, xy) :/: (q, xyy).
LEMMA 3.8. The automaton M is not 5rm-testable ifand only iftheformula C1 Cm is

satisfiable.
Proof. Assume M is not 5rm-testable, and let q, x, y, z be the result of applying Lemma

3.7. The construction of M and the fact that xy zx and 3(q, xy) 3(q, xyy) imply that
qd 5 6(q, xy) 5/: qe and Ixy[< 5r(m + 1). Since Ix[5rm 1, we get [Yl < 5r.

By construction of M, since rn > 4 and Ix 5rm 1, xy must cover at least two cr’s,
and therefore must be of the form waw2otw3, where Iw2[r. By Lemma 3.5, xy cannot
have a period < 5r. By Theorem 2.2, xy zx implies that, for some u, v and h > 0, y vu,
z uv and x (uv)hu; hence, xy (uv)h+u. Since [xl :/: 0, we cannot have both [u[0
and h 0. Thus xy is periodic with period Izl. Thus lyl Izl > 5r.

From the above conclusion, i.e., lYl < 5r, we get lYl 5r, and hence

Ixyl 5r(m + 1)- 1.

By the construction of M, the start state qst is the only state from which there is a path of
length 5r(m + 1) to a state other than qe or qa. Since qa : 3(q, xy) qe, we get q qst.

1204 SAM M. KIM AND ROBERT McNAUGHTON

Since xy is a periodic span of a path of length 5r(m + 1) with period 5r that starts
from qst, it must be that xy (tooe)mtoaZrb2r-1 for some w 6 Er, where oe aZrb2r. Thus
w represents a set of truth values satisfying each of the clauses C, C2 Cm and hence the
formula is satisfiable.

It remains to prove that if the formula is satisfiable then M is not 5rm-testable. But if it is
satisfiable then there is a to 6 E that represents a satisfying set of truth values for every clause,
implying that 6(qst, (woe)m+) qe. Putting x (tooe)m-ltoaZrb2r-1, y btoa2rb2r-1, and
z woe, we get zx xy and (qst, xy) 7& qe (qst, xyy), showing that M is not 5rm-
testable.

THEOREM 3.9. The k-testability problem is co-NP-complete.
Proof Given a conjunctive normal formula with at least four clauses and at least four

variables, we have shown how to construct an automaton M and an integer k such that M is not
k-testable if and only if the formula is satisfiable. We leave it to the reader to verify that this
construction can be completed in polynomial time. Thus SAT is polynomial-time reducible
to the complement of the k-testability problem. From this and Theorem 3.4, the k-testability
problem is co-NP-complete.

COROLLARY 3.10. The problem ofcomputing the order ofa locally testable automaton is
NP-hard.

4. Toward an approximation algorithm. Having shown that the problem of computing
the order of a locally testable DFA is NP-hard, we seek to develop a polynomial-time algorithm
for computing an approximate order. When we know a language L is locally testable, to make
use of this fact we need to find a k such that L is k-testable, and we would like k to be as small
as we can get it. The order kor of L is the ideal value of k, since it is the smallest k such that L
is k-testable. Since (probably) no tractable algorithm exists to find kor, we must settle for some
k that is larger and reasonably close. In 6 we shall present an -approximation algorithm that
will serve this purpose: given and a locally testable automaton, it finds a value of k > kor
such that

k kor
koF

(See [5] for other polynomial-time -approximation algorithms for NP-hard problems.) In
this section and the next, we shall lay the theoretical foundation and a computational tool for
our algorithm.

Let us reflect on part (b) of the Brzozowski-Simon theorem (Theorem 1.2). Note that if
conditions (i) and (ii) are satisfied for all x Ek then they are satisfied for any x of longer
length. (In other words, if M is (k + 1)-testable then it is (k +/)-testable for any > 1.)
Likewise if either (i) or (ii) fails for any x 6 Ek-1 then it fails for some x of any shorter length.
(If M is not k-testable then it is not (k -/)-testable for any > 0.)

Thus a correct but inefficient algorithm to find the order of a given M, already known to
be locally testable, is as follows: find the smallest k such that, for all x 6 E, conditions (i)
and (ii) are satisfied for all q 6 Q, and y, z 6 E*, where lYl, Izl _< n2 1, n being the number
of states of M. The order is then k + 1. The limits on y and z are justified by Lemma 3.1. We
know by Theorem 2.8 that we shall not have to search beyond k 2n2 1.

This algorithm takes exponential time, and our NP-hardness result inhibits any attempt to

improve on it. However, we note that there is a polynomial-time algorithm to find the smallest
k satisfying condition (ii). Since this algorithm is a part of our approximation algorithm, we
shall present it (implicitly) in this section, deferring condition (i) to the next section.

DEFINITION 4.1 (n-tuple-graph, etc.). For n > 1, the n-tuple-graph of M is the edge-
labeled directed graph Gn G(V, E), where V Qn and E is the set of labeled edges

COMPUTING THE ORDER 1205

defined as follows. There is an edge from (pl, p2 Pn) to (ql, q2 qn) labeled by
a E if6(pi,a) qi, forall i, < < n. Whereot is a set ofnodes of Gn, we obtain an

abridgment G of G,, by deleting all the nodes of or and deleting all edges incident on nodes

ofot. Specifically, we define Hn G,, where ot is the set ofall nodes (p P,,-1, P,,) such
that P,,-1 P,," In Gn, where t is the set of all nodes (p pn) such that, for some
i, j, 1 <_ < j < n, Pi Pj; H; (Hn), where ?, is the set ofall nodes of Hn that have a

loop" and I (I,,) , where rl is the set ofall nodes of In that have a loop.
Note that a node (p p,,) of Gn is in H,, if and only if Pn-1 - Pn, and is in In if and

only if pi pj for all and j such that - j. Note also that H and I are acyclic directed
graphs (hence the designation "ac"). We shall use the graphs H,,, In, H,c, and l;a, for various
values of n in our algorithm. Obviously, H1 11 G, which is the state transition graph of
M itself; also H2 I2. Figure 6 is an example of M, as given by its state transition graph, and
the corresponding H2 12. Similarly, Fig. 7 is another M and its 13 (which in this example
happens to be the same as l"C), showing only one sixth of the graph 13" the other five portions
of 13 are each isomorphic to the part shown, with permuted node labeling (e.g., the permuted
nodes corresponding to the visible node pqr are prq, qpr, qrp, rpq, and rqp). An example
of a node in the H3 of this M but not in 13 is dds, to which there is a transition from the node
dsr which is in 13.

ab
a

(a) m (b) H2- 12

FIG. 6. Constructing H2 and 12 for an automaton M.

DEFINITION 4.2 (QCP). Given M, let P NoN1 Nm, rn > O, be a path on H, where

Ni (Pi qi q’ QCP (quintuplei’ ri, r[), Pi, qi, q’i’ ri, r Q, <_ < rn We say P is a

coherent-path) ifG2 has a pathfrom (Pro, qm) to (q, ro) and a pathfrom (Pro, q,,,) to (qo, r).
(See Fig. (c)for a typical structure of transitions that give a QCP with span x.)

For a graph G, we identify GI (the size of G) with the number of vertices plus the number
of edges. For a finite automaton M, we identify [M[with (j + 1) where Q[and j [E I.
Thus the size of M is the size of the state transition graph G1 of M, since is the number of
nodes and ij the number of edges of G1.

LEMMA 4.3. The graphs Gn, Hn, and L, can be constructed from M and from Gn-,
Hn_, and In_, respectively, in time O(IMln).

Proof Assume [QI and IE[j. Since G has nodes and each node has j
outgoing edges, Gn can be constructed in time O(jin), which is also a bound on the time for

1206 SAM M. KIM AND ROBERT McNAUGHTON

a(aaa
a

(a) M (b) Part of/3

FIG. 7. Constructing 13 for an automaton M.

computing Hn and In. Since IMI is of size i(j + 1), ji n is O(IMIn). The same argument
holds for the construction of Hn from H,,_ and the construction of/n from

LEMMA 4.4. IfM is locally a testable automaton and k is the largest integer such that H5
has a QCP of length k 1 then k is the smallest integer satisfying condition (ii) of Theorem
1.2(b), i.e.,for all x Ek q Q, y, z E*, 3(q, xyxzx)= 6(q, xzxyx).

Proof Assume k is the largest integer such that H5 has a QCP of length k 1; let this
QCP be P NoN1 Nk_I, Ni (Pi, qi, q;, ri, r;). Let x 6 E’-1 be a span of this path.
By Definition 4.2 G2 has paths from (p_l, q-l) to (q0, r) and from (P-1, q-l) to (q), r0).
Let y be a span on the former path and z be a span on the latter.

Since Nk_ is a node of Hs, by Definition 4.1 we have rk_ - r_l From the definition
(Po, xzxyx). Thusof QCP (see Fig. l(c)) we conclude that 3(p0, xyxzx) r-i r_

k does not satisfy condition (ii) of Theorem 1.2(b).
It remains to prove that k satisfies condition (ii). To this end, let x 6 Ek, y, z 6 E*, and

P0 6 Q. Let p 3(P0, x), q0 8(P, y), q0 8(Pk, z), q (q, x), qk (q0, x),
=6(r,x).Foreachi <i <k, letxibe8(q’, y), rk 3(ro, x) and r,ro 3 (qk, Z), ro
(r, xi) as in Fig. (c).the prefix of x of length i, ri (ro, xi), and r

implies ri for eachTo justify our claim we note that r :/: r ri,We claim r, r,.
i. Thus rk rk’ implies that the sequence (P0, q0, q), r0, r), (p,, qk, q, rk, rk) is a path
in H5 and is, therefore, a QCP of length k, whose connecting paths are as indicated in the
paragraph above. This contradicts the hypothesis of our lemma.

and we are able to infer that 3(P0, xyxzx) 3(po, xzxyx). The node p0Thus r rk
and x 6 E’, y, z E* being arbitrary, we conclude that k satisfies condition (ii) of Theorem
1.2(b).

LEMMA 4.5. No QCP of a locally testable DFA contains a node that has a loop in H.
Thus all QCPs are in Hc.

Proof Suppose node Ni, < <_ m, of a QCP No... Ni... Nm has a loop, i.e., there is
a path N... Nj, j >_ 1, such that N Nj Ni. Clearly, for any positive integer c, the path
No... (N... Nj)... Nm, is also a QCP of length m + (c 1)jo

COMPUTING THE ORDER 1207

Since there are QCPs of arbitrary length, from Lemma 4.4 and Theorem 1.2(b), we infer
that, for all k, the automaton is not (k -I- 1)-testable, and hence that it is not locally testable,
contrary to the hypothesis in our lemma.

DEFINITION 4.6. Where G is a directed graph, EP (G) is the table telling, for each ordered
pair ofnodes (v, v’) of G, whether or not there exists a path in G from v to v’. If in addition
G is acyclic then we define LP(G) as the table telling, for each (v, v’), whether there exists
a pathfrom v to v’ and, if so, the length ofthe longest such path.

LEMMA 4.7. Given a directed graph G, EP(G) can be constructed in time O(IGI2).
Proof For a fixed vertex v of G, the entries for (v, v’) where v’ ranges over all vertices of

G can all be entered in time o(Ial) by a depth-first search for all the descendants of v. The
algorithm for our lemma simply repeats this step for each vertex of G.

LEMMA 4.8. Given a directed graph G, the graph Gac can be constructed in time O(IGI).
Proof Let ot be the set of nodes v of G that have no loops. The procedure to construct

Gac begins by constructing the set c. It does this by first executing an algorithm due to Tarjan
that lists all SCCs of G in time O(IGI) [1], [11]. Now each node v is in c if and only if {v}
is a singleton SCC and, for all a 6 E, 3(v, a) - v. Thus c is constructed in time o(Ial).
Finally G Gv- is constructed from G and ot in time O(IGI).

LEMMA 4.9. If G is an acyclic directed graph then the table L P(G) can be constructed
in time O(IGI2) from G.

Proof The first step is to construct for each node v of G a list of nodes to which there
is an edge from v, and a list of nodes from which there is an edge to v (if such lists are not

already available). The time for this step is O(IGI).
Letm be the number ofedges ofG and n the number ofnodes. The second step is to give the

nodes of G the names v vn in such a way that (vi, vj) E implies < j. The technique
to accomplish this is well known (e.g., [7, pp. 259-265]); the time is O(m + n) O(G).

The third step is to fill in the entries of our table LP(G) in which v is the origin vector.
The entries for (v, v2), (vl, v3) are computed in order. Assuming that the entries for
(vl, v2) (v, vj) have all been filled in, we consider each of the nodes that are edge-
connected to vj+. We find the maximum path length from v to one of these vertices; the
maximum path length from v to vj+ equals one plus that value. (If there is no path from v
to any of the vertices that are edge-connected to vj+ then, of course, there is no path from vt
to Vj+l. The time to compute the table entries for (v, v2), (v, v3) (v, v,,) is O(m + n),
since each edge is involved only once during this entire step.

This step is repeated for all entries whose origin node is v2, with the same time analysis,
then for v3, v4, etc. Thus the time for the entire algorithm (n + 2 steps) is O ((n + 2)(m + n)),
and is therefore O(1612).

LEMMA 4.10. There is an algorithm that, given G2 and Hs, computes in time O([M[)
the table telling, for all nodes N and N’ of Hs, the length ofthe longest QCP (ifany) from N
toNt.

Proof. The proof is by Lemmas 4.5, 4.7, 4.8, and 4.9 and Definition 4.2 (QCP).
THEOREM 4.11. There is an algorithm that, given a locally testable DFA M, computes

the smallest k satisfying condition (ii) of Theorem 1.2(b) in time 0 (IMl).
Proof. The graphs G2 and Hc can be constructed in time O(IMI5) by Lemmas 4.3 and

4.8. The table of Lemma 4.10 can be constructed in time O(IMl). By Lemma 4.4, this table
enables us to determine the smallest k satisfying condition (ii).

We have shown, in effect, how to deal with condition (ii) of Theorem 1.2(b) in our
computation of the order of a locally testable automaton. In the next section we focus on
condition (i), which is the bigger obstacle.

1208 SAM M. KIM AND ROBERT McNAUGHTON

5. Accommodating condition (i). Theorems 3.9 and 4.11 imply that, given a locally
testable M, computing the smallest k satisfying condition (i) of Theorem 1.2(b) is NP-hard,
so we must resort to approximation techniques for this subproblem of finding the order.

Our idea for the approximation begins with Theorem 2.2, which permits us to revise
condition (i) of the condition for (k + 1)-testability to an alternative condition on k.

Condition (i’). For all q Q, u,v E* and h >_ O, hluvl +]ul k implies
3(q, (uv)’+lu) 3(q,

Conditions (i) and (i’) are related by the equations x (uv)hu, y vu and z uv,
justified by Theorem 2.2. Theorem 1.2 is valid when condition (i) is replaced by condition (i’).

Ideally, we should search for the largest k not satisfying condition (i’), considering each
triple (q, u, v) to find the largest h such that 3(q, (uv)+ u) :/: 3(q, (b/v)h+Zb/). Lemma 5.2
below will assure us that h exists, and also that it is the unique value of h for which the
following relations hold:

3(q, (uv)lT+u) :/: 3(q, (tll))h+2u) 3(q, (uv)+3u).
Having found h, it is the length ofx (uv)’u that is significant. In fact, we should search

for the length of the longest such x, over all triples (q, u, v). Our result in 3 indicates that
this search cannot be done in polynomial time. However, if we choose a fixed positive h and
restrict our investigation of u’s, v’s, and h’s to cases where h < h, we do get a polynomial-
time algorithm, with the degree of the polynomial depending on h. It will turn out that by so
doing we can compute the smallest k satisfying condition (i’) approximately. The degree of
approximation will depend only on h and will be valid for all locally testable finite automata
M, however large.

Our algorithm will assume a specification of the desired accuracy of the approximation,
represented in the familiar way by a positive real number . The value of h depends on , but
for the moment we ignore and assume that h is given. It is the purpose of this section to

present this procedure in detail and to justify it. We begin with two rudimentary lemmas and
a corollary.

LEMMA 5.1. For any M, let p Q, u, v Z*, luv[> 1, k > 1, and h > > O. Then,

for any u l, u2, v, v2 52", such that u uu2 and v v v2,

(a) 3(p, (uv)iu) 3(p, (uv)i+ku) implies 3(p, (uv)nu) 3(p, (uv)+ku), and
(b) 3(p, (uv)iuvl) 6(p, (uv)i+uv) implies 6(p, (uv)n+u) 3(p, (uv)h++ku).
Proof. (a) Note that (uv)iu b/l(b/zVb/1) i. We can therefore rewrite the hypothesis in

(a) as 6(p, u(uzvu)i) 6(p, u(uzvu)i+). Where q 3(p, u(u2vu)i), we see that
3(q, (uzvul)) q, i.e., q has a (uzvu) loop of length kluvl. Notice that

U l)
h

bl bl l) bl l) bl
h

bl l) bl bl 2 l) bl
h

bl bl 2 l) bl bl 2 U bl bl 2

Thus, the node q2 6(p, (uv)u) 3(q, (b/2Vb/1)h-ib/2) is also on the loop correspond-
ing to the transition 3(q, (uzvu)) ql. So we have (q2, (vu)!) q2. In other terms,
3(p, (uv)’u(vu)) 6(p, (uv)+u) 3(p, (uv)hu), proving part (a). The proof of part (b)
is similar.

LEMMA 5.2. Given u, v *, and p Q, let h be the smallest nonnegative integer such
that, for some k > 1, 3(p, (uv)nu) 3(p, (uv)’+u). If the smallest such k is greater than
then M is not locally testable.

Proof Let q 6(p, (uv)hu). Then we have

3(p, (uv)u) q 6(p, (uv)’+ku) 6(p, (uv)u(vu)) 3(q, (vu)),

i.e., q has a (vu) loop. If the smallest such k > 1, then q2 3(q, vu) : q. Clearly,
q2 (q2, (vu)k), i.e., q2 has a (vu) loop. There are two distinct states q and q2 in an SCC
that have a (vu) loop. By Theorem 1.3(a) M is not locally testable.

COMPUTING THE ORDER 1209

COROLLARY 5.3. IfM is locally testable, then, for any q e Q, u, v E*, there exists a
nonnegative integer h such that

(a) 3(q, (uv)hu) 3(q, (uv)h+u) for all t > 1, and
(b) for all ?, and ?,’ such that y < h and ?’ :/: F’, 6(q, (uv)u) :/: 3(q, (uv)’u)
Before embarking on the theoretical justification of our procedure, we consider an ex-

ample. Assume 20, x (uv)5u, and 6(q, (uv)Slu) (: 6(q, (uv)SZu). Here h 50,
and we must show that there is an h’ < 20, and strings u’ and v’ such that x’ (u’v’)h’u
fails to satisfy condition (i) and the length of x’ will be almost that of x (uv)5u. We
accomplish this by taking u’v’ (uv)s, for some appropriate s, u’ (uv)iu, for some
< s 1, and v’ l)(uv)s-i-1. Then if s has been well chosen we shall be able to select

h’ < 20 and _< s so that x’ (u’v’)h’u can play the desired r61e. For this example,
we see that if we take s 3, h’ 15, and (so that u’ uvu and v’ vuv), we
get x’ (u’v’)Su (ul))46u. Furthermore, Corollary 5.3 implies that 6(q, (u’v’)6u’)
6(q, (Ul))49U) 6(q, (bltl)t)lVu ’) 6(q, (uv)SZu),since3(q, (uv)51u) :/: 6(q, (b/v)52/g). Thus
6(q, (u’v’)h’+ u’) 3(q, (u’v’)h’+Zu’), showing that k h’lu’v’l + Iv’l does not satisfy condi-
tion (i’), and hence this k (which is Ix’I) does not satisfy condition (i), as required. Of interest
are the comparative lengths of x and x’ as given by the fraction

Ixl- [x’l 4

Ix’l 46

In general, suppose we have M, q, and x (uv)u such that 6(q, (uv)h+lu) =/= 6(q,
(uv)h+2u) but h > . In order to justify our algorithm, we prove the existence of integers
s >_ 2, _< s 1, and h’ _< -, such that, for u’ and v’ determined as above, x’ (u’v’)h’u
also satisfies the desired property and Ix’l is appropriately close to Ixl. We postpone the
consideration of what s must be until after the next lemma, and we assume for the moment
that s is given.

LEMMA 5.4. Where M is locally testable, suppose that 2 < s < h, x (uv)hu, luvl > o,
andS(q, (uv)h+u) 5/: 3(q, (uv)h+Zu),forsomeq Q. Then, ifwetakeh’ L(h+ 1)/sJ
andi (h + 1) mod s, we get

(a) 6(q, (u’v’)h’+lu’) 5/: 3(q, (bltut)h’+2bl t)

and

Ixl h
(b)]- <

h- (s- 1)

where, as above, x’ (bltl)t)h’bl ’, bl (blu)ill, l)’ l)(blU)s-i-1 and hence u’v’ (uv)s.
Intuitively, Lemma 5.4 says that, given x and s, we can find an x’ (u’ v’)h’u ’, related to

x as described in the paragraphs above, where Ixl/Ix’l < h/(h (s 1)). The significance of
this is that, if s had been chosen appropriately, h’ would be no greater than h, and Ix’l would
be a good approximation to Ix I. The lemmas that follow will make this statement precise and
will justify it.

ProofofLemma 5.4. (a) Note that h’ + is the quotient and the remainder when h +
is divided by s. Thus h + s(h’ + 1) + i. We get

6(q, (bltl)t)h’+2bl’) 6(q, (bll))S(h’+2)(blu)iu) 6(q, (blo)S(h’+l)+i+sbl) 6(q, (uv)h+I+su),

and

8(q, (bltut)h’+lbl t) 6(q, (Hu)s(h’+l)+ilt) 6(q, (/go)h-k-l/g).

1210 SAM M. KIM AND ROBERT McNAUGHTON

But, by Corollary 3.5 and 3(q, (/go)h-t-l/g) 3(q, (/gl))h+2/g), it follows that 3(q, (/go)h-i-l/g)
3(q, (uv)h++Su), which gives us part (a) of our lemma.

For part (b) note that

Ix’l h’lu’v’l + lu’l sh’luwl + iluol + lul (sh’ + i)luwl + lul,

and Ixl hluol + lul. For convenience, take ot lul/luwl. Then, from sh’ +i s(h’ + 1)+
s h + s h (s 1), we get

Ixl h +or h +or h

Ix’l sh’ + + ot h (s 1) + ot h (s 1)’

since ot >_ 0 and h > h (s 1) > 0. [3

We now take on the task of chosing a value for s. One consideration is that s should be
as small as possible to make the ratio h/(h (s 1)) of Lemma 5.4 as small as possible.
However, there is a restraint: we must make sure that h’ _< h. So we must take s as the smallest
positive integer such that h’ [(h + 1)/sJ < h. We need a lemma from elementary
number theory.

LEMMA 5.5. Ifa and b are positive integers and a > b, then thd smallest positive integer
c such that [a/cJ < b equals [a/(b + 1)/+ 1.

Proof Consider the set

{xlLa/xJ < b} {xla/x < b + 1} {xlx > a/(b + 1)}.

The smallest integer in this set is La/(b + 1)J + 1. [3

Applying Lemma 5.5 to the discussion immediately preceding, we see that we should
take s L(h + 1)/(h + 2)1 + 1. Lemma 5.5 tells us that this value of s gives us the optimal
approximation. The remaining lemmas, which are proved without reference to Lemma 5.5,
tell us how good the approximation is.

LEMMA 5.6. Suppose it is given that h > - > and x (uv)hu, for a given M. Taking
s [(h + 1)/(h +2)J + 1 andh’, u’, v’, andx’ as inLemma 5.4, we geth’ < h and
Ixl/Ix’l <_ (h / 1)/h.

Proof. First note that 2 < s < h, which shows that Lemma 5.4 is applicable. We are
assured by the informal discussion since Lemma 5.4 that h’ < h. By Lemma 5.4, Ixl/Ix’l <_
h/(h-(s-1)). Sinces- [(h+l)/(h+2)J > 1, ifwetaker (h+l)-(s-1)(h+2)
then we have0 < r < h+landh (s-1)(h+2)+r-1. (Note thats- andrare
quotient and remainder when h + is divided by h + 2.) Thus

h (s 1)(h + 2) + r 1 h + 2 + (r 1)/(s 1) h +
h (s 1) (s 1)(h + 1) + r h + + (r 1)/(s 1) h

since
The significance of Lemma 5.6 is that, having picked h, we can be sure that, for any

locally testable automaton M, however large, and for any u, v 6 E* and h, however large,
the following will hold: for x (uv)hu, there exist u’, v’, and h’ < such that we can use
x’ (u’v’)h’u instead ofx to compute the largest k not satisfying condition (i’), and our result
will be off by a quantity that is a function of h only. This implies that if we compute for any
M the largest k not satisfying condition (i’), ignoring strings of the form
the result will be off by at most a quantify that is a function of h only. Furthermore, the value
of this function can be made as small as we please provided we are willing to pay the penalty
of a sufficiently large h.

COMPUTING THE ORDER 1211

Under the assumption that h is fixed, we consider the problem of finding, for any given
M, the largest k not satisfying the following condition.

Condition (i"). For all q Q, u, v E* and h < h, hluol + lul k implies
3(q, (uv)h+lu) 3(q, (uv)h+2/d).

Note that condition (i") is like condition (i’) except for the upper limit on h. Unlike
condition (i’), condition (i") is not equivalent to condition (i) of Theorem 1.2(b). Although
it cannot be used to find the order of a locally testable automaton, it will be used to find an
approximate order.

DEFINITION 5.7 (n-CP). For n > 2, let P NoN1 Nm, m > O, be a path on In, where
Nj (pl,j, P2,j Pn,j), Pi,j Q forO < j < m, and < < n. We say path P is an
n-CP (n-fold coherent path) ifand only if ln- has a path, called a connecting path, oflength
> Ofrom (Pl,m, P2,m Pn-l,m) to (P2,0, P3,0 Pn,0).

Note that QCPs (Definition 4.2) and 5-CPs are different. Also note that the length m
of an n-CP and the length of the connecting path cannot both be 0, since that would force
pl,o Pl,m P2,0, and No would not be a node of In. The significance of n-CPs will be
demonstrated in Lemmas 5.8 and 5.9.

LEMMA 5.8. Let M be a locally testable automaton. For P,0 Q and h > O, if
3(Pl,o, (uv)h+lu) 3(p,o, (Ul))h+2u) then there is an (h + 3)-CP spanned by u whose
connecting path is spanned by v.

Proof Let m [ul. Take No (P,0, P2,0 Ph+3,0) and Nj (p,j Ph+3,j),
where, for each and j, Pi,j 3(Pi,O, uj), where uj is the prefix of u of length j, and
Pi+l,0 3(Pi,m, v). Also, take L0 (Pl,m Ph+Z,m) (ql,0 qh+2,0) and, for each j
such that < j _< Ivl, Lj (ql,j ql,+z,j), where, for _< _< h + 2, qi,j 3(qi,o, vj),
vj being the prefix of v of length j. Thus Lio (q,lol qh+Z, lvl) (P2,0 Ph+3,0).
We proceed to demonstrate that NoN1 Nm is an (h 4- 3)-CP spanned by u. Actually, it is
quite clear that this is so if No Nm are all nodes of lh+3 and L0 Lio are all nodes of
Ih+2, which we now prove by contradiction.

Accordingly, assume Nj (p,j Ph+3,j) is not a node of lh+3. Then Pi,j Pi+k,j
for some > and k > 1, where 4- k < h 4- 3. Assume, without loss of generality, that k is the
smallest integer satisfying this equation for any and j. Note that Pi,j t(Pl,0, (Ul))i-luj),
for all and j.

Case I. k 1. Then 3(Pl,0, (uv)iuj) 3(P,o, (uv)i+uj). By Lemma 5.1, part (a),
3(Pl,0, (uv)h+l u) 3(Pl,0, (uv)h+2u), which contradicts the hypothesis of our lemma.

Case II. k > 1. Then 6(P,0, (uv)i-uj) Pi,j Pi+k,j (Pl,0, (uv)i-l+kuj), but
Pi,j 5 Pi+l,j (Pi,o, (uv)iuj), which, by Lemma 5.2, implies that M is not locally testable,
again contradicting the hypothesis of our lemma.

It remains to prove that the nodes Lo tlv are in Ih+2. The proof is similar to the
above proof for No Nm, using part (b) of Lemma 5.1 instead of part (a). [3

The following lemma follows directly from the definition of n-CP.
LEMMA 5.9. For h > O, if there is an (h + 3)-CP No... Nm spanned by a string u and

with a connecting span v then 3(p,o, (uv)h+:u) 3(Pl,0, (uv)h+u), where P,0 is the first
coordinate of No.

LEMMA 5.10. lfM is locally testable then (a) all (h 4- 3)-CPs are in la_3, for all h > O,
and (b) the connecting paths ofall (h 4- 3)-CPs are in I_2 for all h > 1.

Proof Let No... Nm be an (h 4- 3)-CP, Ni (Pl,i Ph+3,i), 0 < < m. For (a),
assume that Nj (0 < j < m) is not in aclh+ Then Nj has a loop and we would have arbitrarily
long (h + 3)-CPs from No to Nm (cf. the proof of Lemma 4.5). Thus, by Lemma 5.9, for
arbitrarily long u and for some fixed v, 3(pl,0, (uv)h+2u) :/: 3(Pl,0, (UV)h+U), where P,0
is the first coordinate of No. But this would imply, by Theorems 1.2(b) (i) and 2.2 (cf. our

1212 SAM M. KIM AND ROBERT McNAUGHTON

discussion of condition (i’) above), that, for all k >_ 1, M is not k-testable. Thus M would not
be locally testable. This establishes part (a).

For (b), assume h > and assume that the connecting path from (Pl,m Pl,+2,m) to

(P2,0 P/,+3,0) has a node which has a loop. Where u is the span of the (h + 3)-CP, we see
that the (h + 3)-CP has arbitrarily long connecting string v. For each v, 3(P,o, (uv)h+Zu)
6(pl, 0, (uv)h+u). Since the v’s are arbitrarily long and h > 1, again by Theorems 1.2(b)(i)
and 2.1, M is not locally testable.

Note that part (b) of Lemma 5.10 does not apply to the case h 0, viz., the connect-
ing paths of 3-CP’s need not be in Ic. For in the case h 0 we get (pl.0, (uv)u)
6(p,0, (uv)Zu) from which we take x (uv)u u and say that M is not ([xl + 1)-testable.
If there is a loop on a node in the connecting path then we do get arbitrarily long v’s, but this
does not give us arbitrarily long x’s.

tl. The approximation algorithm and its analysis. Our algorithm begins with a given
M known to be locally testable. The largest k2 not satisfying condition (ii) of Theorem 1.2(b)
is determined without regard to e, as discussed in 4. Then the algorithm computes h from
e (in a manner to be described), constructs I2, and for each j, 3 < j _< h + 3, constructs
the graph Ic and the table L P(I;C), using Lemmas 4.3, 4.8, and 4.9. (In some cases the

algorithm will not need to go as far as j h + 3, as we shall see.)
For each h < h and for each pair of nodes N (p P1+3) and N’ (p’ Ph+3)

of lh+3, we define Ah+3 (N, N’) as follows. If there is no path from N to N’ in acI,+3 or if there is
no path in lh+2 from (pr Ph+2) to (P2 Pl,+3) then Ah+3(N, N’) 0. Otherwise, let
d d (N, N’) be the maximum length of a path in lff_3 from N to N’ and d2 d2(N, N’)
be the maximum length of a path in I’2 from (p’ P,+2) to (p2 Ph+3), and take
Ah+3(N, N’) h(d + d2) -+- dl.

Note that for h 0, d2 has no material affect on Ah+3(N, N’), as we discussed at the end
of the preceding section. Hence in our algorithm we do not compute d2 in the case h 0.
However, the algorithm must still verify that a connecting path in I2 exists.

We take A(h + 3) to be the maximum value of A1+3(N, N’) over all pairs of nodes
(N, N’) of I3. Finally, we take

kl MAX0<h<(A(h + 3)).

The proofs of the following two lemmas are straightforward from the definitions of
Ah+3(N, N’) and (h + 3)-CE

LEMMA 6.1. For any nodes N and N’ of la_3 if A/,+3(N, N’) 0, then there is no

(h + 3)-CPfrom N to N’. But if Ah+3(N, N’) > 0, then there exist an (h + 3)-CP P from N
to N’, and strings u, v E* such that

(a) u is a span of P and, for h > O, v is a span ofa connecting path of P,
(b) [u[dl (N, N’), Ivl dz(N, N’), and, hence,](uv)hu[Ah+3(N, N’), for some

h > O, and
(c) for any (h + 3)-CPfrom N to N’ with a span u’ and a connecting path with a span

v’, it satisfies [(u’ v’)h u’l <_ I(u v)h u I.
LEMMA 6.2. For a given h, the largest k not satisfying condition (i") of 5 is the k

determined above.
We now determine how to compute from e. Lemma 5.6 tells us that, if x (uv)’u

with h > , we can get x’ (u’v’)"u with h’ < and Ixl/Ix’l <_ (- / 1)/, We want

(Ixl Ix’l)/Ix’l to be < e, and hence we want [xl/lx’l to be < + e. We can accomplish this
by taking h so that (h + 1)/h _< + e, or h >_ 1/e. So we take h

The value of k2 that is computed is exact but (except for the circumstances noted below)
the value of k that is computed is only approximately the value needed to compute the order.

COMPUTING THE ORDER 1213

These values could be used to compute an approximation to the order kor of M. But the
approximation, if not exact, is less than kor, since k is generally less than the true value
needed for condition (i) of Theorem 1.2(b). As we explained at the beginning of 4, we prefer
to have the approximate order greater than kor rather than less, so a modification must be made.

Recall that k is the length of the longest x’ (u’v’)h’u ’, for some u’, v’ and h’ < , such
that kl does not satisfy condition (i) of Theorem 1.2(b). Let x (uv)hu be a longest x, with
no limit on h, such that x does not satisfy that condition; let c Ix l. We know that k _< c
and (c kl)/kl <_ e. The next lemma enables us to find an integer k’ such that k’ > c and
(k’ -c)/c <_ .

LEMMA 6.3. Let k and c be as described above and k kl(1 +); then k > c and
(k’ -c)/c <_ .

Proof. Where x and x’ are as described above, Lemma 5.6 tells us that

c Ixl h + F1/l + 1/ +< < -----14-.
k Ix’l h VII] 1/

Hence k’ k (1 +) > c. Also, since k <_ c, it follows that

< 1=1+-1--. VI
c kl k

There are two circumstances in which execution of the algorithm permits it to assert that
the exact order has been computed. The first is the discovery of an h < h + 3 such that there
are no h-CPs, revealed in the result that A (h) 0. From this fact it follows that there are no
h’-CPs for any h’ > h. (From the definition of n-CP, it is easy to see that h’ > h implies that
every h’-CP can be converted into an h-CP.) Thus execution in this circumstance reveals with
certainty that all the n-CPs needed to compute the exact order have been examined.

The second such circumstance is that in which kl, after being multiplied by + , is no
greater than k2. Since k2 has been computed with absolute precision, in this circumstance also
it is known with certainty that the exact order has been computed.

The approximation algorithm is given in schematic form in Fig. 8. The correctness of the
algorithm will follow from our work above once we prove the following lemma.

LEMMA 6.4. The assertions kl >_ C and (kl c)/c < after line 12 of the algorithm are
justified.

Proof.
Case I. < h + 3 at line 12. Then kl c is true upon leaving the loop under the condition

that A (i + 1) 0, as explained above. Our lemma is therefore true in this case.
Case II. h 4- 3 at line 12. Let kl0 and kl, respectively, be the values of kl before and

after line 12 has been executed. Then kll Lkl0(1 + e)J. We know (c klo)/klo <_ - or,
equivalently, c < kl0(1 4- e). From the fact that c is an integer it follows that kll >_ c. Lemma
6.3 tell us that (kll c)/c < . [3

In analyzing this algorithm, we note that it is dominated by the time it takes to construct
the various graphs and their longest-path tables. Put MI m. The time to compute k2 is
O (m 10) by Theorem 4.11 (the k of Theorem 4.11 is one more than k2).

To analyze the computation of k we first note that each of the constructions in the while-
loop of line 10, for a given value of i, is done in time

12 ((mi+1 (m2i+2)O(IGi+l)- 0)2) O

by Lemmas 4.3, 4.8, and 4.9. We can ignore what is outside the loop; thus the time to compute
kl is

1214 SAM M. KIM AND ROBERT McNAUGHTON

h+2

O(m2i+2) O(m2h+6).
i=3

Thus the time for the execution of the algorithm is O (IMIMAX(10’6+2’)), where h [1/].
We see that the algorithm is less costly to operate the larger the value of , but increasing to
values greater than 1/2 is to no avail. Taking 1/2 allows the algorithm to operate in time
O(IM[). In this case 2 and n-tuple graphs are constructed only as far as Gs, which are
precisely those used to compute k2 in the algorithm, and which therefore would be needed
even if were increased.

Procedure ApproxOrder(M,);

begin
(//We first compute k2.//)

1. Construct G1 from M; G2 from GI;
2. Construct EP (G2); Construct G3 from G2 and G l;
3. Construct G5 from G3 and G2; H5 from Gs; Hc from Hs; Construct LP(HC);
4. Find the length k2 of the longest QCP from LP(Hc) and E P(G2);

(//We now compute k.//)
5. h .=
6. Construct 12 from G2; Construct EP (I2);
7. Construct 13 from G3; I’C from 13; Construct LP(IC);
8. Compute A(3) from LP(Ic) and EP(I2);
9. :-- 3; exit :-- false;

10. While ((i < h + 2) and (not exit)) do
begin

Construct li+ from li and G li+
ac from li+ Construct L P (Iiac+)"

Compute A(i + 1) from LP(li_l) and LP(IfC);
if A (i + 1) 0 then exit := true else := +

end;

11. k :-- MAX3<_j<_i(A(j));
12. ifi h +3 thenk := /k(1 +e)];

(//At this point, k > c and (k c)/c < , where c is the largest integer
not satisfying condition (i).//)

(//Finally the order, precise or approximate, is computed.//)
13. k "= MAX(k, k2) + 2;
14. if(i <h+3ork2>k)

then return (’We found the exact order:’ k)
else return (’We found an approximate order:’ k)

end.

FIG. 8. The e-approximation algorithm.

There is a question as to whether the complexity bound O(IMI)MAx’6+2h)) for the
algorithm can be decreased. If one could rewrite the algorithm so that the maximum lengths
of the i-CPs and QCPs could be computed in time linear in the graph involved, then it might
be possible to get the time complexity of the algorithm down to O(IM]MAX5"3+h)). As it is,
the construction of the tables LP(Hc) and L P (I/aC) requires time on the order of the square
of the size of the graphs involved.

COMPUTING THE ORDER 1215

7. Conclusions. We have showed that computing the order k of a locally testable de-
terministic automaton is NP-hard and have presented a polynomialtime algorithm for e-

approximation. These results answer the open questions raised in [2].
Our approximation algorithm is a polynomial:time approximation scheme since, for any

constant e > 0, it computes an approximate order k such that k > k and (/ k)/k < in time
polynomial in the size of the automaton. However, since the time complexity is exponential
in 1/e, it is not a fully polynomial-time approximation scheme in the sense of Chapter 12 of
[5].

We are interested in knowing whether there is a practical method ofdetermining, for certain
small values of k, if a given automaton is k-testable. For example, could the easy algorithm for
the 1-testability problem established by Theorem 2.1 be extended to 2-testability, 3-testability,
etc., without an excessive increase in complexity? This question is a challenge for future
research.

Theorem 2.8 shows an upper bound 2n2 + on the order of a locally testable deterministic
automaton, where n is the number of states of the automaton. In [6] we conjectured that the
bound is O(n2) and, for automata whose alphabet size is two, O(nLS). Thus Theorem 2.8
verfies part of our conjecture. As we discussed in 2, we still think that the other part of our
conjecture is true.

REFERENCES

A. AHO, J. HOPCROFT, AND J. UULLMAN, The Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

[2] J. BRZOZOWSKI AND I. SIMON, Characterizations oflocally testable events, Discrete Math., 4 (1973), pp. 243-
271.

[3] M. HARRISON, htroduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[4] J.E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison

Wesley, Reading, MA, 1979.
[5] E. HOROWITZ AND S. SAHNI, Fundamentals ofComputerAlgorithms, Computer Science Press, Rockville, MD,

1984.
[6] S.M. KIM, R. MCNAUGHTON, AND R. McCLOSKEY,A polynomial time algorithmfor the local testabilityproblem

ofdeterministicfinite automata, IEEE Trans. Comput., 40 1991), pp. 1087-1093.
[7] D. KNUTH, The Art of Computer Programming Vol. 1, Addison-Wesley, Reading, MA, 1968.
[8] M. MINSKY AND S. PAPERT, Perceptrons, M.I.T. Press, Cambridge, MA, 1969.
[9] R. MCNAUGHTON AND S. PAPERT, Counter-free Automata, M.I.T. Press, Cambridge, MA, 1971.

[10] R. MCNAUGHTON, Algebraic decision procedures for local testability, Math. Systems Theory, 8 (1974), pp.
60-76.

[11] R.E. TARJAN, Depthfirst search and linear graph algorithms, SIAM J. Comput., (1972), pp. 146-160.
[12] Y. ZALCSTEIN, Locally testable languages, J. Comput. System Sci., 6 (1972), pp. 151-167.

SIAM J. COMPUT.
Voi.23, No.6, pp. 1216--1224, December 1994

() 1994 Society for Industrial and Applied Mathematics
006

A POLYNOMIAL-TIME ALGORITHM FOR THE PERFECT PHYLOGENY
PROBLEM WHEN THE NUMBER OF CHARACTER STATES IS FIXED*

RICHA AGARWALA ANO DAVID FERNANDEZ-BACAt’

Abstract. This paper presents a polynomial-time algorithm for determining whether a set of species, described
by the characters they exhibit, has a perfect phylogeny, assuming the maximum number of possible states for a

character is fixed. This solves a longstanding open problem. This result should be contrasted with the proof by Steel
[J. Classification, 9(1992), pp. 91-116] and Bodlaender, Fellows, and Warnow [Proceedings ofthe 19th International
Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science, 1992, pp. 273-283]
that the perfect phylogeny problem is NP complete in general.

Key words, algorithms, character compatibility, evolution, perfect phylogeny

AMS subject classifications. 68Q25, 68R, 92A12, 92-08

1. Introduction. A fundamental problem in biology is that of inferring the evolutionary
history of a set of species, each of which is specified by the set of traits or characters that
it exhibits [9], [11], [17], [18]. Information about evolutionary history can be conveniently
represented by an evolutionary or phylogenetic tree, often referred to simply as a phylogeny.
In one of the standard models, the problem can be expressed mathematically as follows. Let
C {1 m} be the character set, and for every c C, let Ac r.} be the set
of allowable states for character c. We write r to denote max.Ec rc. A species s is a vector
(sl sin) such that s 4 4,,,; sc is referred to as the state ofcharacter c for s, or
the state ofs on character c. We assume that if 6 4c, then there exists a species s 6 $ such
that s i. The perfect phylogeny problem is to determine whether a given set of n distinct
species S has a tree T with the following properties:

(C1) $ c_. V(T) Jt x x
(C2) Every leaf in T is in S,
(C3) For every c C and every j a .Ac, the set of all u V (T) such that

Uc j induce a subtree of T.
The tree T, if it exists, is called aperfectphylogeny for S and the set of characters C is said to be
compatible. We should point out that in the biology literature, the perfect phylogeny problem
is more commonly known as the character compatibility problem [6]. In this context, one is
frequently interested in computing a maximal set of compatible characters since in practice
character sets tend to be incompatible. Note also that instances of the phylogeny problem are
often expressed in matrix form, by giving the set of species S as an n m matrix M whose
rows are the species in S [5], [14].

The perfect phylogeny problem was shown to be NP complete by Bodlaender, Fellows,
and Warnow [2] and, independently, by Steel [20]. This fact suggests at least two lines of
attack: one is to restrict m, the number of characters; the other is to restrict r. Pursuing
the first approach, McMorris, Warnow, and Wimer have shown that the perfect phylogeny
problem is solvable in O(nm+) time [19], which is polynomial for every fixed m; linear time
algorithms have been found for m 3 [3], [15]. In this paper, we pursue the second approach.
Gusfield [14] gave an O(nm) algorithm for r 2, the binary character case; the procedure

*Received by the editors February 22, 1993; accepted for publication (in revised form) July 15, 1993.
Department of Computer Science, Iowa State University, Ames, Iowa 50011 (arwala@ +/- a tz e. da).

Supported in part by a College of Liberal Arts and Sciences research assistantship, Iowa State University.
Department of Computer Science, Iowa State University, Ames, Iowa 50011

du). Supported in part by the National Science Foundation under grants CCR-8909626 and CCR-9211262. This
author acknowledges the support of The Center for Discrete Mathematics and Theoretical Computer Science, at
Rutgers University, where much of this work was carried out.

1216

A POLYNOMIAL-TIME PERFECT PHYLOGENY ALGORITHM 1217

(1,1,2,1)

,1,*)

(1,2,1,2) (2,1,1,3)

FIG. 1. Forced and unforced states.

is optimal if the input is given as a matrix of zeros and ones. In [1 it is shown that, under
a suitable representation of the input, the run time can be reduced to O(C) where C is the
number of ones in the matrix. This reference also presents efficient algorithms for dynamic
insertion and deletion of species and characters. All of the above results for the binary case
are based on an elegant and well-known characterization of the set of "yes" instances [8].
Dress and Steel [7] devised an O (nm2) algorithm for r < 3. Kannan and Warnow [16] gave
an O (nZm) algorithm for r < 4 (quaternary characters) and conjectured the existence of an
O(rr-ZnZm) algorithm, which is polynomial for every fixed r. Here we prove the existence
of a polynomial-time algorithm for any fixed r by giving an 0(23r (nm 4- m4)) algorithm for
the perfect phylogeny problem.

Instances of the perfect phylogeny problem where there is a known upper bound on the
number of states per character are of interest to biologists. For instance, quaternary characters
arise when using DNA to describe species; each possible state of a character corresponds to a
nucleotide, A, G, C, or T. Other instances of interest are those where r 20, which occur when
species are described by protein sequences. These can be viewed as strings from a 20-letter
alphabet, with each letter corresponding to one amino acid. While admittedly the running time
of our algorithm grows quickly with r, it is a worst-case estimate which in practice may not
pose too large a problem for current computational technology. Furthermore, the dependency
on r can be reduced by a factor of 2 using recent ideas due to Kannan and Warnow (see 6).

2. Preliminaries. We now introduce some definitions and prove certain preliminary
results.

DEFINITION 2.1. Suppose T is a perfect phylogeny for ,S and let p be some vertex in T.
We shall say that the state ofp on character c is forced ifp lies on the path between vertices
a and b in S such that ac be. (Observe that if this is the case, in order to satisfy condition
(C3) we must have Pc at. be.)

If the state of a character of a node is unforced, several assignments may be possible. In
Fig. 1, for example, the state of the fourth character of the internal node is unforced and we
could assign it a value of 1, 2, or 3.

LEMMA 2.2. A set of species $ has a perfect phylogeny if and only if every subset of
has one.

Proof The "if" part is trivial. For the "only if" part, let ,S’ be any subset of $ and let T
be a perfect phylogeny of ,3. Clearly, T satisfies (C1) and (C3) for ,S’ but possibly not (C2).
To obtain a perfect phylogeny for ,S’, repeatedly delete from T any leaf that is not in ,5" until
this operation is no longer possible. Since each deletion preserves properties (C1) and (C3)
for ,S’, the final tree will also satisfy (C2) for ,S’.

DEFINITION 2.3. Suppose G C $ and let G’ ,S G. D(G), the set of distinguishing
characters of G, is the set of all c C such thatfor every a G and every b G’, ac bc.
JM(G), the set ofcommon characters, is C D(G).

1218 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

Obviously, D(G) D(G’) and ./V/(G) .A//(G’).
DEFINITION 2.4. A pair (G, G’) where G C S and G’ S G is called a split if for

every character, the number of common character states between G and G’ is at most one.
A split (G, G’) is a c-split if79(G) 0. If (G, G’) is a split (c-split), G and G’ are called
clusters (c-clusters).

Although there can be up to 2n- 1 splits, the total number of c-splits is at most
(2r-1 l). m. Observe that we can determine whether a partition (G, G’) of $ is a split in
O(nm) time. Note also that if G is a cluster but not a c-cluster, then A4(G) C.

DEFINITION 2.5. Let (G, G’) be a split. We say that (G, G’) is oftype I if there exists an
s E G such that for all c .A/I(G), Sc equals the unique common state between G and G’
on character c and IG {s}l, IG’I >_ 1. If(G, G’) is of type I, we refer to s as a connecting
species. /f (G, G’) is not of type I, we say that it is of type II.

Checking whether a split (G1, G2) is of type I can be achieved in O(nm) time as follows.
First, compute .A/I (GI) and the common state between G and G2 on each c 6 .A//(G1). This
can be done in O(nm) time by considering characters one at a time. Now, it suffices to search
for a species s such that for all c 6 A//(G), sc equals the common state between G1 and G2.
This takes O (m) time per species, for a total of O (nm) time.

If there is a type I c-split (Gl, G2) where s is a connecting species, the problem can be
divided into constructing perfect phylogenies T1 and T2 for G t3 {s} and G2 t3 {s}. If one or
both of the latter sets has no perfect phylogeny then, by Lemma 2.2, neither does S. If both
sets have perfect phylogenies, then a perfect phylogeny for $ is obtained by identifying the
nodes for s in T1 and T2. We now consider the case where all c-splits are of type II.

LEMMA 2.6. If all c-splits are of type II, then, in every perfect phylogeny T of $, every
species s S is a leaf in T.

Proof Suppose there exists a species s 6 $ such that s is an internal node in some perfect
phylogeny T of S. Let T’ be any connected component of T s, let G’ be the set of species
in T’, and let G S G’. Clearly, (G, G’) is a c-split with IG’I >_ and IS G’I > 2. One
can also readily verify that c-split (G, G’) is of type I, with s as a connecting species.

3. Subphylogenies. In this section and the next we assume that S has no type I splits.
DEFINITION 3.1. A subphylogeny T6 for a cluster G is a perfect phylogeny for G con-

taining a node x such that for every c Ad(G), Xc equals the (unique) common state for
character c between G and $ G, andfor every c 79(G), Xc is the state ofsome species in
G on character c. Node x is referred to as the connection of T6.

The next result implies that, in searching for a perfect phylogeny for S, we can restrict
our attention to perfect phylogenies constructed entirely from subphylogenies.

LEMMA 3.2. S has a perfect phylogeny if and only if there exists a split (G1, G2) such
that both G and G2 have subphylogenies.

Proof. For the "if" part, let (G, G2) be a split satisfying the requirements of the lemma
and let TI and T2 be subphylogenies for G and G2, respectively. Let x and x2 be the
connections of T and T2. We can obtain a perfect phylogeny for S by taking T1 and T2 and
connecting them as follows. If D(G) 0, identify x and x2. Otherwise, add an edge
(x x2). It is not hard to check that conditions (C1)-(C3) hold.

For the "only if" part, let T be a perfect phylogeny for $ and let (u, v) be any edge in
T. Without loss of generality, assume that every node in T that is not in $ has a degree of at
least three. Let T1 and T2 be the subtrees of T (u, v) containing u and v, respectively, and
let G S tq V (T) and G2 S G. T and T2 are obviously perfect phylogenies for G
and G2. We can construct a subphylogeny for G from T as follows. For each c 6 D(GI)
such that U is not the state of some species in G, let Bc be the set of all b 6 V (TI) such that
bc uc. Let d be any node in V (T) Bc that is adjacent to a node in Be. Such a d must exist,

A POLYNOMIAL-TIME PERFECT PHYLOGENY ALGORITHM 1219

for otherwise we would have ac Uc for every a G, which contradicts the assumption that
u is not the state of some species in G I. We must have dc ac for some a G1, otherwise
(C3) would be violated in T because we would have ac b for some b T2, and the node
u which is on the path between a and b in T is such that u # a. Now, set b dc for all
b Bc. Since T satisfies (C3), for every c A/I(G), u equals the unique common state
between G1 and G2. The resulting modification of T is therefore a subphylogeny for G with
connection u. An analogous construction can be used to obtain a subphylogeny for G2.

DEFINITION 3.3. A cluster G is said to be compatible with a vectors iffor every c .A4 (G),
Sc equals the unique common statefor character c between G and S G.

The following result demonstrates that a subphylogeny for a cluster can always be assem-
bled from subphylogenies for c-clusters.

LEMMA 3.4. Let G be a cluster. Then G has a subphylogeny if and only if there exist
pairwise disjoint c-clusters G1 Gk and a vector x such that (i)for every c J[(G), x
equals the (unique) common state for character c between G and S G, (ii) to/k= Gi G,
and (iii) each G is compatible with x and has a subphylogeny.

Proof. For the "if" part, let T T, be the subphylogenies for G G with roots
x,..., xk. Clearly, the tree T consistin.g of a node for x and the trees T,..., Tk connected
to x by edges (x x) (xk, x) is a subphylogeny for G.

For the "only if" part, let T be a subphylogeny for G with connection x. Without loss
of generality, assume that all nodes in T are distinct. Let x x be the neighbors of x in
T, and for < < k let Tk be the subtree of T x containing .17 and let G V (Ti) 0 ,.
For each c .A/l(Gi), Xc equals the unique common state between G and S Gi. This is
because either this state is shared with some species in Gj, for some j - i, or it is shared with

must equal thesome species in ,9 G. In either case, due to condition (C3), the value of xc
common state and, hence, G is compatible with x. Also, as in the proof of Lemma 3.2, we
can ensure that for every character c, the state of any v V (T/) on character c will be that of
some species in G on c, by altering unforced states if needed. Thus, Ti can be transformed
into a subphylogeny for Gi. All that is left is to verify that each G is indeed a c-split" i.e.,
that 79(Gi) 5 . Suppose D(Gi) I. Then we must have hadx x in T, contradicting our
earlier assumption that all nodes are distinct, since for every character c, there is one common
character state between G and S G and condition (C3) must be satisfied in T.

To find a perfect phylogeny for ,9, we shall rely on certain properties of subphylogenies
which allow them to be combined into larger subphylogenies. These properties are discussed
next.

LEMMA 3.5. Let G, Gl, G2 be clusters such that G G1 tO G2 and G f3 G2 0. IfG
and G2 have subphylogenies, then there exists a subphylogeny T for G.

Proof Let T1 and T2 be subphylogenies for G and G2, respectively. Let x and x2 be
the connections of T1 and T2. Let x be a node where for each c .M(G), Xc equals the

Constructunique common state between G and ,9 G and for each c D(G), Xc equals xc

T by adding a node x and connecting the trees T and T2 to x by edges (x, x) and (x, x2),
respectively; x will be the connection of T. Since x has the necessary states to be a connection
for a subphylogeny of G, it suffices to prove that T is a perfect phylogeny for G. For this, we
need to verify that T satisfies conditions (C1)-(C3). Since T and T2 are subphylogenies, and
for every character c, x is the state of some species in G or G2, it is clear that T satisfies

2(C1) and (C2) for G. To verify that T satisfies (C3), we must show that if x x j for
Ifany character c 6 C, then Xc j. This is trivially true when c D(G), since x xc.

c 6 .A//(G), x equals the unique common state for character c between G and S G. We
2 because the species in G sharing the common character statemust have Xc xc or Xc x

with a species in S G belongs to either G or G2. Hence, T satisfies (C3).

1220 RICHA AGARWALA AND DAVID FERN/NDEZ-BACA

Note that if 79(G) t3, then, rather than adding an edge (x, x), we can simply identify
nodes x and x. A similar situation arises when)(G2) . [-]

LEMMA 3.6. Let G, G1, G2 be clusters such that G G1 U G2 and G1 f3 G2 91.
Suppose that G1 has a subphylogeny T and that there exists a subphylogeny T for G with T
as a subtree at the connection x of T. Then if G2 is not a c-cluster, the value of Xc on every
c E D(G) is forced.

Proof If G2 is not a c-cluster, J4(G2) C; i.e., for every c E C, there exists a common
state between a species in G2 and one in S G2. Consider any character c D(G). We
claim that G1 and G2 share a state on c. This implies that x,. is forced. To prove the claim,
assume the contrary. Since c 6 .A/[(G2), G2 must share a state with $ G on character c.
But this would imply that c .A4 (G), a contradiction. Cl

4. Building a subphylogeny. The heart ofour perfect phylogeny algorithm is a procedure
SUBPHYLOGENY that determines whether a cluster G has a subphylogeny and, if so, constructs
one. It assumes that for every c-cluster G’ C G, a subphylogeny has been constructed, if one
exists.

(S1)
($2)

($3)

($4)

($5)

Algorithm SUBPHYLOGENY(G)
begin

if GI then
return the tree TG consisting of the single species a G

for each c-cluster G1 C G such that G has a subphylogeny T do
G2-G-G
if G2 is a c-cluster having a subphylogeny then

Use Lemma 3.5 to construct a subphylogeny Ta for G
return Tc

else /, G2 is not a c-cluster ,/

Use Lemma 3.6 to compute the states of the connection x of TG
Initialize TG to consist ofx together with T1 as its subtree
[’or each c-cluster H

_
G2 do

if H has a subphylogeny Tt4 and H is compatible with x then
G2 G2- H
Make T/-/a subtree of x in Tc
if G2 0 then return T

endif
endfor
return FAILURE

end

LEMMA 4.1. Let G be a cluster and suppose thatfor every c-cluster G’ such that G’ C G,
we have determined whether G’ has a subphylogeny and, if so, one has been constructed.
Then, if G has a subphylogeny, SUBPHYLOGENY(G) constructs it. Otherwise, the procedure
returns FAILURE.

Proof When IGI 1, a node for the single species s E G is indeed a subphylogeny for
G. Hence, the tree returned in (S 1) is correct.

Suppose G[> and that G has a subphylogeny T with connection x. Then there
must exist a c-cluster G

_
G having a subphylogeny T1 such that T is a subtree in some

subphylogeny Ta of G. At some point during the execution of for loop ($2), we will consider
one such G. If G2 G G1 is a c-cluster having a subphylogeny, then, by Lemma 3.5, ($3)
returns a subphylogeny for G.

A POLYNOMIAL-TIME PERFECT PHYLOGENY ALGORITHM 1221

If G2 is not a c-cluster, then, by Lemma 3.6, the states of the connection x are completely
determined and, by Lemma 3.4, there exists a collection of pairwise disjoint c-clusters having
subphylogenies such that their union is G and each c-cluster in the collection is compatible
with x. In the for loop ($4), a subphylogeny for a c-cluster H

_
G is added to the current Tc

only if H is compatible with x and every species in H is not yet in Ta, and a tree is returned
only when the union of all the c-clusters added is G G; i.e., G2 . Therefore, any tree

Ta returned in ($5) is a subphylogeny for G. We now argue that if there exists a subphylogeny
for G with T as a subtree, then one such subphylogeny will be constructed by the loop ($4)
and G2 will become empty. We shall do this by showing that if there is such a subphylogeny
for G, then at the beginning of each iteration of loop ($4) there is always at least one c-cluster
H’ c_ G2 compatible with x that has not yet been considered.

By Lemma 2.2, if G has a subphylogeny, then for every J ___. G the set of species J O {X}
has a perfect phylogeny. We claim that there exists a c-cluster J’ c__ J such that J’ has a
subphylogeny. To prove this, suppose Tj is a perfect phylogeny for J tO {x}, let y be any
neighbor of x in Tj, and let J’ be the set of species in the subtree Ty of Tj x containing y.
Clearly, J’ is a cluster; moreover, J’ is a c-cluster since we can assume that all the nodes in Tj
are distinct. Furthermore, Ty can be modified to obtain a subphylogeny for J’ as in the proof
of Lemma 3.2.

In particular, if we take J G2 in the above argument, we have that in each iteration of
($4), there exists a c-cluster J’ c_ G2 such that J’ has a subphylogeny. Since at the beginning
of each iteration, for all c-clusters J" considered up to this point J" G2, either H itself is
a subset of G2 and has a subphylogeny, or some yet-to-be-considered c-cluster H’ is a subset
of G2 and has a subphylogeny.

SUBPHYLOGENY returns FAILURE only if no choice of G1 led to the construction of a
subphylogeny for G. In this event, there was certainly no subphylogeny for G. 1

Running time of SUBPHYLOGENY. SUBPHYLOGENY(G) considers each of the o(2rm)
c-clusters G such that G 11 < GI. For each such c-cluster, it verifies that G C G, which can
be done in O(n) time. With a particular G1, the algorithm goes through o(2rm) c-clusters,
checking in O(n -t- m) time whether they are subsets of G2 that are compatible with x. The
total time taken by SUBPHYLOGENY is therefore O(22r (nm2

nt- m3)).
5. Building a perfect phylogeny. We now describe the algorithm PHYLOGENY, which

constructs a perfect phylogeny for ,9, if it has one. The algorithm first tries to determine if
one of the O(2r-1 m) c-splits is of type I. If there is a type I c-split (G1, G2) where s is
a connecting species, the algorithm recursively attempts to construct perfect phylogenies T1
and T2 for G1 tA {s} and G2 (A {$}. As stated earlier, if one or both of the latter sets has no

perfect phylogeny then, by Lemma 2.2, neither does S. Otherwise, a perfect phylogeny for ,5’
is obtained by identifying the nodes for s in T1 and T2.

If there is no type c-split then, by Lemma 2.6, none of the species appears as an internal
node in any perfect phylogeny for ,9. In this case, PHYLOGENY considers each possible c-cluster
G such that [G[_< n and attempts to build a subphylogeny for it using SUBPHYLOGENY.
It then uses this information to build a perfect phylogeny for ,S, if possible. The steps of
PHYLOGENY are as follows.

Algorithm PHYLOGENY(S)
begin

if [$[- then
return the tree T consisting of the single species a E S

if there exists a type I c-split (G, G2) then
Let s be the connecting species

1222 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

(P1)

Call PHYLOGENY(G1 L.} {$}) and PHYLOGENY(G2 I,.J [$})
if both calls succeed then

Combine the resulting trees into a perfect phylogeny for S
else return FAILURE

else /, All c-splits are of type II ./

size=
while size < n- do

for each c-cluster G such that IGI size do
Call SUBFHYLOGENY(G)
if G has a subphylogeny TG, record TG and its connection

endfor
size size +

endwhile
Pick any s 6,9

if G S {s} has a subphylogeny T6 then
let x be the connection of TG

(P2) return the tree obtained by adding a node s and the edge (s, x) to TG
(P3) else return FAILURE

endif
end

THEOREM 5.1. PHYLOGENY correctly determines whether ornotS has aperfectphylogeny
and, if so, constructs one.

Proof. The correctness of the algorithm hinges on how it deals with the case where no
c-split is of type I. We first note that by the proof of Lemma 3.2, and because for any s 6 S
the tree consisting of node s is a subphylogeny for {s}, if a tree is returned by our algorithm
in (P2), then the tree is a perfect phylogeny for $. Thus, it suffices to argue that PHYLOGENY
will never return FAILURE if $ has a perfect phylogeny.

If ,.3 has a perfect phylogeny and all c-splits are of type II, then every s 6 S will be a leaf
in any perfect phylogeny of $. Hence, both {s} and S {s} must be c-clusters. As we noted
above, a subphylogeny for {s} is s itself, while the subphylogeny of S {s} must have been
constructed in some iteration of (P 1). Therefore, (P2) will not return FAILURE.

Running time ofPI-IYLOGENY. PHYLOGENY spends O (2 nm2) time generating c-clusters
and testing each of these to find out whether it is of type I. It is clear that, in the worst case, the
running time of PHYLOGENY is dominated by the time required to deal with the case where
all c-clusters are of type II. SUBPHYLOGENY is applied to each of the O(2rm) c-clusters,
which requires O(23r(nm3 -+- m4)) total time. Hence, the running time of PHYLOGENY is
O(23r (nm3 + m4)) as well.

6. Concluding remarks. Our algorithm uses dynamic programming to construct perfect
phylogenies by working from the bottom up. One can use memoization (a technique described
in some detail in pp. 312-314 of [4]) to obtain an equivalent top-down recursive algorithm
with the same running time. Such a procedure has been proposed to us by E. L. Lawler
(personal communication).

Algorithm PHYLOGENY can be modified to work correctly and within the same time
bounds even if instances with type I c-splits are not treated separately. However, in practice,
exploiting the presence of such splits may tend to reduce the running time of the algorithm.

Kannan and Warnow (personal communication) have discovered a clever way to reduce
the running time of our algorithm by a factor of 2r. Their technique speeds up step ($4)
of SUBPHYLOGENY by providing a way to determine in O(nm) time whether there exists a
subphylogeny for G having a subphylogeny for a given c-cluster G as a subtree. Even with

A POLYNOMIAL-TIME PERFECT PHYLOGENY ALGORITHM 1223

this improvement, the algorithms presented in 16] and [7] are faster than ours for the cases
where r < 4 and r < 3, respectively. It is an open problem whether our algorithm can be
improved to match those bounds on those special cases.

Other methodologies for reconstructing phylogenies have been proposed in the past; these
have been ably surveyed by Felsenstein 10]. We shall limit ourselves here to discussing one
problem that is closely related to perfect phylogeny: the Steiner tree problem in phylogeny
12], 13]. A Steiner tree for a set of species S is a tree T satisfying (C1) and (C2). Obviously,

a perfect phylogeny for $ is also a Steiner tree for $. The length of T is the sum of the lengths
of its edges, where the length of an edge (u, v) E(T) is the Hamming distance between
u and v (i.e., the number of characters in which u and v differ). The Steiner tree problem in
phylogeny is to compute a minimum length Steiner tree for a given set of species. Minimum
length Steiner trees satisfy the parsimony criterion [10], because they give phylogenies in
which species evolve with the least number of character changes. The following theorem
establishes a relationship between the perfect phylogeny problem and the Steiner tree problem
in phylogeny.

THEOREM 6.1. $ has a perfect phylogeny if and only if the minimum length ofa Steiner
treefor S is i=1 (ri 1).

Proof Suppose T is a Steiner tree. It follows from the definition that the length of T is
the sum of contributions of the individual characters, where the contribution of character c to
the length of T is the number of edges (u, v) 6 E(T) such that Uc Vc. Since there are at
least rc species which differ from each other on any c 6 C, the contribution of character c to
the length of T must be at least rc 1, implying that the length of any Steiner tree for 6’ is at

mleast i=1 (ri 1).
A Steiner tree T for S has length exactly 7’=1 (ri 1) if and only if for every c 6 C, T

can be partitioned into exactly rc subtrees TI Trc such that Uc for every u 6 T/. If
such a partition is possible, T will satisfy (C3), in addition to (C1) and (C2), and must be a

perfect phylogeny for S. [3

It does not seem possible to generalize our algorithm in any straightforward way to produce
minimum length Steiner trees for sets of species. To illustrate the difficulty in doing so, note
that whereas for binary characters, the perfect phylogeny problem can be solved in time linear
in the size of the input, the Steiner tree problem in phylogeny remains NP complete 13].

Acknowledgments. We thank Martin Farach, Sampath Kannan, and Tandy Warnow for
their encouragement; Mike Steel for bringing his results to our attention; and the referees for
their useful suggestions. Special thanks are due to Eugene Lawler, who carefully read our
manuscript and suggested numerous improvements in terminology and exposition.

REFERENCES

[1] R. AGARWALA, D. FERNANDEZ-BACA, AND G. SLUTZKI, Fast algorithms for inferring evolutionary trees, In
Proceedings of the 30th Allerton Conference on Comm., Control, and Comput., 1992, pp. 594-603.

[2] H. BODLAENOF.R, M. FELLOWS, ArqO T. WARrOW, Two strikes against perfect phylogeny, In Proceedings of the
19th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer
Science, Springer Verlag, Berlin, New York, 1992, pp. 273-283.

[3] H. BODLAEYDF. AtqD T. KLOKS, A simple linear time algorithm for triangulating three-colored graphs, In
Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science, 1992, pp. 415-
423.

[4] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, htroduction to Algorithms, MIT Press, Cambridge, MA,
1990.

[5] J. CAMIr AtqD R. SOKAL, A method for deducing branching sequences in phylogeny, Evolution, 19 (1965),
pp. 311-326.

1224 RICHA AGARWALA AND DAVID FERNANDEZ-BACA

[6] W. H. E. DAY AND D. SANKOFF, Computational complexity of inferring phylogenies by compatibility, Syst.
Zool., 35 (1986), pp. 224-229.

[7] A. DRESS AND M. STEEL, Convex tree realizations ofpartitions, Appl. Math. Lett., 5 (1992), pp. 3-6.
[8] G. E ESTABROOK, C. S. JOHNSON JR., AND F. R. McMoRRIS, An idealized concept ofthe true cladistic character,

Mathematical Biosciences, 23 (1975), pp. 263-272.
[9] G. E ESTABROOK, Cladistic methodology: A discussion ofthe theoretical basisfor the induction ofevolutionary

history, Annual Review of Ecology and Systematics, 3 (1972), pp. 427-456.
[10] J. S. FELSENSTEIN, Phylogenies from molecular sequences: Inference and reliability, Annual Reviews of

Genetics, 22 (1988), pp. 521-565.
[11] W.M. FITCH, Aspects ofmolecular evolution, Annual Reviews of Genetics, 7 (1973), pp. 343-380.
12] L.R. FOULDS, Maximum savings in the Steinerproblem inphylogeny, J. Theoret. Biol., 107 (1983), pp. 471-474.
13] L.R. FOULDS AND R. L. GRAHAM, The Steiner problem in phylogeny is NP-complete, Adv. in Appl. Math., 3

(1982), pp. 43-49.
[14] D. GUSFIELD, Efficient algorithmsfor inferring evolutionary trees, Networks, 21 (1991), pp. 19-28.
[15] S. KANNAN ,NO T. W,NOW, Triangulating three-colored graphs, SIAM J. Discrete Math., 5 (1992), pp. 249-

258.
[16] S. KANNAN AND T. WARNOW, Inferring evolutionary histor3,from DNA sequences, in Proceedings of the 31st

Annual Symposium on the Foundations of Computer Science, 1990, St. Louis, MO, pp. 362-378.
17] W.J. LE QUESNE, A method ofselection ofcharacters in numerical taxonomy, Syst. Zool., 18 (1969), pp. 201-

205.
[18] W. J. LE QUESNE, Further studies based on the uniquely derived character concept, Syst. Zool., 21 (1972),

pp. 281-288.
19] F.R. MCMORRIS, T. WARNOW, AND T. WISER, Triangulating vertex colored graphs, In Proceedings of the 4th

Annual Symposium on Discrete Algorithms, 1993, Austin, TX, pp. 120-127.
[20] M.A. STEEL, The complexity ofreconstructing treesfrom qualitative characters and subtrees, J. Classification,

9 (1992), pp. 91-116.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1225-1230, December 1994

() 1994 Society for Industrial and Applied Mathematics
007

PRIORITY QUEUES AND PERMUTATIONS*

M. D. ATKINSON ANt ROBERT BEALS

Abstract. A priority queue transforms an input permutation o of some set of size n into an output permutation
r. The set R,, of such related pairs (o’, r) is studied. Efficient algorithms for determining s(r) Icr (o’, r) R,,I
and t(o-) Ir (or, r) R,I are given, a new proof that IR,,I (n + 1)’’-I is given, and the transitive closure of R,,
is found.

Key words, priority queue, permutation, enumeration

AMS subject classifications, primary 68R05" secondary 68P05, 05A15

1. Introduction. The topic studied in this paper was suggested by the beautiful and
combinatorially rich theory of permutations that can be generated by a stack. In this theory an

input sequence of n distinct elements, x, x2 x,,, is presented to a stack and is subjected to
a series ofpush and pop operations; each push operation pushes the next input element on the
stack and each pop operation removes the top element of the stack and places it in an output
stream. When the entire input has been consumed and the stack is empty, the input sequence
has been converted into an output sequence Xl), Xrr(2) Xrr(n) that is a permutation of the
input sequence. The permutation rr that arises in this way depends only on the series of push
and pop operations and, in particular, is independent of the input sequence. It is well known
that there are c,, such stack permutations, one for each push-pop sequence, where

2n’}
Cn

n+l

is the nth Catalan number. There are several interesting correspondences between stack
permutations and other combinatorial objects (for example, binary trees, triangulations of a
polygon, well-formed bracket sequences; see [3] and the references cited therein).

We shall investigate the analogous theory where a priority queue replaces a stack. In
other words the pop operation "delete the most recently inserted" is replaced by "delete the
smallest." We use the terms Insert and Delete-Minimum rather than push and pop and we
shall call a series of n Inserts and n Delete-Minimums a priority queue computation. There
are c,, different priority queue computations, each of which converts an input sequence (of n
distinct elements) into an output sequence. But, unlike the case of stacks, it is no longer true
that the permutational effect is independent of the input sequence nor that all inputs can be
permuted in the same number of ways.

To handle this greater complexity we define a relation R,1 called allowability on the set of
sequences of length n by the rule (or, r) 6 R,, if there exists a priority queue computation which
transforms the input sequence cr into the output sequence r. The elements of R,1 will be called
allowable pairs. It was shown in that there are (n + 1)’1- allowable pairs of permutations
on a fixed set of size n and this result is a strong hint that an interesting combinatorial theory
awaits investigation.

It is simple to recognize whether a pair of sequences (r, r) is allowable. One just con-
structs a suitable priority queue computation. If such a computation exists, it may not be
unique, but it is easy to see that there is always a "natural" computation in which elements

*Received by the editors November 30, 1992; accepted for publication July 20, 1993.
Department of Mathematical and Computational Sciences, University of St Andrews, North Haugh, St. An-

drews, Fife KYI6 9SS, Scotland.
Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403.

1225

1226 M.D. ATKINSON AND R. BEALS

are output as soon as possible (that is, if x is the next element to output, and is present in
the priority queue, then it should be output before further input elements are inserted). This
observation results in the following algorithm:

Q :- empty priority queue
i:=l;j:=l
while j < n do

while z-j do
insert(a/)
i’=i+1

endwhile

if min(Q) - rj then return (false)else
deleteMin; j :-- j +

endif
endwhile
return(true).

The time complexity of this algorithm depends, of course, on the implementation of
the priority queue operations. With a heap-based implementation it would be O(n log n),
whereas if we regarded Insert and Delete-Minimum as atomic constant time operations it
would be O(n).

In the next section of the paper we take up rather more interesting algorithmic questions
by giving efficient methods for the two complementary problems:

(1) Given an output r, find the number of allowable pairs (or, r).
(2) Given an input or, find the number of allowable pairs (or, r).
Then, in 3 we concentrate more on combinatorial questions. We give a one-to-one

correspondence between allowable pairs and labeled trees from which we obtain another
proof of the main result of [1]. Next we give a result about the average number of outputs
for a random priority queue computation. Finally we characterize the transitive closure of the
allowability relation and discuss the connection with serial networks of priority queues.

2. The number of inputs and outputs. In this section we consider the computation of
the following two quantities: the number s(r) Icr (o’, r) Rn[of allowable pairs having
a fixed output r, and the number t(cr) Iv (r, v) R,,I of allowable pairs having a fixed
input

On the surface (or) seems to be the more natural quantity to calculate since it enumerates
the different ways that a priority queue can process a particular input, while s (z-) enumerates the
different starting points that can give rise to some fixed result. Despite this, it turns out that the
numbers s (z-) are rather easier to compute and have more obvious properties (for example, they
are always divisors of n !). Indeed, in], an algorithm of average time complexity O(n log n)
was given for computing s(z-). Here we shall give an algorithm for this problem whose worst
case complexity is O(n). We turn then to the problem of computing (or). Although we have
been unable to find a comparably efficient algorithm, we are at least able to place the problem
in the complexity class 79 by giving a dynamic programming algorithm of time complexity
O(n4).

For a given output sequence z- [z-1 z-n] we let z-0 be any element greater than those
occurring in the remainder of z- and define

b(i) max{j" < j < i, z-j > z’i}.

The following lemma was proved in [1].

PRIORITY QUEUES AND PERMUTATIONS 1227

LEMMA 2. I.

s(r) -I(i b(i)).
i=1

Thus, once b(1), b(2) b(n) have been calculated, s(r) can be found in O(n) steps.
The obvious algorithm for computing b(1), b(2) b(n) is as follows.

i:--0
repeat

i’=i + 1; j "=i-
while 75j < i do j "= j
b(i) j

until n.

It requires quadratic time in the worst case, since to compute b(i) as many as values of
r may need to be examined. A simple observation improves the computation time. Suppose
that when computing b(i), we tested the element rj (with j < i) and found that rj < "ri. Then
none of rj-1, rj-2 rb(j)+l need be compared with zi and the next test can be whether
Zb(j) < v:i. In other words the statement j := j may be replaced by j "= b(j).

The new algorithm runs in linear time: the statement j := b(j) cannot be executed more
than once with the same value of j. Consequently s(r) can be found from r in O(n) steps.

We now consider the second computation: finding (or). The following result was proved
in [1].

LEMMA 2.2. Let cr be some input sequence expressed in the form otm where m is the
maximal symbol. Suppose bib2.., br and i Ctbl bi, ii bi+l br, then

t(ff) t(Oti)t(i).
i=0

We make this lemma the basis of a dynamic programming algorithm. For convenience
assume that cr is a permutation of 1, 2 n}. Let if(m) denote the permutation obtained
from cr by deleting all the symbols m + n and let E (’ denote the set of substrings of
o-(m).

We can compute t(O) for all 0 Em for the values m 0, l, 2 n in turn. The
empty string L is the only member of E and t()Q 1. Suppose that m >_ and t(O) is
known for all 0 Em-l. A string of E’’ is either in E (m-l (in which case t() will be
known) or it has the form ctm/. In the latter case we may compute t(otm) in linear time using
the formula of the previous lemma since all the strings required in the calculation belong to
Em-. The total time required for the whole computation is

O (n -lI20")’)
3. Combinatorial results. The number of allowable pairs was proved in [1 to be (n +

1)"- using partially ordered sets and one of Abel’s summation formulae. Here we give
another proof which depends on establishing a 1-1 correspondence between allowable pairs
and labeled trees.

Let (or, r) be an allowable pair on n symbols and let m be the maximal symbol. Suppose
r otm/3. At the point that m is output, the priority queue is empty. Therefore m and all
the symbols of ct occur in cr earlier than all the symbols of/. Let ?,,3 be the symbols of t,

228 M.D. ATKINSON AND R. BEALS

/3, respectively, in order of their occurrence within o’. Then o" has the form ’(i,m)3 where Y(i.m)
denotes the result of inserting m within , after the symbol (i is given the conventional name
"root" if m is inserted at the beginning of ?’). Clearly (?,, or) and (3,/) are allowable pairs.

Thus (or, r) has given rise to allowable pairs (?,, c), (3,/) and a symbol (one of the
symbols of ot or "root"). Conversely, (,, or), (3,/), and define a unique allowable pair (or, r)
by reversal of this construction.

We can now associate, with any allowable pair (or, r), a tree on n + symbols ("root" and
the n symbols being permuted). The construction is inductive. If n 0 the tree is a single
node called "root." If n > 0 we find (,, or), (3,/), and as above. The trees for (?’, or), (3,/)
exist by induction and have roots "root1" and "root2." The tree for (or, r) is obtained by letting
"root1" be the new "root," "root2" be labeled as m, and joining nodes and m.

The construction is obviously reversible since the parent of the maximal node in a tree
defines and removal of the branch between and m defines the trees for the allowable pairs
(, c), (,/).

THEOREM 3.1 (Atkinson-Thiyagarajah [1]). The number of allowable pairs on a set of
size n is (n + 1)n-1.

Proof By Cayley’s theorem the number of labeled unrooted trees on n + nodes is
(n + 1)"-1. The trees defined above are rooted (which would increase their number by a factor
n + 1) but the root is labeled with a fixed symbol "root" (which decreases their number by a
factor n + 1). The result now follows from the correspondence above. 1

We now consider the number of outputs that a fixed priority queue computation can pro-
duce as the input varies over all permutations of an n-element set. Clearly, there is considerable
variation. If we let 2- and 79 denote the operations Insert and Delete-Minimum, respectively,
then priority queue computations can be represented by "well-formed" words in these two
symbols. For example, the computation (2-79)n simply copies the input to the output so all n!
outputs are achievable. On the other hand, 2-" 79" only produces that output whose elements are
in ascending order. For notational simplicity we shall assume that all inputs and outputs are
permutations of 1, 2 n }. Let k(w) denote the number of outputs that can be generated
by the well-formed word w.

LEMMA 3.2.
(1) If u, v are wellformed of length 2a, 2b, then

k(uv)= k(u)k(v)(a+b)"a
(2) If u is wellformed, then k(2-u79) k(u).
Proof First, consider k(uv). The priority queue in the computation uv is empty just

before the (a + 1)th symbol of the input is read. So the first a symbols of the output are a
permutation of the first a symbols of the input. The first a symbols may be chosen in
ways and, once chosen, may be permuted by u in k(u) ways, after which the remaining b
symbols may be permuted in k(v) ways. The first part now follows.

Now consider k(2-u79). Note first that if r is an output of the priority queue computation
u (arising, say, from the input o’) then rn is an output from the computation 2-u79 (clearly, it
is the result of processing the input nor). On the other hand, any output from 2-u79 must have
the form rn for some r. This is because, for the computation 2-u79, the priority queue cannot
become empty at any intermediate step and so n cannot be deleted from it as smallest element
until the end of the computation. To complete the proof, it is only necessary to prove that
is an output of the priority queue computation u. Let p be an input to the computation 2-u79
which gives the output rn. If n is not the first symbol of p then we can write p otmn,,
where m is the maximum symbol that precedes n in p. When this input is processed by Zu79,

PRIORITY QUEUES AND PERMUTATIONS 1229

the symbol rn will remain in the priority queue after it is inserted at least until n is inserted
(otherwise the priority queue would become empty before the computation terminates). It
therefore follows that the input otnm, will result in the same output as p. By repetition of
this principle, we obtain an input of the form nor which generates the output rn. It is apparent
that the priority queue computation u transforms cr into r as required. 1

COROLLARY 3.3. For every priority queue computation u, k(u) divides n !.
We have already remarked that k(u) varies considerably as u varies over the possible

priority queue computations. Despite this, it is possible to compute its average value defined
as

k(u)/cn,kn

where the summation is over all priority queue computations with n Inserts and n Delete-
Minimums.

THEOREM 3.4. kn (n + 1)!/2n.
Proof Let In Y. k(u) so that kn l./c.. Every priority queue computation can be

expressed in the form u ZvDw, where v, w are themselves priority queue computations
and are uniquely determined by u. Since the length of v can be any even integer from 0 to
2n 2 we have

i=0 v

where the second and third summations are over all priority queue computations v, w which
process inputs of length i, n i- 1, respectively. Thus, by the previous lemma,

l. k(v)k(w)
+i=0 w i=0

i=n-1Put h,, l,/n!. Then h, i=0 hih-i-1/(i + 1). This recurrence can be solved by
introducing the generating function

r---oo

H(x) hrxr
r--0

which is easily seen to satisfy the integral equation

(x) f H(x)dx = H(x)H 1,

from which it follows that H(x) 1//1- 2x and the result follows by expanding the
generating function Iq

Finally we consider the transitive closure of the allowability relation Rn. One motivation
for this is Tarjan’s paper [5] where the permutations obtainable from a series network of
stacks are considered. In a related work, Pratt [4] considers permutations computable by
double-ended queues, parallel stacks, and parallel queues. The corresponding scenario for us
is a series network of priority queues P1, P2 Pk on which the following operations are
allowed:

(1) Insert, which transfers the next element of the input sequence into P,
(2) Move(i) with < < k, which transfers the minimal element of Pi into Pi+,

1230 M.D. ATKINSON AND R. BEALS

(3) Delete-Minimum, which appends the minimal element of Pk onto the output se-
quence.

Let Rn k denote the k-fold composition of Rn with itself. Then it is easy to verify that
Rn is precisely the set of (input, output) pairs associated with a series network of k priority
queues.

The weak order Wn on the set of all permutations on n symbols is defined by (or, r) W
if and only if every pair of symbols of or, which are in increasing order, are also in increasing
order in r. The weak order is an important tool for the study of geometric and combinatorial
properties of the symmetric group; its properties are discussed at length in [2]. It is clear that

Rn
_

W,, and, since W,, is transitively closed, R c__ Wn for all k.
THEOREM 3.5. Rnn-2 7 Rnn-l Wn.
Proof For (r, r) Wn let p (or, r) be the smallest integer k such that all but the leftmost k

symbols of cr and r agree (that is, the rightmost n k symbols agree). Observe that p is never
equal to 1. In order to show that Rnn-1 Wn it suffices to show that for any (or, r) 6 W, with
cr -- r, there exists a or’ such that all of the following hold:

(1) (or, or’) Rn,
(2) (or’, r) W,
(3) p(cr’, r) < p(cr, r).
To see this, write cr as cx/37, and r as 3x?, such that I’l n p(cr,). Since (or, r) 6 W,,

it follows that x must be larger than all symbols in/3. Therefore, or’ oq3xy satisfies condition
(1) above (in fact a priority queue can input cr and output r’ by only placing two symbols,
x and the current input symbol, in the queue at one time). Also, cr satisfies condition (2)
because any pair of symbols in or’ appear either in the same order as in or, or the same order as
in r. Finally, since or’ and r both end with x ?,, condition (3) is satisfied. Since p cannot have
the value 1, the sequence or’, a" must reach r in at most n steps, proving R,,"-1 W,,.

To complete the proof, we prove that the pair

([n,n- 2, 1], [1, n, n- 3,2]),

which plainly lies in W,, does not belong to R"-2. Suppose that it were possible to transform
[n, n 2, 1] into [1, n, n 3, 2] by a series network of n 2 priority queues.
When the final element of the input (symbol 1) has been placed in priority queue P1 the other
n symbols must all be in the n 2 priority queues of the network since none can be
output yet. One of the priority queues must therefore contain at least two of the symbols in
{2, 3 n }. Clearly this is impossible, since these two symbols would then have to be output
eventually in increasing order. q

Therefore, Wn describes the relation between input and output permutations for a series
network of k priority queues for any k > n 1.

Acknowledgment. We thank Katherine Anderson and Murali Thiyagarajah for several
useful conversations during the course of this work, and Gerald Ostheimer for the insight
leading to the O(n) algorithm for computing s(r).

REFERENCES

M.D. ATKINSON AND M. THIYAGARAJAH, The permutational power ofa priority queue, BIT, 33 (1993), pp. 2-6.
[2] A. BJORNER, Orderings on coxeter groups, in Proceedings of Conference on Combinatorics and Algebra, Amer-

ican Mathematical Society, Providence, RI, 1983.
[3] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge, Mas-

sachusetts, 1992.
[4] V. PRATT, Computing permutations with double-ended queues, parallel stacks, and parallel queues, in Proceed-

ings of the 5th ACM STOC, ACM Press, New York, 1973, pp. 268-277.
[5] R.E. TARJAN, Sorting using networks ofqueues and stacks, J. ACM, 19 (1972), pp. 341-346.

SIAM J. COMPUT.
Vol.23, No.6, pp. 1231-1252, December 1994

() 1994 Society for Industrial and Applied Mathematics
008

A MODEL FOR ASYNCHRONOUS SHARED MEMORY PARALLEL
COMPUTATION*

NAOMI NISHIMURA

Abstract. Traditional theoretical shared memory parallel models have been based on a number of assumptions
which simultaneously simplify solutions to problems and distance the models from actual parallel machines. One
such assumption is that processors work together in a synchronous fashion. Recent work has focused on finding
a model that captures the essence of computation by processors communicating asynchronously through shared
memory. In this paper, a general framework and set of criteria used to analyze these models, including the complexity
analysis of several fundamental algorithmic paradigms, are considered. A general asynchronous model is introduced
and how it satisfies these criteria is demonstrated. In this model, O (log p) algorithms are demonstrated for solving
p-input versions of the problems of AND, OR, parity, maximum, minimum, and list ranking. To handle list ranking,
a technique of analyzing algorithms is developed in which the set of tasks that are to be executed depends on the
processor schedules.

Key words, asynchrony, parallel computation, models of parallel computation, computational complexity,
parallel algorithms

AMS subject classifications. 68Q05, 68Q10, 68Q22, 68Q25

1. Introduction. As our understanding of the parallel random access machine (PRAM)
[7], [10], 17] deepens, it becomes possible to extend the notion of a shared memory model
to capture additional features of actual multiprocessor architectures. Implicit in the definition
of a PRAM is the existence of a global clock, by means of which processors are able to
synchronize actions and perform in lock-step. At each tick of the global clock, or timestep of
a PRAM, each processor performs a local operation or accesses a shared memory cell. The
synchronization of all processors with each other (the execution of a synchronization barrier)
can be viewed as a PRAM primitive that requires time no greater than the time to execute a
single processor step. In reality, however, synchronization of parallel processors itself can be
a time-consuming task. Since synchronization is not necessarily built into the architecture, it
is desirable to have algorithms that do not depend on the precise timing of steps taken by the
various processors. The actual speeds of processors may vary according to operating system
interference, contention for the network and memory, user requests, and disparities between
the numbers of cycles required for different instructions. Similar arguments can be made
with respect to asynchronous behavior of processes sharing processors; in the remainder of
this paper we model processes by processors. Although the absence of asynchrony is only
one of the impractical assumptions on which a PRAM is based, we initially remove only
this assumption in order to isolate the contribution of synchronization and to keep problems
tractable.

In order to implement a PRAM algorithm directly on an underlying asynchronous ar-
chitecture, all processors must be synchronized after each PRAM step. Not only is this
synchronization costly in terms of time, but it can also hide the true asynchronous complexity
of the problem. To better understand the realities of asynchronous parallel computation, we
begin, in 2, by outlining criteria for an asynchronous shared memory model. Of particular
interest is the choice of the underlying synchronization primitive, viewed as a parameter of the
model, and the choice of complexity measure. The measure is designed to reflect elapsed time,
including effects of fluctuations in processor speeds and load balance; this is demonstrated
with respect to three basic parallel algorithm paradigms.

*Received by the editors September 23, 1991; accepted for publication (in revised form) August 24, 1992. This
research was supported by the Natural Sciences and Engineering Research Council of Canada.

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
(nishi@plg.uwaterloo. ca)

1231

1232 NAOMI NISHIMURA

In 3, we introduce a new model and analyze it with respect to the criteria. The choice
of complexity measure constitutes the major difference between the various asynchronous
models proposed. In this model, the running time of an algorithm is defined to be the expected
maximum number of steps taken by any processor, where the expectation is calculated given a
distribution on all possible schedules and the number of steps can be normalized by a weighting
function for relative processor speeds (as discussed in 7). Finally, in 5 and 6 we analyze
the paradigms of synchronization and pointer jumping, respectively. The results establish
the complexities of various fundamental algorithms and the desirability of our complexity
measure. The analyses themselves present general techniques for handling the dependencies
that arise between processor actions.

2. Criteria for asynchronous models. Our first task is to provide a natural framework
for considering algorithms performed by processors communicating asynchronously through
shared memory cells. The removal of a global clock from a PRAM model leaves undefined
several aspects of the resulting asynchronous model. On a PRAM, we can assume that a
timestep is broken into separate read, local computation, and write phases, and that read and
write conflicts are resolved by various rules. In an asynchronous environment, resolving
read and write conflicts is less straightforward. In particular, a read and a write can occur
simultaneously. From this possibility arises the question of which possible values may be
returned by a read concurrent with a write. The choice ofa synchronizationprimitive, discussed
in 2.1, indicates which operations are atomic, and thus settles this concurrency question for our
purposes. The choice of a synchronization primitive will induce a set of allowable schedules of
processor steps, which may or may not be further restricted in the definition of the model. For
the most general purposes, a model should make use of a weak synchronization primitive, and
any algorithm on the model should perform correctly for any possible schedule of processor
steps. Section 2.2 is concerned with the attributes of complexity measures. In 2,3, we identify
three basic paradigms that serve as building blocks for many parallel algorithms. The quality
of a complexity measure can be tested by applying it to these paradigms.

2.1. Synchronization primitives. The power of a particular model of computation de-
pends heavily on the synchronization primitives that are assumed, as well as on assumptions
about execution time. At one end of the spectrum is the synchronous PRAM model, which
makes use of atomic synchronization barriers that cost unit time. The schedule of processor
steps is constrained to allow each processor to take at most one step between each pair of barri-
ers. It is the atomicity of the execution of barriers that makes the PRAM a synchronous model;
by removing the assumption of a global clock, we are replacing this strong synchronization
primitive with a weaker one. The choice of a primitive is a parameter of our model.

In this paper, we consider the atomic read/write cell [15], 16]. The reader is referred to
Herlihy 11 for a discussion of several primitives and their relative strengths in an environment
where processors are subject to arbitrary delays; under such a measure, the atomic read/write

cell is the weakest of the primitives studied. Intuitively, reads and writes are the only atomic
operations applied to such a cell; these operations are seen as covering intervals, not points,
in time. An assignment of processor actions to time intervals is a schedule. Operations in
a schedule are concurrent if and only if the associated time intervals overlap. The following
property can be guaranteed of accesses to an atomic read/write cell: for any schedule, the
values returned by the reads are consistent with some total ordering of processor steps formed
by shrinking each time interval to a point within the interval. This property is also known as the
correctness condition of linearizability [12]. When the accesses to each cell are linearizable,
it can be shown that all actions taken together are linearizable. Herlihy and Wing 12] argue
that linearizability is the basic correctness condition needed for reasoning about concurrent
objects. In this sense, the atomic read/write cell is the weakest synchronization primitive.

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1233

2.2. Complexity measures. The absence of a global clock results in the absence of an
obvious choice for a time complexity measure. Our complexity measure should reflect the
actual elapsed time achieved on real machines, and therefore should appropriately capture the
notions of processor speed and load balance. The relationship with processor speeds can be
phrased in the following simple-minded fashion. Consider the time complexity, according to
some measure, of executing an algorithm with processors operating at certain fixed speeds.
If we then consider the complexity when several of the processors are replaced by faster (or
slower) ones, the time measure should not increase (respectively, decrease). The issue of
load balance can be illustrated by considering an execution in which all processors have the
same speeds and the work is balanced among the processors. If we compare the complexity
with that arising from a situation in which the work is unbalanced, it would be expected that
the complexity should not be any higher in the balanced case. Intuitively, if the machine
speeds are close and the parallelism is high, the time measure should be low; if imbalance in
speeds results in the inefficient use of processors, the time measure could be high. Finally, we
would like our measure to be a generalization of the measure used in the synchronous PRAM
model, so that comparisons between synchronous and asynchronous complexities have some
meaning.

It is important to note that the initial and final locations of information may be key factors
in influencing an algorithm’s complexity (or even whether or not a problem is tractable). In
particular, it may be important to specify whether inputs are distributed in local memory or
stored in shared memory. It may also be important to define at what point an algorithm has
been completed, where completion conditions range from all processors knowing that the
algorithm has been completed to having the correct answer somewhere in global memory.
Unless otherwise stated, we will assume that initial values are held in global memory and that
the algorithm has terminated when some processor writes into a special write-once answer
cell. This implies that at least the writing processor is aware that the computation has been
completed.

2.3. Paradigms. The behavior of various algorithms in an asynchronous setting depends
on the degree of interaction between processors. In the following, we distinguish between
problems, particular algorithms to solve problems, and paradigms, or classes of algorithms.
The independence paradigm captures algorithms in which the processors work independently
from one another. The synchronous cost of an algorithm in the independence paradigm is
simply the maximum number of steps taken by any of the processors. Since in this case there
is no interaction at all, it would seem that the synchronous and asynchronous time measures
should be identical.

In contrast, the synchronization paradigm, encompassing such algorithms as the execution
of a synchronization barrier and the computation of the OR of the inputs, involves strong
interaction between processors. In essence, each processor must wait until all processors are
ready to synchronize. Equivalently, an algorithm in this paradigm can be seen as delaying all
processors until each processor has reached a particular step in its program. In a synchronous
model, the execution of a synchronization barrier is assumed to be atomic; to compute the OR
in an asynchronous model, the straightforward adaptation of the constant time synchronous
algorithm does not yield a correct solution. In fact, it does not seem likely that a synchronization
barrier can be executed in constant time in an asynchronous setting.

The third paradigm is pointerjumping, in which processors interact, but at the same time
adapt to each others’ speeds. In algorithms of this type, the inputs initially form a linked list
in global memory and each processor holds in local memory the address of a unique node in
this list. The particular algorithms will differ in the values held at each node and the functions
used to update them. For example, in a list ranking algorithm, the value at a node at any time

1234 NAOMI NISHIMURA

indicates the number of successors of the node detected thus far. The program executed by
a particular processor consists of phases, where in each phase a processor chooses a node,
reads its pointer, follows the pointer to read its successor’s value and pointer, and then updates
its node’s value and pointer. As such an algorithm progresses, each node’s pointer advances
toward the tail of the list, coalescing information along the way, using its successor’s pointer
and value. When all pointers have reached the tail ofthe list, the algorithm has been completed.
In a particular synchronous algorithm, each processor is assigned a particular node, which it
repeatedly updates. This synchronous algorithm on n inputs consists of log n phases. After
phase each processor points to the cell that was 2 links away in the original list or points
to the tail of the list. Since each phase consists of O(1) timesteps, the running time is in
O(logn).

A single slow processor will not substantially alter the O(log n) running time of this
algorithm. Each processor that reads the slow processor’s cell has just one more pointer to
read; when the slow processor gets around to taking a step, it benefits from the work done
by the owner of the cell it reads. It seems that the difference between the synchronous and
asynchronous complexity of pointer jumping should be greater than the difference between
synchronous and asynchronous complexity of the independence paradigm and less than that
of the synchronization paradigm.

3. A new model and measure.

3.1. Definition of the model. In this section, we introduce a new model which consists
of p processors communicating asynchronously through rn shared atomic read/write cells. As
in the PRAM model, each processor is a random access machine executing a program made
up of reads and writes to global memory and local operations]. The model is based on most
PRAM assumptions: the existence of unique processor IDs, the lack of faults of any kind,
and the equality of costs of all operations. However, in a departure from the PRAM, there is
no assumption of synchrony and hence no implicit global clock. Consequently, although the
steps of a particular processor’s program are executed sequentially, global memory accesses by
different processors can be interleaved or overlapped in arbitrary ways, resulting in arbitrary
schedules of processor steps.

In the absence of a global clock, it is not immediately clear how time can be measured;
it is this aspect that gives rise to the widest divergence among asynchronous models, as
will be discussed in 3.4. A possible starting point is the synchronous complexity measure,
which is usually stated in terms of the global clock. Removing the clock from discussion,
the synchronous time complexity of an algorithm on a particular input can also be expressed
as the maximum number of steps taken by any processor in the course of the execution. In
the asynchronous setting, the actions performed in the execution of a particular algorithm
on a particular input might depend on the particular schedule of processor steps that occurs.
Consequently, the maximum number of steps taken by any processor might depend on which
schedule occurs. A worst-case measure can be determined by maximizing over all schedules.
If all possible schedules are allowable, then the worst-case measure can in essence be a
determination of how well the algorithm degrades into a sequential algorithm. (Although this
measure is of interest in its own right, it is based on an event that has very low probability,
yielding a sequential measure.)

Instead, we consider time to be defined as the expected maximum number of steps taken
by any processor, where the expectation is calculated given a distribution on all possible
schedules. Instead of expressing this distribution in terms of schedules, we make use of
the fact that the results of the accesses to all the memory cells in any schedule are as if the
accesses occurred in a sequential order, as discussed in 2.1. We define a linearization for p
processors to be a sequence of the processor IDs; a linearization represents a schedule for a

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1235

particular computation if the result of the computation is as if steps were taken sequentially
by the processors in the order specified in the linearization. Since there may be more than one
total order of the actions consistent with a particular schedule, there may be more than one
linearization that can represent a particular schedule. Each linearization represents at least
one schedule, namely, a schedule in which no actions are concurrent. We can thus express a
distribution on the set of all schedules by a distribution on the set of all linearizations, where
if each schedule has a nonzero probability of occurring, each linearization has a nonzero
probability of occurring.

In our formal definition of the time complexity of an algorithm, the numbers of steps taken
by the various processors can be normalized by a weighting function for relative processor
speeds, as discussed in 7. Here we define the time complexity of algorithm A when the
weights of the p processors are all equal to one. For I an input of size n, a distribution on
linearizations for p processors, and a linearization, the time complexity of A, ta (p, n), is

max-pr,[] .nax [(numberf stepstakenbyprcessr j ninputl) }using algorithm A with linearization

The time complexity ofa problem can be defined, as in the synchronous setting, as the minimum
over all algorithms solving the problem of the time complexity of the algorithm.

3.2. Intuition. To develop our intuition, we consider the pointer jumping paradigm,
and determine the maximum number of steps taken by any processor for several specific
linearizations. To begin, we focus on a simple situation in which processors progress at

roughly the same rate. We will say that a linearization of p processors is a round-robin
ordering if for all i, steps pi + through p(i + 1) of the linearization contain exactly one

step by each processor. In the case of a round-robin ordering, the progress made is akin to
that made in the synchronous environment, and the maximum number of steps taken by any
processor is O(log p). Now suppose that we altered the above linearization by delaying one
processor P. Any processor assigned to a cell closer to the tail of the list than P’s cell would
not be affected by P’s actions. The progress by processors farther from the tail may be slowed
by one doubling phase, or a constant number of steps, over their progress in the round-robin
case. The processor P itself will take at most O(log p) steps, yielding an overall maximum
of O(log p) steps. On the other hand, the degenerate sequential case (in which processor
takes all its steps before processor + 1, where processors are numbered in increasing order
from the head of the list) takes O(p) time by our measure. This makes sense; it is very far
from being synchronous and hence is not making good use of the parallelism.

3.3. Evaluation of the new model. Our model fulfills the criteria outlined in 2. The
synchronization primitive assumed is a very weak one, the atomic read/write cell, the use
of which can be simulated on models with stronger primitives. The model does not pose
any restrictions on the class of allowable algorithms. Correct algorithms are correct for any
possible schedule of processor steps. The complexity of an algorithm does not depend on
restrictions on the set of schedules that may occur, only on the probability distribution on the
schedules in the set. The use of a weighting function (7) allows for the complexity measure
to differentiate between replacing a subset of the processors by slower processors and by faster
processors. Since the synchronous measure is in fact the expected maximum number of steps
taken by any processor, the time complexity on our model, under the distribution in where
there is a single possible interleaving, can be compared to the time complexity on synchronous
PRAMs.

Finally, the complexities of the three basic paradigms for distributions in C and S (as
defined in 4) conform to our intuition. Pointer jumping and synchronization both have

1236 NAOMI NISHIMURA

complexity O(logn) for problems of size n using n processors; this will be discussed in

4-6. In the independence paradigm, each processor exits the computation as soon as it
has completed its individual steps. Thus, the number of steps taken by a processor is the
same for all linearizations. The time required is exactly the maximum number of steps in any
processor’s program.

3.4. Related work. In the last few years, several different asynchronous models have
been proposed; we restrict our attention to those which communicate through shared memory.
These models differ from ours primarily in the definition of complexity measures. Each
measure is defined to avoid the degenerate sequential case; some restrict the legal linearizations,
some restrict the algorithms under consideration.

Gibbons [8], [9] observes that although any synchronous algorithm can be transformed
into a synchronous one by inserting a synchronization barrier after each step, for certain
algorithms fewer synchronization barriers are necessary. To keep analysis simple, Gibbons
stipulates that if one processor reads a cell and another processor writes the same cell, there
must be a synchronization barrier between these two actions. This results in the inclusion of
barriers, and consequently the increase in running time, in algorithms for problems that have
no inherent need for synchronization. Moreover, the set of allowable algorithms is constrained
by this rule. The time complexity of a sequence of steps between synchronizations, a phase,
is taken to be the maximum number of steps taken by any processor during the phase. The
insertion of a synchronization barrier after each phase ensures that the algorithm is slowed to
the speed of the slowest processor each phase. Although the complexity measure remains the
same no matter what interleaving of processor steps occurs, the actual elapsed time is in fact
very sensitive to changes in speeds of processors.

Valiant’s [25], [26] message-passing Bulk-Synchronous Parallel model (BSP) shares with
Gibbons’ model the division of processing into phases between synchronization barriers.
Relying on a sufficiently large number of virtual processors for which an algorithm is written
in comparison to the number of processing units on the actual machine, a balance between
computation and communication costs can be realized. Valiant argues that his model captures
the true essence of parallel computation by bridging shared memory and message-processing
models. As a consequence of that very generality, however, the BSP is not sufficiently fine-
grained to allow for a full investigation of the power of asynchrony in a shared memory
setting.

The model proposed by Kruskal, Rudolph, and Snir [14] and Cole and Zajicek [2] mea-
sures time as the maximum number of minimal rounds needed to complete the algorithm,
where a round is a sequence of steps during which each processor takes at least one step (the
notion of rounds was first introduced by Fischer and Lynch [6]). This has the effect of remov-
ing certain linearizations from consideration. In the case of pointer jumping, the maximum
occurs in the synchronous case, when each processor takes only a single step each round.

Martel, Park, and Subramonian [18] consider an asynchronous model subject to fail-stop
errors, where the schedule is chosen by an adversary. As ammunition to use against the
adversary, the processors each have independent random number generators, used to perform
probabilistic computations. Since all algorithms in this model are probabilistic, this model is
best compared to a probabilistic PRAM model.

More recently, in independent work Cole and Zajicek [3] have defined a model based on
distributions of interleavings. Their unbounded delay model consists of a class of distributions
that is strictly contained in the classes of distributions considered in this work.

4. Probability distributions. It seems that our measure is only as good as the choice of a
distribution over linearizations. Ideally, it is desirable to be able to analyze each algorithm with
respect to all possible distributions. We begin by considering the behavior of asynchronous

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1237

algorithms under certain distributions, chosen for their proximity to possible behavior of
actual processors. These distributions are fairly close to the synchronous setting, which can
be seen in this model as subject to a distribution on linearizations, all of which are round-robin
orderings of processor IDs. In 4.1 and 4.2, we define two general classes of distributions
and state facts that apply to these classes. The proofs of the facts, which use only elementary
probability theory, appear in [21]; Facts 4.5 and 4.9 are consequences of Raghavan’s version
of the Chernoffbound [22]. In 4.3, observations are made concerning the application of facts
to algorithmic complexity and the relations of the distributions to those used in other work.

4.1. Simple delay distributions. A simple way ofgenerating a distribution is by allotting
steps in an approximate round-robin ordering, where a processor may miss a step from time
to time. Such a distribution can be represented by a set of Markov chains, with one chain
per processor. Transitions are made simultaneously on all Markov chains, and the resultant
outputs are ordered to form a linearization. The only type of output symbol generated by the
Markov chain for the ith processor is the ID i. The outputs are ordered according to a sequence
of permutations of processor IDs, one permutation per transition; the outputs resulting from a
particular transition are ordered in a manner consistent with the permutation for that transition.
Recall that a linearization represents a schedule of possibly overlapping processor actions
(3.1); the simultaneous transitions of the Markov chains are used to create linearizations
that approximate round-robin orderings and hence do not necessarily imply simultaneous
processor actions. The simplest nontrivial distributions of this type are generated by Markov
chains with two states, one corresponding to a step (an output state), the other to idle time (a
nonoutput state); we call these the simple delay distributions. We define the time complexity
of an algorithm A for a fixed set of two-state Markov chains. For I an input of size n, O a
sequence of permutations of IDs of p processors, and a linearization for p processors, the
complexity of A, a (p, n), is

maxmax-Pro[g] .nax [(numberf stepstakenbyprcessr j ninputI) }(.9 \ using algorithm A with linearization

As before, the time complexity of a problem is defined analogously. Let/9 be the probability
of transition from the step state to the step state in the Markov chain for processor i, and let
/i be the probability of transition from the idle state to the step state. In subsequent sections
we will consider the set of distributions S, defined as follows.

DEFINITION 1. The set S is the set ofsimple delay distributions such that all Di ’s and i ’S
are within a constantfactor ofeach other independent of p, and are in f2 (1/po1).

The Markov chain for one processor is illustrated in Fig. 1, for p 1/3 and 5 1/4.

2/3

1/3) 3/4

1/4

FIG. A simple delay distribution.

Distributions of this type are intended to approximate slight deviations from a synchronous
setting. In order to assess the accuracy of the approximation, we characterize the synchronous
setting in terms of possible linearizations and their frequencies, and then compare this char-

1238 NAOMI NISHIMURA

acterization with that of the simple delay distributions. Since in a synchronous PRAM a write
never takes place at the same time as a read, each read or write phase can be seen as adhering
to a round-robin ordering of the processor steps. If we slightly modify this model to allow
writes to take place at the same time as reads, it is possible that in a round-robin ordering more
progress could be made than if all actions occurred in lock-step. For example, whereas in the
synchronous setting if one processor writes to a memory cell, another processor can read it
only in the next read phase; here the write can precede the read in a round-robin ordering. We
avoid this possibility by defining the complexity of A so that the steps within a transition occur
in the least advantageous possible order. The simple delay distributions deviate further from
the synchronous setting by allowing the possibility that in some phases not all processors take
steps.

The next facts are of use when considering simple delay distributions. Here we relate
the expected maximum number of steps taken by any processor to the number of transitions.
Recall that for these distributions, the transitions for the processors are in lock-step, though the
resulting set of processor steps may not be. Let or, mini {Pi,/i and let or* max/{Pi, i }.
By definition of S, or, 6 (R)(or*) and or, 6 g2(1/n(1)).

FACT 4.1. The expected maximum number of steps taken by any of n processors in an

expected transitions is in O(tr*), for f2((logn)/cr*).
FACT 4.2. For any g < n, the expected number of transitions needed to allot at least

one step to each of a fixed set of g out of n processors is in f2((logg)/cr*), provided that
or* < k/ In g for a constant k < 1.

FACT 4.3. The expected number oftransitions neededfor each ofn processors to take at

least ktcr, steps is in (R)(t) for any constant k > 0 andfor f2 ((logn)/cr*).
FACT 4.4. Suppose that transitions, f2((logn)/o-,), are taken by n processors. For
(c’ In n)/r,, there exists a constant c > 0 depending on c’ such that the probability that

there is a processor that takesfewer than ctcr, steps is at most 1/n1).
FACT 4.5. Ifthe expected numberofsteps taken by aprocessor is at least E, then the actual

number ofsteps taken by that processor is at least El2 with probability at least e-el8.
By using Fact 4.1 in upper bounds, we can determine the expected maximum number

of steps per processor by simply finding the total number of transitions taken. If we do not
know the total number of transitions, it in fact suffices to know the expected total number of
transitions. Facts 4.2 and 4.3 have the following useful consequence. Suppose we take enough
steps to ensure that each processor takes at least one step. By taking a constant factor more
steps, we are ensured that each processor takes at least log n steps.

4.2. Constant speed distributions. We may instead wish to model a situation in which
processor actions are not independent of each other, such as when one processor’s use of
the network slows down another processor’s accesses. We can assign to each processor j a
probability pj of being allotted the next step in the linearization, where y’=l pj 1. We call
such a distribution a fixed speed distribution, since it corresponds to processors maintaining
particular speeds throughout the course of the computation. A fixed speed distribution can
be represented as the vector (p pp). Each Pi is a function only of p, the total number
number of processors. A uniform distribution is a special case of a fixed speed distribution,
where Pi 1/p for all i. We consider the following set of distributions.

DEFINITION 2. The set C, or constant speed distributions, is the set offixed speed distri-
butions wherefor all and j, Pi /Pj is bounded by a constant independent of p.

In the simple delay distributions, each transition by the various Markov chains could be
seen as generating a section of the linearization that approximated a round-robin ordering.
In constant speed distributions, however, there is no local sense in which the linearizations
produced approximate those associated with the synchronous setting. However, the deviations

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1239

remain moderate in that in a long enough section of a linearation, with high probability each
processor will take a number of steps roughly proportional to its speed.

The following facts allow us to determine the expected maximum number of steps taken
by any processor by first determining the expected total number of steps taken by all proces-
sors. Throughout this section, it is assumed that all processors are active until the end of the
computation. In Facts 4.6-4.9, we consider an arbitrary distribution 3 on linearizations of n
processors such that 3 6 C. Let ?,* max/{Pi and let ?,, mini {Pi }. We know that ?’* and
y, are within a constant factor of each other, by the definition of C.

FACT 4.6. The expected maximum number of steps taken by any of the processors in a

linearization ofexpected length is in O(t/n), provided that f2(n log n).
FACT 4.7. For any g < n, the expected number ofsteps needed to guarantee that each of

afixed set ofg out ofn processors take at least one step is in (R)(n log g).
FACT 4.8. The expected number of steps needed to guarantee that each processor takes

at least kty, steps is in (R)(kt), for any constant k > 0 andfor f2((logn)/y,).
FACT 4.9. Ifthe expected number ofsteps taken by aprocessor is at least E, then the actual

number ofsteps taken by that processor is at least El2 with probability at least e-E/8.
Facts 4.6-4.9 are analogous to Facts 4.1, 4.2, 4.3, and 4.5, respectively, and have the

same uses as noted in 4.2. In particular, as a consequence of Facts 4.2 and 4.3, the number
of transitions needed to obtain O (log n) steps per processor is within a constant factor of the
number needed to ensure one step per processor. Note, in Fact 4.6, that the expected total
number of steps divided by the number of processors will be equal to the time, as in the
synchronous case.

4.3. Further observations about distributions.

4.3.1. Other useful theorems. In each algorithm considered in this paper, it is assumed
for simplicity that all processors remain in the computation until its completion. Since allowing
processors to exit early will only decrease the complexity of an algorithm, the results are not
restricted by this assumption. However, in the case of lower bounds, the issue of early exiting
processors cannot be ignored.

The proof of Theorem 4.10 follows from the facts in 4.1 and 4.2; it can be found
in [21].

THEOREM 4.10. Let X be an algorithm such that no processor can exit the computation
until all n processors have entered the computation. Then the algorithm X requires f2 (log n)
time using n processorsfor distribution on linearizations such that C t3 {s $ r* <

k/ In n for a constant k < }.
THEOREM 4.11. If an algorithm A can be decomposed into A’ and A" such that the

preconditionsfor A" are a subset ofthe postconditionsfor A’, then the time needed to execute

A is at most the sum of the times needed to execute A’ and A".

4.3.2. Distributions and other models. Another way to view distributions on lineariza-
tions is by considering the distribution on times taken between steps by each processor. The
uniform distribution corresponds to choosing this waiting time for each processor according
to an exponential distribution, independent of all other processors.

Many other models can be characterized as special cases of the general model, with
specific distributions and restrictions on algorithms imposed. A special case of a simple delay
distribution, where Pi i /9 for all and p is bounded below by a constant, yields
Cole and Zajicek’s [3] unbounded delay model. The synchronous PRAMs are generated by
distributions in which only linearizations corresponding to round-robin orderings have nonzero
probabilities; the only algorithms allowed are those where reads and writes occur in alternating
rounds. In the case of the PRIORITY PRAM, steps pi + to p(i + 1) must be ordered from

1240 NAOMI NISHIMURA

lowest priority to highest. The various types of global access result from further restrictions
on allowable algorithms. Probabilistic models of fail-stop errors, such as those considered by
Kedem, Palem, and Spirakis 13], are formed by simple delay distributions where Oi p and
/5 for all i, so that once a step is missed, the processor takes no further steps.

It is important to note that the constant speed distributions differ from any of the distri-
butions considered by Cole and Zajicek [3]; to see this, consider in the uniform distribution
the probability that a processor takes three consecutive steps without any steps by other pro-
cessors intervening. In essence, the uniform distribution provides a more pessimistic view of
the world, since greater deviations from a round-robin allocation of steps are more likely to
occur. This pessimism results in more robust upper bounds.

5. Barrier synchronization. In this section we establish the upper and lower bounds of
(R) (log n) on the complexity of executing a synchronization barrier by n processors. We then
show how this result can be used to obtain complexities ofvarious algorithms, including general
classes of algorithms transformed in a uniform way from their synchronous counterparts.

5.1. Time complexity analysis. A synchronization barrier can be seen as an algorithm
that begins by each processor signaling that it is ready to synchronize and ends by each
processor knowing that all the other processors have signaled. In particular, no processor can
exit the computation until all processors have entered the computation. It is in fact possible
to obtain a tight bound on the complexity of synchronization.

THEOREM 5.1. Synchronization of n processors can be performed in O(log n) time for
any distribution 6 on linearizations such that 6 E C (3 $. Synchronization of n processors
requires 2(log n) time for any distribution 6’ on linearizations such that 6’ C t3 {s $

a* < k Inn for a constant k < }.
Proof We let a* max/{Pi, i} in the simple delay distributions, and we note in square

brackets the modifications needed to alter the proof for constant speed distributions to one for
simple delay distributions.

The lower bound is a consequence of Theorem 4.10. For the upper bound, we consider
an algorithm operating on a binary tree all of whose nodes initially contain the value 0 (it is
not clear how the algorithm can work without some assumption on initialization). We will say
that a node in the tree has been filled if some processor has written a in it. Each processor
begins by filling a leaf node to indicate that it is ready to synchronize. When the root node
has been filled, all processors are ready to synchronize; a particular processor completes its
computation of the synchronization as soon as it reads a from the root node. The reading
of the root can be accomplished in one more step by each processor, or in O (log n) time, by
Facts 4.7 and 4.6 [by Facts 4.2 and 4.1 and by having processors alternate between steps taken
to do work in the tree and steps taken to read the root node. It will suffice to analyze the filling
of the nodes of the tree.

The nodes of the tree are filled from the bottom up, with each processor attempting to fill
one node at each level. The nodes that a processor attempts to fill form a path from a leaf to
the root. A node can be filled only after both its children have been filled. More formally,
we make the following definitions. A distinct leaf node, gp, is assigned to each processor P.
The nodes on the path from g p to the root of the tree form the set nodes(P). For a node u, let
proc(u) be the set of processors P such that u 6 nodes(P). The set proc(u) is exactly the set
of processors that attempt to fill u. Equivalently, proc(u) can be seen as the set of processors
P such that p is a leaf in the subtree rooted at u.

The processors will have completed the algorithm as soon as the root is filled. Suppose
that each processor takes (R)(log n) steps. By Fact 4.8 [Fact 4.3], the expected total number
of steps will be in (R)(n log n) [the expected number of transitions will be in (R)(log n/a*)]; by
Fact 4.6 [Fact 4.1], the expected maximum number of steps per processor will be in O (log n).

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1241

To complete the proof of the theorem, it will suffice to show that if each processor takes
t0(log n) steps, the root will be filled, regardless of the ordering of steps. The key notion is
that of delay.

DEFINITION 5.2. A processor P is delayed at node u if the child of u in nodes(P) has
been filled, the other child of u has not been filled, and it is P’s turn to take a step.

DEFINITION 5.3. A processor P is delayed in the subtree rooted at u if P proc(u) and
P has been delayed at a node v nodes(P), where v is a descendant ofu (note that v can be
u itself). Let delay(u) be the set ofprocessors delayed in the subtree rooted at u.

The lemma below shows that at least one processor is never delayed in the tree; such a
processor can fill the root in to (log n) steps. This completes the proof of the theorem.

LEMMA 5.4. There exists at least one processor P proc(u) such that P is not delayed
in the subtree rooted at u; equivalently,

Idelay(u)l < Iproc(u)l.

Proof. We prove our lemma by induction on the height of u. The base case is trivial"
At a leaf, no processor is delayed. Now consider a node u, with children x and y. Note that
proc(u) proc(x) t2 proc(y).

Without loss of generality, assume that x is filled before y. Consider a processor P 6

proc(y); it is clear that P cannot be delayed at u. However, for all Q 6 proc(x) it is possible
for Q to be delayed at u, in particular if Q takes a step after x has been filled but before y is
filled. We then determine that the number of processors delayed in the subtree rooted at u is

Idelay(u)l _< Iproc(x)l + Idelay(y)[.

By the induction hypothesis, Idelay(y)l < Iproc(y)l.
needed.

Thus Idelay(u)l < Iproc(u)l, as

5.2. Consequences.

5.2.1. Processor-efficient solutions. With a bit of refinement to the algorithm pre-
sented above, the synchronization paradigm can be used to obtain processor-efficient algo-
rithms for various problems. Although a synchronization problem of size n, by definition,
requires n processors, other problems in the synchronization paradigm can be solved using
n / log n processors. Note, furthermore, that the lower bound of Theorem 4.10 does not apply
to algorithms in which certain processors may exit before each processor has taken a step.
Whether or not there is an f2 (log n) lower bound for OR in such a circumstance remains an
open question.

THEOREM 5.5. The n-input problems of OR, AND, MAX, MIN, and PARITY can be
solved in O(log n) time using n log n processorsfor any distribution on linearizations such
that6 C U S.

Proof The algorithms for the various problems are very similar; here we concentrate on
the algorithm that computes the OR of n bits. We can think of the input as being partitioned
into n/ log n blocks of log n bits each. In the first stage, each processor reads a different block
of bits and computes the OR of these log n bits sequentially, in time in O (log n).

In the second stage, the processors perform an algorithm similar to that described in
Theorem 5.1. We make use of a binary tree with n/log n leaves. Each leaf is filled with
the OR of log n bits (as calculated in the first stage); each interior node is filled with the OR
of the values of its children. By Theorem 5.1, the time complexity of this algorithm is in
O(log(n/log n)) O(log n). Since the time required for each stage is in O(log n), the total
running time is in O (log n), as claimed. [3

1242 NAOMI NISHIMURA

5.2.2. Simulation of circuits and asynchronous PRAMs. Since a Boolean formula,
and hence a Boolean circuit, can be viewed as a tree, it is not difficult to transform one into an
asynchronous algorithm. For a sufficient number of processors, the depth of the circuit yields
an immediate upper bound on the time of the algorithm, as in the following theorems.

THEOREM 5.6. The problem ofmultiplying two n x n Boolean matrices can be solved in
O(log n) time using O (n3 / log n) processorsfor any distribution on linearizations such that
eCuS.

Proof Two n by n Boolean matrices can be multiplied by using a simple circuit of ANDs
and ORs. There are n/log n processors assigned to each of the n2 matrix positions. Each
processor computes the AND of log n pairs of bits and then the OR of the log n results. The
OR ofthe n/ log n values for a particular position are then computed in time O (log n), yielding
a total time complexity of O (log n).

COROLLARY 5.7. Transitive closure can be solved asynchronously in O(log2 n) time using
O(n3/ log n) processorsfor any distribution on linearizations such that C U S.

Proof The transitive closure of a matrix, can be computed by taking the nth power of the
matrix by O (log n) squarings, or a total running time of O (log2 n).

Further results can be obtained by simulating algorithms developed for Gibbons’
ASYNCHRONOUS PRAM. Since the algorithms considered by Gibbons [8], [9] alternate be-
tween the independence paradigm and the synchronization paradigm, we can easily simulate
these algorithms and analyze their running time on our model. The complexity results ob-
tained on an ASYNCHRONOUS PRAM with a charge for latency can be obtained (or improved)
on an ASYNCHRONOUS PRAM w.here there is no charge for latency. The following theorem
is a direct consequence of the construction of the ASYNCHRONOUS PRAM algorithms and
Theorem 4.11; the function B(n) is the cost of executing a synchronization barrier on n items
in Gibbons’ model.

THEOREM 5.8. Any problem that can be solved in f (B(n)) time on an n-processor
ASYNCHRONOUS PRAM with no chargefor latency can be solved on our model in 0 (f(log n))
time using n processorsfor any distribution such that C U $.

COROLLARY 5.9. The n-input problem offast Fourier transform can be solved in time
O (logz n / log log n) using n log log n/ log n processors for any distribution
CUS.

COROLLARY 5.10. The problem of merging two bitonic lists can be solved in time
O(log2 n/ log log n) using n/ log n processorsfor any distribution such that C U S.

5.2.3. Simulation of synchronous PRAMs. As a consequence of Theorem 5.1, we ob-
tain the following relation between synchronous and asynchronous complexity classes.

THEOREM 5.11. Any problem that can be solved in time on an ARBITRARY CRCW
PRAM using p processors can be solved asynchronously in time O(t(p/p’ q- log p’)) using
pt processorsfor any distribution such that C U S, andfor <_ p’ <_ p.

Proof. It will suffice to show how a single write phase of ARBITRARY can be simulated
by p’ asynchronous processors in O(p/p’ + log p’) time. The read phase is analogous.

Each asynchronous processor is assigned lp/p’J ARBITRARY CRCW PRAM processors.
At a given PRAM step, each asynchronous processor executes the appropriate step taken by
each of the lp/p’J simulated processors. The p’ processors then synchronize in O (log p’)
time using separate parts of memory. It is not difficult to see that the memory cell contents
in simulating cells at the end of the synchronization will correspond to those obtained after a
synchronous step. [3

When p’ 1, the result corresponds to a single processor sequentially executing all O(tp)
work. The other extreme, when p’ p, corresponds to inserting a synchronization barrier after
each PRAM step and the work decreases to O(t log p). When p’ O(p log log p/log p), we

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1243

obtain the result that any problem that can be solved in time on an ARBITRARY CRCWPRAM
using p processors can also be solved asynchronously in time O (tp/p’) using p’ processors
for any distribution 6 such that 3 6 C td,9, using within a constant factor the same total amount
of work as in the synchronous case.

6. Pointer jumping. In the paradigm of pointer jumping, processors interact, but at
the same time adapt to each other’s speeds. This adaptation allows for an O(log n) time
asynchronous pointerjumping algorithm, matching the synchronous time bound. Since pointer
jumping forms the basis of many fundamental problems, it is no surprise that Theorems 6.3
and 6.13 yield identical complexity measures for other problems such as list ranking and
suffix sum. By adding a preprocessing stage during which the list is made doubly-linked,
we can compute for each node in an input tree such information as preorder number, post-
order number, level, and number of descendants in O (log n) time using the Euler tour tech-
nique [24].

In the following treatment, we consider a particular pointer jumping algorithm that starts
with n inputs forming a linked list in global memory. Each node is associated with a distinct
processor which has its address stored in local memory. The program of each processor is
identical to that in the standard synchronous algorithm; however, the set of tasks executed
may vary with the linearization. As the algorithm progresses, each processor advances the
pointer of its node toward the tail of the list. Repeatedly, it follows its node’s pointer to read
the successor’s pointer, and then updates its node’s pointer. The algorithm ends when all
pointers point to the tail of the list. Alternatively, we could have all processors execute a
synchronization barrier after updating their pointers to point to the end of the list. We show
in Theorems 6.3 and 6.13 that the complexity of pointer jumping is in O (log n), and hence an
extra O (log n) for synchronization does not change the overall complexity.

6.1. Time complexity analysis.

6.1.1. Simple delay distributions. We begin by analyzing the complexity of the pointer
jumping algorithm when the linearization is chosen subject to a distribution in $. The analysis
for distributions in C, which follows in 6.1.2, is more complicated.

The analysis of the algorithm is based on a very simple idea. We would like to divide the
sequence of steps taken during an execution of the algorithm into log n phases, and show that
after phase i, each processor’s node is either pointing at least 2 positions closer to the tail of
the list than at the start of the computation, or pointing to the tail of the list. We will say that
such a processor is on-time at the end ofphase i, or more succinctly, on-time at i. If this were
true, then after phase any node would be at least as far along the list as the corresponding
node after the th step of a synchronous computation. After log n phases, each node would
point to the tail of the list. Ensuring that each processor is on-time at the end of each phase,
however, would require that a phase have a prohibitively large number of steps.

Instead, we look at phases of [18/cr.] transitions and relax the requirement for progress
(recall that r, is the.minimum probability of any processor taking a step at any transition).
Namely, we wish to show that with probability at least a constant, say 1/3, an arbitrary
processor P is on-time at the end of phase i. We divide the linearization into two stages, and
show that in each stage the expected maximum number of steps taken by any processor is in
O (log n). The first stage consists of log n phases; we show in Lemma 6.1 that at the end of this
stage, each processor is pointing to the tail of the list with probability at least 1/3. The second
stage consists of the remainder of the algorithm. In Lemma 6.2, we show that this stage can
also be completed in O (log n) time, yielding an overall time complexity of O (log n). We now
consider the analysis of the stages one at a time.

1244 NAOMI NISHIMURA

LEMMA 6.1. After the first 18 log n/o’,] transitions in a linearization chosen from a
distribution in S, for each processor P, the probability that P is pointing to the tail ofthe list
is at least 1/3.

Proof. Since any processor P will point to the tail of the list if it is on-time at the end of
the (log n)th phase, it will suffice to prove by induction on phase numbers that for phase i, P
is on-time at with probability at least 1/3.

A processor is on-time at the end of phase if there were at least two times during phase
at which it updated its node’s pointer to point to the node of a processor that was on-time

at the end of phase 1. For convenience, we will use the phrase "P updated to a cell ofa
processor on-time at 1" to express the notion that P updated its node’s pointer to point
to a node of a processor that was on-time at the end of phase 1. We have a lower bound
on the probability that an arbitrary processor P is on-time at i, that is, the probability that P
updated to cells of at least two processors that were on-time at 1.

For any events A and B, we know that Pr [A] > Pr[AIB] Pr[B]. Here we let A be the
event that P updated to cells of at least two processors that were on-time at and B be the
event that P took at least 9 steps. It will now suffice to determine lower bounds on Pr[AIB]
and Pr[B].

We first determine a lower bound on the probability that P took at least 9 steps in a
particular phase. Since P takes a step with probability at least or,, it is clear that E > 18, and
hence by Fact 4.5

Pr[B] > e-2"25 > .89.

In order to show that Pr[A] >_ 1/3, it will now suffice to show that Pr[AIB] > .38. Of
the 9 or more steps taken by P during phase i, there will be at least four reads followed by
writes, updates to nodes of four different processors. By the induction hypothesis, each of
these processors was on-time at the end of phase with probability at least 1/3. Relying
on the fact that in this type of distribution the probability of each processor taking steps is
independent of the steps taken by any other processor,

Pr[AIB] > Pr[none are on-time] Pr[exactly one is on-time]

> -(_)4- 4.1/2. (_)3 > 0.38,

completing the proof of Lemma 6.1. [q

We are now ready to determine the complexity of stage 2.
LEMMA 6.2. Suppose thatfor each processor P, the probability that P is pointing to the

tail of the list is at least 1/3. Consider a linearization chosen according to a distribution in
S. Then the expected maximum number ofsteps taken by any processor in the second stage is

in 0 (log n).
Proof Let a’ be a constant defined later, and let an experiment consist of a’ log n/cr,

transitions. For a log n/or,, we know from Fact 4.4 that there exists a constant a such that
the probability that there is a processor that takes fewer than a log n steps is at most 1/n (1).
We say an experiment is successful if each processor takes at least a log n steps and each
processor reaches the end of the list. The expected number of experiments is at most 1/p,
where p is the probability of success. To obtain an upper bound of O((logn)/cr,) on the
expected number of transitions (to which we can apply Fact 4.1 to obtain our result), it will
suffice to obtain as an upper bound on the probability of failure a constant less than 1.

Let t be the event that there exists a processor that takes fewer than a log n steps, and let
/3 be the event that there exists a processor that does not reach the end of the list. Then

Pr[Failure] Pr[4 v 13]
(1)

<_ Pr[.A] + Pr[BI-’,4].

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1245

The upper bound of 1/n (1) on Pr[4] is a consequence of Fact 4.4. To obtain a similar upper
bound on Pr[/31--,,A], we note that if a processor reads the node of a single processor whose
node is pointing to the tail of the list, it too advances its pointer to point to the tail of the list.
The probability of a successor pointing to the end of the list at any point in this stage is at least
1/3, and hence Pr[/31--,4] < (2/3)"lg" which is bounded above by 1/n (1) for a suitable
value of a. We can choose a’ appropriately. 1

We can now prove Theorem 6.3. By Fact 4.1, the expected maximum number of steps
taken by any processor in stage is in O(logn). By Lemmas 6.1 and 6.2, stage 2 can be
completed in O(log n), yielding a total time of O(log n).

THEOREM 6.3. Pointer jumping can be performed in time O(logn) using n processors
for any distribution $.

ti.1.2. Constant speed distributions. The time complexity analysis for constant speed
distributions is complicated by the fact that the probability of one processor taking a step is
not independent of the steps taken by other processors. In this section we develop a general
technique for handling such dependencies, which may prove of use in complexity analysis of
other algorithms.

To determine the complexity of the algorithm given a linearization chosen according to a
distribution in C, we again divide the linearization into phases, this time of (8w + 4)(c.)-2n
steps, where c, and c* are constants such that ,, >_ c,/n, ,* <_ c*/n, and w > 2 is a value
such that

(t(1- 1- -w. >0.53.
c,(2w + 1)

(Note that each of the two factors increases as a function of w, so such a w exists for all
values of c, and c*.) The complexity analysis for this type of distribution is complicated by
the correlation between different processors being allocated steps. In a fixed total number of
steps, if one processor takes a large number of steps, any other processor is less likely to take
a large number of steps. In particular, suppose that processor P’ reads the node of processor
P during phase i. The fact that P’ reads the node of P implies that a certain amount of
progress, and hence a certain number of steps, were allocated to P’ and the processors with
nodes between the nodes of P’ and P. Since these steps were allocated in this way, we know
that they were not allocated to P and its successors. This decreases the probability that P and
its successors were allocated steps, and hence the probability that P is on-time.

We consider the probability of P being on-time conditioned on progress made by its
predecessors. We can represent the state of the algorithm at any time by a directed graph, as
follows: each processor is represented as a vertex, and a pointer from the node of P’ to the
node of P in the list is represented as a solid edge from the vertex for P’ to the vertex for P.
Clearly each vertex will have a single solid outedge. In addition, a processor/3 may have read
and calculated a new pointer value, for example to/5, but not yet written the new value from
its local memory to update its pointer in global memory; the new poi_nter value is represented
as a dashed directed edge from the vertex for P to the vertex for P. The configuration of
predecessors of P at a particular time is simply the induced subgraph on all vertices that can
reach P by any combination of solid and dashed edges; the set of predecessors is defined not
to include P We let Q/ be a configuration of the predecessors of P at the end of phase i.
If we know the configurations Q,- and Q,, we have partial information about the progress
made during phase by the predecessors of P at the end of phase i.

Consider a particular configuration at the end of phase 1. Fixing a configuration at the
end of phase induces a distribution on the number of steps that are allotted during phase to

1246 NAOMI NISHIMURA

the predecessors of P at phase and the number that are allotted to the nonpredecessors.
Given an allotment of steps to the nonpredecessors, we would like to be able to argue that,
with reasonable probability, P is allotted a certain number of steps. This requires that the set
of nonpredecessors be fairly large. Notice that if a node is originally closer to the tail of the
list than P’s node, then its processor is never a predecessor of P.

DEFINITION 6.4. A processor P is a tail processor if it is initially assigned one of the
nodes closest to the tail of the list; otherwise, P is a head processor.

Let Sp be the set consisting of P along with the tail processors. Whenever P is a head
processor, we can conclude that Sp contains no proper predecessors of P at any time.

Initially we concentrate only on the progress of the head processors; we modify the
definition of on-time for such processors.

DEFINITION 6.5. A headprocessor P is on-time at the end ofphase ifit is pointing either
to the node ofa tail processor or to a node that was originally at least 2 positions closer to

the tail of the list.
For convenience, let C (P, i, Q) denote the condition that for a head processor P, and a

configuration Q of the predecessors of P at i, Pr[P is on-time at ilQ] >_ 1/3. Of particular
interest is the condition C(P, logn, Q), since a processor that is on-time after the (logn)th
phase is pointing to a tail processor. We will say that a head processor pointing to a tail processor
is promoted. Let D(P) be the condition that after phase log n, Pr[P is promoted] > 1/3.

We divide the linearization into four stages, treating head and tail processors separately.
We show that in each stage the expected maximum number of steps taken by any processor is in
O (log n). As in 6.1.1, the division is part of the analysis, not part of the algorithm. In the first
two stages, we consider the progress of the head processors. The first stage consists of log n
phases; Lemma 6.11 below will show that with high probability, condition D(P) will hold for
each head processor at the end of stage 1. Stage 2 begins when the first (8w + 4)(c,)-2n log n
steps have been completed, and ends as soon as each head processor is promoted. The next
stage ends when each tail processor has advanced its pointer to the tail of the list. Finally,
in stage 4 each head processor takes at most one more step to point to the tail of the list and
complete the pointer jumping problem. We now consider the analysis of the stages one at a
time.

For stage 1, we would like to claim that D(P) holds for each head processor P. Since

any head processor will be promoted if it is on-time at the end of the (log n)th phase, it would
suffice to prove for each phase and each configuration Q of predecessors of P at that
condition C(P, i, Q) holds. However, for some pairs of configurations at phases and i,
the probability of a processor being on-time may be much smaller than 1/3. We instead show
in Lemma 6.8 that with high probability C(P, i, Q) holds. Consider a configuration Q, of
the predecessors of P at i; associated with each linearization that leads to Q, is a particular
configuration of the predecessors of P at 1. We will say that a configuration Q,- is good
with respect to Q if

Pr[Sp gets > (4w + 2)lSpI/c, steps during Q,-1/ Q,] > e-’/-fi.

We will establish the fact that for a fixed configuration Q of predecessors of P at i, it
is likely that the configuration at time was good with respect to Q. We first show in
Lemma 6.6 that with very high probability, Sp will get more than (4w +2)]Sp I/c, steps during
i. Then, we show that the configuration at time is good with respect to Q with very high
probability, by a simple averaging argument in Lemma 6.7.

LEMMA 6.6. For any configuration Q ofthe predecessors of P at i,

Pr[Sp gets > (4w + 2)lSpI/c, steps during ilQ] >_ e-2"5"cfi.

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1247

Proof Since the number of steps taken during a phase is fixed, there is a fixed number of
possible sequences of steps taken during a phase and a probability associated with each one.

To determine the probability that Sp gets more than (4w + 2)1S1/c, steps, we make use
of the fact that the expected number of steps allotted to S, in a phase of (8w + 4)(c,)-2n steps
is at least (8w + 4)lS,l/c,. From Fact 4.9 it follows that

PriSe gets > (4w + 2)lSe]/c, steps] > -e-(8w+4)’lSel/8c*"

By definition w > 2, c, < 1, and Sl /-, and hence

Pr[Se gets > (4w + 2)lSel/c, steps] > e-25’/. [3

We fix a configuration Q of predecessors of P at and consider the possible previous
configurations at 1, which we call Q, Q2 Let ,4j be the set of linearizations that
result in Q at given Qj at 1. Let aj be the subset of .Aj in which Se gets at most
(4w -t- 2)1S,1/c, steps during the phase i. It follows from the statement of Lemma 6.6 that

LEMMA 6.7. The configuration at is good with respect to Q with probability at least
-e-’/.

Proof Let/3 {j 12t4#1 >_ e- I.Aj I}. Then the statement of Lemma 6.7 is

It follows from Lemma 6.6 and the definition of B that

(2)

jeB

which implies the desired result. [3

LEMMA 6.8. For any phase i, headprocessor P, and configuration Q ofpredecessors of
P at i, C(P, i, Q) is true with probability at least (w + 1)ie-’/.

Proof. We prove this lemma by induction on the phase number. A processor is on-time
at the end of phase if there were at least two times during phase at which it updated its
node’s pointer to point to the node of a processor that was on-time at the end of phase 1.
Consequently, we have a lower bound on the probability that an arbitrary head processor P is
on-time at i"

Pr[P is on-time at Q]
> Pr[P updated to > 2 processors on-time at Q].

For any events A and B, we know that Pr [A[Q > Pr[AIB A Q]. Pr [BI Q]. Here we let A be
the event that during phase P updated to cells of at least two processors that were on-time at

1, and B be the event that P took at least 2w + steps during phase i. It will now suffice to
determine lower bounds on Pr [A]B/x Q] and Pr [B Q]- Let C be the event that S, is allotted
more than (4w + 2)lS,l/c, steps. As before, since Pr[BIQ] >_ Pr[BIC/x Q] Pr[CIQ], it
will suffice to consider Pr[BIC A Q], Pr[CIQ], and Pr[AIB A Q].

CLAIM 6.9. Pr[BIC A Q] > 2c*/(c,(2w + 1)).

1248 NAOMI NISHIMURA

Proof. We wish to determine a lower bound on the probability that P takes at least 2w -t-
steps, given the fact that Sp gets more than (4w + 2)[SpI/c. steps. Suppose that Sp gets
more than (4w / 2)lSpI/c. steps; let X be a random variable equal to the number of steps
taken by P.

We can consider the choice of the processor to take the next step as a two-part process.
First, we decide whether the processor is in Sp. If the processor is not in Sp, we next choose
a particular processor; we do not care about the outcome. Otherwise, the processor is in Sp,
and we next choose a processor from Sp. We are interested in the number of steps that P
receives during phase i. If we know the number of steps that Sp receives, then the specific
configuration has no bearing on the number of steps that P receives. Since the probability of
P taking a step is at least c./n and at most c*/n when considered among all n processors,
the probability among a set of [Sp[processors is at least c./]Sp] and at most c*/]Sp]. Thus
E[X] > 4w + 2, and

Pr[X > 2w + 11 > Pr[IX- E[X]I < 2w + 1]

Pr[IX- E[X]I > 2w + 1].
Since X is binomially distributed,

(cL) (Var(X) <
c, ISPI

Var(X) Inourcase, welett 2w+lChebyshev’s inequality states that Pr[IX-E[X]I >_ t] < t2
to get

Pr[X > 2w + 1] > 1-
(2w + 1)2

2C*

c, (2w + 1)
as claimed. 1

CLAIM 6.10. With probability at least w((w + 1)i-le-vG),
2 w-1Pr[AIB /x Q] >_ () w ().

Proof Suppose that P has taken 2w + or more steps during phase i. Then there
will be at least w reads followed by writes. If we consider the state of the algorithm at the
end of phase 1, the w nodes read by P during are arranged along some path of solid
and dashed edges from P to the tail of the list. For any such path, the least progress P
could make would be by reading its w immediate successors. Although the particular path
followed and the particular w nodes read depend on the ordering of steps within phase i, we
can determine a lower bound on Pr[AIB/x Q] independent of such an ordering. For any path,
P will be on-time at if it took at least 2w + steps and if at least two of the processors
associated with its w immediate successors were on-time at 1. We now apply the induction
hypothesis to the processors of each of the w nodes that were read. For a particular one of
these processors Pj and any configuration Qj of predecessors of Pj at 1, with probability
at least (w / 1)i-le-vfi, the condition C(Pj, 1, Qj) held at the end of phase 1,
and hence Pr[Pj is on-time at Qj] >_ 1/3. It is then simple to calculate that, with

probability at least w((w + 1)i-1 e-V), for all w processors the conditions are true. When
all the conditions are true,

Pr[A[B/x Q] > 1- Pr[none are on-time]- Pr[exactly one is on-time]

2 w-1> 1-()-w..()
as claimed.

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1249

To complete the proof of Lemma 6.8, let ,A be the condition that Pr[A B/x Q] >
2 w-1()w w (3) and let/3 be the condition that Pr[CIQ] > e- If 4 and/3

are true, then

Pr[P is on-time at Q]

>_ Pr[A B /x Q]. Pr[C Q]. Pr[B C /x Q]

c, (2w + 1)

By the definition of w and by the fact that e’/ > 0.63 for n > 1, this quantity is at least
1/3. The probability of failure Pr[--,x/--,/3] < Pr[--,4] + Pr[--,13]. Recall that by definition,
the configuration at being good with respect to Q means that Pr[C Q] > e-’-.
Then, by making use of Claim 6.10 and Lemma 6.7, we obtain

(3)
Pr[--,,A] + Pr[--,13] < w((w + 1)i-le-) + e-

< (w + 1)ie-and hence the condition C(P, i, Q) is true with probability at least (w + 1)ie-’fd, as
claimed. U

Lemma 6.11 is a simple corollary of the previous lemma.
LEMMA 6.11. Suppose that is a linearization chosen according to a distribution in

C. Then after (8w + 4)(c,)-2n log n steps of e, for each head processor P, the condition
Pr[P is promoted] > 1/3 is true with probability at least (w + 1)lgne-.

Proof From Lemma 6.8, we know that after log n phases for any head processor P and
any configuration Q of predecessors of P at logn, the condition C(P, logn, Q) is true with

probability at least (w + 1)lgne-4-. We then determine that

(4)

Pr P is promoted] Pr P is promoted Q] Pr Q]
Q

> Pr[Q] >

as claimed. q

We proceed to the second stage.
LEMMA 6.12. Suppose that at the end ofthefirst stagefor each headprocessor P, D(P),

defined as "Pr[P is promoted] > 1/3," is true with probability at least (w + 1)lg"e-.
Then for a linearization chosen according to a distribution in C, consider the running of the
algorithm until all head processors are promoted. The expected maximum number of steps
taken by any processor in this stage is at most ao log n, for a constant ao and sufficiently
large n.

Proof We note that if a processor reads the node of a single processor that is promoted,
when it advances its node’s pointer, it too is promoted. Each head processor can advance its
node’s pointer at most n / < n times before reaching a tail processor. When the condition

D(P) holds for each processor, we can use the arguments developed in Lemma 6.2 to show
that the expected maximum number of steps taken by any processor in this stage is at most

a0 log n for a constant a0. The overall expected maximum is thus at most

ao logn Pr[All D(P) true] + n. Pr[One D(P) false].

1250 NAOMI NISHIMURA

It will suffice to show that Pr[One D(P) false] < 1/n. By Lemma 6.11, the probability that
D(P) is false for a particular P is at most (w + 1)lgne-, or

Pr[One D(P) false] < n. (w + 1)lgne- _< 1In
for sufficiently large n. This completes the proof of Lemma 6.12.

THEOREM 6.13. The n-input problem of pointer jumping can be completed in k log n
time, using n processors, with the distribution on linearizations chosen from C, for some
constant k.

Proof. We prove the theorem by induction on the size of the pointer jumping problem,
analyzing one stage at a time. The expected maximum number of steps taken by any processor
in stage is at most c’ log n, where c’ is a constant depending only on w. By Lemmas 6.11
and 6.12, the expected maximum for stage 2 is at most a0 log n. In stage 3, we consider
the progress of the tail processors. By the induction hypothesis, this requires a maximum of
k log x/c (k/2) log n steps. Finally, stage 4 is completed in another O(n log n) steps (by
Fact 4.7), yielding an expected maximum of c" log n, for c" a constant depending only on
Fact 4.6. The total expected maximum is at most (c’ + ao + k/2 + c") log n, and since c’, a0,

and c" are independent of k, we can choose k > 2(c’ + a0 + c"), to complete the proof of the
theorem.

Ii.2. More complex delays. In the previous analysis, we considered together the behavior
of all processors. In fact, we can assume that a constant number of processors (not including
the anchor, defined in 7) are arbitrarily slow with respect to the other processors. In particular,
a constant number of failures can be tolerated. Recall that a processor exits the computation as
soon as it has updated its pointer to point to the tail of the list; we consider separately the steps
taken by the slow and fast processors. To analyze the slow-down caused to the fast processors,
we assume the worst case from the perspective of these processors: no slow processor takes a
step before the fast processors finish their work. We modify our earlier analysis by showing
that with high probability each processor takes w + s steps per phase, where s is the number of
slow processors. Even if a processor has to bypass all s slow processors in one phase, it will
still have sufficiently high probability of reading two on-time processors. Finally we consider
the number of steps taken by each slow processor, divided into those steps taken while the
fast processors are active and those taken after all fast processors have exited the computation.
Since the slow processors are no morelikely to be allotted steps than the fast processors, there
will be at most O (log n) steps of the first type. After the fast processors have all reached the
tail of the list, a slow processor needs to read only one fast processor to update its pointer to
the tail of the list. In the worst case, a slow processor will have s steps of the second type, for
a total of O (log n).

7. Extensions. In the distributions considered in this paper, the speeds of the processors
are within a constant factor of each other. Since in results discussed in this paper constant
factors are unimportant, we have not been concerned with the difference between replacing
a subset of processors by slower processors and replacing a subset of processors by faster
processors. In this section we consider how the model could be extended by introducing a
weighting function to incorporate other situations.

The weighting function arises from our wish to have our complexity measure reflect
differences in intrinsic processor speeds. In the absence of such a function, replacing slow
processors with faster ones might cause our measurement of time to increase, since faster
processors might be likely to take more steps and thereby increase the expected maximum.
We wish for our measure to reflect elapsed time; for example, we would like to be able to
distinguish between the effect of replacing half the processors with faster ones and that of
replacing half the processors with slower ones.

ASYNCHRONOUS SHARED MEMORY PARALLEL COMPUTATION 1251

The weighting function, W, provides a mechanism for normalizing the numbers of steps
taken by the various processors. In its fullest generality, the weight of a particular processor
may depend on the number of steps it has taken, or the number of processors remaining active
during the computation. In this case, rather than simply determining the sum of the steps taken
by a processor, we determine the weighted sum, where each step is multiplied by the weight of
that processor for that step. In a simple scenario where the weights of the processors remain
the same throughout the computation, we can express W as a vector (w Wp). We may
wish to express the complexity of an algorithm with respect to the speed of a particular anchor
processor. In the replacement of processors by slower or faster ones, the speed of the anchor
is assumed not to have changed.

8. Conclusions and open problems. We have considered a framework for the asyn-
chronous communication of processors through shared memory cells. We introduce a general
model, parameterized by the choice of the underlying synchronization primitive and the distri-
bution on possible processor schedules. The model and measure are shown to satisfy various
criteria essential to the asynchronous setting.

The criteria include the application of the measure to the independence, synchronization
and pointerjumping paradigms. For any choice of parameters, the complexity of an algorithm
in the independence paradigm is equal to its synchronous PRAM complexity. For the atomic
read/write cell and several classes of distributions, we can show that the complexity of the
synchronization paradigm on n processors is in (R)(log n). This result can be used to obtain
straight-forward simulations of synchronous PRAM and circuit models.

It is possible to improve on the bounds obtained by the simulation of a synchronous PRAM
algorithm; the pointer jumping algorithm analyzed here constitutes one such improvement.
Using a synchronization primitive as weak as the atomic read/write cell and one of a general
class of distributions on processor schedules, we obtain a running time of O(log n) for a
pointer jumping problem of size n. The result implies fast algorithms for problems such as
list ranking; the techniques used may be applicable to a wider class of problems.

Although the paradigms considered here form the basis of most synchronous parallel
algorithms, it is possible that there are other paradigms that are particularly suited to the
asynchronous environment. The identification and analysis of such paradigms will form
part of the foundational work in the area. The algorithms given in this paper are designed
to work quickly when the distribution on schedules corresponds to processors working at
similar speeds. Of possible interest is the development of algorithms geared to other, more
skewed distributions, or algorithms in which processors adapt themselves to fit the currently
perceived distribution. In addition, it would be helpful to determine whether or not there exist
algorithms such that one is faster under one distribution and the other faster under another.
Finally, there is a need for algorithms that are robust in the sense that they work fairly quickly
for a large class of distributions, and algorithm design techniques that apply to large classes
of problems.

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, Data Structures and Algorithms, Addison-Wesley, Reading,
MA, 1983.

[2] R. COLE AND O. ZAJICEK, The APRAM: Incorporating Asynchrony into the PRAM Model, Proceedings of the
1st Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 169-178, June 1989.

[3] The ExpectedAdvantage ofAsynchrony, in Proceedings ofthe 2nd Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 85-94, July 1990.

[4] S. COOK, C. DWORK, AND R. REISCHUK, Upper and lower time bounds for parallel random access machines

without simultaneous writes, SIAM J. Comput., 15 (1986), pp. 87-97.

1252 NAOMI NISHIMURA

[5] P. DYMOND AND W. L. RUZZO, Parallel RAMs with ownedglobal memory anddeterministic context-free language
recognition, Proceedings ofthe 13th International Colloquium on Automata, Languages, and Programming,
pp. 95-104, 1986.

[6] M. J. FISCHER AND N. A. LYNCH, 0ll Describing the Behavior and Implementations of Distributed Systems,
Theoret. Comput. Sci., 13 (1981), pp. 17-43.

[7] S. FORTUNE AND J. WYLLIE, Parallelism in Random Access Machines, in Proceedings of the 10th Annual ACM
Symposium on the Theory of Computing, pp. 114-118, 1978.

[8] P.B. GIBBONS, A more practical PRAM model, in Proceedings of the 1st Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 158-168, June 1989.

[9] The asynchronous PRAM: A semi-synchronous modelfor shared memory MIMD machines, Technical
Report TR-89-062, International Computer Science Institute, Berkeley, California, 1989.

[10] L. GOLDSCHLAGER, A unified approach to models ofsynchronous parallel machines, J. Assoc. Comput. Mach.,
29 (1982), pp. 1073-1086.

11 M. E HERLIHY, Impossibility and universality resultsfor wait-free synchronization, Proceedings of the Seventh
Annual ACM Symposium on the Principles of Distributed Computing, pp. 276-290, August 1988.

[12] M. E HERLIHY AND J. M. WING, Axiomsfor concurrent objects, Proceedings of the 14th ACM Symposium on

the Principles of Programming Languages, pp. 13-26, 1987.
13] Z. M. KEDEM, K. V. PALEM, AND P. SPIRAKIS, Efficient robust parallel computations, Proceedings of the 22nd

Annual ACM Symposium on the Theory of Computing, pp. 138-148, May 1990.
14] C. E KRUSKAL, L. RUDOLPH, AND M. SNIR, Efficient synchronization of multiprocessors with shared memory,

Proceedings of the Fifth Annual ACM Symposium on the Principles of Distributed Computing, pp. 218-
228, 1986.

15] L. LAMPORT, On hterprocess Communication I: Basic Formalism, Distributed Computing, (1986), pp. 77-85.
16] On lnterprocess Communication H: Algorithms, Distributed Computing, (1986), pp. 86-101.
17] G. LEV, N. PIPPENGER, AND L. VALIANT, A Fast Parallel Algorithmfor Routing in Permutation Networks, IEEE

Transactions on Computing, C-30 (1981), pp. 93-100.
18] C. MARTEL, A. PARK, AND R. SUBRAMONIAN, Optimal Asynchronous Algorithms for Shared Memory Parallel

Computers, Report CSE-89-8, Division of Computer Science, University of California, Davis, CA, July
1989.

[19] N. NISAN, CREWPRAMs anddecision trees, in Proceedings of the 21st Annual ACM Symposium on the Theory
of Computing, pp. 327-335, May 1989.

[20] N. NISHIMURA, Asynchronous shared memory parallel computation, in Proceedings of the 2nd Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 76-84, July 1990.

[21] Asynchrony in Shared Memory Parallel Computation, Ph.D. thesis, University of Toronto, Toronto,
Canada, 1991.

[22] P. RAGHAVAN, Probabilistic Construction of Deterministic Algorithms: Approximating Packing Integer Pro-
grams, J. Comput. System Sciences, 37 (1988), pp. 130-143.

[23] M. SNR, On parallel searching, SIAM J. Comput., 14 (1985), pp. 688-708.
[24] R. E. TARJAN AND U. VISHKIN, Finding biconnected components and computing tree fitnctions in logarithmic

parallel time, SIAM J. Comput., 14 (1985), pp. 862-874.
[25] L. G. VALIANT, Bulk-synchronous parallel computers, in Parallel Processing and Artificial Intelligence, C. M.

Reeve, ed., Wiley, New York, 1989, pp. 15-22.
[26] General purpose parallel architectures, in Handbook of Theoretical Computer Science, Volume A, J.

Van Leeuwen, ed., North Holland, Amsterdam, pp. 943-972, 1990.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1253-1265, December 1994

() 1994 Society for Industrial and Applied Mathematics
009

TIGHT BOUNDS ON OBLIVIOUS CHAINING*

SHIVA CHAUDHURI

Abstract. The chaining problem is defined as follows. Given values al an, ai 0 or 1, <_ <_ n,

compute bl b,, such that bi max{j aj 1, j < i}. (Define max{} 0.) The chaining problem appears
as a subproblem in many contexts. There are known algorithms that solve the chaining problem on CRCW PRAMs
in O(t(n)) time, where t(n) is the inverse of Ackerman’s function, and is a very slowly growing function. The
author studies a class of algorithms (called oblivious algorithms) for this problem. A simple oblivious chaining
algorithm running in O(ot(n)) time is presented. More importantly, the optimality of the algorithm is demonstrated
by showing a matching lower bound for oblivious algorithms using n processors. The first steps toward a lower bound
for all chaining algorithms are also provided by showing that any chaining algorithm that runs in two steps must use

a superlinear number of processors. The proofs use prefix graphs and weak superconcentrators. An interesting
connection between the two is demonstrated and this idea is used to obtain improved bounds on the size of prefix
graphs.

Key words, parallel, chaining, superconcentrators, lower bound, prefix graphs, Ackerman’s function

AMS subject classifications. 68Q20, 68Q25

1. Introduction. Consider the following problem called chaining. Given values

a an, ai 0 or 1, < < n, compute b bn such that bi max{j aj
1, j < i}. (Define max{} 0.) The output can be viewed as pointers that chain the ls into a
linked list. The chaining problem is a natural problem to consider in the context of database
retrieval operations; all the records that satisfy a particular predicate correspond to the input
bits that have value 1. Chaining the s then corresponds to making a linked list of these records
for future processing. Apart from this it appears as a subproblem in many contexts and has
been studied before in [16] and [17]. Parallel integer sorting [2], [14], parallel merging of
integers drawn from a restricted domain [3], parallel subset compaction [18], [13], [16], and
circuits for computing threshold functions [15] are examples. It is easy to solve the problem
in O (n) time using one processor. Using n processors, very fast parallel algorithms exist, with
running times close to constant. For this reason, and because of its simplicity, it is an open
question of theoretical interest [3], 16], [17] whether constant time parallel algorithms exist.

Berkman and Vishkin [4] and Ragde [16] have given parallel algorithms that solve the
chaining problem in O(a(n)) time using n processors, where or(n) is the inverse ofAckerman’s
function and is a very slowly growing function. Using algorithms similar to the chaining
algorithm, Berkman and Vishkin [5] give algorithms achieving the same bounds for other
problems: The lowest-common-ancestor problem and a parenthesis matching problem.

We study oblivious algorithms for the chaining problem. Informally, an oblivious algo-
rithm is one in which the pattern ofmemory access depends only on n (the size of the problem),
and not on the specific input. This class of algorithms is of interest because the algorithms
of Berkman and Vishkin and Ragde can be modified to be oblivious. We present a simple
oblivious algorithm for chaining running in O(a(n)) time. While the performance bounds are
the same as previously known algorithms, our algorithm is simple and makes use of previously
known graph structures. More importantly, we show that for the class of oblivious algorithms
this is optimal, by proving that an oblivious chaining algorithm using n processors requires
f2(ot(n)) time. Since all known algorithms for chaining can be made oblivious, this gives
evidence of a superconstant lower bound for all chaining algorithms.

*Received by the editors April 29, 1992’ accepted for publication (in revised form) August 3, 1993.
Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1. Current

address, MPI Informatik, Im Stadtwald, 66123 Saarbrticken, Germany (sh +/-va@rnp 5_ sb. napg. cle).

1253

1254 SHIVA CHAUDHURI

Chandra, Fortune, and Lipton [7] showed that a circuit of bounded depth for the prefix-
carry problem requires superlinear size, implying a superconstant lower bound on depth for
circuits with linear size. Essentially they show that such a circuit must have the structure of a
special type of graph called a prefix graph. They then prove the upper and lower bounds on the
size of prefix graphs of bounded depth [6], [7]. We demonstrate a connection between prefix
graphs and another family of graphs called weak sttperconcentrators 11]. Using this idea, we
present a simple proof that improves the lower bound of [7], and shows that the construction
in [6] is optimal.

Dolev, Dwork, Pippenger, and Wigderson 11 showed a lower bound on weak supercon-
centrators of bounded depth. Our lower bound for oblivious chaining algorithms is obtained
by interpreting such algorithms as graphs and using the techniques of [11] to analyze their
properties. It is worth noting that there are chaining algorithms whose graphs are not weak
superconcentrators, hence the lower bound of 11 cannot be used directly.

We provide the first steps toward proving a lower bound for all algorithms by showing that
any chaining algorithm that terminates in two steps requires a superlinear number ofprocessors.
At the time of submission of this paper, we conjectured that the techniques developed in this
paper would be useful in proving a lower bound for all algorithms. This was indeed the case,
as the techniques used here were recently extended to prove a lower bound for all chaining
algorithms in [9].

The model of computation used in this paper is the Concurrent-Read Concurrent-Write
Parallel Random Access Machine (CRCW PRAM). In the COMMON model of CRCW
PRAM, all processors that simultaneously write to the same memory cell must write the
same value. In the more powerful PRIORITY model, each processor has an associated pri-
ority and when several processors simultaneously write to the same memory cell, the highest
priority processor succeeds. It has been shown that the PRIORITY model is strictly stronger
than the COMMON model [1]. We show that when considering oblivious algorithms, both
models are equivalent if the COMMON machine has some extra memory. Thus, throughout
this paper, the algorithms described run on the COMMON model and the lower bound is
proved on the PRIORITY model.

2. Oblivious computation on PRAMs. The input to an algorithm for chaining consists
of a value n (the size of the problem), and n bits (called the input vector) representing the
problem. At any step each processor computes, based on its actions so far, a memory address
to access and the contents to write (if it is a write step). By an oblivious algorithm, we mean
one where the address accessed is fixed over all input vectors, i.e., it depends only on the
value n. However, whether or not the processor performs any action may depend on the input
vector; for example, when n 100, on the fifth write step, pl may or may not write depending
on the input vector, but if it does write, it always writes to c15. (Our definition of oblivious
algorithms coincides with what is called semi-oblivious in 10].)

It will be convenient to model the computation of an oblivious algorithm on a graph.
Given an algorithm A and an input size n, the directed graph Ga,n is defined as follows. The
vertices of Ga.n are grouped into levels. Suppose the algorithm solves the chaining problem
in k steps. Then the graph Ga,n will consist of 2k + levels of vertices, numbered 0 2k.

At even levels we will have a vertex for each cell in the memory that is accessed by
the algorithm. These vertices will have the form (c, 2j), 0 < j < k and will be called cell
vertices (or just cells). At odd levels we will have a vertex for each processor. These vertices
will have the form (p, 2j + 1), 0 < j < k 1, and will be called processor vertices (or just
processors). Thus there are k levels of processor vertices and k + levels of cell vertices.

Edges of Ga,n are defined as follows.
(c, 2j) --+ (p, 2j + 1) if for some input vector, at step j + 1, processor p reads cell c.

TIGHT BOUNDS ON OBLIVIOUS CHAINING 1255

(p, 2j + 1) (c, 2(j + 1)) if for some input vector, at step j + 1, processor p writes
to cell c.

(p, 2j + 1) (p, 2(j + 1)+ 1).
(c, 2j) --+ c(2(j + 1)).
Initially, bit of the input vector is assumed to be in cell i, < < n, and finally the

output value corresponding to bit is assumed to be in cell i. We shall refer to vertices (i, 0)
as xi and vertices (i, 2k) as Yi.

Let P be the number of processors used by A. The number of cells accessed during the
computation is at most 2k P. There are two kinds of edges in the graph, those adjacent to a
processor vertex and others. Since each processor vertex has at most degree 4, the former
are at most 4kP in number. For each cell accessed during the computation, there are k cell
vertices in the graph, one at each even level. Thus the total number of cell vertices in the graph
is 2k2 P. Since each cell vertex is adjacent to at most two of the latter type of edge, there are
at most 2k2 P such edges. Hence the number of edges in the graph is certainly upperbounded
by 6k2 P.

Given an input vector D of length n, we shall associate with each cell vertex a content
and with each processor vertex a state. The content associated with (c, 2j) is the content of
cell c at step j Oust before the (j + 1)st read-write step) in the computation of A on input D.
The state associated with (p, 2j + 1) is the state of the processor p after the read step of the
(j + 1)th read-write step in the same computation. At any time in the computation, the action
of a processor is dependent solely on its state. Each processor starts with a fixed initial state.

A partial input B blb2.., b,, is one in which each bi E {0, 1, ,}. An input vector
D dld2.., dn, each di 0 or 1, is consistent with B if i, 1 < < n, bi 5 bi di.
Xn will denote the set of inputs consistent with B. For a partial input B and a cell vertex
(c, 2j) define

Se((c, 2j)) {d cell (c, 2j) has content d for some x E Xn}.

Similarly, for a processor vertex (p, 2j -4- 1), define

S((p, 2j + 1)) {e (P, 2j + 1) has state e for some x 6 Xt}.

We say a (cell or processor) vertex (x, j) isfixed for a partial input B if ISn((x, j))l 1.

2.1. Oblivious COMMON simulation of oblivious PRIORITY. Consider the follow-
ing problem called the leftmost-one problem. Given input B bl bn, b 6 {0, }, compute
s min{j bj }. Fich, Ragde, and Wigderson [12] show that the leftmost-one problem
can be solved in O(1) time on COMMON using n processors and n memory cells. Their
algorithm can be made oblivious. We shall use this fact to prove the following.

LEMMA 2.1. Consider an oblivious algorithm that runs on a PRIORITY PRAM with p
processors and M memory cells, in k steps. Then there is an oblivious algorithm solving the
same problem on a COMMON PRAM with p processors and M -4- p memory cells in O(k)
steps.

Proof. It suffices to show that one write step of an oblivious PRIORITY algorithm can
be simulated on an oblivious COMMON machine in O(1) steps. Suppose the PRIORITY
machine writes to r cells cl cr. Let Di denote the set of processors that may write to ci.

Di is a fixed set. Note that some of the processors may choose not to write. It is sufficient for
the COMMON machine to find, for each i, the highest priority processor in Di that chooses to
write. This is done by solving a leftmost-one problem of size]Di], using]Dil cells, processors
from Di, and O(1) time. The space bound follows from the fact that "= [Di] <_ p. 3

Henceforth we shall refer only to PRIORITY algorithms, and by the lemma, all the
algorithms run on COMMON with the same time bounds. Note that in general it is not

1256 SHIVA CHAUDHURI

true that one step of a PRIORITY algorithm can be simulated by a COMMON algorithm in
O (1) steps. Boppana gives an example of a problem that can be solved in O (1) time on

log nPRIORITY but requires f2 (log 10g n
time on COMMON.

3. Upper bounds. Ackerman’s function is defined as follows:

A(0, 0) 0; A(i, 0) for > 0; A(0, j) 2j

A(i, j)-- A(i- 1, A(i, j- 1)).

forj > 0,

For a function flet f(1)(n) f(n); f(i)(n) f(f(i-1)(n)), > 1. Define Io(n)
i(J)and Ik(n) min{j -k_l (n) < 1}, k > 1. The functions I are the inverses of the kth level

of Ackerman’s function, i.e., l(n) min{j A(k, j) >_ n}. 11 behaves like logn and 12 like
log* n. Define c(n) min{j[lj(n) <_ j}.

Berkman and Vishkin et al. [4], [3], and Ragde [16] have given algorithms that solve the
chaining problem on PRIORITY in ck steps using nI(n) processors, where c is a constant
>_ 2. From these algorithms one can construct an algorithm using O(n) processors that takes
O(o(n)) time. We give simple oblivious algorithms that solve the problem in 2k steps on
PRIORITY using nI (n) processors. Though the performance bounds are the same, we feel
our algorithm is easier to understand.

A prefix graph of size n is a directed acyclic graph with n vertices (x x,) of indegree
0 called input vertices and n vertices (y y,) of outdegree 0 called output vertices. The
depth of a prefix graph is the length of the longest path from an input to an output. Prefix
graphs have the following property: i, j 6 [n], there is a directed path from xi to yj iff < j.
Say a prefix graph is levelled if the vertices can be partitioned into levels numbered 0, l, 2
such that every edge is from a level vertex to a level vertex for some >_ 1. Call such
an edge a level edge. A prefix graph is contiguous if for any vertex v the inputs from which
v is reachable are of the form Xr, r [i, j]. It is possible to construct [6] levelled contiguous
prefix graphs of size n and depth 2k such that i, < < 2k, the number of level edges
< nI,(n).

The restricted-domain prefix-maxima problem is defined as follows" Given an input
a an; ai > O, <_ <_ n, and i, j, <_ < j <_ n, ai, aj 5 0 == ai < aj,
compute b b, where bi max{a j < i}. We show how to solve this problem using
a prefix graph. Initially set the value at vertex xi ai, < <_ n. At step i, level edges
propagate the values at their tails to their heads and vertices at level select the largest value
propagated to them. It is easy to see that the value at a vertex v max{ajlv is reachable from
xj} and thus the value at Yi bi, <_ <_ n.

THEOREM 3.1. Yk > 1, there is an oblivious PRIORITY PRAM algorithm using n I (n)
processors that solves the chaining problem in 2k steps.

Proof. We show how an oblivious PRIORITY PRAM algorithm can simulate the com-
putation of a levelled, contiguous prefix graph G. Label the edges of G as follows. Let
{Xr Ir [i, j]} be the set of input vertices that can reach the vertex at the tail of edge e. Label
e with j. Designate a memory cell rn(v) to correspond to each vertex v of G. At step i,
allocate a processor p(e) to each level edge of G so that for any two edges e, f such that
label(e) < label(f), p(f) has a higher priority than p(e). Such an allocation is easy to do.
For e, an edge from v to w, p(e) reads the value in re(v). If the value is 0, then p(e) does
nothing, otherwise it writes the value to m(w). It is easy to show that the value in m(w) is

max{at Iw is reachable from xr }, and so m(yi) bi, <_ <_ n. To solve the chaining problem
with input a an, at first, <_ <_ n, Pi writes into rn (xi) if ai 1. Then simply solve
the restricted-domain prefix-maxima problem with the values in rn (xi), <_ < n as input.
The stated bounds follow from the bounds on prefix graphs.

TIGHT BOUNDS ON OBLIVIOUS CHAINING 1257

3.1. Weak superconcentrators and prefix graphs. In [7], it is proved that a prefix
graph of depth 2k requires f2 (n l:k-1 (n)) edges. We improve the lower bound, showing that
the construction is optimal.

A weaksuperconcentrator is a directed acyclic graph with n verticesx xn ofindegree
0 and n vertices y y,, of outdegree 0, and the property that Yk and < jl < i: < j: <

< ik < jk, there exist vertex disjoint paths between {xi xik and {yj yj. }. The
depth of a weak superconcentrator is the length of the longest directed path in it. It is proved
in [11] that a weak superconcentrator of depth 2k requires f2 (n Ik (n)) edges.

THEOREM 3.2. A prefix graph ofdepth 2k requires (n l(n)) edges.
Proof. We show that every prefix graph is a weak superconcentrator. Let x xn and

Y Yn be the input and output vertices of a prefix graph G. Yk and < j < i: <
j: < < i < j there exist paths from xi,, to yi,,. If they are not all vertex disjoint, then
:lp, q, < p < q < k such that the paths from Xip to yjp and Xiq to yjq have a common vertex.
But then there is a path from Xiq to yjp, iq > jp, a contradiction.]

4. Some useful functions and their properties. Following [11], we define the trees

T (1), > 1. T (l) has all its leaves at depth k and each edge is labelled with a power of 2.
The outdegree of the root is and the outdegree of every other vertex is the label of the edge
coming into the vertex from its parent. We describe how to construct T (1), starting from the
root. The edges and vertices of Tk (1) will be created in a certain order. We think of the vertices
at a given depth as being arranged from left to right in order of creation. The rule governing
the labelling of edges is, at any depth, the label of the first edge created is and the label of
the jth edge created is twice the maximum of the product of labels on a path starting with the
(j 1)th edge created and ending at a leaf.

Initially we are at the root. When we are at a vertex v at depth less than k, and the number
of children of v created so far is less than the label of the edge to v from its parent (or less
than l, if v is the root), then we create a new child of v, label the connecting edge as per the
rule, and move to the new child. If the number of children created so far is equal to the label
on the edge to v from its parent, we move to the parent of v. If v is the root and it already has
children, the construction is complete. When we are at a vertex at depth k, i.e., a leaf, we

simply move back to the parent.
Recall the definition of Ackerman’s function from the previous section. In the Appendix,

it is shown that the maximum of the product of the labels on a path in Tk (l), from the root to

a leaf is at most A (k, 2/). Set Ik(n)-I
2

> for n sufficiently large. Let H be the set
of leaves. For h 6 H, let Cl (h) c (h) be the labels on the edges of the path from the root
to h, in that order. Then the following inequalities hold. (1 a)-(lf) are similar to inequalities
that were proved before in [11 and [8]. We include their proofs in the Appendix. We shall
prove the others here.

(la) Yh H, c(h) > ck(h) > 1,

(lb) Yh H, c (h) ck(h) < n,

(lc) Z ck(h) <_ 2n,
h6H

(ld) 2," C (h) c(h)hH

1258 SHIVA CHAUDHURI

(le) l<j<k-1,
hEH,cl(h)...ck(h)<y

cl (h)... cj-1 (h)ck(h) < 2y,

(lf) y >
lk(n)

hEH cl (h) Ck- (h) 3

(lg) :lyo(k), s.t. Yy > yo(k), < j < k- 1,

Z <2,
hen, cj(h)<y<Cl(h)...cl(h) cj(h) c_ (h)

(lh) Vy>O, <j <k-l,
hEU, cj(h)<y<_c,(h)...ck(h) cj(h) ck_ (h)

Fact. Let v be a nonleaf node in the tree (Tk(1)) and let w be the next node to its right
at the same level. Let c and d be the labels of the edges to v and w from their parent(s),
respectively, and let e be the label of the edge from v to the rightmost child of v. Then it is
easily seen that e > 2 and d > e > 2c.

LEMMA 4.1. Let c Ck be the labels on some path from the root to a leaf Then
<i <k-l, C .< C/2+1
Proof Let hi hln be the leaves of the tree, from left to right. The lemma clearly

holds for the path to h (all the labels are 1). Assuming the lemma holds for the path to hm,
we shall show that it holds for the path to hm+l.

The paths to hm and hm+l diverge at some level; call this level r. Then c Cr are
common to both levels. Let c+ Ck and d+ dk be the remaining labels on the
paths to hm and hm+l, respectively. Note that each of Cr+2 c, are labels to rightmost
children, so by the fact mentioned previously, cj+ > 2 for r + _< j < k 1. By the
inductive hypothesis, Yj < j < r 1, cj < c]+ Since dr+l > Cr+l and Cr < 2

Cr+
we havecr < dr2+. NowYj, r+ < j < k- 1,dj 2cj...c, < 22Ccj+...c <

2C+1Cj+2... Ck <_ 4(Cj+l... Ck)2 d+1. This completes the proof. [3

LEMMA 4.2. There is afunction yo(k) such that thefollowing holds. Let l, y, j be positive
integers. Let < j < k 1. Let y > yo(k). Consider the set ofpathsfrom the root to a leaf
which have the property that cj < y < Cl c. Let Sj S be the set ofvertices they pass
through at levels j k, respectively. Then ajl <_ 2,

Proof. Let Vl Vlsjl be the vertices in Sj, from left to right. Consider the path to the
leftmost leaf, among the set of considered paths. This path passes through Vl. Let the labels
on this path be C ck.

If cj > log y, then the label of the edge to the vertex to the right of v is at least y, and we
are done. So assume cj < log y. Then by Lemma 4.1, < < j 1, ci < (log y)2J-’, i.e.,

cl...cj-1 < (log y)2J < (log y)2k Since Cl c _> y, we have cj c _> y/((logy)2k).
Let 2 < < ISj I, di be the label of the edge to the lth vertex to the right of Vl. We have

d2 2cj... ck > 2y/((log y)2) and from the fact mentioned previously, d3 >_ 22y/((lgy)2).
Define yo(k) min{x 22x/((lgx)zk) > X}. For y > yo(k), d3 > y, hence ISjl <_ 2. [q

COROLLARY 4.3 (Inequalities (1 g), (lh)). If y > yo(k),

<2.
hEH, cj(h)<y<Cl(h)...ct,(h) cj(h) Ck_ (h)

TIGHT BOUNDS ON OBLIVIOUS CHAINING 259

If y < yo(k),

hH, cj(h)<y<cl(h)...ck(h) cj(h) Ck-l(h)

Proof. For v a vertex at level j of Tk(/), let Cl(V) cj(v) be the labels on the path from
the root to v, in that order. Then we have

hett, c(h)<yc,(h)...c(h) cj(h) C-l (h) cj(h) C-l(h)

se&_l cj (h) c-2(h) s.Sj

From Lemma 4.2 we have Sl _< 2 if y > yo(k). On the other hand, since the labels on
successive edges at the same level increase by at least a factor of two, there can be at most

log y < y edges at level j before the label exceeds y. 1

5. The lower bound. Consider the following facts Theorem 3.1 shows how to obtain an
oblivious chaining algorithm whose graph (as defined in 2) is a prefix graph. By Theorem 3.2,
every prefix graph is a weak superconcentrator. A lower bound for weak superconcentrators
is known from [1 1]. Given these facts, it is tempting to conjecture that the graph of every
oblivious chaining algorithm is a prefix graph and thereby directly obtain a lower bound.
However, there are chaining algorithms whose graphs are not weak superconcentrators. As an
example, consider an algorithm in which, in the first two steps, processor P1 reads xand x2
without writing anywhere. In the next two steps, P writes the values of Xl and x2 to cells Zl
and z2, respectively. Now the chaining problem is solved for input Zl, z2, x3 x,,, without
any processor ever reading cells x and x2 again. In the graph of this computation, all paths
from X and x2 must pass through vertex (P1, 3) and hence are never vertex disjoint. Thus
the graph is not a weak superconcentrator. This simple example generalizes. It is necessary,
therefore, to carefully analyze the structure of the graph of a chaining algorithm.

We now prove that a PRIORITY algorithm that solves the chaining problem with n
processors requires 92 (c(n)) time. It suffices to prove the following.

THEOREM 5.1. For n sufficiently large, any oblivious PRIORITY algorithm that solves a
chaining problem ofsize n in k steps requires 92 (nI+ (n processors.

Proof’. Fix n. Let Ga,n be the graph for algorithm A, which terminates in k read-write
steps, and let x xn and yl yn be the input and the output vertices of Ga,n. Let H
be the set of leaves of T(I) defined in the previous section, with 2)-l > . Fix

h H and let p(h) Pick U, a random subset of [n] by picking each element ofCl(h)...ct.(h)
[n] independently with probability p(h). Consider the partial input B bl... bn, bi 0 if

[n] U, and bi * if U. Fix the values of the input vertices of GA,n as indicated by
B. For a vertex v of GA, let fo denote the indegree of v. Let Vj denote the set of vertices at
level 2j, 0 <_ j _< k. Call a vertex v Vj, _< j _< k l, high degree if fo > cj(h).

Consider a high-degree vertex (c, 2j) which is not fixed for B, and let (p, 2j l) be the
highest priority processor that writes to (c, 2j) over all inputs consistent with B, i.e., there is
a setting for the variables {bi U} so that p writes to c at step j. The state of p can be
affected only by those input vertices that can reach (p, 2j 1). Modify B and the input vertex
settings so that over all inputs consistent with the new B, (p, 2j 1) writes some fixed value
to (c, 2j). Now (c, 2j) is fixed for B, since (p, 2j 1) will override any other processor that
writes. If no processor writes to (c, 2j), then modify B by setting to 0 all the variables that

1260 SHIVA CHAUDHURI

reach (c, 2(j 1)). Then (c, 2(j 1)) is fixed, and so is (c, 2j). Call this operation fixing a
vertex.

Carry out the following two-step procedure on Ga,n.
(A) For j starting at and going up to k 1, fix all the high-degree vertices in Vj.
(B) For starting at and going up to n, if U, set all the input vertices (with value .)

that can reach yi through low-degree vertices to the value 1, except xi.
We claim that at the end of this procedure all the undefined input vertices are fixed, except

possibly one. To see this, suppose more than one input vertex is undefined. Set all to except
the leftmost undefined input vertex xi. Let this partial input be C. Let xj be the first input
vertex to the right of xi that has the value 1. Clearly, xj exists and i, j U. Since xi was
not set in step (B), xi does not reach yj through low-degree vertices. However, for the two

inputs consistent with C, only vertices reachable from xi through low-degree vertices can have
different values, since the high-degree vertices are fixed. Hence the state of yj remains fixed
over both inputs, an error.

Write EA,B for the expected number of input bits that are set during this process. By the
above argument, EA,B >. E(IUI) > np(h) 1. We now obtain an upper bound for EA,B.

Note that when fixing v Vj, all the high-degree vertices in Vi, < < j have already
been fixed. Thus, the only variables that affect the contents of v are the undefined variables
that can reach v through low-degree vertices. Hence Do :-- E(number of inputs set to fix
v Vj) < E(number of undefined inputs that can reach v through low-degree vertices)
< fo2cj-1 (h)2cj_2(h)... 2Cl (h)p(h). When we actually fix v Vj, we either fix the state
of the highest priority processor, p, that writes to v, or if no processor writes, we fix v’, the
vertex that represents the same memory cell as v at the previous time step. The number of
inputs fixed is at most the number of inputs that reach either of the two through low-degree
vertices, i.e., at most 2Cj_l(h)2cj_2(h)... 2Cl(h) 2J-cl(h)... Cj_l (h).

For a high-degree vertex v 6 Vj, Do is at most the minimum of these two quantities, i.e.,
Do <_ 2J-lc(h)...Cj_l(h)min[fop(h), 1]. The expected number of bits set during (A) is
the sum of the expected number of bits set while fixing each high-degree vertex, i.e., EA :-
E(numberofbitssetduring(A)) < - ’_,oex(j)Do, where X(j) {v Vj cj(h) < fv}.
Thus,

k-1 k-1

EA < Do < 2J-lcl(h). ..Cj-l(h)min[f,p(h), 1].
j=l x(j) j--1 x(j)

We now upper bound Ee, the expected number of inputs set during step (B). Let yj be an
output vertex and let S {xi xi can reach yj through low-degree vertices and 6 U, j }.
As before, ISI _< fyj2C,_l (h)2... c (h). For xi S, P(xi is set while processing yj in step
(B))<P(i 6 Uandj 6 U). Sincei j, theeventsi 6 Uandj 6 U are independent
and P(i 6 U and j 6 U) p(h)2. Hence E(number of inputs set while processing yj in
step (B)) < fyj2C,_ (h)2... c (h)p(h)2. As before, E is the sum, over all output vertices

2k-yi, U, of these expectations. So En < .oevk foc(h)... Ck-l(h)p(h)2. Clearly,
EA,B EA d- EB. Thus,

2j- min c (h)... cj_ (h)
j=l x(j) cj(h) c,(h)

p(h) >_. EA -1- EB EA,B >_. np(h) 1.

TIGHT BOUNDS ON OBLIVIOUS CHAINING 1261

Multiplying both sides by ck (h), summing over h 6 H, and interchanging the order of sum-
mation, we get

k-1 I fVCk_l (h)j=l 2J-lmin ,cl(h)...Cj_l(h)ck(h) +2:-lfop(h)
oev y(,,j) cj(h) vVk hH

>_ -c(h)
hH Cl (h)... Ck_ (h)

whereY(v,j)--{h 6 H cj(h) < fv}.
LetZ(v,j) {h H cj(h) < fo < cl(h)...ck(h)} and W(v,j) {h H

Cl(h) ...c,(h) < fo}. Notice that Y(v, j) is the disjoint union of Z(v, j) and W(v, j). Using
this observation and rewriting, we get

k-I

j--1 veVj W(v,j)

(2) + 2k-1 f- > c(h)
vVk hGH C1 (h) ck(h) c (h) Ck_ (h)

Before simplifying this further, we observe that the sum of the indegrees of all the cell
vertices is bounded by the number of edges and that the number of cell vertices is bounded by
2k2 P, i.e.,

(3a)
k-1

j=l 1)czVj

(3b)
k-1

j=l veVj

We now separately bound each of the terms of the left-hand side (LHS) of (2), which we
call (I), (II), and (III), respectively. (I) can be written as the sum of two terms by separating
vertices of degree greater than lk+ (n) and others. Thus,

k-1

(I)- Z
j=l veVj, fi,<Ik+l(n) Z(v,j) cj(h) Ck-l(h)

k-1

j=l v6Vj, fv>lk+(n)

2J_l f_v_
Z(v,j) cj(h) Ck-l (h)

Using (lh) and (3b) to bound the first term and (1 g) and (3b) to bound the second, we find

(I) < 2- (Ik+l (n))2 2k2 P + 2k-1 2.6k2 P.

Using (le) and (3a) to simplify (II) we get

(II) < 2k- 2.6k2 P.

1262 SHIVA CHAUDHURI

Term (III) can be estimated using (1 d) and (3a), yielding

(III) < 2’-. 2.6k2P.

The right-hand side (RHS) of equation (2) can be estimated using (If) and (1 c) to give

I,(n)
RHS >n-2n.

3

Thus, rewriting (2) and simplifying yields

(nl(n)) f2(nlk+l(n)) [P 2
2/k2(i/+ (n))2

Ii. Nonoblivious lower bounds. The techniques used in the lower bounds for oblivious
algorithms may extend to nonoblivious algorithms. We conjecture similar lower bounds for
all algorithms but are able to prove it only for the case k 2. (k 1 is easy.) Although the
following theorem may be proved using computations similar to those used in the oblivious
case, we use simpler computations that we hope are more illuminating. We associate a graph
GA,B with a nonoblivious algorithm A and partial input B. As before, GA,B will have levels
of vertices (c, 2j) and (p, 2j + 1), 0 < j < k 1. The edges are defined by the following.

(c, 2j) (p, 2j + 1)" iffor some input vector consistent with B, at step j + 1, processor
p reads cell c.

(p, 2j + 1) (c, 2(j + 1)) if for some input vector consistent with B, at step j + 1,
processor p writes to cell c.

(p, 2j + 1) -- (p, 2(j + 1)+ 1).
Note that in this case we do not have edges from cell vertices to cell vertices.

For v a vertex of GA,B define Se(v) as before.
THEOREM 6.1. Any PRIORITY PRAM algorithm that soh,es the chaining problem in 2

(logn)/2 processors.steps requires - n /2Proof. Let P < n(logn) be the number of processors used by A. Suppose A
terminates in two steps. GA,B consists of five levels (numbered 0 4) of vertices. Let
eB,i, < _< 4 be the set of edges between level and level in GA.. It is easily seen
that for any partial input B, [eB,] < P and]eB,2l < 2P.

Let < < 2P, Di {v v is a level 2 vertex with indegree > i}, and di
1/2IDi[. Then we have di <_ 2P <_ n(logn) Let z 2(lgn)/2. If i, < _<

(log n) /2z, di > n/(2i(logn) /2) then ,= di > -n so 3i0, < i0 < z such that dio <_
n / (2i0 (log n) 1/2).

Let v Dio and consider the highest priority processor p that has an edge to v. The state
of this processor depends only on one input bit. We set this input bit so that p writes to v. Let
B be the partial input so defined. Clearly ISn(v)l 1, so v is fixed. In this manner, fix all the
vertices in Dio, and let C be the partial input obtained by this procedure. The number of bits
set in C is at most dio, since, fixing each vertex in Dio involves setting at most one bit.

All the level 2 vertices of GA,C that are not fixed are written to by less than i0 processors,
each in at most two states. The different things that can be written to the vertex are the (at
most) two values that each processor may write, and, in case no processor writes, the (at most)
two values that it initially contained. Hence Yv, ISc((v, 2))1 < 2(i0 1) + 2 2i0. Since
Yp, [Sc ((p, 1))[<_ 2, and each processor reads a vertex that can have at most 2i0 different
values written, the number of states of a processor is bounded by the product of the two,
i.e., Yp, ISc((p, 3))1 < 4i0.

Let y yn be the output vertices of GA,C. Suppose r dio <_ n/(2io(logn)) /2

bits (ct, ctr) have been set in C. Define l0 0 and lr+ n + 1. Consider m, j such

TIGHT BOUNDS ON OBLIVIOUS CHAINING 1263

that lj < rn < lj+ 1. Since all the bits between ctj and Cm are undefined, Ym may have,
as its final value, any one of lj, lj + m 1, or 0, so Sc((Ym, 4))1 > m lj + 1.

)2Thus Y4j<m<lj+l ISc((Ym, 4))1 >_ (Ij+l lj / 1)(lj+l Ij) >_ (lj+l 1j Since

[j=l (lj+l lj) > n, a simple minimization shows that

//2
(4) ISc((Ym 4))1 >

j--0 lj<m<ij+
2(r + 1)

For e 6 ec,4, an edge from (p, 3) to (c, 4), let g(e) be the number of different values
that p writes to c over all inputs consistent with C. For any output vertex (y, 4), let ey be
the set of edges into (y, 4). The number of different values that can be written to (y, 4) is
bounded by the number of values that different processors can write via edges in ey plus the
number of values it had before (in the case that no processor writes). Hence Sc ((y, 4)) <

-eEe), g(e) + Sc((y, 2)) < YaeEey g(e) + 2i0, which yields

(5) Sc((y, 4)) 2i0 < [g(e).
eEey

For any processor (p, 3), the total number of different values it can write over all edges leading
out of it is bounded by Sc((p, 3)) < 4i0. Summing this quantity over all processors gives an
upper bound on the number of different values that can be written via edges in ec,4. Thus

4ioP > y g(e) > Z g(e).
eEec,4 i=1 eey

From equation (5), we get

4ioP > (ISc((Yi, >_ Z
i=1 j=0 lj <m<lj+l

ISc((Ym, 4))1 2i0.
i=1

Finally, from equation (4), we get

2n
4i0 P >

2(r + 1)
2ion.

Since r < n/(2io(logn)I/2), this yields

n
P > n(log n) > n (log n) a contradiction.
-4 2 8

7. Conclusion and open problems. We have shown that oblivious chaining with n pro-
cessors is (R) (or (n)) time. This leaves open the question of whether an O (1) time nonoblivious
algorithm exists. Recently, Chaudhuri and Radhakrishnan [9] settled this question, showing
an 2 (c(n)) lower bound for any chaining algorithm using O(n) processors.

Using randomization, better performance may be achieved in some situations. Raman
17] gave a randomized algorithm that runs in O (1) time if the number of ls in the input is
not too large. We conjecture that for arbitrary inputs, constant-time chaining is not possible,
even using randomization.

1264 SHIVA CHAUDHURI

Appendix.
LEMMA A.1 The maximum product oflabels along a pathfrom the root to a leafof Tt (l)

is at most A (k, 2/).
Proof Let B(k, l) be the maximum product of labels on a path from the root to a leaf in

Tt (l). Define the following auxiliary family of trees St(l). The definition of St (l) is the the
same as Tt (1) except that the first edge created at each level has the label (instead of 1). Let
C (k, l) be the maximum product of labels on a path from the root to a leaf of St (l). Then

(6) B(k, l) < C (k, l) < B (k, 2/)

since we can find a subtree of St (1) isomorphic to Tt (/), such that the labels on each edge are
greater than or equal to the labels on the corresponding edges of Tt (1). The second inequality
holds for the same reasoning with Tt (2/) and St(l).

We will now show by induction on k and that B(k, l) < A (k, 2/) for k, > 1.
It is easy to see that Vi > 1, B(i, 1) < A(i, 2), and ’v’j > 1, B(1, j) < A(1, 2j).
Assume B(k,l) <_ A(k, 21)kifl <_ j andVl ifk _< i. We shall show that B(i+I, j-t-l) _<

a(i + 1,2(j + 1)) for i, j >_ 1.
B(i + 1, j + 1) may be written as the product of the label on the edge to the rightmost

child of the root, which is 2B(i + 1, j), and the maximum product of labels in the subtree
below the rightmost child of the root. The labels on the leftmost edges in this subtree are all
at most 2B(i + 1, j), thus the maximum product of labels is at most the maximum product of
labels in Si(2B(i + 1, j)), i.e., C(i, 2B(i + 1, j)). Hence, using (6) gives

B(i + 1, j + 1) _< 2B(i + 1, j)C(i, 2B(i + 1, j)) < 2B(i + 1, j)B(i, 4B(i + 1, j)).

From the definition of B(i, j), for >_ 1, B(i, j + 1) > 2B(i, j) and hence, for x > 0,
B(i, j + x) > x B(i, j), which yields

2B(i + 1, j)B(i, 4B(i + 1, j)) < B(i, 6B(i + 1, j)) < A(i, 12A(i + 1, 2j))

where the last inequality follows from the induction hypothesis. Finally, observe that + > 2
and2j > 4. It can be provedby induction that for such i, j, 12A(i + 1,2j) < A(i + 1,2j + 1),
and hence

A(i, 12A(i + 1, 2j)) < A(i, A(i + 1, 2j + 1)) < A(i + 1, 2(j + 1)). H

LEMMA A.2 Proofs of inequalities (1 a)-(1 e).
Proof. (la): Obvious.
(1 b): By Lemma A. and the choice of l, (1 b) holds.
(1 c): It is easy to see that the labels on edges to leaves of the tree increase by a factor of

two as we move from left to right along the leaves of the tree. Thus the sum is a geometric
series with the stated bound.

whose sum is at(ld): The sum is dominated term-by-term by the series [],e/-/ ck(h)
most 2.

(le): Consider the sum as it is formed by going through the vertices from left to right.
Since the last factor in each product increases by a factor of two and the other factors do not
decrease, each term is at least twice the previous term. Since the last term is at most y the
series has a sum of at most 2y.

LEMMA A.3 Inequality lf) holds.
Proof. Let 0 _< < k, Hi be the set of vertices at level of the tree and for h Hi let

Cl (h) ci(h) be the labels on the unique path from the root to h. Then we have

TIGHT BOUNDS ON OBLIVIOUS CHAINING 1265

hEH C1 (h) Ck- (h) cl (h) ck-I (h)

Z-,
cl (h) Ck-1 (h)h Hl-i

lk+(n)

C-I (h)

Acknowledgments. I am grateful to Ravi Boppana for introducing me to the work in [6]
and 11], and for many helpful discussions. I am indebted to Jaikumar Radhakrishnan for the
simple proof of the upper bound and for innumerable insightful comments.

REFERENCES

[1] R. BOPPANA, Optional separations between concurrent write parallel machines, Proc. 21 st ACM Symp. Th.
Comput., (1989), pp. 320-326.

[2] P.C.P. BHATT, K. DIKS, T. HAGERUP, V. C. PRASAD, Z. RADZIK, AND S. SAXENA, Improved deterministic parallel
integer sorting, Inform. Comput., 94 (1991), pp. 29-47.

[3] O. BERKMAN, J. JAJA, S. KRISHNAMARTHY, R. THURIMELLA, AND U. VISHKIN, Some triply-logarithmic parallel
algorithms, Proc. 31st IEEE Foundations Comp. Sci., 1990, pp. 183-185.

[4] O. BERKMAN AND U. VISHKIN, Recursive star-tree parallel data structure, Proc. 30th IEEE Foundations Comp.
Sci., 1989, pp. 196-202.

[5] Recursive star-tree parallel data structure, UMIACS-TR-90-40, Univ. of Maryland, 1990.
[6] A.K. CHANDRA, S. FORTUNE, AND R. J. LIPTON, Unboundedfan-in circuits and associativefunctions, J. Comp.

Sys. Sci., 30 (1985), pp. 222-234.
[7] Lower bounds for constant depth circuits for prefix problems, Proc. 10th Int. Colloq. on Automata,

Languages and Programming, Lecture Notes in Comput. Sci., Springer-Verlag, New York, 1983.
[8] S. CHAUDHURI, Tight bounds on the chaining problem, Proc. 3rd ACM Symp. Par. Alg. Arch., 199 l, pp. 62-70.
[9] S. CHAUDHURI AND J. RADHAKRISHNAN, The complexity ofparallel prefix problems on small domains, Proc.

33rd IEEE Foundations Comp. Sci., 1992, pp. 638-647.
[10] S. COOK, C. DWORK, AND R. REISCHUK, Upper and lower time bounds for parallel random access machines

without simultaneous writes, SIAM J. Comput., 15 (1986), pp. 87-97.
[11 D. DOLLY, C. DWORK, N. PIPPENGER, AND A. WIGDERSON, Superconcentrators, generalizers and generalized

connectors with litnited depth, Proc. 15th ACM Symp. Th. Comput., 1983, pp. 42-51.
12] E E. FIcn, E RAGDE, AND A. WIGDERSON, Simulations among concurrent-write models ofparallel computation,

Algorithmica, 3 (1988), pp. 43-51.
[13] J. GIL AND L. RUDOLPH, Counting and packing in parallel, Proc. Int. Conf. Par. Proc., 1986.
[14] Y. MATIAS AND U. VISHKIN, On integer sorting and parallel hashing, Proc. 17th Int. Colloq. on Automata,

Languages and Programming, Lecture Notes in Comput. Sci. 443, Springer-Verlag, New York, 1990,
pp. 729-743.

15] I. NEWMAN, P. RAGDE, AND A. WIGDERSON, Perfect hashing, graph entropy and circuit complexity, Proc. 5th
Struct. Complex. Th., 1990, pp. 91-100.

16] E RAGDE, The parallel simplicity ofcompaction and chaining, Proc. 17th Int. Colloq. on Automata, Languages
and Programming, Lecture Notes in Comput. Sci. 443, Springer-Verlag, New York, 1990, pp. 744-75 I.

[17] R. RAMAN, The power of collision: randomized parallel algorithms for chaining and integer sorting, Proc.
10th Found. Softw. Tech. Th. Comp. Sci., Lecture Notes Comput. Sci., 472 (1990), pp. 161-175.

[18] L. RUDOLPH AND W. STEIGER, Subset selection in parallel, Proc. 1985 Int. Conf. Par. Proc., 1985.

SlAM J. COMPUT.
Vol. 23, No. 6, pp. 1266-1274, December 1994

() 1994 Society for Industrial and Applied Mathematics
010

REQUIREMENTS FOR DEADLOCK-FREE, ADAPTIVE PACKET ROUTING*
ROBERT CYPHER AND LUIS GRAVANO

Abstract. This paper studies the problem of deadlock-free packet routing in parallel and distributed architectures.
Three main results are presented. First, it is shown that the standard technique of ordering the buffers so that every
packet always has the possibility of moving to a higher-ordered buffer is not necessary for deadlock freedom. Second,
it is shown that every deadlock-free, adaptive packet routing algorithm can be restricted, by limiting the adaptivity
available, to obtain an oblivious algorithm which is also deadlock-free. Third, it is shown that any packet routing
algorithm for a cycle or torus network which is free ofdeadlock and which uses only minimal length paths must require
at least three buffers in some node. This matches the known upper bound of three buffers per node for deadlock-free,
minimal packet routing on cycle and torus networks.

Key words, deadlock, packet routing, store-and-forward routing, adaptive routing, networks, buffer require-
ments, lower bounds, parallel algorithms

AMS subject classifications. 68M10, 68Q25, 68Q22, 68Q20

1. Introduction. This paper studies the problem of deadlock-flee packet routing in par-
allel and distributed architectures. A wide range of packet routing algorithms with differing
properties and costs has been proposed [1]-[10], [12]-[14], [16]-[21], [23], [24]. In this paper
we will focus on a particularly simple and important class of routing algorithms which we
will call buffer-reservation algorithms. A buffer-reservation algorithm consists of rules that
specify to which buffers a packet may move based solely on the buffer currently holding the
packet, the packet’s source node, and the packet’s destination node. A packet is allowed to
move from its current buffer to any other buffer at any time, provided that the other buffer is

empty and that the move is allowed by the routing algorithm. Buffer-reservation algorithms
can be implemented efficiently in hardware because they require only local information to
make routing decisions, are inherently asynchronous and therefore do not require a global
clock, and do not require the creation or exchange of any special packets containing only con-
trol information. Furthermore, adaptive buffer-reservation algorithms allow packets to avoid
congestion, thus permitting high throughput in the network. As a result of these advantages,
buffer-reservation algorithms have been widely studied and implemented.

The primary disadvantage of buffer-reservation techniques is that they require that each
node contain some minimum number of buffers. Although a great deal of research has been
devoted to the problem of minimizing the storage requirements of buffer-reservation algo-
rithms [4], [7], [8], [10], [12], [14], [16], [19], [21]-[24], very little is known in terms of
lower bounds on the storage which is required by such algorithms. Our goal in this paper is to
characterize the properties which these algorithms must have in order to be free of deadlock
and to use these properties to prove lower bounds on storage requirements.

One well-known technique for proving freedom from deadlock is to order the buffers
so that every packet always has the possibility of moving to a higher-ordered buffer [12].
Providing such an ordering of the buffers is the standard technique for proving freedom from
deadlock and has been used by many researchers [4], [7], [8], [10], [12], [14], [16], [19], [21],
[23], [24]. Therefore, it seems plausible that the existence of such an ordering of the buffers
is a necessary condition for freedom from deadlock. In fact, in the special case of oblivious
buffer-reservation algorithms, Toueg and Steiglitz have shown that the existence of such an
ordering of the buffers is necessary for deadlock freedom [22]. However, in this paper we

*Received by the editors May 20, 1992; accepted for publication (in revised form) August 24, 1993. A preliminary
version of this paper appeared in the 1992 ACM Symposium on Principles of Distributed Computing.

tlBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
Department of Computer Science, Stanford University, Stanford, California 94305.

1266

DEADLOCK-FREE PACKET ROUTING 1267

will present an adaptive buffer-reservation algorithm which is provably free of deadlock and
for which no ordering of the buffers can be defined such that every packet always has the
possibility of moving to a higher-ordered buffer. Thus, in the case of adaptive routing, the
technique of ordering the buffers is sufficient but not necessary for avoiding deadlock.

On the other hand, we will prove that every deadlock-free, adaptive buffer-reservation al-
gorithm can be restricted, by limiting the adaptivity available, to obtain an oblivious algorithm
which is also deadlock-free. As a result, we will be able to use lower bounds on the storage re-
quirements of oblivious routing algorithms to obtain lower bounds on the storage requirements
of adaptive routing algorithms. In particular, we will show that any adaptive buffer-reservation
algorithm for a cycle or torus network which is free of deadlock and which uses only minimal
length paths must require at least three buffers in some node. This matches the known upper
bound of three buffers per node for deadlock-free, minimal routing on cycle 11 and torus
networks [4].

The remainder of this paper is organized as follows. Definitions and a formal description
ofthe routing model are given in 2. Section 3 presents an example ofa deadlock-free, adaptive
routing algorithm in which it is impossible to order the buffers so that every packet always has
the possibility ofmoving to a higher ordered buffer. The fact that every deadlock-free, adaptive
buffer-reservation algorithm can be restricted to obtain a deadlock-free, oblivious algorithm
is proven in 4. Lower bounds on the storage requirements for deadlock-free minimal buffer-
reservation algorithms are given in 5. Some conclusions and open problems are presented
in 6.

2. Preliminaries. We will view a routing network as being an undirected graph in which
the nodes represent processors and the edges represent communication links. Each node
contains a set of buffers, one of which will be called an injection buffer, another one of which
will be called a delivery buffer, and the remainder of which will be called standard buffers.
Packets can enter the routing network only by being placed in an empty injection buffer in their
source node, and they can be removed from the network only when they are in the delivery
buffer of their destination node. We will assume throughout that each buffer can hold exactly
one packet and that the number of buffers is finite.

Given the buffer in which a packet is currently stored and the packet’s source and desti-
nation nodes, a routing algorithm specifies a set of buffers to which the packet may be moved.
More formally, the color of a packet is the pair (s, d) where s is the packet’s source node
and d is the packet’s destination node. We will say that a buffer has color c if it contains a
packet with color c. A routing algorithm A is a function which associates a set of buffers,
called a waiting set, with each possible buffer and color pair (q, c). The waiting set which
A associates with the pair (q, c) will be denoted A (q, c). All of the buffers in a waiting set
A (q, c) must either be in the node which contains q or in neighboring nodes (that is, nodes
that are connected by an edge to the node containing q).

If q2 A(q, c), then it is required that q is not a delivery buffer and that q2 is not an
injection buffer. Furthermore, if q2 is a delivery buffer and if c (s, d), then it is required
that q is in node d. Finally, and if either q is an injection buffer or q2 is a delivery buffer,
then q and q2 must be in the same node. Thus injection and delivery buffers are used only
for placing new packets in the network and for removing packets once they have reached their
destination.

The routing algorithm operates asynchronously. A packet with color c may move from a
buffer q to any empty buffer q A(q, c) at any time, and a new packet with an arbitrary

lit should be noted that the injection and delivery buffers are introduced only to simplify the description of the
model, and that they need not be physically present in an actual routing network.

1268 ROBERT CYPHER AND LUIS GRAVANO

destination may be placed in an empty injection buffer at any time. Packets may be transmitted
in either store-and-forward [19] or virtual cut-through [15] mode. The only requirement is
that when a packet is moved from one buffer to another, it occupies both of the buffers for a
finite amount of time, and after a finite amount of time the former buffer becomes empty.

A routing algorithm is oblivious if every waiting set contains at most one buffer, and it is
adaptive otherwise. ("Oblivious" and "adaptive" routing algorithms have also been referred to
as "static" and "dynamic" routing algorithms.) Routing algorithm A is a restriction of routing
algorithm B if and only if for every pair (q, c), A (q, c) B(q, c), and for some pair (q, c),
A (q, c) B(q, c). A routing algorithm is minimal if every packet is routed from its source
node to its destination node while visiting the minimum number of nodes possible. Note that
the concept of minimality is based on the number of nodes visited, rather than the number of
buffers visited.

Given a routing algorithm A, a buffer q is reachable by a packet with color c (s, d)
if and only if there exists some path q0, q qk such that q0 is the injection buffer in node
s, qk q, and for all i, < < k, qi E A(qi_l, c). A configuration T is a nonempty set of
buffers S such that each buffer q in S is either empty or has some color c. The set of buffers
S will be called the critical set of the configuration T. Given a configuration T with critical
set S and given any buffer q E S, the notation T (q) will denote q’s color in configuration
T (or the value "empty" if it does not contain a packet). A configuration is reachable if and
only if it is possible to start with an empty network and to route packets so as to obtain the
configuration.

A deadlock configuration for a routing algorithm A is a configuration with a critical set
S such that none of the buffers in S is a delivery buffer, none of the buffers in S is empty, and
for each buffer q in S, q has color c where A (q, c)

_
S. A routing algorithm is deadlock-free

if and only if it has no reachable deadlock configuration. It is straightforward to verify that
this definition of deadlock-freedom does in fact correspond to the impossibility of obtaining
deadlock when using the given routing algorithm. Finally, given any two configurations T
and T" with critical sets S and St’, respectively, T T" will denote the configuration T with
critical set S S’ U S" in which for each buffer q S’, T(q) Tt(q), and for each buffer
q St’ \ S’, T (q) T"(q). Thus T T’t is obtained by taking configuration T’ and adding
to it all of those buffers in T’t which are not also in Tt.

3. Deadlock freedom without ordering buffers. In this section we will show that the
standard technique of ordering the buffers so that every packet always has the possibility of
moving to a higher ordered buffer is not necessary for the prevention of deadlock in buffer-
reservation algorithms. In particular, we will give a simple example of an adaptive buffer-
reservation algorithm which is provably free of deadlock and has no such ordering of the
buffers.

The example is routing algorithm A shown in Fig. 1, in which each circle represents a
buffer and each arc represents a possible move between buffers. There are three injection
buffers labeled 11, 12, and 13, and three delivery buffers labeled D, D2, and D3. In addition,
there are six standard buffers labeled X, X2, X3, Y, Y2, and Y3. We will consider only
three colors of packets, namely C, C2, and C3, where packets with color Ci, < < 3, are

injected in buffer li and delivered from buffer Di. The label associated with each arc specifies
which color packets are allowed to make the given move between buffers. For example,
A(I, C) {X}, A(X, C) {X2, Y}, and A(X, C2) {X3}. Of course, a complete
routing algorithm would provide routes for packets with other colors. In particular, note that
for each other color (s, d), it would be possible to add a dedicated path of buffers from the
injection buffer in s to the delivery buffer in d. These dedicated paths would not change the
deadlock or buffer ordering properties of the example, and they would allow packets to be

DEADLOCK-FREE PACKET ROUTING 1269

routed from each injection buffer to each delivery buffer. Finally, note that routing algorithm
A does not include an assignment of buffers to nodes, but the creation of such an assignment
is straightforward.

3 2

2

2

2
3 3 2

FIG. 1. A deadlock-free, adaptive routing algorithm A for which the technique ofordering the buffers cannot be
used to provefreedomfrom deadlock.

LEMMA 3.1. The routing algorithm A shown in Fig. is free ofdeadlock.
Proof Assume for the sake of contradiction that deadlock is possible, in which case there

must be some reachable deadlock configuration with a nonempty critical set S that does not
contain any delivery buffers. Note that Y, Y2, and Y3 cannot appear in S because they are only
reachable by packets which are able to move directly to a delivery buffer. Also, note that if
injection buffer Ii, < < 3 is in S, then buffer Xi must also be in S. Therefore, at least one
of the buffers Xi must be in S. Because none of the buffers Yi is in S, it follows that if X1 is in
S it must have color C2 in the deadlock configuration; if X2 is in S it must have color CI in the
deadlock configuration; if X3 is in S it must have color C3 in the deadlock configuration. Note
that X3 must be in S, because otherwise either X1 or X2 must be in S, and X3 6 A(X, C2)
and X3 6 A(X2, Cl). Because X A(X3, C3) and X2 G A(X3, C3), both X1 and X2 must
be in S. Therefore, the deadlock configuration must include a C2 packet in X and a C1 packet
in X2. However, it is impossible to simultaneously route a C2 packet to X1 and a C packet to
X2, so the deadlock configuration is not reachable, which is a contradiction.

LEMMA 3.2. There is no ordering of the buffers shown in Fig. such that every packet
always has the possibility ofmoving to a higher-ordered buffer

Proof Assume for the sake of contradiction that such an ordering is possible. Note that

X is reachable by a packet with color C2 and A(X1, C2) {X3} and that X2 is reachable
by a packet with color C and A(X2, C) {X3}. Therefore, buffer X3 must be higher
ordered than both X and X2. However, X3 is reachable by a packet with color C3 and
A(X3, C3) {X1, X2}, so either X1 or X2 (or both) must be higher ordered than X3, which
is a contradiction.

Combining the two previous lemmas yields the following theorem.

1270 ROBERT CYPHER AND LUIS GRAVANO

THEOREM 3.3. There exists an adaptive routing algorithm which is free ofdeadlock, and
for which there is no ordering of the buffers such that every packet always has the possibility
ofmoving to a higher-ordered buffer.

4. Restrictions of adaptive routing algorithms. In this section we will show that ev-
ery deadlock-free, adaptive packet routing algorithm can be restricted to obtain an oblivious
algorithm which is also deadlock-free. The proof will depend on the following lemma.

LEMMA 4.1. Let A be any deadlock-free, adaptive routing algorithm, let ql be any
buffer, and let cl be any color such that IA(ql, cl)[> 2. Let q2 be any buffer such that
q2 E A(q, c), and let B be the restriction of A obtained by removing qz from the waiting
set associated with (q, Cl). If B is subject to deadlock, then there must exist some reachable
deadlock configuration for B in which buffer q contains a packet with color c.

Proof. Because B is subject to deadlock, there must exist some configuration T which
is a reachable deadlock configuration for B. Because B is a restriction of A, it follows
that configuration T is also reachable by A. However, A is deadlock-free, so T must not
be a deadlock configuration for A. Therefore, buffer q must have color c in configur-
ation T.

THEOREM 4.2. Given any adaptive, deadlock-free routing algorithm A, there exists an
oblivious, deadlock-free routing algorithm B which is a restriction of A.

Proof Assume for the sake of contradiction that the claim is false. Then there must exist
some adaptive, deadlock-free routing algorithm A such that every routing algorithm A’ which
is a restriction of A is subject to deadlock. Let A be such a deadlock-free routing algorithm,
ql be any buffer, and c be any color such that IA(ql, cl)] > 2. Let q2 and q3 be any distinct
buffers such that q2 E A(q, c) and q3 E A(q, c), let A’ be the restriction of A obtained
by removing q2 from the waiting set associated with (q, c), and let A" be the restriction
of A obtained by removing q3 from the waiting set associated with (ql, c). It follows from
Lemma 4.1 that there exists a configuration T’ (similarly, T") which is a reachable deadlock
configuration for A’ (similarly, A") and in which buffer q contains a packet with color c.
Let T T’ T" and let S be the critical set of T. Let R be the configuration which also has
critical set S but in which all of the buffers are empty. Note that the following properties hold.

Property 1: The set S is the critical set of both configuration T and configuration R.
Property 2: Configuration R is a reachable configuration for A.
Property 3: Every buffer q in R is either empty or has a color c such that A (q, c) c_ S.
Property 4: Every buffer q in T has a color c such that q is reachable by a packet with

color c.
Property 5: Configuration T is a deadlock configuration for A.
Also note that Property 5 implies that S does not contain any delivery buffers.
We will define an algorithm for transforming R and T while maintaining Properties 1-5.

The algorithm will repeatedly add packets to empty buffers in R until none of the buffers in R
is empty. At this point R will be a reachable deadlock configuration, which will be the desired
contradiction.

The algorithm for transforming R and T consists of repeatedly performing the following
subroutine until R contains no empty buffers. The subroutine consists of two halves. In the
first half, we will pick an arbitrary buffer in R which is empty and we will fill it. We will then
extend both T and R so that the selected buffer is filled in R and so that Properties 1, 2, and 4
hold. In the second half, we will extend both T and R still further so that Properties 1-5 hold.
The two halves of the subroutine operate as follows.

First, select an arbitrary buffer q which is empty in R. Let c T(q) and note that
A (q, c)

S (from Property 5). Because buffer q is reachable by some packet p with color c

(from Property 4), there must exist a simple path from p’s injection buffer to buffer q. Define

DEADLOCK-FREE PACKET ROUTING 1271

the configuration P in which the critical set consists of all of those buffers that appear in this
simple path, and in which all of the buffers in the critical set contain a packet with color c.
Transform R to become the configuration obtained by adding P and R (that is, perform the
assignment R +-- P 6) R), transform T to become the configuration obtained by adding P and
T (that is, perform the assignment T -- P 6) T), and let S be the critical set of the transformed
configurations R and T. This completes the first half of the subroutine.

At this point, Property clearly holds. Also, Property 2 holds because it is possible to
first route packets with the desired colors to all of the nonempty buffers in R which are not in
P and to then fill the buffers in P with packets with color c. Furthermore, Property 4 holds
because all of the buffers in P are reachable by packets with color c. Finally, note that S
does not contain any delivery buffers because configuration P does not contain any delivery
buffers. However, Properties 3 and 5 may not hold, because it is possible that some of the
packets in P have waiting sets that include buffers which are not in S.

The second half of the subroutine repeatedly adds buffers to T and R until Properties
1-5 hold. First, select an arbitrary buffer q’ in the simple path described above such that
A(q’, c) S (if such a buffer exists). Let q" be the successor of q’ in the simple path
described above (note that q" must exist if q’ exists, because A(q, c) c__ S so q’ q). Let
A’ be the restriction of A obtained by removing q" from the waiting set associated with
(q’, c). It follows from Lemma 4.1 that there exists a configuration D which is a reachable
deadlock configuration for A’ and in which buffer q’ contains a packet with color c. Let D’
be the configuration with the same critical set as D but in which all of the buffers are empty.
Transform R to become the configuration obtained by adding R and D’ (that is, perform the
assignment R +- R 6) D’), transform T to become the configuration obtained by adding T and
D (that is, perform the assignment T +-- T 6) D), and let S be the critical set of the transformed
configurations R and T. Repeat this procedure of selecting a buffer q’ in the simple path such
that A (q’, c) S and transforming R, T, and S until no such buffer q’ exists. When no such
buffer q’ exists, the second half of the subroutine is completed. At this point return from the
subroutine.

It is clear that the transformations performed in the second half of the subroutine maintain

Properties 1, 2, and 4. Furthermore, upon returning from the subroutine Property 3 must hold
because for each buffer q’ in the simple path described above, A(q’, c)

_
S. Finally, upon

returning from the subroutine Property 5 must hold because S does not contain any delivery
buffers and for each buffer q in T with color c, A (q, c) c_ S. Therefore, all of Properties 1-5
hold upon returning from the subroutine.

Note that any buffer in R which was nonempty before calling the subroutine will again be
nonempty after calling the subroutine. Finally, note that following the call to the subroutine,
R contains at least one additional nonempty buffer. Because the number of buffers is finite,
this procedure must terminate, at which point R is both reachable by A (from Property 2)
and a deadlock configuration for A (from Property 3 and from the fact that R contains neither

empty buffers nor delivery buffers), which is a contradiction. [3

5. Minimal routing in cycle and torus networks. In this section we will prove lower
bounds on the number of buffers per node that are required for deadlock-free, minimal routing
in cycle and torus networks. Our approach will be to first prove a lower bound on the buffer
requirements of deadlock-free, minimal, oblivious routing algorithms for cycle networks. We
will then use this lower bound, along with Theorem 4.2 and the fact that a torus network can
be decomposed into disjoint cycles, to obtain a lower bound on the buffer requirements of
deadlock-free, minimal routing algorithms for both cycle and torus networks. Of course, it

should be recalled that we are concerned solely with buffer-reservation algorithms, and that
other types of deadlock-free routing algorithms for cycle networks have been created 10],

1272 ROBERT CYPHER AND LUIS GRAVANO

[20], [23]. However, these other types of routing algorithms have fundamentally different
properties. For example, buffer insertion rings [20] can provide high throughput, but they are
poorly suited to the creation of minimal routing algorithms for torus networks.

LEMMA 5.1. Let routing algorithm A be any deadlock-free, minimal, and oblivious routing
algorithmfor a cycle network with n nodes. The cycle network must contain at least 3n 30
standard buffers.

Proof Because A is deadlock-free and oblivious, it follows that there exists an ordering of
the buffers such that every packet visits the buffers in ascending order [22]. Let k In/21
(so either n 2k + 2 or n 2k + 3). We will say that a packet is routed in the clockwise
direction if it visits buffers in nodes of the form i, (i + 1) mod n, (i + 2) mod n j, and
in the counterclockwise direction otherwise. Note that for each node i, 0 < < n, algorithm
A routes packets from node to node (i + k) mod n in the clockwise direction. Therefore,
for each node i, 0 < < n, there must exist an ascending sequence of standard buffers
Si,i, Si,(i+l)modn Si,(i+k)modn, where each buffer of the form si. j is located in node j
(for example, let si, j be the highest ordered standard buffer in node j which is visited by a
packet with source node and destination node (i + k) mod n). For each i, 0 < < n, let
S si,i, Si,(i+l)modn Si,(i+k)modn denote the ascending sequence of standard buffers
beginning in node i. Let h n k, note that $1, sh,h, s,,h+l s,,n-1, and note
that So and Sh are disjoint.

We will say that a sequence of buffers is a clockwise increasing (similarly, counter-

clockwise increasing) sequence if when the buffers are visited in ascending order, the nodes
containing the buffers are visited in clockwise (counterclockwise) order. We will show that
there must exist at most three mutually disjoint clockwise increasing sequences of buffers, the
total length of which is at least n + k. There are two cases, which follow.

Case 1. There exists a clockwise increasing sequence of standard buffers X x0,

x x,,_ such that for each i, 0 < < n, X is located in node i. In this case,
we have two subcases.
Case (a). There exists an a, 0 <_ a < n 1, such that S, and X are disjoint. In

this case, the two disjoint clockwise increasing sequences are S, and X, and
their total length is n + k + 1.

Case (b). For each i, 0 < _< n 1, Si and X intersect. In this case, let a be
the largest value of i, 0 < _< n 1, such that there exists a value i’ >_
where si, i, Xi’. Let a’ be any value such that a’ > a and Sa,a, Xa’. Let
b (a + 1) mod n and let b’ be any value such that Sb,b’ Xb’. Note that
a’ >_ a > k > b’. Let Y be the sequence

Sb,b, Sb,b’-l, Xb’, Xa’, Sa,a’+l, Sa,(a+k)modn.

The sequence Y is clockwise increasing and has length n + k.
Case 2. There does not exist such a sequence X. In this case, we have two subcases.

Case 2(a). There exists an a, 0 < a < h, such that S and So are disjoint and such
that Sa and Sh are disjoint. In this case, the three disjoint clockwise increasing
sequences are So, Sa, and S,, and their total length is 3k + 3 > n + k.

Case 2(b). For each i, 0 < < h, either Si and So intersect or Si and Sh intersect,
but not both. In this case, let a be the largest value of in the range 0 < < h
such that Si and So intersect. Let a’ be any value such that Sa,a’ SO,a’. Let
b a + and let b’ be any value such that s/,,,, s,,t,, (note that such a b’ must
exist because of the definition of a and the fact that Sh does not intersect So).
Let Y be the sequence

S0,0, S0,a’-I Sa,a’, Sa,a+k

DEADLOCK-FREE PACKET ROUTING 1273

and let Z be the sequence

Sb,b, Sb,b’, Sh,b’+l, Sh,n-1.

Note that Y and Z are clockwise increasing sequences and that they must be
disjoint (because otherwise there would exist a clockwise increasing sequence
X spanning all of the nodes). Also, note that the length of Y is a + k + and
the length of Z is n a 1, so their total length is n + k.

Thus, in any case there must exist at most three mutually disjoint clockwise increasing
sequences of buffers, the total length of which is exactly n + k. An analogous argument can be
used to show that there must exist at most three mutually disjoint counterclockwise increasing
sequences of buffers, the total length of which is exactly n + k.

Now consider an arbitrary clockwise increasing sequence of buffers Y and an arbitrary
counterclockwise increasing sequence of buffers Z. Assume that Y and Z intersect at some
buffer a and again at some higher ordered buffer b, let Y’ be the subsequence of Y starting at a
and ending immediately before b, and let Z’ be the subsequence of Z starting at a and ending
immediately before b. The total length of Y’ and Z’ must be at least n, because every node
other than the node containing b must contain at least one buffer from either Y’ or Z’, and the
node containing a must contain at least one buffer from both Y’ and Z’. Now assume that Y
and Z intersect x times and for < < x let Yi denote the subsequence of Y starting at their
th point of intersection and ending immediately before their + st point of intersection, let
Yx denote the subsequence of Y of length consisting of their xth point of intersection, and
let Zi subsequences be defined analogously. Then for < < x, the total length of Yi and Zi
must be at least n, and the total length of Yx and Zx must be 2, so the total length of Y and Z
must be at least (x 1)n + 2.

As a result, a clockwise increasing sequence of buffers of length at most n + k and a
counterclockwise increasing sequence ofbuffers of length at most n +k can intersect in at most
three buffers. Therefore, it follows that the entire collection of clockwise increasing sequences
and counterclockwise increasing sequences contains at least (n + k) + (n + k) (3 9)
2n + 2k 27 > 3n 30 distinct buffers. [3

THEOREM 5.2. Let routing algorithm A be any deadlock-free, minimal routing algorithm
for a cycle network with 31 or more nodes orfor a torus network in which at least one ofthe
dimensions is of length 31 or greater The cycle or torus network must contain at least one
node which has three or more standard buffers.

Proof The claim for a cycle network follows immediately from Theorem 4.2 and
Lemma 5.1. The claim for a torus network follows from Theorem 4.2, Lemma 5.1, and
the observation that a torus can be decomposed into disjoint cycles such that all minimal
length paths between pairs of nodes within a cycle lie within the cycle. [3

6. Conclusions and open problems. This paper has examined the characteristics which
an adaptive packet routing algorithm must have in order to be free of deadlock. In particular,
we have shown that an adaptive packet routing algorithm may be free of deadlock even though
it is impossible to order the buffers so that every packet always has the possibility of moving to
a higher-ordered buffer. On the other hand, we have shown that every deadlock-free, adaptive
buffer-reservation algorithm can be restricted to obtain a deadlock-free oblivious algorithm.
We have also used this fact to show lower bounds on the storage requirements of minimal,
deadlock-free routing algorithms for cycle and torus networks.

These results suggest a number of natural open problems. It would be interesting to obtain
lower bounds on the storage requirements of minimal, deadlock-free routing algorithms for
different topologies, including hypercube-derivative networks such as de Bruijn and butterfly
networks. It would also be interesting to see whether or not any networks exist for which these

1274 ROBERT CYPHER AND LUIS GRAVANO

lower bounds on storage requirements are nonconstant. Finally, the problem of characterizing
the properties of deadlock-free wormhole routing algorithms remains open.

REFERENCES

[1 B. AWERBUCH, S. KUTTEN, AND D. PELEG, Efficient deadlock-free routing, in Proc. ACM Symposium on
Principles of Distributed Computing, 199 l, pp. 177-188.

[2] P.E. BERMAN, L. GRAVANO, G. D. PIFARRI, AND J. L. C. SANz, Adaptive deadlock- and livelock-free routing with
all minimalpaths in torus networks, in Proc. ACM Symposium on Parallel Algorithms and Architectures,
1992, pp. 3-12.

[3] A.A. CHIEN AND J. n. KIM, Planar-adaptive routing: Low-cost adaptive networksfor multiprocessors, in Proc.
19th Intl. ACM Symposium on Computer Architecture, ACM, New York, 1992, pp. 268-277.

[4] R. CYPHER AND L. GRAVANO, Adaptive, deadlock-free packet routing in torus networks with minimal storage,
in Proc. Intl. Conf. on Parallel Processing, vol. 3, pp. 204-21 l, 1992.

[5] W.J. DALLY AND C. SEITZ, Deadlock-free message routing in multiprocessor interconnection networks, IEEE
Transactions on Computers, 36 (1987), pp. 547-553.

[6] J. DUATO, Deadlock-free adaptive routing algorithms for multicomputers: evaluation of a new algorithm, in
Proc. 3rd IEEE Symposium on Parallel and Distributed Processing, IEEE, Washington, D.C., pp. 840-847,
1991.

[7] S. A. FELPERIN, H. LAFFITTE, G. BURANITS, AND J. L. C. SANZ, Deadlock-free minimal packet routing in the
torus network, Tech. Rep. TR:91-22, IBM Computer Research and Advanced Applications Group, Buenos
Aires, Argentina, 199 I.

[8] B. GAVlSH, E M. MERLIN, AND P. J. SCHWEITZER, Minimal buffer requirementsfor avoiding store-and-forward
deadlock, Tech. Rep. RC 6672, IBM T.J. Watson Research Center, Yorktown Heights, NY, 1977.

[9] C.J. GLASS AND L. M. NI, The turn modelfor adaptive routing, in Proc. 19th Intl. Symposium on Computer
Architecture, pp. 278-287, 1992.

[10] I.S. GOPAL, Prevention ofstore-and-forward deadlock in cotnputer networks, IEEE Trans. Comm., 33 (1985),
pp. 1258-1264.

[1 l] L. GRAVANO, G. D. PIFARRI, S. A. FELPERIN, AND J. L. C. SANz, Adaptive deadlock-free worm-hole routing with
all minimal paths, Tech. Rep. TR:91-21, IBM Computer Research and Advanced Applications Group,
Buenos Aires, Argentina, 1991.

12] K.D. GONTHER, Prevention ofdeadlocks in packet-switched data transport systems, IEEE Trans. Comm., 29
(1981), pp. 512-524.

[13] E A. J. HILBERS AND J. J. LUKKIEN, Deadlock-free message routing in multicomputer networks, Distributed
Computing, 3 (1989), pp. 178-186.

14] C.R. JESSHOPE, P. R. MILLER, AND J. T. YANTCHEV, High performance communications in processor networks,
in Proc. 16th Intl. Symposium on Computer Architecture, pp. 150-157, 1989.

[15] P. KERMANI AND L. KLEINROCK, Virtual cut-through: a new computer communication switching technique,
Comput. Networks, 3 (1979), pp. 267-286.

16] S. KONSTANTINIDOU, Adaptive, minimal routing in hypercubes, in Proc. 6th. MIT Conference on Advanced
Research in VLSI, pp. 139-153, 1990.

17] S. KONSTANTINIDOU AND L. SNYDER, The Chaos router: A practical application of randomization in network
routing, in Proc. 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 21-30,
1990.

18] Y. MANSOUR AND B. PATT-SHAMIR, Greedy packet scheduling on shortest paths, in Proc. ACM Symposium on

Principles of Distributed Computing, pp. 165-175, 1991.
19] E M. MERLIN AND P. J. SCHWEITZER, Deadlock avoidance in store-and-forward networks. 1: Store-and-forward

deadlock, IEEE Trans. Comm., 28 (1980), pp. 345-354.
[20] Y. OIEK AND M. YUNG, Principles for high speed network control: loss-less and deadlock-freeness, self-

routing and a single buffer per link, in Proc. ACM Symposium on Principles of Distributed Computing,
pp. 161-175, 1990.

[21 G.D. PIFARRi, L. GRAVANO, S. A. FELPERIN, AND J. L. C. SANZ, Fully-adaptive minimal deadlock-free packet
routing in hypercubes, meshes, and other networks, in Proc. 3rd ACM Symp. on Parallel Algorithms and
Architectures, pp. 278-290, 1991.

[22] S. TOUEG AND K. STEIGLITZ, Some complexity results in the design ofdeadlock-free packet switching networks,
SIAM J. Comput., l0 (1981), pp. 702-712.

[23] S. TOUEG AND J. D. ULLMAN, Deadlock-free packet switching networks, SIAM J. Comput., l0 (1981), pp.
594-611.

[24] J. YANTCHEV AND C. R. JESSHOPE, Adaptive, low latency, deadlock-free packet routingfor networks ofproces-
sors, IEE Proc., Pt. E, 136 (1989), pp. 178-186.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1275-1282, December 1994

() 1994 Society for Industrial and Applied Mathematics
011

ON LANGUAGES REDUCIBLE TO
ALGORITHMICALLY RANDOM LANGUAGES*

RONALD V. BOOK

Abstract. In this paper languages "bounded reducible" to algorithmically random languages are studied; these
are the languages whose characteristic sequences are algorithmically random (as defined by Martin-L6f [Inform.
and Control, 9 (1966), pp. 602-619]); here RAND denotes the class of algorithmically random languages. The
reducibilities <7z are very general but are defined so that if A Te,.(B), then there is a machine M with the properties
that L (M, B) A and every computation of M relative to any oracle halts.

Book, Lutz, and Wagner [Math. Systems Theory, 27 (1994), pp. 201-209] studied AI_MOST-7, defined to be A
for almost every B, A _<Tz B }. They showed that AI_MOST-’R. 7(RAND) tq REC, where REC denotes the class
of recursive languages, so that ALMOST-7 is the "recursive part" of (RAND). In this paper this characterization
is strengthened by showing that for every B RAND, AI_MOST-7 7?,.(B) f3 REC. A pair (A, B) of languages is
an independent pair of algorithmically random languages if A B RAND. In this paper it is shown that for every
"/’. and for every independent pair (A, B), ALMOST-7 TC.(A) tq 7(B).

Key words, reducibilities, algorithmically random oracles, complexity classes, characterization theorems, inde-
pendent pairs

AMS subject classifications. 68Q15, 03D 15

1. Introduction. Within computational complexity theory there has been a growing in-
terest in probabilistic algorithms (or probabilistic machines) and randomness. Probabilistic
machines incorporate randomness into their underlying logic, so that randomization is part of
the internal calculation. Just as in the case of nondeterministic machines, there are examples
where probabilistic algorithms can solve problems much faster than is known to be possible
by deterministic algorithms. Hence, these concepts have received a great deal of attention.

In structural complexity theory "random oracles" have been studied when using the
method of reducibilities to compare complexity classes. Many of the results are stated in
terms of a relationship being true for "almost every oracle." (See [Amb86], [BG81], [Cai89],
[NW88].) The results given there suggest that one might consider a (nicely behaved) reducibil-
ity or a relativization of a complexity class, say 7, and define a class ALMOST-7 as {B
for almost every language A, B e R(A)}. For example, if 7a,, is the reducibility <Pr, then
ALMOST-7 is the class BPP, and if R is the reducibility <vNP, then ALMOST-R is the class
AM. Properties of ALMOST-R for appropriate reducibilities R were studied by Book, Lutz,
and Wagner [BLW94].

In this context one must consider the class of "algorithmically random" languages of
Martin-L6f [Mar66]. As Ko [Ko92], [Ko86] has observed, the notion of algorithmic random-
ness is the strongest definition of random languages (or sequences) that is widely accepted as
the definition of randomness. Book, Lutz, and Wagner showed that for appropriate reducibil-
ities , a recursive language A is in ALMOST- if and only if there is an algorithmically
random language B such that A e 7(B), so that ALMO$’I’-R R(RAND) fq REC, where
REC denotes the class of recursive languages, and ALMOST-R represents the recursive part
of R(A).

The principal results of the present paper are two additional characterizations of
ALMOST-R, each of which is strong.

*Received by the editors January 25, 1993; accepted for publication (in revised form) August 30, 1993. The
preparation of this paper was supported in part by National Science Foundation grants CCR-8913584 and CCR-
9302057, and by the Japan Society for the Promotion of Science. Some of these results were presented at ISAAC-93,
the Third International Symposium on Algorithms and Complexity, held in December 1993 in Hong Kong.

tDepartment of Mathematics, University of California, Santa Barbara, California 93106 (book@math.
ucsb. edu).

1275

1276 R.V. BOOK

The random oracle characterization. For every B RAND, ALMOST-TZ (B)
REC (Theorem 3.5).

The independent pair characterization. For every pair (A, B) of languages such that
A B E RAND, ALMOST-T T(A) f T(B) (Theorem 4.2).

2. Preliminaries. For the most part our notation is standard, following that used by
Balcfizar, Dfaz, and Gabarr6 [BDG88], [BDGg0]. We assume that the reader is familiar with
the standard recursive reducibilities and the variants obtained by imposing resource bounds
such as time or space on the algorithms that compute these reducibilities.

A word (string) is an element of {0, }*. The length of a word w {0, }* is denoted Iwl,
For a set A of strings and an integer n > 0, let A-<n {x A Ix _< n }.

The power set of a set A is denoted by 79(A).
Let CA be the characteristic function of A. The characteristic sequence XA of a language

A is the infinite sequence CA (XO)CA (Xl)CA (X2) where {x0, xl, x2 {0, }* in lexico-
graphical order. We freely identify a language with its characteristic sequence and the class
f2 of all languages on the fixed finite alphabet {0, 1} with the set {0, },o of all such infinite
sequences; the usage is based on context so that there will be no ambiguity on the part of the
reader.

If X is a set of strings (i.e., a language) and C is a set of sequences (i.e., a class of
languages), then X C denotes the set {w w E X, C}.

For each string w, Cw {w} {0, }o is the basic open set defined by w. An open set is
a (finite or infinite) union of basic open sets, i.e., a set X {0, },o where X c_ {0, }*. (This
definition gives the usual product topology, also known as the Cantor topology, on {0,
A closed set is the complement of an open set. A class of languages is recursively open if it is
of the form X. {0, }o for some recursively enumerable set X c_ {0, 1}*. A class of languages
is recursively closed if it is the complement of some recursively open set.

We assume an effective enumeration of the recursively enumerable languages as
Wl, W2

For a class C of languages we write Prob[C] for the probability that A C when A
is chosen by a random experiment in which an independent toss of a fair coin is used to
decide whether a string is in A. This probability is defined whenever C is measurable in the
usual product topology of {0, }*. In particular, if C is a countable union or intersection of
(recursively) open or closed sets, then C is measurable and so Prob[C] is defined. Note that
there are only countably many recursively open sets, so every intersection of recursively open
sets is a countable intersection of such sets, and hence is measurable; similarly every union
of recursively closed sets is measurable. Notice that the statement "almost every B is in C"
corresponds to the more formal statement "Prob[{B B C}] 1."

A class C is closed under finite variation if A 6 C holds whenever B 6 C and A and
B have finite symmetric difference. A class C is closed under finite translation if for all
y {0, 1}* and all A _c {0, 1}’, {y}. A C implies A C.

The Kolmogorov 0-1 law says that every measurable class C c_ {0, }o that is closed
under finite variation has either measure 0 or measure 1.

3. The random oracle characterization. The definition of an "algorithmically random"
language is due to Martin-L6f [Mar66]. A class C is called a constructive null set if there is
a total recursive function g with the properties that for every k we have the following.

(i) C c_ Wg(k) {0, }o, and
(ii) Prob[Wg(k). {0, 1}’] _< 2-k.

Hence, every constructive null set has measure 0. Let NULL be the union of all construc-
tive null sets, and let RAND =df {0, }o NULL be the class of algorithmically random
languages. Since NULL is a countable union of measure 0 sets, we have Prob[NULL] 0
and, consequently, Prob[RAND] 1.

ALGORITHMICALLY RANDOM LANGUAGES 1277

No recursively enumerable language is in RAND.
Since we are concerned with the use of oracles, we consider complexity classes that

can be specified so as to "relativize." But we want to do this in a more general setting than
reducibilities computed in polynomial time, and so we introduce a few definitions.

Assume a fixed enumeration M0, M, M2 of deterministic oracle Turing machines.
A relativized class is a function C 79({0, }*) --+ 79(79({0, }*)). A recursive pre-

sentation of a relativized class C of languages is a total recursive function f bl ---+ I1
such that for every language A and every > O, Mf(i)(A) halts on every computation and
C(A) {L(Mfi)(A)) 6 I1}. A relativized class is recursively presentable if it has a
recursive presentation.

Notice that if for every A and every i, Mf(i)(A) halts on every computation, then Mfi)(
has a running time that is bounded above by a recursive function.

A reducibility is a relativized class. A bounded reducibility is a relativized class that is
recursively presentable. IfR is a reducibility, then we use the notation A _< B to indicate that
A 6 (B). In addition we write J’-I(A) for {B A <Tz B}. Typical bounded reducibilities

_logspaceinclude -m
<P <-tt’ _<-, _<ffP, _<STN, _<m etc. The relations --<m and _<r are reducibilities

that are not bounded.
If R is a reducibility and C is a set of languages, write R(C) for [,3AC R(A).
A reducibility R will be called appropriate if (i) it is bounded, (ii) for any language

A, R(A) is closed under finite variation, and (iii) for any language A, R- (,4) is closed under
finite translation and under finite variation.

The reader should note that the reducibilities commonly used in structural complexity
meet the conditions for being appropriate.

There are characterizations of complexity classes in terms of RAND. This follows from
the next fact.

PROPOSITION 3.1 [BLW94]. If is an appropriate reducibility, then the inverse image
R- (B) ofa recursive language B is a union of recursively closed sets.

For each reducibility R, define ALMOT-R {A Prob[{B A 6 R(B)}] }. Let
REC denote the class of recursive languages.

PROPOSITION 3.2 [BLW94]. If is an appropriate reducibility, then AI_MOST-T
R(RAND) f) REC.

Simple examples of characterizations of complexity classes given by Proposition 3.2 are
the following"

(a) P Pbtt (RAND) A REC ALMOST-Pbtt [Amb86], [BG81];
(b) BPP Pr(RAND) q REC ALMOST-Pr [Amb86], [BG81];
(c) AM NPr(RAND) f3 REC ALMOT-NPT [NW88];
(d) PH PH(RAND) f3 REC ALMO$’I’-PH [NW88];
(e) PSPACE PQH(RAND) fqREC ALMOST-PQH, where A <PQH B if and only

if A 6 PH(QBF B) [BW81], [BBS85].
Proposition 3.2 shows that for appropriate R, ALMOST-R is precisely the "recursive

part" of 7Z(RAND). Since this work is part of the general study of complexity classes, it is

particularly significant that ALMO3T-7 is the recursive part of R(RAND).
By definition of At.MOIl;T-R, a language L is in ALMO$’I’-R if and only if Prob[{ J

L 6 R(J)}] 1. By Proposition 3.1, for any recursive L, Prob[{J L 6 7(J)}] if
and only if there exists J 6 RAND such that L 6 R(J). Thus, ALMOT-R c_ R(RAND),
and a recursive language L is in AI..MOST-R if and only if there exists J 6 RAND such
that L 6 R(J); hence, ALMOfi;T-R t2BRAND(R(B) N REC). This statement can be
strengthened.

Kautz [Kau91 has developed a number of results about RAND. A modification of one
of his results leads to a variation on Proposition 3.2.

1278 R.V. BOOK

LEMMA 3.3. If X is recursively open, Prob[X] < 1, and X is closed underfinite transla-
tion, then X C) RAND t3.

Proof. Assume that X is recursively open, Prob[X] < 1, A c_ {0, }o, and A 6 X. Since
X is closed under finite translation, for all w 6 {0, }*, A {w}. B implies B 6 X. It suffices
to show that A ’ RAND.Fix a positive integer r such that Prob[X] < 1/2. Since X is recursively open, there is
a recursively enumerable (r.e.) set C such that C is an instantaneous code (i.e., a prefix-free
code) and X C {0, 1}. For each j 6 N, let Cj {WllO2.’. toj each wi C}. Then
each Cj is r.e. and there is a total recursive function g such that Wg(k) Crk for all k 6 N.

We show that {A}

Wu(t) {0, }o and for each k, Prob[W(k) {0, },o] < 2-,. This

implies that A is a constructive null set so that A ’ RAND.For the first, it suffices to prove that A C {0, }o) for all j 6 N. This can be done by
induction. It is trivial for j 0. Assume that A 6 Cj {0, },o for some j. Then A {w}. B
for some w Cj and B c_ {0, 1}’. By choice of A, B X and so B {v} B’ for some
v 6 C and B’

{0, },o. Then A {wv}. B’ and wv Cj+l, so A Cj+l {0, }o.

For the second, notice that Prob[Wg,). {0, 1}’] Prob[Cr’. {0, 1}’] (Prob[C
{0, }o])rk (Prob[X])r, < (1/2) 2-.

The following is a simple version of a result of Kautz [Kau91].
THEOREM 3.4. Let X be a class that is closed underfinite translation andfinite variation.

If X is an intersection of recursively open sets or a union of recursively closed sets, then
X N RAND 13 or RAND c X.

Proof IfX is closed under finite variation, then by the Kolmogorov 0-1 law, Prob[X] 0
or Prob[X] 1. If Prob[X] 1, then RAND

X (Corollary 3 of [BLW94]).

If Prob[X] 0, then X ["]=0 Yt for some choice of recursively open Yi, > O. Since
Prob[X] 0, there exists m 6 N such that the set Y m["lk=0 Yt has Prob[] < 1. This set
Y is recursively open. Let A 6 X. Then every tail of A is in X c_ Y so that by Lemma 3.3,
A ’ RAND. Hence, X f3 RAND t3.

Now we have the strong variation on Proposition 3.2.
THEOREM 3.5 (the random oracle characterization). If is an appropriate reducibility,

thenfor every B RAND, ALMOST- (B)N REC.
Proof Since ALMOST-T 7".(RAND) fq REC, it is trivial that for every B 6 RAND,

7Z(B) f) REC _c ALMOST-TO,.
To see that the converse is true, choose any L 6 ALMOST-; then since we have

L 6 ALMOST-T, L 6 REC and Prob[7-l(L)] 1. As an appropriate reducibility, is
bounded so that -I (L) is a union of recursively closed sets (Proposition 3.1) that is closed
under finite translation and finite variation. Since Prob[- (L)] 1, it follows by Theorem
3.4 that RAND

-(L). This implies that for every B 6 RAND, L 6 (B); since

L REC, this shows that L (B) REC. Hence, ALMOST-7

COROLLARY 3.6. Let T be an appropriate reducibility.

(a) Language A ALMOST-TO, if and only if A is recursive and for every B
RAND, A 6 7(B).

(b) For every two languages C, D RAND, ALMOST-7 c_ T(C) f3 (D).
Theorem 3.5 shows that for any two languages C, D in RAND, the recursive part of 7a,.(C)

is precisely the same as the recursive part of (D) since both are equal to ALMOS’I’-.
Thus, no specific language in RAND plays a special role as an oracle for any language in
ALMOST-?.

Theorem 3.5 generalizes the characterization of BPP due to Lutz [Lut92]. Notice that
it follows immediately from the definitions (without using Theorem 3.5) that for every B
RAND, P Pbtt(B) fq REC and PH PH(B) f3 REC, but no similar characterizations are
known for classes of the form AI..MOST- without using Theorem 3.5.

ALGORITHMICALLY RANDOM LANGUAGES 1279

4. The independent pair characterization. The theory of reducibilities has been used
successfully in complexity theory to find upper bounds on the complexity ofvarious languages.
When a language A is known to be reducible to a language B, then it is sometimes the case
that the inherent computational complexity of A can be bounded above by some function that
bounds the inherent computational complexity of B. What can be said when language B is
in RAND? It is known [Gac86] that for every language A, there is a language B RAND
such that A is Turing reducible to B. Thus, simply knowing that a language is reducible to
language in RAND tells one nothing about the computational complexity ofthe given language.
In addition, knowing that a reduction of A to B, B RAND, is witnessed by a machine whose
running time is bounded by some total recursive function still does not guarantee that A is
recursive or is in some specific complexity class; this follows from the fact that if the reduction
is reflexive, then B is reducible to itself within the same time bound. Recall that no recursively
enumerable language (hence, no recursive language) can be in RAND.

One approach to gaining information about the complexity of the languages reducible to a
language in RAND is to consider appropriate reducibilities as described in 3. Thus, consider
the case where A is in ALMOST- for some appropriate 7. Then A is recursive and there is
a language B 6 RAND such that A 6 7(B). This is enough to show that there is an upper
bound on the complexity of A which depends only on the reducibility 7, that is, for every
B 6 RAND and every A 6 7a,.(B), there is a machine that recognizes A and whose running
time is bounded above by fT. This fact follows from a straightforward simulation based on
the definition of 7a,. as a bounded reducibility. Hence, it is stated without proof, leaving the
details as an exercise.

THEOREM 4.1. For any appropriate reducibility , there is a total recursive function
fTz that depends only on T such that every language in ALMOST-R can be recognized
deterministically in time bounded by fTz.

Now we consider a special type of algorithmically random language.
Let R be a reducibility and C a class of languages. A pair (A, B) of languages is an 7-

minimal pairfor C if A ’ C, B ’ C, and for every language D, D 7(A) and D 7(B)
imply D 6 C. (See [Amb87].)

Most of the research on minimal pairs that has been carried out in complexity theory has
focused on minimal pairs for well-studied classes like P and NP with respect to reducibilities
computed in polynomial time (for examples, see [Amb87], [Bre78], [Lad75], [Sch84]). How-
ever, this topic has arisen in the context of random oracles [Amb86] and [TW89]. Recently,
Lutz [Lut92] developed a characterization of languages in BPP in terms of"independent pairs
of algorithmically random languages," a characterization that can be put into the framework
of minimal pairs and that here is generalized to every class of the form ALMOST- for every
appropriate

Let A and B be languages such that A B RAND. Then (A, B) is an independent
pair of algorithmically random languages. (Here, A B denotes the "join" of A and B,
AB={0x, ly Ix A, y B}.)

In the present paper we abbreviate the name as "independent pair."
Lutz observed that choosing A and B independently from f2 is equivalent to choosing

the pair (A, B) from the product space f2 f2 with the probability distribution given by
Prob[X Y] Prob[X] Prob[Y] for all X, Y 6 ft. Thus, almost every pair of languages is
an independent pair, that is, Prob[{(A, B) (A, B) is an independent pair}] 1.

Since A B 6 RAND implies that both A and B are in RAND, the name "independent
pair of algorithmically random languages" is justified. Note that there exist A, B 6 RAND
such that A B ’ RAND; an example is A A where A 6 RAND.

Now we have the second variation on Proposition 3.2.

1280 R.V. BOOK

THEOREM 4.2 (the independent pair characterization). Let be an appropriate re-
ducibility. For every independent pair (A, B), ALMOST-7 R(A) (’1R(B).

Proof To show that R(A) N R(B)

_
ALMOST-7"., it suffices to show that every

independent pair is an 7-minimal pair for ALMOST-R. The proof is generalization of
the proof of the main result of Lutz [Lut92]. Since Lutz was discussing only polynomial
time-bounded Turing reducibilities, that proof must be altered for general appropriate re-
ducibilities 7.

Let (A, B) be an independent pair. Let D be a language such that D E 7(A) and
D E 7(B). Assume that D ’ ALMOST-. The desired result follows by proving that
{A B has a constructive null cover and so A B is not algorithmically random.

Let Ma, Mb be machines witnessing D 6 R(A) and D 6 R(B). Since 7 is a bounded
reducibility, one can assume that there exist total recursive functions fa and fb bounding the
running times of Ma and Mb. Fix a strictly increasing function g such that for all x, g(Ixl) >
max{fa (Ix l), fb(IXl)}. Then for all x and all strings y that are query strings in either Ma’s
or Mb’S computation on x,]Yl < g(]xl). For each natural number n, let K(n) 2g(n)

and N(n) 2K(n) + 1. In this proof certain subsets of {0, 1} <g(n) will be discussed; let
u, v 6 {0, }K(n) denote the characteristic strings of sets U, V

_
{0, }<g(n), respectively,

and let u q) v 6 {0, }U(n) denote the characteristic string of U V.
Now the proof follows that of Lutz.
Since (A, B) is an independent pair, both A and B are in RAND. By Corollary 3.6(b),

this means that ALMOST-7 __c TC(A)N(B). Hence, ALMOST- 7"Z(A)t(B).
Lutz [Lut92] showed that for every independent pair (A, B), BPP Pr(A) N Pr(B).

That result appears to be the first characterization of this form for any class of the form
ALMOST-7 for any specific appropriate .

From the fact that almost every pair of languages is an independent pair, it follows that
for every A E RAND, (A, B) forms an independent pair for almost every language B.

Notice that for every A 6 RAND, there exist B 6 RAND such that (A, B) is not an
independent pair and for some 7, (A)NT(B) ALMOST-7. For example, if A RAND,
then 6 RAND, but A @ ’ RAND. For a reducibility like _<, notice that PT (A) Pr ()
so that BPP = Pr(A) t Pr (A).

As noted in 3, for every two languages C, D in RAND and every appropriate 7, the
recursive part of R(C) is equal to the recursive part of R(D). This does not imply that
(C) 7(D). For if C @ D E RAND, then (C) Cl (D) c__ REC so that (C) N (D)
is properly included in both (C) and R(D). But neither Ta,.(C) nor 7(D) is included in
REC so this implies that Ta,.(C) - R(D). Thus, for every C, R(C) - 7(D) for almost every
D 6 RAND.

As a more concrete application ofTheorem 4.2, recall Theorem 5.2(c) ofTang and Watan-
abe [TW89]" for almost every pair (T, T2) of tally sets, B P. Eft E’ (T) C EP (T2). It has
been an open question whether this result can be extended to pairs (A, B) of languages over
{0, }* instead of over {0}*. It is known [NW88] that B P NP ALMOST-Eft for every
k > 0, and that almost every pair (A, B) is an independent pair.

COROLLARY 4.3. For almost every pair (A, B) oflanguages, ALMOST-E’ E(A) f)

Lutz (personal communication) observed that for the well-studied complexity classes, this
is the first result where the probabilistic result did not precede the more abstract result, that is,
itwas not known that Prob[{(A, B) E’(A) (3 Eft(B) BP. E’}] until Theorem 4.2
was established.

5. Remarks. These results give new characterizations of classes of the form
At_MOST-. Perhaps the most interesting applications (in terms of current interest) are
the following"

ALGORITHMICALLY RANDOM LANGUAGES 1281

(a) For every B 6 RAND, AM NP(B) fq REC.
(b) For every pair (C, D) of languages such that C D 6 RAND, AM NP(C) fq

NP(D).
(c) For every B 6 RAND, At_MOST-PSPACE PSPACE(B) fq REC.
(d) For every pair (C, D) of languages such that C D 6 RAND, we have

ALMOST-PSPACE PSPACE(C) f)PSPACE(D).
Characterizations (c) and (d) are of particular interest since no intrinsic characterization

of ALMOST-PSPACE is known.
It should be noted that in Theorems 3.5 and 4.2, the reducibilities are bounded. If this

condition is omitted, then things change. For example, let us write A 6 REC(B) if A <a" B.
Then REC(RAND) fqREC REC and AI_MOS’I’-REC REC. In addition, Kautz (personal
communication) has observed that a result of Kucera [Kuc86] (also see Chapter III of [Kau91])
shows that there exist languages A and B in RAND such that REC is a proper subset of
REC(A) N REC(B). Thus, the independent pair characterization requires that the reducibility
be bounded.

Acknowledgments. I wish to thank Steven Kautz, Ker-I Ko, Jack Lutz, Elvira Mayor-
domo, and Greg Perkins for their helpful suggestions.

lamb86]

[Amb87]

[BBS85]

[BDG88]

[BDG90]
[BGS1]

[BLW94]

[BW81]

[Bre78]

[Cai89]

[Gac86]
[Kau91]

[Ko86]
[Ko92]

[Kuc86]

[Lad75]

[Lut92]
[Mar66]

REFERENCES

K. AMBOS-SPIES, Randomness, relativizations, and polynomial reducibilities, in Proc. 1st Conference
on Structure in Complexity Theory, Lecture Notes Comput. Sci. 223, Springer-Verlag, Berlin, New
York, 1986, pp. 23-34.

Minimal pairsforpolynomial-time reducibilities, in Computation Theory and Logic, E. B6rger,
ed., Lecture Notes Comput. Sci. 270, Springer-Verlag, Berlin, New York, 1987, pp. 23-34.

J. BALCAZAR, R. V. BOOR, ANt U. SCHONING, On bounded query machines, Theoret. Comput. Sci., 40
(1985), pp. 237-243.

J. BALCAZAR, J. DIAZ, ArqD J. GABArR0, Structural Complexity I, Springer-Verlag, Berlin, New York,
1988.

Structural Complexity II, Springer-Verlag, Berlin, New York, 1990.
C. BENNETT AND J. GILL, Relative to a random oracle, pa :fi NpA co_NPA with probability 1, SIAM

J. Comput., 10 (1981), pp. 96-113.
R. BOOK, J. LUTZ, AND K. WAGNER, An observation on probability versus randomness with applications

to complexity classes, Math. Systems Theory, 27 (1994), pp. 201-209.
R. BOOK AND C. WRATHALL, Bounded query machines: on NP(and NPQUERY(), Theoret. Comput.

Sci., 15 (1981), pp. 41-50.
S. BREIOBArta’, Structure of complexity classes, Ph.D. thesis, Department of Computer Science, Yale

University, New Haven, CT, 1978.
J.-Y. CAI, With probability one, a random oracle separates PSPACEfrom the polynomial-time hierarchy,

J. Comput. System Sci., 38 (1989), pp. 68-85.
P. GACS, Every sequence is redttcible to a random one, Inform. and Control, 70 (1986), pp. 186-192.

S. KAtJrz, Degrees ofrandom sets, Ph.D. thesis, Department of Mathematics, Cornell University, Ithaca,
NY, 1991.

K. Ko, On the notion of infinite pseudorandom sequences, Theoret. Comput. Sci., 48 (1986), pp. 9-33.
A note on the instance complexity ofpseudorandom sets, Proc. 7th IEEE Conference on Structure

in Complexity Theory, 1992, pp. 327-337.
A. KUCERA, An alternative, priority-free solution to Post’s problem, in Mathematical Foundations of

Computer Science, J. Gruska, B. Rovan, and P. Jorrand, eds., Lecture Notes Comput. Sci. 233,
Springer-Verlag, Berlin, New York, 1986, pp. 493-500.

R. LAONER, On the structute ofpolynomial time reducibilities, J. Assoc. Comput. Mach., 22 (1975),
pp. 155-171.

J. Lu’rz, On independent random oracles, Theoret. Comput. Sci., 92 (1992), pp. 301-307.
P. MARTN-LO, On the definition ofrandom sequences, Inform. and Control, 9 (1966), pp. 602-619.

1282 R.V. OOK

[NW881

[Sch84]
[TW89]

N. NISAN AND A. WIGDERSON, Hardness vs. randonness, Proc. 29th IEEE Symp. Found. of Comput.
Sci., IEEE, Washington, D.C., 1988, pp. 2-11.

U. SCHONING, Minimal pairsfor P, Theoret. Comput. Sci., 31 (1984), pp. 41-48.
S. TANG AND O. WATANAB, On tally relativizations of BP-complexity classes, SIAM J. Comput., 18

(1989), pp. 449-462.

SIAM J. COMPUT.
Vol.23, No.6, pp. 1283-1312, December 1994

() 1994 Society for Industrial and Applied Mathematics
012

A FAST ALGORITHM FOR OPTIMUM HEIGHT-LIMITED ALPHABETIC
BINARY TREES*

LAWRENCE L. LARMORE AND TERESA M. PRZYTYCKA

Abstract. In this paper, an O(nL log n)-time algorithm is presented for construction of an optimal alphabetic
binary tree with height restricted to L. This algorithm is an alphabetic version of the Package Merge algorithm, and
yields an O (nL log n)-time algorithm for the alphabetic Huffman coding problem. The Alphabetic Package Merge
algorithm is quite simple to describe, but appears hard to prove correct.

Garey [SLAM J. Comput., 3 (1974), pp. 101-110] gives an O(n logn)-time algorithm for the height-limited
alphabetic binary tree problem. Itai [SLAM J. Comput., 5 (1976), pp. 9-18] and Wessner [blform. Process. Lett.,
4 (1976), pp. 90-94] independently reduce this time to O(n2L) for the alphabetic problem. In [SLAM J. Comput.,
16 (1987), pp. 1115-1123], a rather complex O (n3/2L log1/2 n)-time "hybrid" algorithm is given for length-limited
Huffman coding. The Package Merge algorithm, discussed in this paper, first appeared in [Tech. Report, 88-01, ICS
Dept. Univ. of California, Irvine, CA], but without proof of correctness.

Key words, optimal tree, weighted binary tree

AMS subject classification. 68P20

1. Introduction. The classic prefix-free binary coding problem, also called the Huffman
coding problem, was introduced, and definitively solved, by Huffman in 1952 [9]. Given a
set of items ("symbols"), A1 An, where each symbol Ai has an associated "frequency,"
ai > O, find a binary string for each symbol, code(Ai), minimizing the expected code length

ailcode(Ai)l,
i=1

where Iwl refers to the length of a string w, subject to the prefixpropertymi.e., no code(Ai) is
a prefix of any other code(Aj). We refer to codes with the prefix property as Huffman codes.

The prefix property enables a bit string to be uniquely decoded. Huffman’s algorithm
computes a Huffman code of minimal expected length in O(n log n) time, but only linear time
if the symbols are already sorted by frequency.

The "alphabetic" version of the problem introduces the one additional restriction that
code(Ai) < code(Aj) if < j, where the relation "<" on strings refers to lexical ordering.
O (n log n)-time algorithms for the alphabetic problem have been given by Hu and Tucker and
by Garsia and Wachs [5], [7], [8].

These algorithms, as well as subsequent algorithms for additional variations of the prob-
lem, make use of the binary tree representation of prefix-free codes.

The set of all bit strings (i.e., strings over {0,1 }) is an infinite binary tree, where the empty
string is the root, and the left and right children of any string w are w0 and w 1, respectively.
Any code with the prefix property can be mapped to the (finite) binary tree consisting of all
code(Ai) and all ancestors ofthose bit strings. The symbol Ai is then considered to be attached
to the leaf code(Ai). Note that the depth of a symbol in the tree is precisely the length of its
code string.

*Received by the editors May 26, 1992; accepted for publication (in revised form) September 20, 1993.
Department of Computer Science, University of Nevada, Las Vegas, Nevada 89154-4019 (larrnore@eari.

cs. unlv. edu). This research was done while the author was at the Department of Computer Science, University
of California, Riverside, California 92521. This research was supported by NSF grant CCR9112067.

tDepartment of Mathematics and Computer Science, Odense University, DK-5230 Odense M, Denmark
(przytyck@imada. ou. dk). A part of this work was done while the author was visiting University of Cali-
fornia, Riverside, California 92521.

1283

1284 L.L. LARMORE AND T. M. PRZYTYCKA

Thus, the alphabetic Huffman coding problem is equivalent to the optimal binary search
tree problem with the restriction that all data are in the leaves [8], 11]. In this paper, we refer
to that problem as the alphabetic binary tree problem.

When the problem is expressed in terms of trees, we usually say weighted depth or
weighted path length instead of expected code length.

The input for one instance of the alphabetic binary tree problem is a list of nonnegative
weights, wl wn, and the output is a full binary tree with n leaves, represented by its list of
leaf depths, called its leaf sequence, el en, chosen so that the weighted depth -i=l wiei
is minimized.

1.1. Length-limited Huffman coding. The length-limited Huffman coding problem is
introduced by Gilbert [6]. This is the Huffman coding problem with the restriction that every
code string code(Ai) must have length no greater than a given constant L. (In an application,
L might be the size of a register.)

The alphabetic version of length-limited Huffman coding is equivalent to the optimal
binary search tree problem with all data in the leaves, where the height of the tree is restricted.
It is the latter formulation that we use in this paper, which we refer to as the height-limited
alphabetic binary tree problem.

Previous results. Garey [4] gives an O(n2 log n)-time algorithm for the length-limited
Huffman coding problem, and an O (n3 log n)-time algorithm for the height-limited alphabetic
binary tree problem.

Itai [10] and Wessner [16] independently reduce this time to O(n2L) for the alphabetic
problem, essentially by showing that Garey’s monotonicity lemma extends to the alphabetic
case. Lemma 8.1 in this paper is a generalization of Garey’s monotonicity lemma.

In [12], a rather complex O(n3/eL log1/2 n)-time "hybrid" algorithm is given for length-
limited Huffman coding.

In [13] and [14], the Package Merge algorithm is introduced for length-limited Huffman
coding. A radical departure from the dynamic programming methods of [4], 10], [12], and
[16], the O(nL)-time Package Merge algorithm returns to the original greedy approach of
Huffman’s algorithm [9].

The alphabetic version of the Package Merge algorithm, an O(nL log n)-time algorithm
for the alphabetic Huffman coding problem, and the subject of this paper, is quite simple to
describe (see 2), but appears hard to prove correct. The algorithm first appeared in [13] and
15], but without proof of correctness.

In this paper, we describe the Package Merge algorithm for a more general problem,
which we call the weighted binary tree problem.

An instance of the weighted binary tree problem consists of a doubly indexed weight
matrix wi,e, for n, and e 0 L, for some given L >_ log2 hi, such that

(i) to/, 0 0,
(ii) wi,e+l > Wi,e [monotonicity condition],
(iii) 2wi,e < wi,e-1 -+-ovi,e+l [concavity condition].
The cost of a binary tree 7" with respect to a weight matrix toi,e is defined to be

where el e,, is the leaf sequence of 7-. The problem is to find the tree 7" with minimal
cost, given the weight matrix. We call such a tree optimal.

1A nonempty binary tree where every nonleaf node has two children. Henceforth, in this paper, we assume that
all binary trees are full.

HEIGHT-LIMITED ALPHABETIC TREES 1285

Note that the condition that 1/3i, 0 0 is really no restriction. A matrix wi,e without that
condition can be replaced by a matrix having that condition, by the transformation w,
wi,e wi,0, preserving monotonicity and concavity. Costs of trees are changed by a constant,
so optimality is preserved.

The height-limited alphabetic binary tree problem reduces to the weighted binary tree
problem by letting wi,e .11)i for all < L.

1.2. Overview ofthe paper. The paper is organized as follows. In 2, we give a brief but
complete description of the Package Merge algorithm with no attempt to prove correctness. In
3, we introduce a new geometric interpretation of binary trees and forests, show its relation to
the traditional interpretation, and prove some of its properties. In 4, we extend this geometric
interpretation to weighted binary trees and forests and show a method of constructing optimal
weighted binary trees (the Package Search algorithm). In 5 and 6, we prove properties of
the technique that leads to the efficient implementation of the Package Search algorithm, the
Package Merge algorithm.

A different, naturally parallelizable implementation of the Package Search algorithm will
be a subject of a separate paper.

2. The Package Merge algorithm. In this section, we present a complete description
of the Package Merge algorithm.

Let wi,e, fori n, and 0 L, forL >_ [log2n], be an instance of the
weighted binary tree problem, as defined in 1.1.

We define a tile to be an ordered pair of integers (i,) such that E [1, n] and E [0, L].
The tile (i,) is said to have index i, level , and width 2-e. We define the weight of (i,) to
be lloi,e UOi,-I for > 0, and zero.if 0. We define the tag value of (i,) to be n + i. If
A is a set of tiles, define its weight, denoted IAI, to be the sum of the weights of its members.
The width of A is defined to be the sum of the widths of its members. Define the tag value of
A to be the maximum tag value of any of its members. Finally, define the index of A to be
the minimum of the indices of its members.

If 7- is any binary tree, with leaf sequence n, we define the associated set of tiles
to be

skyline(T) {(i,)" [0, e/l

which has width (2n 1) and weight equal to cost(T). (We use the word "skyline" because
if that set of tiles is inverted, it consists of a set of adjacent columns of various heights and the
same base, like buildings in the skyline of a city. See 3.)

The Package Merge algorithm operates by finding skyline(T), the minimal weight set of
tiles which has width (2n 1), subject to the condition that it is a geometric tree, as defined
in 3. (The set of tiles generated by the Package Merge algorithm will always satisfy this
condition.) T can then be recovered from skyline(T).

We recall the Hu-Tucker algorithm [8] for constructing a minimal alphabetic binary tree.
Initially, there is a list of n "square nodes," each of which has a weight. The algorithm consists
of (n 1) steps. During each step, two nodes are combined to form a new "round" node,
whose weight is equal to the sum of the weights of its children. This new "round" node is
inserted in place of its left child, and the two children are deleted from the list.

In the Hu-Tucker algorithm, two nodes are said to be "tentatively connected" if there
is no "square" node strictly between them in the list. During each step, the two nodes that
are combined are those of minimal total weight subject to the condition that they are tentatively

2Tag values are used only to break ties.

1286 L.L. LARMORE AND T. M. PRZYTYCKA

connected. This construction gives rise to a binary tree, 7". The final step of the Hu-Tucker
algorithm recovers the optimal alphabetic tree, T, from 7-’. The depth i of the ith item in 7"
equals the depth of the ith "square" node in 7". We refer the reader to [8] for details.

The Package Merge algorithm has many features in common with the Hu-Tucker algo-
rithm. "Square" nodes of Hu-Tucker correspond to tiles in the Package Merge algorithm, and
"round" nodes correspond to packages. A level-e package, where is a nonnegative integer,
is a certain kind of tile set that has at least two members, and whose width is 2-e. (A precise
definition will be given in 3.2.) Packages and tiles are together called items.

The first step of the algorithm is to let F/ be the list of all level-L tiles, ordered by index.
Then, starting with L and ending with e 0, optimal packages of level are formed
by combining the items in FTM according to certain rules. These optimal level-e packages
are then merged with the list of level-e tiles to form Fe, a list ordered by index, where a tile
is always in front of a package of the same index.

The packaging step, which occurs at each of the L levels, consists of as many as (n 1)
steps in which two level-(e + 1) items are selected, then combined to form a level-e package.
The two items are then deleted from Fe+. The rule is to select that pair of smallest total
weight, subject to the condition that the pair is "tentatively connected." A pair of items in
Fe+l is tentatively connected if there is no tile which is strictly between them in the list. Since
items are deleted as they are selected, there will always be at least one tentatively connected
pair if the list has at least two items.

Note that there can be at most one item left in F + at the end of the packaging step. This
item, which we call an "orphan," is simply discarded.

The set skyline(T) will be simply the union of the items in F, from which 7- can be
easily recovered.

Ties are broken using the tag values. In particular, if two items have equal weight, that
with the higher tag value is considered heavier.

The Package Merge algorithm is illustrated in Figs. and 2. We give a pseudo-code
below.

ALGORITHM Package Merge (L)
1. For all E 1, L], F -- all level- tiles
2. F -- empty list
3. for L- downto 0 do

3.1. while Fe+ l _> 2 do
3.2.1. (p, P2) +- least weight tentatively connected pair in Fe+

3.2.2. p +- p U p2

3.2.3. insert p into F
3.3.4. delete pl, P2 from Fe+

4. skyline(T) +- union of all members of F
5. Recover 7- from skyline(T)

The question of whether the Package Merge algorithm is correct if ties are broken arbi-
trarily is open.

We suggest using a list of mergeable priority queues to represent Fe+. A pair of items
will be tentatively connected if and only if they are both in the same priority queue. Using this
data structure, it takes O (log n) time to select the minimal weight, tentatively connected pair.
Since that selection must occur at most (n 1) times on each of L levels, the time complexity
of the Package Merge algorithm is O(nL log n).

3. Geometric trees. In this section, we introduce a new geometric interpretation of bi-
nary trees and forests, and show its relation to the traditional interpretation.

HEIGHT-LIMITED ALPHABETIC TREES 1287

0 0 0 0 0
n O O O [3 O
5 3 6 B 20

O Cl O Cl CI n
5 3 6 B 20

Cl O O n D Cl
5 3 4 6 8 20

0 0 0 0 0 0
n O O O CI O
5 3 4 6 8 20

O O O O O
5 3 6 8 20

O O O II Cl n
5 3 4 6 8 20
[

7 28

afar sIp 3 at]eve] 3

o O O (3 O O
5 3 4 6 8 20
n n O Cl CI O
5 II 3 7 191 6 8 20
[3

O CI [3 O O
3 4 6 8 20

O n n n D
1131 3 7 15 4 6 8 20

after step 3 at level 2 after step 4 at level 2 ohan
O O O D CI O D CI O CI CI

5 3 15 4 6 8 20
5 Ii 3 7 4 6 8 20 6

i n u

alter step 3 at level alter step 5 at level

u m u m

rsp 3 level 0 sp 5 at level 0

FIG. 1. Constructing skyline(T).

Consider an n (L + 1) rectangle in the plane, divided into unit squares which we call
tiles. (See Fig. 3.) A "geometric tree" or "geometric forest" will be defined to be a certain
kind of connected union of tiles. We refer to the tile in the eth row and the ith column as si,e,
and we say that si.e has index and level g.. We adopt the conventions that levels range from
0 to L, from the top down, while indices range from to n, from left to right.

Two tiles are adjacent if they share a boundary edge, not just a corner. Thus, si,e is

adjacent to Si+l,e and to si,g+l, but not to Si+l,e+l. A path of tiles is a sequence of tiles in

1288 L.L. LARMORE AND T. M. PRZYTYCKA

20

5

3 4

FIG. 2. Recovering the tree Tfrom skyline(T).

which consecutive tiles are adjacent. We say that a set of tiles A is connected if for any two
tiles a l, a2 6 A there exists a path of tiles between a and a2 that is entirely contained in A.

For any M < N and any set of tiles S, we define St,,N to be the set of all members of S
whose indices are in the interval [M, N]. Formally,

S[t,ul {si,e S IM < < N}.

DEFINITION. We define a skyline at level (or level-g skyline, for short) to be a connected
set of tiles A such that

1. A contains no tile at any level ’ < , and
2. if si,e,+l A for any ’ > , then si,e, A.
A skyline looks like an upside-down bar graph. It consists of one or more columns of

tiles which are adjacent in the horizontal dimension, such that the top tile of each column is
at the same level (see Fig. 3).

L =5

2 3 4 5 6 n=7

s
7,4

FIG. 3. A skyline oflevel 1.

For any g, we define B to be the set of all level-e tiles. The base of a level-e skyline A is
defined to be the set of all its level-g tiles, i.e., A f3 Be. By connectivity, this base will always
consist of a contiguous partial row of tiles SM,e SN,e. We call [M, N] the base interval of
A, and we say that A has base length (N M + 1). We also say that A is a skyline over

[M, N].
Certain skylines will be called geometric trees, and certain ones will be called geometric

forests. These concepts are invariant under translation up, down, or sideways, but not under
rotation.

We give a recursive definition of a geometric forest, and a geometric tree is simply a

geometric 1-forest.
DEFINITION. (i) A level-e tile is a level-g geometric tree.

HEIGHT-LIMITED ALPHABETIC TREES 1289

(ii) A level-e skyline which is the exact union of k level-e geometric trees is a level-e
geometric k-forest.

(iii) If A is a level-(e + 1) geometric 2-forest over [M, N], then A U BtM.N is a level-e
geometric tree.

Note that a geometric k-forest A is simply the disjoint union of k geometric trees that
have adjacent bases.

The following lemma follows immediately from the above definition.
LEMMA 3.1. If A is a level-(g + 1) skyline over [M, N], then A U BtM.N is a level-e

geometric k-forest ifand only ifA is a level-(e + 1) geometric 2k-forest.
Usage ofthe words "tree" and "forest" isjustified by the following correspondence lemma.
LEMMA 3.2. There is a one-to-one correspondence between level-e geometric k-forests

over [M, N] and ordered k-forests of size (N M + 1) and height at most (L g), as

follows: If F is a geometric k-forest over [M, N], then F corresponds to theforest . whose

leafsequence is g,t, gt+l eN, where g-i + g- is the greatest level ofany tile in F of index i.

Although somewhat complex in its statement, Lemma 3.2 follows immediately from the
inductive definition of geometric forest. We omit the proof.

If U is an ordered k-forest of height h and size (N M + 1), we define the level-e
representation of f" over [M, N] to be the geometric k-forest at level over [M, N] that
corresponds to ,T" under Lemma 3.2, which exists and is unique provided (e / h) < L.

Figure 4 shows a binary tree, a forest, and their corresponding geometric tree and forest.

1 2 3 4 5 6n=7

1 2 3 4 5 6n=7

FIO. 4. A binary tree, a forest, and their corresponding geometric tree andforest.

3The size of a tree or forest is defined to be the number of leaves.

1290 L.L. LARMORE AND T. M. PRZYTYCKA

Henceforth, we say "tree" and "forest" instead of "geometric tree" and "geometric forest,"
provided the meaning is clear from context.

The recursive definitions of geometric "tree" and "forest" above allow us to build up
geometric trees and forests out of smaller ones in ways which are analogous to the usual
building of binary trees and binary forests out of smaller ones. But we can also build them by
a radically different method--which is the essence of this paper--by changing a geometric
k-forest into a geometric (k 1)-forest by adding an appropriate set of tiles, which we will
call a package.

Before plunging into formalism, we ask the reader to examine Fig. 5, which shows a
geometric 3-forest of size 7, which has been changed into a geometric 2-forest, also of size 7,
by the addition of some tiles. It is important to note that this mutation is quite different from
the usual recursive construction--the leaves of the middle tree have been divided among the
two trees of the new forest.

a forest"

a package

the new forest"

2 3 4 5 6 n=7

FIG. 5. Changing a 3-forest into a 2-forest by adding a package.

3.1. Boundaries, spanning, gaps, and cuts. If A is a nonempty set of tiles, we define
lboundary (A) to be the smallest index of any tile which is a member of A, and we define
rboundary (A) to be the largest index of any tile which is a member of A.

We also say that A spans an index r if r [Iboundary (A), rboundary (A)].
Let e’ > e. We say that a set of tiles A is level-e’ connected with respect to a level-e

skyline Q over [M, N] if
1. AfqQ=O.
2. A U Q is a level-e skyline over [M, N].
3. For any two tiles a, a2 6 A there exists a path of tiles between a and a2 that is

entirely contained in A U Q, and which uses no tiles at level e’ or above.4

Remark 3.3. If a set of tiles A is level-g.’ connected with respect to two level-g skylines,
Q and Q’, where e’ > e, then A is level-g.’ connected with respect to Q f3 Q’.

Thus, if A is level-e’ connected with respect to some level-e skyline Q, and if A spans r,
then Sr,e’+l A Q.

If Q is alevel-e skyline, we saythat r isagapof Q ifr 6 [lboundary (Q), rboundary (Q)]
and Sr,e+l - a. If r is one of the boundary values, we say that the gap is external, otherwise
internal (see Fig. 6).

4To be consistent with our figures, levels which are less are called "higher."

HEIGHT-LIMITED ALPHABETIC TREES 1291

external gap internal gaps

a set of tiles that spans a gap

FIG. 6. Internal and external gaps and a set of tiles that spans a gap.

Let F be a k-forest over [M, N]. We define the cuts of F to be the right boundaries of the
trees which form F. Formally, if F is the disjoint union of geometric trees T1 T, (from left
to right) at the same level as F, define cm(F) rboundary (Tin). We also let co(F) M 1.
We say that (M 1) and ck(F) N are the external cuts of F, and that the others are internal
cuts.

Fc,F+I,c,FI is a (t s)-forest (which we call a subforest of F) at the same level as F,
for0 < s <t <k.

LEMMA 3.4 (gap implies two cuts). A geometric forest F has a gap at r if and only if it
has cuts at (r 1) and at r.

Proof. By the recursive definition, no tree of base length more than can have a gap. If
r is a gap of F, then Sr, must be one of the constituent trees of F, hence there must be a cut
on either side of it. The converse follows from the fact that the only trees of base length are
singleton tiles.

3.2. Packages, glue packs, and parse trees. We now give jointly recursive (but still
fairly simple) definitions of two concepts’ level-e item over [M, N] and level-e, package over

[M, N].
DEFINITION. A level-e item over [M, N] is either a level-e package over [M, N] or a tile

si,e where M < < N. A level-e package over [M, N] is the disjoint union oftwo level-(e+ 1)
items over [M, N].

Any item p can be represented with the help of a binary tree T (p), called the parse tree
of the item. The nodes of T (p) are subsets of p which are themselves items at various levels.
The root of T (p) is p. If p is a tile, T (p) has just one node. If p is a level-e package consisting
of the disjoint union of level-(e + 1) items pl, p2, then T(p) and T(p2) are the left and right
subtrees. Note that the construction of T (p) is not unique, as there may be more than one way
to represent a package as the union of two items.

We warn the reader that, in spite of the similarity of the recursive definitions, items are
radically different from geometric trees. In particular, they need not be connected. There is
a relationship between the two concepts, though. We shall see that every level-e geometric
k-forest of base length d is the disjoint union of precisely d level-e tiles and (d k) level-e
packages.

The essence of the Package Merge algorithm is to build "optimal" packages at each level
e by combining level-(e + 1) tiles and optimal level-(e + 1) packages. The optimal level-0

1292 L.L. LARMORE AND T. M. PRZYTYCKA

tree over 1, n] will then be B, together with the disjoint union of precisely (n 1) optimal
level-0 packages. The tree corresponding to this optimal geometric tree is the solution to the
problem, i.e., the minimal cost tree.

DEFINITION. Let Q be a level-e skyline over [M, N] and p be a level-e’ item, ’ > e, over
[M, N], disjoint from Q. Then p is called a level-e’ glue-pack for Q if and only if p is level-g’

connected with respect to Q and one of the following two conditions holds:
(i) p is a tile;
(ii) p pl U p2, where pl is a level-(e’ + 1) glue-pack with respect to Q, and p2 is a

level-(e’ + 1) glue-pack with respect to Q to pl.

Figure 7 shows an example of a package that is a glue-pack with respect to a polygon and
an example of a package that is not a glue-pack with respect to that polygon.

a glue-pack
not a glue-pack

FIG. 7. Examples ofa package that is a is a glue-pack and another that is not a glue-pack with respect to a skyline.

If p is a glue-pack with respect to some polygon Q then a parse tree for p implied by
the definition of a glue-pack is called a normal parse tree with respect to Q. Formally, if p is
a package, and if pl, P2 are as given in the definition, then the left and right subtrees of the
normal parse tree of p must be a normal parse tree for p with respect to Q, and a normal
parse tree for p2 with respect to Q to pl, respectively. (In spite of this restriction, a normal
parse tree need not be unique.)

Immediately from the definition of a glue-pack we have the following lemmas, which can
be proved by induction on the parse tree of a glue-pack, using Remark 3.3.

LEMMA 3.5. If A c_ B are skylines, and if p is a glue-pack with respect to A and is

disjointfrom B, then p is a glue-pack with respect to B.
LEMMA 3.6. If A and B are skylines, and if p is a glue-pack with respect to A and also

with respect to B, then p is a glue-pack with respect to A fq B.
LEMMA 3.7. Ifp is any package such that PtM.N P, then p is a glue-pack over a skyline

A ifand only if p is a glue-pack over AtM.u.
LEMMA 3.8. If e’ > g, p is a level-e’ glue-pack with respect to a level-g skyline Q over

[M, N], and if either g.’ > (e + 1) or p is not a tile, then p is also a level-e’ glue-pack with
o(e+l)respect to (Q Be) to ot.N

Informally, the lemma below states that if p is a glue-pack that spans a gap, then it must
"fill" the gap, and cannot extend beyond both boundaries of the gap.

LEMMA 3.9 (gap-filling property). If Q is a skyline that does not contain the tile si,e+,

and if p is a level-e glue-pack with respect to Q, then we have whatfollows.
1. If p spans i, then either p si,e or si,g.+ . p.
2. Either rboundary (p) < or lboundary (p) > i.

HEIGHT-LIMITED ALPHABETIC TREES 1293

Proof The proof is by induction on the number of tiles in p. If p is a tile, the result is
trivial, so assume p is a package. Let Pl, P2 be the children of p in its parse tree. If p does
not span i, the result is trivial, so assume p spans i. Since Q to p is a skyline, si,e+l E p,
since otherwise Q to p would not be level- connected. We can let p si,e+l. Since P2 is
a glue-pack with respect to Q to p which does not contain si,e+2, the inductive hypothesis
guarantees that either rboundary (p2) _< or Iboundary (p2) >_ i, and we are done.

We now present the main result of this section.
THEOREM 3.10. If Q is a level-g, k-forest over [M, N] where k > and p is a level-g.

glue-pack with respect to Q, then Q to p is a level-g. (k 1)-forest over [M, N].
Proof We prove the theorem by backwards induction on the level, , and within each

level by induction on the base length.
If L then B is the only level- forest over [M N] Similarly, for any , if M N

[M,N]

then SM,e is the only level-e forest over [M, N]. Thus, if L or the base length is 1, the
theorem holds vacuously.

The method we use for the inductive step is to break Q into three subforests (a subforest
can be empty) by using two cuts. One subforest F’ (say, an s-forest) spans p, and the other
two (say, an a-forest F" and a b-forest F’", where a + s + b k) are to the left and right
of F’ and are unaffected by p. We show that F’ to p is an (s 1)-forest over the same base
interval as F’, and thus F tO p F" tO (F’ to p) U F"’ is a (k 1)-forest.

Assume that the statement of the theorem is true for all e’ > e and, within e, for all M’,
N’ such that (N’ M’) < (N M). Let Q be a level-e k-forest over [M, N]. Let p be a
level-e glue-pack with respect to Q. Note that p cannot be a tile since it must be disjoint from
Q. Let T (p) be a normal parse tree for p, and let p, P2 be the left and right children of p in
this parse tree.

Consider the following three cases, illustrated in Fig. 8.

c c
2

I,I il

tll !

j

CASE
]c

CASE 2

CASE 3

FIG. 8. The three cases considered in the proofof Theorem 3.10.

Case 1. Both p and p2 are level-(g 4- 1) packages. Let c be the largest cut that is
less than lboundary (p to p2) and let c2 be the smallest cut that is greater than or equal to

1294 L.L. LARMORE AND T. M. PRZYTYCKA

rboundary(p to p2). Let F’ Qc+,c.l. Since p to p2 is level-e connected with respect
to Q, we have, by Lemma 3.9, that Q has no gaps between cl and c2. Thus, by Lemma
3.1, F’ B is a level-(e + 1) 2s-forest. By the definition of a glue-pack, p is a level-
(e + 1) glue-pack with respect to F’- B and p2 is a level-(e + 1) glue-pack with respect to
(F’ Be) tO Pl.

By the inductive hypothesis, (F’- Be) to pl is a level-(e + 1) (2s l)-forest
over [c + 1, c2], and (F B to p to P2 (F Be to p is a level-(e + 1) (2s 2)-
forest over the same base interval. By Lemma 3.1, F to p to P2 F to P is an (s 1)-forest
over [c + 1, c2], and therefore Q u p is a level-e (k 1)-forest over [M, N].

Case 2. Both p and P2 are level-(e + 1) tiles. Let p si,e+l and P2 sj,e+, and < j.
Then (i 1), i, (j 1), and j are cuts of Q, by Lemma 3.4. Let F’ Qti,jl. Then Qti+,j-l
is an (s 2)-forest. By Lemma 3.1, Q[i+l,j-l] B is a level-(e + 1) (2s 4)-forest over
[i + 1, j 1], and thus (Q[i+l,j-1] Be) to P to P2 (F’ Be) to Pl to P2 (F’ Be) to p
is a level-(e + 1) (2s 2)-forest over [i, j].

By Lemma 3.1, F’ to p is a level-e (s 1)-forest over [i, j]. Thus Q to p is a level-g

(k 1)-forest over [M, N].
Case 3. One of the Pi is a level-(e + 1) tile and the other is a level-(e + 1) package. We

can assume that p is a tile (let p si,e+) and that P2 is a package.
Then is a gap of Q and (i 1) and are cuts, by Lemma 3.4. By Lemma 3.9, either

rboundary(p2) < or Iboundary(p2) > i. Without loss of generality, the second case holds.
Let c be the smallest cut of Q that is greater than or equal to rboundary (P2), and let F’ Q[i,cl.
Then Q[i+l,c] is a level-g (s 1)-forest, hence, by Lemma 3.1, Q[i+l,c] B is a level-(e + 1)
(2s 2)-forest over [i + 1, c], and (Qti+,cl Be) to si,e+ is a level-(e + 1) (2s 1)-forest
over [i, c]. From Lemma 3.8, P2 is a glue-pack with respect to (Q[i+l,j] Be) to si,e+l. By
the inductive hypothesis, (Qti+,cl Be)t-Jsi,e+, to p2 (Qti+,cl Be) to P is a level-(e + 1)
(2s 2)-forest over [i, c]. Thus, by Lemma 3.1, F’ to p is a level-e (s 1)-forest over [i, c]
and Q to p is a level-e (k 1)-forest over [M, N].

This concludes the proof of Theorem 3.10.

4. Geometric weighted trees. In this section we give a polygonal interpretation of
weighted binary forests.

We define an instance of the geometric tree problem to consist of integers n > and
L > log2 n, and an assigned weight to every tile, as defined in 3. (For each 6 [1, n] and
each e 6 [0, L], we write Isi,el to be the weight of si,e.) The weight function must satisfy

(i) Isi,el > 0 [nonnegativity], and
(ii) Isi,e+l > Isi,el [monotonicity].

The problem is to find a level-0 geometric tree over [1, n] which has minimum total weight.
To simplify our presentation we assume that the following hypothesis holds:
(iii) If A - B are sets of tiles, then IAI - Inl [uniqueness hypothesis].
We will show in 7 that the general case reduces to the case where the uniqueness hy-

pothesis holds. Specifically, in case two sets of tiles have the same weight, we break the tie in
a consistent way by imagining that each tile has a certain "infinitesimal" additional weight.

4.1. Reduction. The weighted binary tree problem reduces to the geometric tree prob-
lem, as follows. Let Isi,el be defined to be toi,e wi,e-1 for e > 0, and let Isi,01 0.

Nonnegativity and monotonicity follow from monotonicity and concavity, respectively,
for the weighted binary tree problem.

The fact that this gives a true reduction comes from the following lemma, which follows
immediately from the definition of the level-0 representation of a tree.

LEMMA 4.1. The cost ofa binary tree is equal to the weight of its level-O representation
over [1, n].

HEIGHT-LIMITED ALPHABETIC TREES 1295

4.2. Optimal forests. Henceforth in this section, we assume that we are given an instance
of the geometric tree problem which satisfies the uniqueness hypothesis.

Define the optimal level- k-forest over [M, N] (denoted F[M, N, k,]) to be that unique
level- k-forest over [M, N] of minimal weight, defined if and only if

(N-M+I)2e-L <k< (N-M+I).

LEMMA 4.2. Any subforest ofan optimalforest is optimal.
Proof If F[M, N, k, e] contains a nonoptimal subforest over a subinterval [M’, N’],

simply replace that subforest by the appropriate optimal forest and obtain an improvement of
F[M, N, k, e], which is a contradiction.

We will also need the following lemma, whose proof is fairly complex, but related to the
various "monotonicity" lemmas of [1], [4], [10]-[12], [16], and [17].

LEMMA 4.3 (interleaving property). If M, N, k, e are given where < M < N < n,
0<<L, (N-M+I)2e-/" < k < N M, and O < m < k, then

cm(F[M, N, k + 1,]) < cm(F[M, N, k,]) < Cm+l (F[M, N, k + 1, e]).

The proof of Lemma 4.3 is given in 8.
The interleaving property has a number of immediate corollaries which allow us to relate

the shapes of F[M, N, k + 1, g] and F[M, N, k,
LEMMA 4.4. If F[M, N, k, e] has a gap at r, then F[M, N, k + 1, e] has a gap at r.

Proof. By Lemma 3.4, we can write

m-1 (F[M, N, k, g]) r 1,

cm(F[M, N, k, g]) r.

By Lemma 4.3, cm(F[M, N, k -t- 1, e]) is equal to either (r 1) or r. Those two cases
are seen to be equivalent by using the natural left-right symmetry of the entire problem.
Thus, without loss of generality, we may assume that cm(F[M, N, k + 1,]) r. By Lemma
4.2, F[M, N, k + 1, g]tM,r] F[M, r, m, e] F[M, N, k, g][M,r]" By Lemma 3.4, we are
done. 1

LEMMA 4.5. If F[M, N,k + 1,] has an internal gap at r, F[M, N,k, g.] and
F[M, N, k + 1, g.] have a common internal cut, either at (r 1) or at r.

Proof By Lemma 3.4, we can write

Cm-I(F[M, N, k + 1,]) r 1,

c,,(F[M, N, k + 1,]) r.

By Lemma 4.3, Cm_ (F[M, N, k,]) is equal to either (r 1) or r. lq

LEMMA 4.6. If F[M, N, k, e] and F[M, N, k + 1, e] have a common cut, c, then either

F[M, N, k, e][M,c] F[M, N, k + 1, e][M,c]

or

F[M, N, k, e]tc+l.Nl F[M, N, k + 1,][c+l,N].

Proof Write c cm(F[M, N, k, e]). If c cm(F[M, N, k + 1, el), then, by Lemma

F[M, N, k, e]lt.cl F[M, N, k + 1, e]tt.cl.

1296 L.L. LARMORE AND T. M. PRZYTYCKA

If c Cm+l (F[M, N, k + 1, e]), then, by Lemma 4.2,

F[M, N, k, e][c+l,Nl F[M, N, k + 1, e][c+l,N].

By Lemma 4.3, there are no other possibilities. [3

THEOREM 4.7 (inclusion property). For any M, N, k, such that 1 < M < N < n,
O<e < L, and(N-M+ l)2e-L <k < N-M,

F[M, N, k,] F[M, N, k + 1,] U p

where p is the smallest weight level- package which is a glue-pack with respect to
F[M, N, k,

We will prove the inclusion property by backwards induction on e. Thus we need to
examine the dependency between optimal level-(e + 1) forests and optimal level-e forests.
Such a dependency is given in Lemmas 4.8, 4.10, and 4.11 and illustrated in Fig. 9 (a), (b),
and (c).

F[M,N,k+ 1,1l FIM,N,k+ 1,11 F[M,N,k+ 1,11

FIG. 9. Illustration ofLemmas 4.8, 4.1 O, and 4.11.

LEMMA 4.8. If F[M, N, k + 1, e] does not have gaps, then F[M, N, 2k + 2, g +
F[M, N, k + 1, e] B

Proof If not, by Lemma 3.1, F[M, N, 2k + 2, e + 1] U BtM.N would be a level-e (k / 1)-
forest over [M, N] of smaller weight than F[M, N, k + 1,], a contradiction.

For the proofs of Lemmas 4.10 and 4.11, we will need the following technical lemma.
LEMMA 4.9. If F is any level-e k-forest over [M, N] which does not have a gap at r,

where r M or r N, then there exists a level- (k + 1)-forest F’ c_ F over [M, N] such
that [F’] < IF -Sr,el.

Proof. Without loss of generality, r M. Consider the binary forest U represented by
the level-e forest F (see Fig. 10 (a)). The first leaf, Vm, of f" has depth d > 1. Let v be the
sibling of VM. Remove Vm from U together with its parent and promote the sibling of Vm (and
all its descendants) one level up (see Fig. 10 (b)). The resulting binary forest has k trees. Now
we add the single-element tree containing just the leaf Vm at the front of this forest. The new
binary forest, which we refer to as -’, has (k + 1) trees. Let F’ be the level-e representation
of .T" over [M, N] (see Fig. 10 (c)). We consider how F’ differs from F.

Removing the leaf VM from 9v corresponds to deleting the column of all tiles of index M
from the geometric representation, F. Promoting all descendants of v corresponds to deleting
the bottom (i.e., greatest level) tile of F of each index in the interval [M + 1, M + t], where

is the number of leaves in the subtree rooted at v.
F’Reinserting vm as a tree of size corresponds to reinserting the tile Sm,e. can thus

be obtained from F by removing a set of tiles, that contains, in particular, SM,e+l. Since

]Sm,e < SM,e+I I’ we are done. D

HEIGHT-LIMITED ALPHABETIC TREES 1297

a)

M N

III!1111111

IIIIII II

b) W-

c)

M N

\
\
\

FIG. 10. Illustration of the proofofLemma 4.9.

LEMMA 4.10. If F[M, N, k + 1, e] has one external gap at r (note r M or r N)
and no other gaps, then

F[M, N, 2k + 1, g + 11 (F[M, N, k + 1, el Be) tO Sr,e+

Proof Without loss of generality, r M. Assume that the equality in the statement of the
lemma is not true. Since the right-hand side of that inequality is a level-(e + 1) (2k + 1)-forest
over [M, N] that is not optimal, we have

Thus,

](F[M, N, k + 1, g] B tO sM,e+ll > IF[M, N, 2k + 1, g + 1]1.

IF[M,N,k + 1, Ell > [(F[M,N, 2k + 1, e + llto B -SM,e+,l.
If F[M, N, 2k + 1, + 1] has a gap at M, then (F[M, N, 2k + 1, t + 1] tO Be) SM,e+l is a
(k + 1)-forest over [M, N], which is a contradiction, since it cannot have smaller weight than
the optimal forest. Otherwise, by Lemma 4.9, there exists a level-(/ + 1) (2k + 2)-forest F’
over [M, N] such that

IF[M, N, 2k + 1, e + 1] SM,e+,l > IF’I
Therefore

IF[M, N, k + 1, ell > IF’L Bt.m
is a (k -+- 1)-forest over [M N], which cannot havewhich is a contradiction, since F’ tO Bt..m

smaller weight than the optimal forest. [3

LEMMA 4.11. If F[M, N, k + 1, e] has two external gaps and no internal gap then

(F[M, N, k + 1, e] Be) tO SM,e+l tO SN,e+I F[M, N, 2k, e + 1].

1298 L.L. LARMORE AND T. M. PRZYTYCKA

Proof. Assume that the equality in the statement of the lemma is not true. Since the
left-hand side of that inequality is a level-(e + 1) 2k-forest over [M, N] that is not optimal,
we have

](F[M, N, k + 1, g] Be) tO Sg.e+l to SN,g.+I > IF[M, N, 2k, +III.

Thus,

I(F[M, N, k + 1, gl)] >](F[M, N, 2k, g. + 11 SM.+I SN,+I) to

If F F[M, N, 2k, + has gaps at both M and N, then

(F[M N 2k, g. + 1] SM,f.+I SN,+I) to B
[M,N]

is a (k + 1)-forest over [M, N], which is a contradiction, since it cannot have smaller weight
than the optimal forest. Otherwise, without loss of generality, F has no gap at M. By Lemma
4.9, there exists a level-(e + 1) (2k + 1)-forest F’ over [M, N] such that IF SM,e+

We now consider two cases, depending on whether F’ has a gap at N. Suppose F’ has
a gap at N. Then I(F’- SN,e+) tO BetM,NI < IF[M, N, k + 1, e][which is a contradiction,
since (F’ SN,e+)tO BetM.N, isa (k-t- 1)-forest over [M, N], which cannot have smaller weight
than the optimal forest.

Suppose F’ has no gap at N. By Lemma 4.9, there exists a level-(e + 1) (2k + 2)-forest
F" over [M, N] such that IF’ F" F"SN,,+, > Then (-J BtM.NI < IF[M, N, k -t- 1,
which is a contradiction, since F" tO B is a (k + 1)-forest over [M, N] which cannot have[M,N]

smaller weight than the optimal forest.
This concludes the proof of Lemma 4.11.
Using Lemma 4.4, we can summarize the results of Lemmas 4.8, 4.10, and 4.11 in the

following corollary.
LEMMA 4.12. If F[M, N, k + 1, e] does not have internal gaps then

(F[M,N,k+I g]-B) to R
U[M,N

and

(F[M N k,] Be) tO/(-t-1)
U[M,N]

are optimal level-(e + 1)forests.
Now we are ready to conclude the proof of the inclusion property.
Proof (of Theorem 4.7). As in the proof of the Theorem 3.10, we prove the inclusion

property by backwards induction on the level, , and within each level by induction on the
base length. If e L, then F[M, N, M N + 1, L] is the only level-L forest over [M, N].
The only forests of base length are singleton tiles. Thus, for L or N M, the theorem
holds.

Assume that the theorem holds for all e’ > e and, within , for all [M’, N’] such that
N’-M’ < N-M. We consider fourcases depending on relative shapes of F[M, N, k + 1,]
and F[M, N, k, g.].

Case 1. F[M, N, k, g] and F[M, N, k + 1, g] have a common internal cut, c.
In this case, by Lemma 4.6, F[M, N, k, g] and F[M, N, k + 1,] are identical on one

side, say the left side, of the cut. Thus, for some k’,

F[M, N, k, e][c+l,N] F[c + 1, N, k’,]

HEIGHT-LIMITED ALPHABETIC TREES 1299

and

F[M, N, k + 1,][c+,N] F[c + 1, N, k’ + 1,

By the inductive hypothesis,

F[c + 1, N, k’,] F[c + 1, N, k’ + 1,] to p,

where p is a level- glue-pack with respect to F[c + 1, N, k’ + 1,]. Thus p is also a level-
glue-pack with respect to F[M, N, k / 1, e]. Furthermore,

F[M, N, k,] F[M, N, k + 1,] to p.

Case 2. F[M, N, k + 1,] does not have a gap.
From Lemma 4.4 it follows that F[M, N, k,] also does not have a gap. By Lemma 4.8

we have

F[M, N, k + 1,] B F[M, N, 2k + 2, + 1]

and

F[M, N, k, el B F[M, N, 2k, +].

By the inductive hypothesis we have

F[M, N, 2k, + 1] F[M, N, 2k + 2, + 1] tO pl tO p2

where p and P2 are level-(+ 1) items such that p is a glue-pack with respect to
F[M, N, 2k + 2, 4- and p2 is a glue-pack with respect to F[M, N, 2k 4- 1, e 4- 1] tO p.
Since F[M, N, k 4- 1,] does not have gaps, p is a level-(e 4- 1) glue-pack with respect to
F[M, N, k 4- 1,], p2 is a level-(e + 1) glue-pack with respect to F[M, N, k 4- 1, g] tO p,
and p tO p2 is level-e connected with respect to F[M, N, k 4- 1,]. Therefore

F[M, N, k,] F[M, N, k 4- 1,] pl 1,3 P2

and pl tO p2 is a glue-pack with respect to F[M, N, k
Case 3. F[M, N, k 4- 1,] has exactly one external gap.
By symmetry, we may assume that the one external gap of F[M, N, k 4- 1,] is at M.
We first show that we may assume that F[M, N, k 4- 1,] has only one gap and that

F[M, N, k,] has no gaps. If F[M, N, k 4- 1,] has an internal gap, then we can reduce to
Case by Lemma 4.5. If F[M, N, k,] has a gap at M, then M is a common internal cut,
and we again reduce to Case 1. By Lemma 4.4, F[M, N, k,] cannot otherwise have a gap.

By Lemma 4.8 we have

F[M, N, k,] B F[M, N, 2k, 4- 1]

and by Lemma 4.10 we have

(F[M, N, k + 1, e] Be) tO Sr,e+ F[M, N, 2k + 1, e + 1].

Thus

F[M, N, k,] F[M, N, k + 1,] tO Sr, g.+ tO P2,

1300 L.L. LARMORE AND T. M. PRZYTYCKA

where p2 F[M, N, 2k, + 1] F[M, N, 2k + 1, + 1] is a level-(e + 1) glue-pack
with respect to F[M, N, 2k + 1, + 1]. Thus p2 is a level-(e + 1) glue-pack with re-
spect to F[M, N, k + 1, g.] U sr,e+. Since F[M, N, k + 1,] does not have an internal
gap, p p2 to Sr,e+l is level-e connected with respect to F[M, N, k + 1,] and therefore
is a level-e glue-pack with respect to F[M, N, k + 1,].

Case 4. F[M, N, k + 1,] has two external gaps.
As in the previous case, we assume that F[M, N, k + 1,] does not have internal gaps

and that F[M, N, k,] does not have any gaps, since otherwise the problem can be reduced
to Case 1. By Lemma 4.8 we have

F[M, N, k,] B F[M, N, 2k, g. + 1]

and by Lemma 4.11 we have

(F[M, N, k + 1, e] Be) U SM,e+l tO SN,e+ F[M, N, 2k, e + 1].

Thus

F[M, N, k, g] F[M, N, k + 1, g] tO SM,e+l tO SN,e+l.

Note that Sg,e+ tOSu,e+l is a glue-pack with respect to F[M, N, k + 1,]. The result follows.
This concludes the proof of Theorem 4.7. [3

4.3. The Package Search algorithm. Theorem 4.7.gives us the first hint leading to an
algorithm for construction of an optimal alphabetic height-restricted tree. Namely, we need
to find the smallest weight package that is a level-0 glue-pack with respect to B. This gives
us the optimal height-restricted (n 1)-forest. Then we find the smallest weight package that
is a glue-pack with respect to that forest. This leaves us with the optimal height-restricted
(n 2)-forest. We repeat this step until we construct the optimal tree.

Theorem 4.7 gives rise to the following definition.
DEFINITION. For any M, N, r, such that

< M < N <n, O<g < L, andl <_r <_N-M-[(N-M+ l)2e-L],

define the optimal level-g package of rank r over [M N], pe (r), to be the difference[M,N]

pe (r)=F[M N N-M-r+ e]-F[M N N-M-r+2 e]
[M,N]

An optimal level- item is defined to be either an optimal level-g package or a level-g, tile.
With the above definition,, the algorithm described informally at the beginning of this

section can be described as follows’

ALGORITHM 1. Package Search (L)
1. F Be;
2. for r := to n- [n2e-L] do

2.1. find pe[,l(r);
2.2. F "= F t_J pe[,,,l(r)
The most difficult step of the above algorithm is step 2.1, in which we find the optimal

level-e package of rank r, pi,n](r). In the next section we will examine properties of optimal
packages that lead to an efficient implementation of this step. In fact, we shall find that
optimal level-0 packages over the interval 1, n] can be constructed recursively from optimal
packages of lower levels over the same interval. Consequently, in our implementation we use

only optimal packages over interval 1, n]. However we shall find the more general definition

given in this section convenient in the inductive proofs of basic properties of optimal packages.

HEIGHT-LIMITED ALPHABETIC TREES 1301

5. Monotonicity and decomposition properties of optimal packages. In this section,
we continue to assume that the uniqueness hypothesis of 4 holds.

The basic difficulty of the Package Search algorithm presented in the previous section
is to describe an efficient implementation of step 2.1, in which we find the optimal level-e
package, p,n](r), i.e., the smallest weight level-e package that forms a glue-pack with respect
to Fe. Thus, we need more information about the structure of optimal glue-packs. Their basic
properties are given in the theorem below.

THEOREM 5.1 (main theorem). Given M, N, r, , if <_ M < N <_ n, 0 <_ e. <_ L, and
_< r _< N M [(N M + 1)2e-L], then we have thefollowing items.

1. The decomposition property:
1.1 pe

t4.N (r) is the smallest weight union oftwo level-(e. + 1) items that are optimal
over [M, N] which is level-g connected with respect to

F[M, N, N M r + 2, g].
1.2 p p(M.N(r) has a normal parse tree with both children of p being optimal

level-(e + 1) items and the right child being heavier than the left child.
2. The monotonicity property"

Ifr > 1, then p (r 1) < p
3. The package span property:

Write p p(.u(r). If [lboundary(p), rboundary(p)] then [Pl > Isi,e+l
Proof The proof is by triple induction" within an interval on the rank, r, of an optimal

level-e package, within the level, on the base length of the interval, and backwards induction
on the level .

Formally, our inductive hypothesis is that the statement of the theorem holds for any of
the following three "predecessor" situations:

(i) The same values for [M, N] and e, and a smaller value for r.

(ii) The same value for e, a proper subinterval [M’,N’] for [M,N],
and any value for r.

(iii) If e < L" (e + 1) for e, and any values for [M, N] and r.
For L, the result follows vacuously from the fact that there are no level-L packages.
Assuming the inductive hypothesis, we first prove the decomposition property, then the

monotonicity property, and finally the package span property.
The following lemma will be used in the proof of the decomposition property and the

monotonicity property.
LEMMA 5.2. Suppose Q is a skyline, and that p and q are level-(e + 1) items which are

optimal over [M, N] such that q is a glue-pack with respect to Q, p is a glue-pack with respect
to Q u q, and Ipl < Iql. Then p is a glue-pack with respect to Q, and q is a glue-pack with
respect to Q u p.

Proof The second part of the conclusion follows immediately from Lemma 3.5. Thus,
we need only show that p is a glue-pack with respect to Q. If p is a tile, this is trivial, so
assume p is a package. The remainder of the proof is in two cases, depending on whether q
is a tile or a package.

Suppose q is a tile, say, si,e+l. By Lemma 3.9, p cannot span i, since otherwise it must
contain si,e+2, which is at least as heavy as q. Without loss of generality, lboundary (p) > i.
Applying Lemma 3.7 twice, we see that p is a glue-pack with respect to (Q t.J q)ti+,Nl Qti+.u,
and thus also with respect to Q.

Suppose q is a package. Let F F[M, N, N M + 2, +], where is that rank
..e+l ,,/for which p tt,.N t,). By the definition of optimal package, p is a glue-pack with respect to

F. By monotonicity at level (e + 1), which follows from part (iii) of the inductive hypothesis,
q et4.j’e+l (t’) for some t’ > t, hence q N F 0. By Lemma 3.6, p is a glue-pack with respect
to F C’l (Q u q) F C3 Q. By Lemma 3.5, p is a glue-pack with respect to Q.

1302 L.L. LARMORE AND T. M. PRZYTYCKA

5.1. The proof of the decomposition property. Let p pt.(r) for e < L, and let
Pl, P be the children of p in its normal parse tree. We need only prove that p and P2
can be chosen to be level-(+ 1) optimal items over [M, N], since the other parts of the
decomposition property then follow by the definition of p,(r) and by Lemma 5.2. If both

Pl and p are tiles, the decomposition property follows immediately. Thus, we can assume
that at least one of them, namely p, is a level-(+ 1) package.

By the definition of an optimal level-e package over [M, N] of rank r, we have

p F[M,N,N- M-r + 1]- F[M,N,N- M-r + 2].

Let be the largest integer such that is a gap of F[M, N, N M r + 2] and <

lboundary (p). Let M if such a gap does not exist. Let j be the smallest integer such that
j is a gap of F[M, N, N M r + 2] and j > rboundary(p). Let j N if such a gap
does not exist.

We note that p is an optimal package over [i, j]. If q were a better choice of level-e glue-
pack over [i, j], then, by Lemma 3.7, q would also be a better choice of level-g glue-pack over
[M, N], so p would not be optimal over [M, N].

We consider two cases" when [i, j] [M, N] and [i, j] [M, N].
If [i, j] [M, N] then, by the definition of and j, F[M, N, N M r + 2] has no

internal gaps. Thus, by Corollary 4.12,

F1 (F[M N N M r + 2, g] Be) U BTM
--[M,N]

and

Fe (F[M, N, N M r + e] Be) U B(+I
W[M.N

are optimal forests over [M, N]. If neither p nor Pz is a tile, then

p p U p2 F2- F.

By the definition of an optimal package, F. is obtained from F by adding two level-(e + 1)
optimal packages over [M, N]. Thus, p and Pe can be chosen to be optimal over [M, N],
and we are done.

If pl is a tile, then

P2-- F2- F1.

Thus, by the definition of an optimal package, p2 is an optimal level-(e + 1) package over

[M, N], and we are done.
This concludes the proofofthe decomposition property for the case when [M, N] [i, j].
Assume now that [i, j] is a proper subinterval of [M, N]. Let

F (F[M, N N M r + 2, el Be) U/e+l"’[M,N]"

By part (i) of the inductive hypothesis, F is a union of level-(+ 1) items which are optimal
over [M, N].

By Lemmas 4.2, 4.4, and 4.12, since F[M, N, N-M-r+2, E]ti,J] does not have internal
gaps, F[i,jl and F[i,j] U p are optimal (+ 1)-forests over [i, j].

Thus, if Pl is a tile, then Fti,jl U p F[i,j I,.J P2, hence Pe is optimal over [i, j]. If Pl is
a package, then p, Pe can be chosen to be optimal over [i, j]. By Lemma 5.2, IPll < IPel.
For 1, 2, let Pi be the union of all level-(+ 1) packages of weight less than pil which

HEIGHT-LIMITED ALPHABETIC TREES 1303

are optimal over [M, N] Let Fi Pi U BTM which is an optimal level-(e + 1) forest, by[m,N]

monotonicity at level (e + 1). We will prove the following two claims:
Claim 1. If Pl is a package, then (F)ti,j] F[i,j].
Claim 2. If Pl is an optimal item over [M, N], then (F2)[i,j] F[i,jl U
We conclude the proof of the decomposition property, assuming Claims and 2.
If Pl is a tile, it is optimal. If pl is a package, let ql be the minimal level-(e + 1) glue-pack

with respect to F1. By definition of optimal package, ql is an optimal level-(e + 1) package
over [M, N], and Iqll > IPll, since otherwise ql c_ P1. By Lemma 3.7 and Claim 1, pl is
a glue-pack with respect to F1, thus IPll > Iq l, since otherwise q would not be minimal.
By the uniqueness hypothesis, p q. Thus, p is an optimal level-(e + 1) package over
[M, N].

Let q2 be the minimal level-(e + 1) glue-pack with respect to F2. By definition of optimal
package, q2 is optimal over [M, N], and Iq21 > p2 I, since otherwise q2 _c P2. By Lemma 3.7
and Claim 2, P2 is a glue-pack with respect to F2, thus P21 >_ Iq2 l, since otherwise q2 would
not be minimal. By the uniqueness hypothesis, P2 q2. Thus, P2 is an optimal level-(e + 1)
package over [M, N].

Thus, the decomposition property holds if Claims and 2 are true. It remains only to
prove those claims.

We will use the following notation:
We define a COS (COS Component OfSubforest) over [M’, N’] to be an optimal level-

(e + 1) forest over a subinterval [M’, N’]

_
[M, N] which is the disjoint union of level-(g + 1)

items which are optimal over [M, N].
In particular, if either M’ M or M’ is a gap of F[M, N, N M r + 2, e], and if

either N’ N or N’ is a gap of F[M, N, N M r + 2, e], then FtM,.N, is a COS.
LEMMA 5.3. If Q is a COS over [M’, N’] c_ [M, N], then those level-(g. + 1) items in Q

which are optimal over [M, N] are also optimal items over [M’, N’].
Proof We only need to consider packages, since tiles are automatically optimal items.

Re+l U ql U q2 U U qm, where each qt is a level-(e + 1) package which isWrite Q
pe+loptimal over [M N], and where Iqtl < Iqt+ll. We prove qt tM,.u,l(t) for each t. Suppose

_e+l (t). Since Q is the optimalthis is not the case. Pick the smallest for which qt q
(N’-M’-m+ 1)-forestatlevel (e+ 1) over [M’ N’], it contains pe+l (t’) forallt’ 6 [1 m].[MP,N

Hence, in particular, it contains q. Let Ft be the level-(e + 1) forest over [M, N] consisting
/e/lof "-’tt,l together with all level-(e + 1) packages of weight less than Iqtl which are optimal

over [M, N]. By monotonicity at level (e + 1), Ft is an optimal forest over [M, N], and qt is
the smallest level-(e + 1) glue-pack with respect to Ft.

Let H e+l U ql 1.3... U qt-1 F[M’ N’ N’ M’ + 2 g. + 1], an optimal.t.’[Mt.Nt

level-(e + 1) forest over [M’, N’]. Since q is disjoint from H Ft Q and is a subset of Q,
it is disjoint from Ft. Since q is level-(e + 1) connected with respect to H, it is level-(+ 1)
connected with respect to Ft, since H c__ Ft. Thus, q[is a level-(e + 1) glue-pack with respect
to Ft, and by optimality of qt and uniqueness, Iq;I > Iq, I.

On the other hand, qt is level-(e + 1) connected with respect to both Ft and Q, hence also
with respect to H, by Remark 3.3. Since qt is disjoint from H, it is a glue-pack with respect
to H, contradicting the minimality of q.

Let Q be a COS over [M’, N’], and q’ be the smallest weight level-(+ 1) glue-pack
with respect to Q. Note that q’ is optimal over [M’, N’]. Define SE(Q) to be the union of all
level-(+ 1) packages, x, which are optimal over [M, N] and satisfy the following conditions"

(i) Ixl _< Iq’l;
(ii) x f Q 13;
(iii) xt,.u,l- 13.

1304 L.L. LARMORE AND T. M. PRZYTYCKA

Define S(Q) to be to be the union of all level-(g + 1) packages, x, which are optimal over
[M, N] and satisfy the following conditions:

(i) Ixl <
(ii) xNQ--0;
(iii) XtM,.N, - 13.
Define G(Q) to be the union of all level-(e + 1) packages, x, which are optimal over

[M, N] and satisfy the following conditions:

(i) Ixl >
(ii) x

_
Q.

LEMMA 5.4. If Q is a COS over [M’, N’] [M, N], q’ is the smallest weight level-(e + 1)
glue-pack with respect to Q, and q is the least weight member of SE(Q), then qtM’,N’ q
implies that q q’.

Proof If [M’, N’] [M, N], then the lemma is trivial since q’ is optimal over [M’, N’]
[M, N]. Thus, we can assume [M’, N’] is a proper subinterval of [M, N]. Let Fq be the level-
(e + 1) forest over [M N] consisting of Re+l together with all level-(e + 1) packages of

V[M,N

weight less than Iql which are optimal over [M, N]. By monotonicity at level (e + 1), Fq
is an optimal forest over [M, N], and q is the smallest level-(e + 1) glue-pack with respect
to Fq.

By Lemma 5.3, we can write Q Bt,,,u, ID q tO tO qm, where each qt is a level-
_e+l(e + 1) package which is optimal over both [M, N] and [M’, N’], and qt ptM,,u,i(t). Note

q’ etM,,u,l-e+l (m + 1), and thus Iqtl < Iq’l for all t, by the monotonicity property over [M’, N’]
implied by part (iii) of the inductive hypothesis.

Let Q’ (Fq)t,,,N,,. By the minimality of q, O’
_

Q. Since q is the smallest weight
glue-pack with respect to Fq and qt’.N’ q, it follows that q is a glue-pack with respect to
Q’, by Lemma 3.7. Since Q’ __c Q, by Remark 3.3, we know q is e-connected with respect to
Q. Since q f3 Q t3, q is a glue-pack with respect to Q. Therefore Iql > [q’l. By definition
of SE(Q), Iql _< Iq’l" By the uniqueness hypothesis, q’ q.

Since Fi,jl is a COS over [i, j], we can rewrite Claim as follows.
Claim 1’. If Pl is a package then S(F[i,j]) and G(Fli,j]) I.

Since pl is optimal over [i, j], and since Fii,j U pl is a COS over [i, j] if p is optimal over
[M, N], we can rewrite Claim 2 as follows:

Claim 2’. If Pl is an optimal item over [M,N], then S(FIi,j tO p) 0 and
G(Fti,jl U pi) 0.

LEMMA 5.5. Suppose Q is a COS over [M’, N’] c_C_ [M, N]. Then G(Q) 13.
ne+ tO ql tO tO qm, where q qm are level-(e + 1)Proof. By Lemma 5.3, Q ’t’.u’

items, each of which is optimal over both [M, N] and [i, j]. Let q be the smallest weight
glue-pack with respect to Q. By the monotonicity property at level (e + 1) over [i, j] im-
plied by part (iii) of the inductive hypothesis, all qt have weight less than [q I. Equivalently,
G(Q) =0.

By Lemma 5.5, Claims 1’ and 2’ are equivalent to the following two claims.
Claim 1". If p is a package, then S(Fti,jl) 0.
Claim 2". If p is an optimal item over [M, N], then S(Fti,j U pl) t3.
We now finish the proof of Theorem 5.1 by proving Claims l’t and 2". First note that

Lemma 5.4 immediately implies the following corollary.
COROLLARY 5.6. Let Q be a COS over [M’, N’] [M, N]. Let q be the smallest weight

member ofSE(Q), ifone exists. Then q’.N’ q implies S(Q) 0.
We break the argument into two cases: when p is a tile and p2 is a package, and when

both p and p2 are packages.

HEIGHT-LIMITED ALPHABETIC TREES 1305

Case 1. Consider first the case when p is a tile. In this case we need to prove only Claim
2". By the gap-filling property (Lemma 3.9), p xi,e+l or pl sj,e+. Assume, without loss
of generality, that the first case holds. Note that F F tO p and F[i,j F[i,j to Pl. Suppose
S(Fti,j1) :/: 0. Let q be the smallest weight member of S(Fti,jl). By Corollary 5.6, qti,jl :/: q.
Thus q must span an external gap of Eli,j], either or j. If q spans j then, by the package
span property on level (+ 1), implied by part (iii) of the inductive hypothesis, ISj,e+21 < Iql.
Thus, by the monotonicity property of the weight function, Isj,e+ [< Iql. By minimality
of q’, Iq[< [p2[. Thus p to sj,e+ si,e+l to Sj,e+l is a level- glue-pack with respect to
F[M, N, N M r + 2, e] of weight less than IPl, contradicting the minimality of p.

Thus we can assume that q spans i. Let k be the greatest integer smaller than such that
F[M, N, N M r + 2, e] has a gap at k. If no such gap exists, let k M.

Note that if k is a gap of F[M, N, N M r + 2, el, then there does not exist an optimal
package over [M, N] of weight less than or equal to Iql that spans k, since otherwise, by
the package span property at level (e + 1), and by the monotonicity property of the weight
function, sk,e+ to si,e+l is a glue-pack with respect to F[M, N, N M r + 2, e] of weight
less than [p[, contradicting the minimality of p.

By Lemmas 4.2, 4.12, and part (ii) of the inductive hypothesis, Fk,il is a COS
over [k, i].

Let q’ be the smallest weight level-(e + 1) package optimal over [M, N] not in F such
that Iq’l < Iq[and q’lk,j] :/: 93 The existence of q’ follows from the existence of q. Since
q is a minimal weight package of S(FIi,j]), rboundary(q’) < (otherwise q’ :/: q and
q’ c_ S(Fti,j])). Since q’ does not span k, lboundary(q’) > k. Thus qi,i] q" By Lemma
5.4, q’ is a glue pack with respect to F[,i]. Therefore si,e+l to q’ is a glue-pack with respect to
F[M, N, N M r + 2, e] of weight less than IPl, contradicting the minimality of p.

Case 2. Assume now that both p and P2 are level-(e -t- 1) packages over [M, N]. We
need to prove both Claim 1" and Claim 2". First we prove Claim 1", i.e., that S(Fti,j l) 0.
Assume S(Fti,jl) :/: 13. Let q be the smallest weight member of S(Fi,j]). By Corollary 5.6,
q[i,j] =/: q. Thus q must span an external gap of F[i,j at or j. Without loss of generality,
q spans i. By the package span property at level (e + 1), Iql > Jsi,e+2l z Is/,e+l, Thus

IP > Isi,e+ and therefore Ipzl > Isi,e+l [. This implies that si,e.t_ to p is a glue-pack with
respect to F[i,j of weight less than IPl, contradicting the minimality of p.

It remains to prove Claim 2" for the case when p, p2 are both level-(e + 1) packages and
under the assumption that Claim is true. Assume that the claim is false, i.e., S(Fti,jI Up =/= 13.
Let q be the smallest weight optimal level-(e + 1) package over [M, N] in S(Fi,jI tO p).
By Corollary 5.6, q[i,j] 7 q, and therefore q must span an external gap of F[i,j] at or

j. Without loss of generality, q spans i. By the package span property at level (+ 1),
Iql > Isi,e+, > [si,e+, I, hence [P21 > Isi,e+l I" But this implies that si,e+l to Pl is a glue-pack
with respect to F[i,j] of weight less than IPl, contradicting the minimality of p.

This finishes the proof of the decomposition property.

5.2. The proof of the monotonicity property. Let F F[M, N, N M r + 3].
Let q pt,Nl(r- 1), and p petM,Nl(r), and suppose that Iql > Ipl. By the uniqueness
hypothesis, Iql > Ipl. Let p, p2 be the children of p in its normal parse tree, and let q, q2

be the children of q in its normal parse tree. By the decomposition property, and by Lemma
5.2, we may assume that p is the left child of p, q is the left child of q, Iql < Iq21, and

IPll < IP2I. Thus, IPI < Iq2l.
Ifq to pl were a glue-pack for F, it would be lighter than q, contradicting the minimality

of q. Thus, it cannot be a glue-pack. But we know that ql is a glue-pack with respect to F,
since q is a glue-pack with respect to F. We also know that pl is a glue-pack with respect to

F tO ql, by Lemma 5.2, since IPll < Iq21 and p is a glue-pack with respect to F to q to q2.

1306 L.L. LARMORE AND T. M. PRZYTYCKA

Thus, there must be a gap of F that separates ql from p, say at i. Without loss of generality,
rboundary (p) > and lboundary (q) < i.

By Lemma 3.9, either q2 si,e/l or rboundary (q2) < i.
Case 1. Suppose rboundary (q2) < i. By Lemma 3.9 and the fact that pl lies entirely to

the right of i, we have lboundary (p) >_. i. Thus, Pti,u P. Applying Lemma 3.7 twice, we
see that p is a glue-pack with respect to (F 13 q)ti,u Fv.l, and thus also with respect to F,
contradicting the minimality of q.

Case 2. Suppose q2 si,e+l. If Iboundary (p2) > i, then Pv+,m P. Applying Lemma
3.7 twice, we see that p is a glue-pack with respect to (F t3 q)tg/.u Ft+,, and thus also
with respect to F, contradicting the minimality of q. Thus, Iboundary (P2) < i.

Recall that p is a glue-pack with respect to F13q. Recall also that (P)v, P. Applying
Lemma 3.7 twice, we see that Pl is a glue-pack with respect to (F 13 q)t. Fv,s 13 q2, and
thus also with respect to F 13 q2. Since it is a tile, q2 is a glue-pack with respect to F. If q2 and
p are not level- connected with respect to F, they must be separated by a gap, say at j, where
< j < Iboundary (Pl). By Lemma 3.9, lboundary (p) >_ j, hence lboundary (P2) > j > i,

contradiction. Thus, q2 t3 p is a glue-pack with respect to F, which must be heavier than
q, since q is minimal. It follows that Iql < IPI. From the fact that Ipl < Iql, we can then
conclude that p2l < Iq2l.

Now p2 is a level-(+ 1) glue-pack with respect to F13q13pl, which does not contain si,e+2.

By Lemma 3.9, P2 cannot span i, since then it would contain si,e/2, which is at least as heavy
as q2 by monotonicity of weights. The only remaining possibility is that rboundary (P2) < i,
i.e., (P2)tM,;-I P2. Applying Lemma 3.7 twice, we see that P2 is a glue-pack with respect
to (F 13 q 13 P)tM.- (F 13 q)tM.i-’ and thus also with respect to F t3 q.

If ql and p2 were separated by a gap of F, say j, then j < i, since both q and p2 extend
to the left of i. If q is to the left of j, then that gap separates q from q2, contradicting the
fact that q is a glue-pack of F, while if P2 is to the left of j, then that gap (which is still a gap
of F 13 q) separates P2 from Pl, contradicting the fact that p is a glue-pack of F 13 q. Thus,
q tO P2 is a glue-pack with respect to F. By minimality of q, Iq2l < Ip2l, contradicting the
fact that [Pzl < [q2[.

This finishes the proof of the monotonicity property.

5.3. The proof of the package span property. Suppose [lboundary(p),
rboundary(p)]. If F[M, N, N M r + 2,] has a gap at i, then the result follows

(t) for some < r, and [si,+ < [p,,,(t) < Iplfrom Lemma 3.9. Otherwise, si,e+l Pt4,Ul
by the monotonicity property.

This concludes the proof of Theorem 5.1. [3

6. The Package Merge algorithm. Recall that our technique of constructing the optimal
forest described in the Package Search algorithm is to compute all level-0 optimal packages.
By the decomposition property (Theorem 5.1, part 1), we know that an optimal level-g package
is a union of two optimal level-(e / 1) items. More precisely, in order to find the optimal
package, p,,,l(r), in each iteration of the inner loop of the Package Search algorithm, we
need to find the minimum weight pair of optimal level-(e + 1) items over [1, n] that are level-
connected with respect to F[1, n, n r + 2,]. This restricts our search domain to O(n2)
pairs.

In this section we show that we can further restrict the search domain by considering only
pairs of optimal items that are "tentatively connected," a notion first introduced by Hu and
Tucker [8], and generalized in this paper.

(Since, by Theorem 5.1, we need only consider optimal items over the interval [1, n],
we refer to optimal items over the interval [1, n] simply as "optimal items" throughout this
section.)

HEIGHT-LIMITED ALPHABETIC TREES 1307

DEFINITION. Suppose that Q is a skyline. We say that two sets oftiles, pi, p2 are tentatively
connected with respect to Q if Q has no gaps in the interval

[min(lboundary (Pl), Iboundary (P2)) "k- 1, max(Iboundary (pi), lboundary (P2)) 1].

The main result of this section is stated in the following theorem.
THEOREM 6.1. Let F be a level-g, optimal forest over [1, n] and pl, P2 be the smallest

total weight pair ofoptimal level-(g. + 1) items that are tentatively connected with respect to

F. Then p U P2 is the minimal weight level-g, glue-pack with respect to F.
First, we examine the properties of the minimum weight pair of level-(e + 1) optimal

items that are tentatively connected with respect to a level-e optimal forest.
LEMMA 6.2. Let Q be a level-e skyline over [1, n] that is a union of B and level-(e + 1)

optimal items. Let p Q be an optimal level-(e + 1) package that is not a glue-pack with
respect to Q. Then there exists an optimal level-(e + 1) item q Q, such that Iql < Pl and
p, q are tentatively connected with respect to Q.

Proof Assume first that p spans a gap of Q. Let r, r2 rk, where rt < rt+l, be the
gaps of Q spanned by p. Then p and Sr,e are tentatively connected with respect to Q. By the
package span property (Theorem 5.1, part 3), Ipl

Suppose p does not span a gap of Q. Let [i, j] [lboundary (p), rboundary(p)]. Let
F F[1 n n-t + e + 1] where is that index forwhich p pe+ (t) Bythe definition[1,n]
of optimal package, p is a level-(e + 1) glue-pack with respect to F. By Lemma 3.5, p is
a glue-pack with respect to F t_J Q. By the monotonicity property (Theorem 5.1, part 2), F
is the union of BTM and all optimal level-(e + 1) packages of weight less than]Pl. We next
show that there is some optimal level-(e + 1) package q’ Q such that Iq’l < [p[and q’
has some tiles in the interval [i, j]. Suppose there is no such q. Then, since p spans no gap
of F, this implies that (F a)[i,j] a[i,jl. Applying Lemma 3.7 twice, we see that p is a
level-(e + 1) glue-pack with respect to Q, contradicting our hypothesis.

We consider two cases: when q’ spans a gap of Q, and when it does not.

Case 1. If q’ does not span a gap of Q, then p tO q’ also does not span a gap, and therefore
p and q’ are tentatively connected. This implies the lemma with q q’.

Case 2. Assume that q’ spans at least one gap of Q. Let r, r2 rk, where rt < rt+l,

be the gaps of Q spanned by q’. If ri < i, let r be the greatest rt such that rt _< i, and then Q
has no gaps in the interval [r + 1,]. Otherwise, let r r, and then Q has no gaps in the
interval [i + 1, r- 1].

Thus, p and Sr.e+ are tentatively connected with respect to Q. By the Package Span
property, [Sr, e+l < [q’[, thus ISr, e+l < [p[. This implies the lemma with q Sr,+ 1.

This concludes the proof of Lemma 6.2.

Proof (of Theorem 6.1). Let p be the minimal weight level-e glue-pack with respect to
F. By Theorem 5.1, p p P2, where p, P2 are optimal level-(e + 1) items which must
be tentatively connected, since otherwise F p would not be level-e connected.

Let p, P2 be the smallest pair of optimal level-(e + 1) items that are tentatively connected
with respect to F. Let Ipl < Ip21. By Lemma 6.2, pl is a glue-pack with respect to F
(otherwise p, P2 would not be the minimal pair).

We need to prove that p2 is a level-(e + 1) glue-pack with respect F t_J p. If P2 is a tile,
we are done. We can thus assume that P2 is a package. Suppose p2 is not a level-(e / 1)
glue-pack with respect to F t.) p. If F t_) p has a gap at i2 Iboundary (P2), then si2,e+l, P
form a tentatively connected pair of total weight smaller than the pair p, P2, contradicting
the minimality of that pair. Otherwise, by Lemma 6.2, choose an optimal level-(e + 1) item,
q FU pl, such that Iql < IP21 and q and p2 are tentatively connected with respect to Ft.) p.

1308 L.L. LARMORE AND T. M. PRZYTYCKA

It is a routine matter of checking cases to verify that pl and q are tentatively connected,
contradicting the minimality of the pair Pl, P2.

We now describe the Package Merge implementation of the Package Search algorithm
introduced in 4.3. Each iteration of the main loop makes use of a data structure (the details of
which are described below) which holds all optimal items (tiles, as well as packages produced
during the previous iteration) and which allows rapid retrieval of the minimal tentatively
connected pair.

During each iteration of the inner loop, the minimal tentatively connected pair of optimal
level-(e + 1) items is deleted from the data structure, and their union forms an optimal level-e
package.

Correctness of the implementation follows immediately from Theorem 6.1.

ALGORITHM 2. Package Merge (L)
1. for L- 1 downto 0 do

1.1. F +- Be;
1.2. Initialize the data structure to be all optimal level-(e + 1) items;
1.3. for r := to n- n2e-l] do

1.3.1. pl, Pz *-- the minimal weight pair of tentatively connected

optimal items;
1.3.2. p(,nl(r) +-- p t3 P2;

1.3.3. F := F U p(,,l(r);
1.3.4. Delete p and P2 from the data structure;

2. compute the (standard) tree representation of F.
6.1. The data structure. The data structure consists of local priority queues Co,

C1 Cn, where each Ci contains optimal level-(g + 1) items prioritized by weight, together
with a global priority queue G containing pairs of optimal level-(e + 1) items, prioritized by
total weight.

We refer to an item (that is, an optimal level-(+ 1) item) as unused if it is still in the
data structure, and used if it is not, i.e., it has already been chosen as one of the two halves of
an optimal level- package.

At any given time, every unused tile is a member of exactly two of the local priority
queues, while every unused package is a member of exactly one of the local priority queues.

The data structure is initialized by letting Co consist only of Sl,e+, Cn consist only of

s,,,e+, and, for 6 [1, n 1], Ci consist of si,e+ 1, Si+l,e+1, and all optimal level-(e + 1)
packages whose Iboundary is equal to i. G will, at all times, contain the minimal pair of
items from each local priority queue that has at least two items. Initially, G has (n 1)
members, namely the pairs {si,e+l, Si+l,e+l} for all 6 [1, n i].

At any time, any two unused items will be tentatively connected if and only if they are
members of the same local priority queue. Thus, the minimal tentatively connected pair will
always be the minimal item of G.

Deletion of the minimal pair of items is implemented as follows. Each of the two items
is deleted from each of the local priority queues that it belongs to: one if a package, two if a
tile. Deletion of a tile from two local priority queues causes the two queues to be merged. For
each of the one, two, or three old local priority queues which have been modified, minimal

pairs must be deleted from G (not necessarily the "deletemin" operation) and a new minimal

pair for the new local priority queue is computed and inserted into G.
Time Complexity. Initializing the data structure requires O (n) time. Each deletion from

the data structure takes O(log n) time. Thus, the overall time complexity of the algorithm is

O(nL log n).

HEIGHT-LIMITED ALPHABETIC TREES 1309

7. Appendix: Resolving ties. At some step during the execution of the Package Merge
algorithm, there may be more than one choice of tentatively connected pairs that have min-
imum total weight. We proved correctness of the algorithm under the assumption that this
never occurs--in fact, we made the even stronger assumption that the uniqueness hypothesis
(introduced in 4) holds. In this section we show that this assumption is unnecessary.

In practice, the Package Merge algorithm works by resolving all ties according to specific
rules given in this section. The correctness of this method is proved by showing that it
is equivalent to increasing the weight of each tile by an "infinitesimal" amount, where the
"infinitesimals" are chosen so as to guarantee the uniqueness hypothesis, without violating
the monotonicity condition on tile weights.

7.1. Resolve a tie by choosing the smallest tag. We assign each tile a unique positive
integral tag value, taking care that the tags of tiles of the same index are monotone in the level.
For example, the tile si,e could be assigned the tag value ng + i. Each nonempty set of tiles
will be assigned the largest tag value of any of its member tiles.

If at any time during execution of the Package Search algorithm, or its implementation,
the Package Merge algorithm, there is a choice among two sets of tiles of the same actual
weight, the set with the smaller tag value will be treated as the one of smaller weight.

This technique requires a slight clarification, since the algorithm requires searching for
the least-weight set of tiles which has a certain property, and it could be that two or more such
sets have the same tag value, as they could have tiles in common. If p and q are sets of tiles
which have the same weight, and if the algorithm requires choosing the one of smaller weight,
we choose p if and only if the tag value of p q is less than the tag value of q p. These
cannot be equal, since p q and q p must be disjoint.

Keeping track of tag values for all the sets concerned does not increase the asymptotic
time complexity of the Package Merge algorithm, since it only requires storing one additional
integer with each optimal item, and using this tag to break ties in the priority queues. Within
each priority queue, the least-weight pair is still obtained by combining the two items of
smallest weight, where "smallest" is now unambiguous, using the tie-breaker. Finding that
priority queue which has the smallest least-weight pair is also easy using the tie-breaker.

7.2. Infinitesimal penalties. Let > 0 be a real number so small that, if A, B are any
sets of tiles such that IAI < IBI, then IAI / < IBI. (Since there are finitely many sets of
tiles, such an must exist.) For each tile s, let (s) be the tag value of s. Let T be an integer
larger than the largest tag value of any tile, and let each tile s be assigned the fictitious weight
Isl / 2t(s)-T. If A and B are sets of tiles, we say that A -< B if the fictitious weight of A is
less than the fictitious weight of B.

Remark 7.1. If A and B are sets of tiles, then we have the following properties.
1. Uniqueness" If A B, then A -< B or B -< A.
2. Consistency: If AI < BI, then A -< B.
3. Same as tag scheme: If [AI IBI, then the tie-breaking scheme of 7.1 will pick A

to be the "lesser weight" if and only if A -< B.
4. Nonnegativity" The fictitious weight of any set of tiles is nonnegative.
5. Monotonicity: For any < < n and any 0 < g < L, si,e -< si,e+l.

Thus, using fictitious weights instead of actual weights causes the uniqueness hypothesis
to hold, without losing the needed conditions of nonnegativity and monotonicity introduced in
4, and the tie-breaking scheme always chooses that set which has the lighter fictitious weight.

Furthermore, at the end of the algorithm, when the optimal level-0 tree (i.e., tree of least
fictitious weight) over 1, n] is found, we are guaranteed that this geometric tree has the least
actual weight, and hence represents an optimal solution to the original weighted binary tree
problem.

1310 L.L. LARMORE AND T. M. PRZYTYCKA

8. Appendix: Proof of the interleaving property. In this section we give a proof of
Theorem 4.3. The proof is very similar to proofs given in]-[4], 10]-[12], 16], and 17].

LEMMA 8.1 (Monge property of optimal forests). If <_ M < M’ <_ N < N’ <_ n, 0 <_
e <_ L, and (N’- M + 1)2e-L < k < (N M’ + 1), then

IF[M, N, k, ell q- IF[M’, N’, k, e] < IF[M, N’, k, eli + [F[M’, N, k, ell.
Proof. The proof is by backwards induction on e, and for given e, by induction on k.
We first note that if M M’ or N N’, both sides of the inequality are the same, so the

result is trivial. Thus, without loss of generality, M < M’ and N < N’.
If e L the result is vacuous, since no k satisfies the condition.
Suppose k > 1. Let c Ck_I(F[M’, N, k, e]) and c’ Ck_I(F[M, N’, k, e]). We

consider two cases: c < c’ and c > c’. If c <_ c’, the inductive hypothesis gives us

IF[M, c, k 1, ell + IF[M’, c’, k 1, ell _< IF[M, c’, k 1, ell + IF[M’, c, k 1, e]

Thus

IF[M, N, k,

<_ IF[M, c, k 1,

<_ IF[M, c’, k 1, ell + [F[c’ + 1, N’, 1, eli + IF[M’, c, k l, el + IF[c + 1, N, l, ell
IF[M, N’, k, ell / IF[M’, N, k, e]

If c > c’, the inductive hypothesis gives us

IF[c’ + , N, 1, el + IF[c + , N’, 1, el < [F[c’ + 1, N’, 1, el + IF[c + 1, N, 1, ell.

Thus

IF[M, N, k, ell + IF[M’, N’, k, ell
<_ IF[M, c’,
<_ IF[M, c’, k 1,

IFtM, g’, k, e]

Finally, suppose k 1, e < L. We consider two cases: M’ < N, and M’ N. If
M’ < N, then, by the inductive hypothesis,

IF[M, N, 2, e +III + IF[M’, N’, 2, e + 11[< IF[M, N’, 2,

Let c cl(F[M’, N, 2, e + 1]), and let c’ cleF[M, N’, 2, e + 1]). By symmetry, we can
assume without loss of generality that c < c’. Thus, since

we have

IF[M, N, 1,

[F[M g 2, e + 111 +[N’BtM.vl + IF[M’, ,2, e + 1][+1 B[M’,N’][
< IFtM, g’ 2, [M,N’]I + [FtM’, N, 2, e + 1][+ [Be[M,,N]

IF[M, N’, 1,

HEIGHT-LIMITED ALPHABETIC TREES 1311

In the case M’ N, we need an additional lemma.
LEMMA 8.2. IfL e >_ log2 n then

IF[M, N, 1,]1 + _< IF[M, N, 1, e + 1]

Proof Let i be the greatest level of any tile of index in F[M, N, 1, e]. Then

N

IF[M, N, 1, e + 1] U BtM.N,[- IF[M, N, 1, e]l > E ISi’ei+l[
i=M

which is at least ISN,e+I
We return to the proof of Lemma 8.1. Let c Cl(M, N’, 2, e -t- 1). We assume that

c > N. (The case where c < N is symmetric.) By the inductive hypothesis,

IF[M, N, 1, e + 111-t-IF[N, c, 1, e + 1]1 _< ISN,+ll-t--IF[M, c, 1, e + 111.

Then, by Lemma 8.2, we have

This concludes the proof of Lemma 8.1. FI
We are now ready to give the proof of the interleaving property.
LEMMA 8.3 (interleaving property). For M, N, k, e, if < M < N < n, 0 < e < L,

(N M + I)2e-L < k < N M, and O < rn < k, then

cm(F[M, N, k + 1, el) < cm(F[M, N, k, el) < Cm+I(F[M, N, k + 1, e]).

Proof. It suffices to show that cm(F[M, N, k, e]) < Cm+l (F[M, N, k + 1, e]). The other
inequality is symmetric.

Let c Cm+l (F[M, N, k + 1, el) and c’ cm(F[M, N, k, e]). Suppose c’ < c.

Let M’ Cl (F[M, N, k + 1, el). By Lemma 4.2,

F[M’ N k, e] F[M N k + e]tM,,N

Thus, c cm(F[M’, N, k,
By the uniqueness hypothesis,

IF[M, c’, m, ell + [F[c’ + 1, N, k m, ell < IF[M, c, m, ell + IF[c + 1, N, k m, ell,

IF[M’, c, m, e] + If[c + 1, N, k m, e]l < IF[M’, c’, m, e] + If[c’ + 1, N, k m,

Adding the two inequalities and cancelling, we obtain

IF[M, c’, m, ell + IF[M’, c, m, ell < IF[M, c, m, ell + IF[M’, c’, m, ell,
which contradicts Lemma 8.1. This concludes the proof of the interleaving property.

1312 L.L. LARMORE AND T. M. PRZYTYCKA

Acknowledgment. We wish to thank the referee for devoting the very substantial amount
oftime that was necessary to review this paper, and for giving us so many valuable suggestions.

REFERENCES

A. APOSTOLICO M. J. ATALLAH, L. L. LARMORE, AND H. S. MCFADDIN, Efficient parallel algorithms for string
editing and relatedproblems, Proc. 26th Allerton Conference on Communication, Control, and Computing,
Monticello, IL 1988, pp. 253-263. Reprinted as CSD-TR-724, Purdue University, West Lafayette, IN,
1988, reprinted in SIAM J. Comput., 19 (1990), pp. 968-988.

[2] W.W. BEIN, P. BRUCKER, J. K. PARK, AND P. K. PATHAK, A Monge propertyfor the d-dimensional transpor(a-
tion problem, Technical Report CS92-1, Department of Computer Science, University of New Mexico,
Albuquerque, NM, 1992.

[3 W.W. BEIN AND P. K. PATHAK, A characterization ofthe Mongeproperty, Technical Report CS90- 0, Department
of Computer Science, University of New Mexico, Albuquerque, NM, (1990).

[4] M. R. GAREY, Optimal binary search trees with restricted maximal depth, SIAM J. Comput., 3 (1974), pp.
101-110.

[5] A.M. GARSIA AND M. L. WACHS, A new algorithmfor minimal binary search trees, SIAM J. Comput., 6 (1977),
pp. 622-642.

[6] E. N. GILBERT, Codes based on inaccurate source probabilities, IEEE Trans. Inform. Theory, 17 (1971), pp.
304-314.

[7] T.C. Hu, Combinatorial Algorithms, Addison-Wesley, Reading, MA, 1982.
[8] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable length alphabetic codes, SIAM J.

Appl. Math., 21 1971), pp. 514-532.
[9] D.A. HUFFMAN, A methodfor the construction ofminimum redundancy codes, Proceedings of the Institute of

Radio Engineers, 40 (1952), pp. 1098-1101.
[10] A. ITAI, Optimal alphabetic trees, SIAM J. Comput., 5 (1976), pp. 9-18.
11 D.E. KNUTH, Optimum binary search trees, Acta Informatica, (1971), pp. 14-25.

[12] L.L. LARMORE, Height restricted optimal alphabetic trees, SIAM J. Comput., 16 (1987), pp. 1115-1123.
13] ,Length limited coding and optimal height-limited binary trees, Tech. Rep. 88-01, ICS Dept., University

of California, Irvine, CA, 1988.
[14] L. L. LARMORE, AND D. S. HIRSCHBERG, A fast algorithm for optimal length-limited Huffman codes, J. Assoc.

Comput. Mach., 37 (1990), pp. 464-473.
[15] Length-limited coding, Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, San

Francisco, CA, January, 1990, pp. 310-318.
16] R.L. WESSNER, Optimal alphabetic search trees with restricted maximal height, Inform. Process. Lett., 4 (1976),

pp. 90-94.
[17] E F. YAO, Efficient dynamic programming using quadrangle inequalities, Proceedings 12th ACM Symposium

on Theory of Computing, (1980), pp. 429-435.
[18] Y. ZIU AND J. W,,qG, On Alphabetic-extended binary trees with restricted path length, Scientia Sinica, 22

(1979), pp. 1362-1371.

SIAM J. COMPUT.
Vol. 23, No. 6, pp. 1313-1347, December 1994

1994 Society for Industrial and Applied Mathematics
013

IMPROVED ALGORITHMS FOR LINEAR INEQUALITIES WITH TWO
VARIABLES PER INEQUALITY*
EDITH COHEN AND NIMROD MEGIDDOt

Abstract. The authors show that a system of rn linear inequalities with n variables, where each inequality involves
at most two variables, can be solved in 6 (mn2) time (we denote 6 (f) O(f polylog n polylog rn)) deterministically,
and in (n + mn) expected time using randomization. Parallel implementations of these algorithms run in 0(n)
time, where the deterministic algorithm uses 6(mn) processors and the randomized algorithm uses 6(n / m)
processors. The bounds significantly improve over previous algorithms. The randomized algorithm is based on novel
insights into the structure of the problem.

Key words, linear inequalities, two-variables inequalities, linear systems, linear programming, strongly poly-
nomial algorithms

AMS subject classifications. 90C27, 05C85, 90C05

1. Introduction. In this paper we consider the following class of linear systems.
DEFINITION 1.1. A TVPI system is a system of linear inequalities where each inequality

involves at most two variables. (Le., a system of the form Ax < b, where A Rmxn is a
matrix, b Rm is a real vector, and each row ofA contains at most two nonzero entries.)
We denote the number of inequalities by m, and the variables by x xn. We denote by
F {x Rn lAx < b} the set offeasible solutions. A TVPI system is called monotone if the
two nonzero entries in each row have opposite signs. See Fig. for an example of a TVPI
system.

Our goal is to either find a point that satisfies all the inequalities or conclude that no such
point exists. The structure of TVPI systems enables us to obtain specialized algorithms that
are faster than known algorithms for solving general linear systems. The algorithms given
here can also be adapted to find a solution that minimizes or maximizes a specific variable.
We summarize previous work on solving TVPI systems. Shostak [17] characterized the set
of solutions of TVPI systems and gave an algorithm that is exponential in the worst case.
Nelson [16] gave an n O(lgn) algorithm. Aspvall and Shiloach [3] and Aspvall [2] proposed
algorithms that perform O(mn3l) and O(mn2l) arithmetic operations, respectively, where I
is the size of the binary encoding of the problem. Megiddo [15] proposed the first strongly
polynomial time algorithm for the problem, which performs O (mn3 log m) operations. The
parallel implementation of Megiddo’s algorithm runs in O (n log m) time using O (m) pro-
cessors.

The algorithms presented here improve the sequential and parallel time bounds. We
give an O (mn(logm + log n)) time deterministic algorithm, which has a parallel imple-
mentation that runs in O (n(log m + log n)) time using O(mn) processors. An additional
improvement is obtained through using randomization: We give an algorithm that runs in
O (n3 log n + mn (log5 n + log m log n)) expected time. A parallel implementation runs in

O (n (log5 n + log3 n log m)) expected time using O (n + m) processors. The space require-
ment of the algorithms presented here is O (n + m). The effort involved in translating these

*Received by the editors July 28, 1991; accepted for publication September 20, 1993.
tAT&T Bell Labs, Murray Hill, New Jersey 07974 (edith@research. att. corn). Research done while

the author was at Stanford University and IBM Almaden Research Center. The research of this author was partially
supported by Office of Naval Research grant N00014-91-C-0026 and by National Science Foundation PYI grant
CCR-8858097, matching funds from AT&T, and Digital Equipment Corporation.

tIBM Research, Almaden Research Center, San Jose, California 95120-6099 and School of Mathematical Sci-
ences, Tel Aviv University, Tel Aviv, Israel (megiddo@almaden. ibm. corn). The research of this author was

partially supported by Office of Naval Research grant N00014-91-C-0026.

1313

1314 EDITH COHEN AND NIMROD MEGIDDO

Y

x
1 2

-x+y _<0 x+z <2

-z + y _<0 y >_0

FlG. 1. An example ofa TVPI system with three variables.

algorithms into actual programs is about the same as in the previously known algorithms,
and the hidden constants in the time bounds are still reasonable. Subsequent to our work,
Hochbaum and Naor [12] found a new O(mn2 logm) deterministic algorithm for the prob-
lem. Their algorithm, however, runs in O(n2 log m) time in parallel, and it does not seem
possible to combine it with the randomized approach to yield algorithms with better expected
time.

Section 2 gives the preliminaries. We give a characterization of polyhedra defined by
TVPI systems. We represent a TVPI system by a directed multigraph with 2n vertices and 2m
edges. The edges have linear functions of a single variable as "weights," and the weight of a
path is interpreted as compositions of the weights along the path’s edges. We review a result
of Shostak 17] that relates weights of directed cycles and paths in this multigraph to bounds
on the feasible region. We also discuss some subproblems and show how to solve them by
performing a "Bellman-Ford shortest-path"-type computation on the representing multigraph
where initial numerical values are assigned to vertices and "adding" an edge weight is replaced
by substituting the current value at the vertex in the linear function comprising the edge weight
(hence by an O(mn) sequential algorithm, or by an O(n) time parallel algorithm using O(m)
processors). In particular we discuss the subproblem of locating a value: For a numerical
value and < < n, decide whether a TVPI system with the addition of a constraint of the
form xi > or xi < remains feasible. An O(mn) algorithm for locating a value was given
by Aspvall and Shiloach [3].

In 3 we introduce a framework for solving TVPI systems that amounts to performing
a "Floyd-Warshall all-pairs shortest-path"-type computation where resolving comparisons is
replaced by locating values. This formulation enables us to reduce solving TVPI systems to
performing O(m + n3) operations for the Floyd-Warshall-type computation and in addition
solving a polylogarithmic number of instances of the more general subproblem of locating a
pool of values" For numerical values n choose bounds s sn, where Si E {Xi
i, Xi __< i }, such that the system with the additional constraints s sn remains feasible.
Obviously, a pool of values can be located by n sequential applications of an algorithm that
locates a single value. This yields an O(mn2) time sequential algorithm that in parallel, runs

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1315

in O (n2) time using O (m) processors. The latter yields a 0 (mn2) deterministic algorithm for
solving TVPI systems.

In 4 we present better algorithms for locating a pool. We first give an algorithm that
improves the parallel running time to O (n) using O (mn) processors. This algorithm enables
us to obtain a O(n) parallel deterministic running time (using O(mn) processors) for solving
TVPI systems. Section 4 also contains an overview of a two stage O (mn) time randomized
algorithm. In parallel, the randomized algorithm runs in 0 (n) time and uses O (m) processors.
This algorithm enables us to obtain the stated randomized bounds for solving TVPI systems.
The randomized algorithm constitutes the most novel and the most technically difficult part
of this work. Sections 5 and 6 are concerned with the details of the two stages.

In 7 we discuss the special structure of monotone systems. These systems are of spe-
cial interest since the linear programming duals of generalized transshipment problems are
monotone. In [4] and [7] the authors exploited this relationship and presented algorithms for
generalized network flow problems (see also Adler and Cosares [1]).

Section 8 contains concluding remarks and a discussion of open problems.

2. Preliminaries. Consider two two-variable inequalities that share a common variable.
In some cases, these inequalities can be combined to yield a new two-variable inequality that
is implied by the previous two. For example, the inequalities x _< 2x2 4 and X2 _< 4X3 -+- 5
can be combined to yield X < 8x3 + 6. The inequalities x < 2x2 4 and x2 > 4x3 + 5,
however, cannot be combined in a similar fashion. The notion of combining inequalities
was first discussed by Shostak [17] and used in all succeeding works. A TVPI system was

represented by a multigraph where nodes correspond to variables and inequalities correspond
to edges. Each set of inequalities that can be combined as described above to yield a new
inequality forms an admissible path in this multigraph [17]. We find it more convenient to
consider a slightly different graph (the associated graph of a system), in which there is an exact
correspondence between directed paths and new inequalities that can be obtained as above.
Cycles in the associated graph yield bounds on variables. Obviously, the new inequalities
and bounds that are obtained by combining inequalities are implied by the original system.
Shostak proved that the converse is also true: The tightest bounds on variables that can be
obtained from simple cycles and paths define the bounding box of the feasible region. The
current paper, like much previous work (see [3], [2], [15], and [17]), makes use of Shostak’s
result.

2.1. The associated graph. We represent a TVPI system by a set of n intervals and a
directed multigraph with 2n nodes and 2m edges. The graph is a natural representation of the
system, where variables correspond to vertices and two-variable inequalities to edges between
vertices of the participating variables. A formal definition of the associated graph follows.

DEFINITION 2.1. Suppose we are given a TVPI system as in Definition 1.1. Without loss of
generality, assume that the inequalities with a single variable (bounds) are summarized in the

form of intervals Si [ai, bi] (-- < ai < bi < , n). We consider a directed
multigraph G (V, E) asfollows. For each variable xi, there are two vertices in G associated
with xi, namely, V V U V where V {il n} and V {vii n }. For
u V, we define u- V as follows. If u 1) V, then u-1 -i, and if u i V,
then u- v__i. The edges of G are associated with the inequalities that involve exactly two

variables. Note that each such inequality can be written in theform

},’X < OlXj "- ,
where either ’ and ot :/: 0 or ?’ -1 and > O. Each such inequality is represented by
two edges, where each edge e is labeled with a certain linearfunction fe asfollows"

1316 EDITH COHEN AND NIMROD MEGIDDO

1. Ifc > 0 and F 1, we have an edge e (-6j,-i) labeled fe (x) otx + 13 and an

edge e-1 (._U_u/, u__j) labeled fe-(X) I .
2. lfa < 0 and , 1, we have an edge e (v_j,-i) labeled fe(X) ax + fl and an

edge e-1 (v_ -6j) labeled fe- (x) x
3. lfc > 0 and , -1, we have an edge e (-6j, 13i) labeled fe (x) -cx fl and

an edge e- (-i v_j) labeled fe- (x) -!x
See Fig. 2 for an example of such a system and the associated graph. See Fig. 3 for the
associated graph ofthe system shown in Fig. 1. We assume throughout this paper that a TVPI
system is given by the associated graph and set of intervals.

(1.) y < x+2

(2.) y > x

(3.) y > -x

(4.) y < -x + 2

y

Set of all feasible points

x+2(l.)

(4)-y+2

X

FIG. 2. An example ofa system of inequalities and the associated graph.

-x+2 y

z -z+2

FIG. 3. The associated graph of the TVPI system ofFig. 1.

For any one-to-one function f let f-1 denote the inverse function. In particular, if
f(x) x + and c - 0, then f-(x) lx . Note that for all e E, fe- f;-.

Let G be as in Definition 2.1. A linear function associated with an edge (u, w) corresponds
to an inequality in the original system: Suppose that u 6 {_vi, i }; if w v-j the inequality

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1317

is Xj < fe(Xi), and if w __vj the inequality is xj > fe(Xi). We define the linear function
associated with a directed path p from u to w. The corresponding two-variable inequality that
results from treating the path as an edge (u, w), is implied by the original system.

DEFINITION 2.2. Let p (el ek) be a (directed) path in G.
1. For any path p, we define a linear function fp, where fp fek o o fe. Note

that if both ends of p lie either in V or in V then fp is increasing. Otherwise, fp is

decreasing.
2. We denote by p-1 the path p (e-1 e-l). Note that fp-, f and hence the

two paths p, p-1 correspond to the same inequality.
Consider, for example, the directed path from y to 2 in the graph of Fig. 3. The linear

function associated with this path is f 2- y, and the corresponding inequality is z < 2- y.
In particular, Definition 2.2 applies to cycles (closed paths). Cycles play a special role

since they give a relation that involves a single variable, from which a bound on this variable
can be deduced. This is formalized in the following definition.

DEFINITION 2.3. We refer to a path that starts and ends at vertices from {v, v-1 as a

cycle. A pathfrom v to v is a closed cycle, and to a pathfrom v to v- is an open cycle.
1. Let c be a cycle starting at one of the vertices -i and v_i, and ending at a vertex

(resp., v_i). Let fc be the associated linearfunction. The bound on xi implied by the
cycle c follows from the inequality x < fc(x) (resp., x >_ fc(X)). Obviously, the
implied inequality must holdfor all feasible points. Note that if a cycle c starts at

-6i and ends at v_ (resp., starts at V__ and ends at -6i), then fc is decreasing. Hence c

implies a lower bound (resp., an upper bound) on xi.
2. We say that the cycle c contradicts a value i ofi (resp., v_v_i) if the bound implied by

c is of theform xi >_ (resp., xi < or) whereas i < ot (resp., i >
Consider, as an example, the graph of Fig. 2 and the cycle that consists of the path from

x to 2. The function associated with this cycle is f -x + 2 and the bound implied by the
cycle is x <-x + 2 (i.e., x < 1).

2.2. Pushing bounds along edges. We maintain numerical values associated with the
vertices of G" The value associated with i (resp., 1) i) is denoted by i (resp., X__i). Intuitively,
i and X__ correspond to upper and lower bounds, respectively, on the value of the variable

xi. We say that is tighter than/z as a value of i (resp., x_i), if < # (resp., > #). We
introduce the following operation that considers an edge e (u, v) and updates the bound
associated with v, as implied by the inequality associated with e and the bound associated
with u.

DEFINITION 2.4. A push through an edge e is defined as thefollowing operation:
1. lfe (j, i), i <’- min{Yi, fe(-j)}.
2. If e (v_j, 1)i), X max{x_i, fe (xj) }.
3. If e (-j, v__i), x_ +-- max{x_i, fe (Yj) }.
4. lf e (v_j,-i), i --" min{Yi, fe(Xj)}.

A push is said to be essential if it actually modifies the value ofx or -i.
PROPOSITION 2.5. Suppose X__ and-i (i n) are initialized to some values and

X is the set of vectors x (x x,) r that (i) satisfy all the given inequalities and (ii)
X < Xi < "i (i n). The set X is invariant under pushes.

Proof Consider any x 6 X and a push through an edge e (j, i). (The arguments for
the other cases are similar.) Since x is a feasible solution we have xi <_ fe(Xj). Note that fe
is an increasing function when both ends of e lie either in V or in V. Hence, from xj < Yj, it
follows that X < fe (j). Since X < -i, we have X < min{2i, fe (j) }.

It is easy to see that a vector x solves a given TVPI system if and only if (i) xi Si
(i n) and (ii) the set of values "i X Xi (i n) is invariant under pushes.

1318 EDITH COHEN AND NIMROD MEGIDDO

We define a new operation that amounts to assigning simultaneously at all vertices the
tightest values that could be obtained by applying pushes (see Definition 2.4).

DEFINITION 2.6. Consider the graph G with some set of values at the vertices, X xki
i -/k (i n). A push phase on G is assigning, at the respective vertices, the set of

k+ + (i n) defined asfollows:values x__ .X

2/+ +-" man[y/’ eeinli}man [fe(Y)if e= (’j,/), or fe(X)if e= (l)j,/)]}

-- max x/, max fe if e (-, v__i), or f(x) if e (v, v__i)
ein{_v

Performing a push phase is computationally similar to a single phase of the Bellman-Ford
shortest-path algorithm. It takes O(m) time sequentially; O(loglogn) time using O(m)
processors or O(1) expected time using O(m) processors by a randomized algorithm on a
CRCW PRAM; and O (log m) deterministic time using O (m) processors on a CREW PRAM.
(See [13].)

We use push phases as a basic operation in algorithms presented later. When repeated
applications of push phases are performed, the initial set of values is denoted by X__ X/0,
i -/0 (i n) and the respective values of x and i after the termination of the kth
push phase are denoted by x__/ and 2/.

DEFINITION 2.7. Suppose that a sequence ofpush phases is performed. Consider pairs
consisting ofa value anda vertex oftheform (x, v__j) or (, -6j) (where k > 0 and <_ j < n).
The predecessor of a pair (, v) is the pair (’, v’) such that e (v’, v) is the edge through
which the essential push determined the value , and ’ f- () is the corresponding value
at v’. If the predecessor is not uniquely defined we choose arbitrarily among the qualified
pairs. A pair (, v) does not have a predecessor ifand only if is the initial value at v.

The essential path ofa pair (, v) as above consists ofthe sequence ofpairs (, v)
(e, re) and the corresponding sequence of edges el ee- such that (i) (i, vi) is the
predecessor of (i+1, vi+) and ei is the edge through which the essential push occurs (i

e 1), (ii) (e, re) (, v), and (iii) (, v) does not have a predecessor.
It is easy to see that the essential paths that correspond to (x__, _vi) and (2, i) (i

n) can be found within the same time bounds of performing push phases, simply by
keeping track of all essential push operations.

We extend the notion of a push through an edge to directed paths. Let p (el e)
be a (directed) path in G. A push along p is defined to be the composition of k successive
pushes, through the edges e e. It is easy to see that for every >_ 0 and a vertex v, after
a sequence of push phases, the value at v is exactly the tightest between the initial value at
v and the values obtained by pushing corresponding initial values at vertices along paths of
size at most k that are going into v.

2.3. Properties of the feasible region. We discuss the relation between the bounds of
the interval of feasible values of a variable and the tightest bounds implied by directed cycles.
We first give the following definitions.

DEFINITION 2.8.
1. For each variable xi, let [x -*X be the set ofvalues in lag, bi thatare not contradicted

by any simple cycle. Note that the two cycles c and c- imply the same bound. It
follows that in order to find-*x (resp., x), it suffices to consider cycles ending at -i
(resp., v_i).

2. For < < n denote by [xran, xax]

[x, x the largest interval such that (1)

for all < j < n andfor all simple paths p from a vertex v. (resp., _vj) to -i, we

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1319

have xnax _< fp(-22) (resp., X/nax _< fp(X__;)) and (2)for all <_ j <_ n and for
all simple paths p from a vertex -j (resp., v_j) to v__ we have xnin > fp() (resp.,

Xnin >__ fp(X;)).
3. An interval I C R is infeasible with respect to the variable Xi if I
A value -i (resp., x__ is infeasible ifi < xmin (resp., x__ > xmax).

4. A value -i (resp., x_i) is consistent with an interval [a, b] if- > b (resp., x__ < a). A
value -i (resp., x__i) is consistent if-i > xnax (resp., x__ < xnin).

REMARK 2.9. When the values-*x and x (i 1,.. n) are given, we can compute

Xnin and x]nax as follows. Initialize the values at the vertices to be and x__i. x
(i n). Perform 2n push phases. Itfollowsfrom Definition 2.8 part 2 that xnln x__
and x/nax xi This procedure runs in O(mn) time and is used in Megiddo’s algorithm [15].

For example, the TVPI system of Fig. 2 has [x_*, Y*] [-1, 1] [xmin, xmax], and
[y*, y*] [0, 2] [ymin, ymax]. The TVPI system of Fig. 3 has [x*, Y*] [z*, *]
[_, +], [y,, y,] [ymn, ymax] [0,], and [xmin, xmax] [zmin, zmax] [0, 2].

The following key observation is due to Shostak.
PROPOSITION 2.10 [17]. If the system is feasible, then for all < < n, the interval

[xnin, x]nax] is the projection of the set of solutions on the xi axis. Otherwise, for some
< < n, Xnin > Xnax.
The proof follows from considering the possible structure of minimal sets of inequalities

that imply a bound on a variable. Proposition 2.10 and the procedure described in Remark 2.9
assert that in order to find a feasible solution it suffices to consider all simple cycles in the
associated graph. Shostak presented an exponential time algorithm that essentially examines
all directed simple cycles 17].

The following corollary states that if two bounds are feasible separately but not simulta-
neously, then there exists a simple path that implies an inequality which asserts that the bounds
are not simultaneously feasible.

COROLLARY 2.11. Let S be a set of TVPI constraints and S

s2 {xj > , xj < } be two bounds. Let ui -i if s is an upper bound, and ui 0__

otherwise; let uj v- if s2 is an upper bound, and uj v__j otherwise. Suppose S U {Sl},
and S U {s2} arefeasible systems, but S U {sl, s2} is notfeasible. Under the above conditions
the following holds. There exists a simple path p from ui to u-f such that (i) fp(Ot) < , if
s2 is a lower bound, and (ii) fp(Ot) > , ifs2 is an. upper bound. Moreover, ifp is the tightest
(simple) path from ui to u- relative to xi or, then if s2 is an upper (resp., lower) bound,
xj fp(Ot) is the smallest (resp., largest) value ofxj subject to S U {Sl}.

Proof. Suppose that both s l, s2 are upper bounds (the proof for the other cases is similar).
Consider aj =-- X?in under the system S U {Sl and a --= X?in under the system S. We have

aj </3 and aj > /3. By definition, x?in is either implied (a) by a cycle or a cycle and a path
(i.e., implied only by inequalities that involve exactly two variables), or (b) a (possibly empty)
directed simple path (i.e., by a single variable inequality). Since the system S contains the
same two variable inequalities as S t_J {s }, aj is determined by a system of type (b) consisting
of the bound S and a simple path p.

2.4. Characterizations of TVPI polyhedra. Proposition 2.10 relates the bounding box
of the feasible region to the associated graph. We give several characterizations for polyhedra
that comprise sets of solutions of TVPI systems (TVPI polyhedra). Polyhedra that cannot be
expressed as such are non-TVPI polyhedra.

PROPOSITION 2.12. Consider a polyhedron P C Rn. The following statements are
equivalent:

1. The polyhedron P is a TVPI polyhedron.

1320 EDITH COHEN AND NIMROD MEGIDDO

2. Foraboundedconvexset P’ PfqB’, where B’ isabox, denoteai minxp, Xi, bi
maxxp, xi (i n), and denote by B Xn [ai bi] the tightest boundingi--1
boxfor P’. Every P’ as above is such that a + b P’.

3. Every set S of bounds (i.e., conditions of the form xi > or, xi < , xi or) has
the following property. Denote by Bs R the set of all feasible vectors for S.
P Bs t3 if and only if there exists a set S’ C S, where [S’I < 2 such that
Pf3Bs, =t3.

4. Same as property 3, but S contains only equalities.
In analysis done later in this paper we make use of the fact that property implies 3. The

other characterizations are presented for the sake of interest and completeness.
Proof. We first show that property implies properties 2-4.
1 := 2 Was proved by Lueker, Megiddo, and Ramachandran 14].
1 := 3 Suppose P is a TVPI polyhedron. Let Sp be a set of TVPI constraints that define

P and let Pi [nin, nax] (i n) be the corresponding projections. Let S
be a set of bounds such that the combined TVPI system Sp to S is infeasible. Note
that the associated graphs of Sp and Sp to S are identical. Denote by ximin, xax (i
1, n) the bounds defined by the system S tO Sp By definition, each ofxin, -i

max

(i n) that does not coincide with the respective end point of the interval Pi,
is determined by a single bound from S and a simple path. Proposition 2.10 implies
that the system Se tO S is infeasible if and only if for some variable xi, x/nin > xax.
Hence at least one of the two bounds xnin, xnax does not coincide with an end point
of Pi. Consider the bounds S’ C Sp U S (IS’l _< 2) that determine xnin > xnax.
Obviously, the system Sp to S’ is infeasible.

3 = 4 Obvious.
It remains to prove that either one of properties 2-4 implies property 1. Note that prop-

erties 1-4 are invariant under scalings and translations of coordinates.
Figure 4 provides an example of a non-TVPI polyhedron. It is easy to see that for this

polyhedron property 2 does not hold (consider the bounding box 0 < x < 1, 0 < y < 1,
0 < z < 1), and property 4 does not hold (consider S {x 0, y 0, z 0}).

x+y+z = 1

FIG. 4. An example ofa non-TVPI polyhedron.

Assume that P is a non-TVPI polyhedron. If P is full dimensional, there exists at least
one face F such that the equation of the hyperplane H constituting the affine hull of F involves

IXni=1 [ai bi denotes the Cartesian product of the intervals [ai bi (i n)

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1321

more than two variables. Without loss of generality (by permuting and scaling coordinates)
we can assume that the equation is Y.= xi c (where e > 3 and c E R), and for all points
x P,

__
xi < c. Note that P A H is full dimensional in H. Define .f" to be some point in

rel int P f) H. If P is not full dimensional, consider a set of equations defining the affine hull
of P. Consider a representation of P by the equalities xi fi (x xn,) (i > n’) for some
n’ < n and a set of inequalities on x x,,,. Denote by P’ C Rn’ the polyhedron defined by
these inequalities. The representation is chosen such that P’ is full dimensional. If one of the
equations involves more than two variables assume (by permuting and scaling coordinates)
that it has the form xe ,- xi -- C. Define (-1 X) to be some point in rel int P’. If
none of the equations involves more than two variables, then at least one face F of P’ involves
more than two variables. Using similar considerations to the ones used above, we assume
without loss of generality that the equation defining the affine hull of F is =l xi c, and
for all points x 6 P, -= xi < c. Note that P’ f3 H is full dimensional in H. Define .f" to be
some point in rel int P’ f3 H.

4 := 1 By definition of.f’, there exists a small enough e > 0 such that for
i (e 1) and xj .j + 5 (jthere exists x P such that x

1, + e). Consider the set of equations S {xj x + el j
Obviously, there is no point in P that satisfies S. On the other hand, there is a point
that satisfies every subset of e > 2 constraints. Hence, property 4 does not hold
for P.

2 = 1 By definition of, there exists a small enough e > 0 such that for

-i -[- (e 1)7, and xj 3j (jthere exists x P such that x
1, +). Consider the box B defined by the intervals [j e, j + (1)e]
(i). Since x B V) P, B is a bounding box for B (q P. However, there is
no x P for which xj j + (2)e/2 (j). It follows that property 2
does not hold for P.

2.5. Classifying and locating values. We discuss two procedures that are used later in
the paper and are based on repetitive applications of push phases and examining essential
paths.

One of the procedures solves the following problem.
PROBLEM 2.13 [Locate a value]. For a given TVPI system, a number , and a variable

Xi, locate with respect to the interval [x?in, xnax], that is, decide whether (i) i < X]nin, (ii)
i > X/nax, or (iii) i G [Xnin, xnax]

We refer to solving Problem 2.13 as locating the value i. Aspvall and Shiloach [2], [3]
proved the following.

PROPOSITION 2.14. Problem 2.13 can be solved in 0 (mn operations.
Aspvall and Shiloach utilized this result to solve TVPI systems: By solving instances of

Problem 2.13, their algorithm conducts a binary search that finds a point i [Xnin’ "i"
max

(1 < < n). They showed that finding such a point i can be done in O(mnl) operations
where I is the number of bits in the binary representation of the input. This yielded their
O(mn21) algorithm for TVPI systems: The algorithm performs n steps, where in step a
point i [xnin, x/nax] is found, and the equation Xi i is added to the system. If the
original system is feasible, then , 6 F.

In 3 we present a (mn2) deterministic algorithm for solving TVPI systems, that is
based on locating values in the time bounds stated in Proposition 2.14. The material contained
in the remainder of the current section is needed for achieving the randomized sequential
bound of 0(n3 + ran) and parallel time bounds of 0(n), and hence, it is not needed for the
reading of 3. In the rest of the section we first characterize the possible structures of minimal
subsystems that certify the infeasibi!ity of values ("certificates"). We then classify infeasible

1322 EDITH COHEN AND NIMROD MEGIDDO

values according to the types of their certificates. We also present a generic algorithm that
performs a sequence of push phases for a given set of initial values. This algorithm maintains
essential paths and tests for cycles in these paths. We apply this algorithm to solve both the
value location problem and the reveal problem that is defined later.

Certificates of infeasibility. Suppose an interval I [a, b] is infeasible with respect to

xi (equivalently, either [-oz, b] or [a, cxz] is infeasible). It follows from Proposition 2.10 that
there exists a vertex w, a simple path p from u 6 {_.pi, i to w, and a disjoint simple cycle
c starting at w such that the bound on w implied by c and the path p produce a bound on xi
that does not intersect I. Note that the path p and the cycle c comprise a minimal subsystem
that implies the infeasibility of I. Also note that the cycle c may be empty, in which case the
infeasibility follows from the path p and a bound on the variable associated with w. We refer
to such a system as a certificate for I. If c is a closed cycle we say that the certificate is closed.
If c is open or empty, we say that the certificate is open. When we refer to a certificate, we
interchangeably mean the set of edges E’ p U c, the set E’- of the reversed edges, or the
corresponding set of inequalities.

Classifying values. We classify values of variables according to the types of their cer-
tificates. Consider an interval I with respect to xi. If I has a closed certificate we say that
I is strongly infeasible. If only open certificates exist, we say that I is weakly infeasible.
Otherwise, if no certificate exists, I [xhi", ximax] - 0 and we say that I is feasible. In
particular these definitions apply when I consists of a single point. For < _< n, we denote
by Ix/nin*, xnax*] the set of all feasible and weakly infeasible values of xi. Note that xnin*,
xi
TM (1 _< _< n) are independent of the single variable inequalities.
We motivate distinguishing strongly and weakly infeasible values. We shall see that

weakly infeasible values can be identified by applying push phases (at most 2n times) until for
some < < n we have x > Yi. Strongly infeasible values are trickier to identify. Merely
applying push phases is not enough. We need to keep track of essential paths, detect cycles in
these paths, and compute the corresponding bounds.

We extend the definitions of the concepts above from intervals to values at vertices of G"
A property (having a closed/open certificate, weak/strong infeasibility) holds for a value at
a vertex _v (resp., i) if it holds for the interval [, cx] (resp., [-cxz,]) with respect to xi.

We present two corollaries of Propositions 2.5 and 2.10. Consider a feasible TVPI system
and the associated graph. Suppose a sequence of push phases is performed.

COROLLARY 2.15. Ifthe values at the vertices are initially consistent (see Definition 2.8),
they remain consistent after any number ofpush operations.

COROLLARY 2.16. Consider a vertex u v_ (resp., u -6i) and a value x (resp.,
-exi) for some . Let (j, vj) (j k <_ g.), where (, v) =- (, u), be the pairs

comprising the essential path (see Definition 2.6) associated with (, u). If is infeasible
(resp., strongly infeasible) at u, then each of the pairs (j, vj) (1 < j < k) is such that j is
an infeasible (resp., strongly infeasible) value of vj.

Consider an essential path that contains a closed cycle (a vertex appears more than once).
The following proposition enables us to extract information from the cycle. It states that either
all values following the start pair of the cycle are consistent (the path does not add information)
or all values preceding the last pair of the cycle are strongly infeasible (an infeasible value is
detected). Moreover, by considering the updating cycle we can determine which of the two
situations occurs.

PROPOSITION 2.17. Let be a value at u - (resp., u v_). Suppose a closed cycle
c, that starts and ends at u, is such that fc() < (resp., fc() >). Then, either (i) is

strongly infeasible at u and the cycle c is a closed certificate, or (ii) if F 0, is consistent

at u.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1323

Proof The bound implied by the cycle c is fc(Y) > Y (resp., f(y) < y). It suffices to
show that it holds either (i) only for values y such that y > (resp., y <), and hence is
strongly infeasible, or (ii) only for values y such that y < (resp., y >) and hence, is
consistent. The function fc(y) y is linear and thus can change sign only once. It cannot
be a nonpositive (resp., nonnegative) constant, since this contradicts fc() being tighter than. If the function is a negative (resp., positive) constant, the cycle implies that the system
is infeasible (and therefore is contradicted by the cycle). Otherwise, consider the value y*
such that fc(y*) y*. The bound implied by c is either [-cxz, y*] or [y*, o]. Since does
not satisfy the bound inequality, it is not in this interval.

The following algorithm is applied to a set of values x/, -i (for < _< n). The algorithm
performs a sequence of push phases, and keeps track of essential paths. When the algorithm
detects a nonsimple essential path, it either terminates or discards the path. If the algorithm
terminates as a result of such a path, a closed certificate is found for one of the initial values.
A vertex v is active at a particular point in the execution of the algorithm if the current value
at v resulted from an essential path that is not discarded.

ALGORITHM 2.18 [generic applications ofpush phases].
1. For n, initialize the values at o__ and-i as x__Oi andY respectively.
2. For k 2n do steps 3-7. If the algorithm did not terminate, conclude that

none ofthe initial values is strongly infeasible, and stop.
3. Perform a push phase. Denote the values at the vertices after the kth push phase by

--k
xj (1 <k<2n).

Keep track of all essential push operations that resultfrom active vertices. If there
are no such essential pushes or no active vertices, stop and conclude that none ofthe
initial values is strongly infeasible.
(We assume that ambiguities about the edge that carried the essential push are
resolved consistently according to some ordering on the edges.)

4. Ifk 2J for all integers j and k 2n, go to step 3 (next iteration).
-k then stop.5. Optional: Iffor some j, x > xj,

6. For each active vertex v, let Po be the essential path that corresponds to the last
tightening ofthe value at v.

Ifpv contains a closed cycle (i.e., some vertex appears in more than one pair), execute
the following subroutine (step 7). After considering all vertices, go to step 3 (next
iteration).

7. Subroutine: Examine po.
Consider the last simple closed cycle c on Po. Denote by u the vertex where c starts

and ends. Denote by the value associated with u at its first occurrence on c.
Check whether the bound implied by c contradicts . If there is no contradiction,

is consistent (see Proposition 2.17), discard all essential paths originating from
the first pair (u, of the cycle c (all correspond to consistent values according to

Corollary 2.15); return. Otherwise, if c contradicts , is strongly infeasible. It
followsfrom Corollary 2.16 that so are all values along the path Pv prior to the pair
(u, fc()) (the last occurrence ofu on Pv). In particular, the initial value at the first
vertex w of pv is strongly infeasible. Terminate the execution ofthe algorithm.

Complexity. The underlying computation of the algorithm is the Bellman-Ford single-
source shortest-path computation [8], where we maintain information needed to construct the
paths and test for cycles.

The algorithm terminates after/ < 2n iterations, in which case, it requires O(mg.) se-
quential time, and O() expected time (or, O(e log log m) deterministic time) using O(me)
work on a CRCW PRAM.

1324 EDITH COHEN AND NIMROD MEGIDDO

If the algorithm terminates at step 7, it finds a closed certificate for the initial value at w. If
the algorithm terminates during the eth iteration, the closed certificate found is of size 0(e).

PROPOSITION 2.19. Consider an execution ofAlgorithm 2.18, where step 5 is skipped.
1. At least one of the initial values is strongly infeasible if and only if the algorithm

terminates at step 7.
2. Suppose that exactly one ofthe initial values, at the vertex w, is strongly infeasible.

The algorithm terminates at step 7 with the same closed certificate regardless of the
initial values at other vertices.

Proof We first prove part 1. The "if" direction is immediate. Suppose an initial value
at a vertex w has a closed certificate consisting of a path p of length]Pl to u0 and a cycle

c of length r that starts and ends at u0. After at most Pl iterations, the value at u0 is at least
as tight as fp() and hence, has a closed certificate consisting of c. Similarly, after IP] -t- r

iterations the same holds for all the vertices of c. Let e0 er and uo Ur, respectively,
be the edges and vertices of c. We claim that all iterations for which k > Pl result in an
update of at least one of the values at uo Ur. Assume the claim is true. Assume to the
contrary that the algorithm did not terminate at step 7. Therefore, it performs 2n iterations. It
follows that at least one of the paths p,. (1 < j < r) is of length 2n, and hence, contains a
closed cycle. Since the value at uj is strongly infeasible, it follows from Corollary 2.16 that
w or another vertex with a strongly infeasible initial value is the first vertex of p,j. It follows
from Proposition 2.17 that each cycle in p,j contradicts the value at the start vertex. Hence,
the algorithm terminates at step 7.

What remains is to prove the claim. Assume the contrary. Let 0 r be the respective
values at u0 ur. In particular, none of the edges ek (0 < k <_ r) had an essential
push. Hence, for all j 1,..., r, fe(j) is not tighter than j+lmodr. It follows that

fel...er (0) fc(O) is no more tight than 0. This is a contradiction for c being a closed
certificate for 0.

We prove part 2. Consider an initialization where se at w is the only strongly infeasible
value. It follows from part 1 that the algorithm terminates in step 7, and finds an essential
path p that starts at w and terminates in a closed cycle. All values along the path are strongly
infeasible. Suppose that an initial path starting at a vertex other than w updates a value at a
vertex in p. It follows from Corollary 2.16 that the updated value cannot be tighter or as tight
as the value resulting from p. The proof follows. [3

DEFINITION 2.20. Suppose is a strongly infeasible value at a vertex w. Consider an

execution ofAlgorithm 2.18 where step 5 is skipped and at w is the only strongly infeasible
initial value (see Proposition 2.19 part 2). We refer to the unique closed certificatefound by
such an execution as the certificate of.

REMARK 2.21. Consider a run of the algorithm where step 5 is performed. - Consider1. Suppose that the algorithm terminates at step 5, where it detects x > xj.
the initial pairs (u,) and (w, lz) ofthe two essential paths that determined (v_j, x)
and (-j,). It is not necessarily true that one of the initial pairs is infeasible.
We can conclude, however, that the two corresponding bounds cannot be satisfied
simultaneously by afeasible vector

2. Consider a run of the algorithm where at least one of the initial values has an open
certificate ofsize that contains a nontrivial cycle. Thefollowing is immediate: The
algorithm terminates at either step 7 or step 5 within g. iterations.

Locating a value. We apply Algorithm 2.18 to solve Problem 2.13.
Consider a value i. We show how to decide whether or not r > X/nax (the case i < 3’nin

is similar).

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1325

ALGORITHM 2.22 [Locate a value with respect to xnax]. Perform a run ofAlgorithm 2.18,
-owhere step 5 is enabled, for the following input of values" x aj for j i, xj bj for

j 1 n, and x i.
Conclude asfollows:

If the algorithm stopped at step 3 (no active vertices), determine that i Xnax.
If the algorithms stopped at step 5, consider the essential paths associated with

--kx > xj. If in neither path, the initial pair is (_vi, i), conclude that the system is

infeasible. Otherwise, conclude that i Xnax.
maxSuppose the algorithm terminated at step 7. If w v_i, determine that i "i

Otherwise, if w v_i, the system is infeasible.
If the algorithm terminated at step 2, determine that i X/nax.

The correctness follows immediately from Proposition 2.19, part 1, and Remark 2.21.
Reveal a strongly infeasible value. We discuss applying Algorithm 2.18 to solve the

following problem.
PROBLEM 2.23 [reveal a strongly infeasible value]. Given are values i, ai < i < bi

(i E I)for the respective variables xi (i I), where I C {1 n }. Do one ofthefollowing:
1. Conclude that all the values arefeasible or weakly infeasible.
2. Find a strongly infeasible value j and a closed certificate.

ALGORITHM 2.24 [reveal]. Perform a run ofAlgorithm 2.18, where step 5 is skipped, for
the input values: Yi x i (i I), and-i bi, x ai (i I).

The following is a corollary of Proposition 2.19.
COROLLARY 2.25. Algorithm 2.24 solves Problem 2.23. If none of the initial values

is strongly infeasible, the algorithm requires O(mn) operations. Otherwise, the algorithm
terminates after g. <_ 2n iterations with a closed certificate of size 0(). If exactly one of
the values i (i I) is strongly infeasible, the algorithm terminates with the same closed
certificate regardless of the other values.

3. The basic algorithm. In this section we present a framework for solving TVPI sys-
tems. This framework allows us to state an algorithm for TVPI systems in terms of solv-
ing instances of Problem 2.13 (locating single values). The framework is stated in 3.1,
and the correctness proof is given in 3.2. In 3.3 we reduce solving a TVPI system to

locating O(n(log2n + log m)) values. Since locating a single value requires O(mn) time

(O(n log logm) time using O(mn) work on a CRCW PRAM), we obtain an O(mn2(log2 n +
logm)) deterministic algorithm for solving TVPI systems (that runs in 0(n2) time using
O(mn2(log2n d- log m)) work on a CRCW PRAM). In 3.4 we introduce the problem of
locating a pool of values. A key for further improvements is the reduction of solving a
TVPI system to locating O (log2 n -t- log m) pools of values. A pool of values can be located
naively by sequentially locating n single values. In 4 we present faster parallel and sequential
algorithms for locating a pool, that yield better algorithms for solving TVPI systems.

3.1. The framework. We first describe an idea introduced by Megiddo [15], which is
the key in obtaining strongly polynomial time bounds. Consider the associated graph of some
TVPI system. Every directed path in the associated graph corresponds to a two-variable
inequality. Consider two inequalities that correspond to two paths between the same pair of
vertices (l)i, l)j), where l) {i, 1) }. These inequalities are linear, hence there exists a number
a such that for all xmi <_ a one of the inequalities implies the other, and vice versa for xi >_ a.
If we focus only on feasible pointsx for which xi > a (similarly xi < a), one ofthe inequalities
is redundant. The algorithm eliminates paths and simultaneously restricts the feasible region.
When "comparing" two paths, the decision about which one to eliminate is done as follows.

1326 EDITH COHEN AND NIMROD MEGIDDO

First, the number a, as above, is computed. The redundant path is determined by locating
a with respect to feasible values of xi (see Problem 2.13). Megiddo applied the above idea
in an algorithm that basically performed n single-source shortest path Bellman-Ford type
computations, where comparisons amount to locating values. The framework presented here
is based on performing an all-pairs shortest path Floyd-Warshall [8] type computation that
allows us to apply further ideas.

The following definition formalizes the concept of comparing paths.
DEFINITION 3.1.

1. Suppose that Pl and p2 are two directed paths from u to v, andfrom v to w, re-
spectively. Denote by pl P2 the path from u to w obtained by concatenating p
and p2.

2. Suppose that p and P2 are two paths from u to w. Let I C R be an interval. We
say that the path p is at least as tight as P2 relative to I (denote it by Pl -< P2) if
either w V and fp (> fp2 (for all I, or w V and fp, (< fp2 (for
all I.

3. Suppose p, p2 Pk are pathsfrom u to w. lffor some i, Pi -< pj for all j, we
write Pi min., {p, p2 pk}. Note that when I is a single point, min., is well
defined.

The algorithm maintains a set of intervals Si (1 <_ < n), and a path puo from u to w
for every pair of vertices (u, w). The algorithm runs in I-log2 2n] phases. During each phase,
the paths and the intervals are considered for possible updates. Denote by S/ (1 < < n) and

Pw ({u, w}

_
V) the intervals and paths, respectively, at the beginning of the kth phase. The

algorithm has the following properties: (i) The set X"i= S contains a feasible point, and (ii)
the path P0 is the tightest path from u to w, of length at most 2’, relative to the interval S/
(where u 6 {i, _vi }).

The algorithm is based on solving instances of the following problem.
PROBLEM 3.2. Given are a graph G and a set ofintervals SI Sn as in Definition 2.1.

kuvFor every ordered pair (u, v) V V ofvertices we are given Puv Puo a collection of
directed pathsfrom u to v in G. The goal is to find a set ofn intervals I In and select a
path PSo e {Puv pkuy for every pair (u, v) of.vertices, where

Xn li) (3 F :/: 0, andFO=(i=
2. u {__Pi, "i} := Pt*,o min.,,. {Po PkG"}"
We later suggest algorithms for Problem 3.2. The following algorithm uses it as a sub-

routine. It first initializes the tightest paths matrix by selecting the tightest edge out of every
set of multiple edges (step 2). The rest of the algorithm consists of [log 2hi update phases
of the tightest-paths matrix (step 4). During each phase, the algorithm considers n2 sets of n
paths (one for each pair of vertices). It then selects the tightest path in each set. In the last
step, the tightest path matrix is used to compute a feasible vector.

ALGORITHM 3.3 [Solve TVPI systems].
1. [Initialization] Construct S and G as in Definition 2.1.
2. [Initialize tightest paths matrix] For each pair of vertices consider the set ofpaths

oflength 1, i.e., all the multiple edges. Solve Problem 3.2 relative to these paths.
For (u, v) V x V" pO, +._ pSo. For n" Si -- Si fq li, Si -- Si.

3. For k [log2 2hi, execute step 4. To continue, go to step 5.
4. For each pair (u, v) V x V, consider the set ofpaths

{pk-,}U k-1 k-1 V}}P,w Pwv Iwe V\{u

Solve Problem 3.2 relative to these sets ofpaths.
For (u, v) V V" po -- p*o. For n: Si +-- Si 0 li, S +-- Si.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1327

[’log 2nl
P

[log 2n’[I’log 2n]
P

Ilog 2n5 Denote Pij =- l-)o_i,1) Pi-j =- PTj =- P?] =- (for < < n,
O__i, i)j l-)-i, l)_j l)i, 13j

<j <n).
Fori n:

si si c {xlfpii(x) <_ x}, si si {xlfp,(x) >_ x}, si si c {xlf.(x) <_ x}.
6. For n, compute intervals S [a, b] as follows (where [aj, bj] Sj,

for < j < n)"

a +-- max {ai, mjax fi(bj), mjax fp_i(aj)},
b +- man {bi, m!nj f(bj),, m!n fpjr,(aj)_ }.

7. Compute afeasible solution ,f asfollows, for n"

max fPji(.j), max fp,(.j) min bI, min f(j), min fp,(cj)
3.2. Correctness. We prove the following:

1. For <i < n, 2) S 2)... 2) S[Ig22’1 2) S.
2. If Xi’= Si contains feasible points, then so do XT= S/ (for all k > 0) and Xi’= S.
3. P,ok (u {v__ i }, w V) is the tightest path (relative to S/) from u to w, of length

less than or equal to 2k.
4. If the system is feasible, the process described in step 7 results in a feasible vector

Claims and 2 follow directly from the statement of the algorithm.
We prove Claim 3. Consider paths pl, p2 between the same pair of vertices. Assume

they originate at {v_j, j }. It follows from the definition of -< that if pl -< P2 relative to S,
then Pl -< P2 relative to S+. Consider paths of length at most 2+ from u to v. It suffices
to show that when P,o P,o Pwv and P’,v P’,o P,o, if p,m -<, P’u and pov -<, pmo, then

Puv -<i P’uo. The latter is straightforward.
We prove Claim 4. We first show that S[C [xnin, xnax] (i n). We claim that

SJg2"l C [x, x-]. If the latter holds, it follows from Proposition 2.10 that S[C [xnin, xnax].
S[log 2nlAssume the contrary, that is, for some < j < n, ,j IX__;, Xj]. Consider a point

S -* (the case where r/ < x is similar). It follows thatr/6
og2,,3 \ [x, Y]. Assume that r/> xj

there exists a simple cycle c, such that either of the following is true:
1. The cycle c, starts and ends at j, and is such that fc(O) <
2. The cycle c, starts at _vj and ends at j, and is such that fc(rl) <

Denote c’ p (for case (i)) and c’ pj (for case (ii)). It follows from claim 3 that the

cycle c’ is the tightest simple cycle relativ to S]!g2". Therefore, fc,(rl) < fc(O). On the
other hand, due to step 5 of the algorithm fc’(O) > rl. This is a contradiction. Thus we have
shown that S C [xn’n, x’ax] (i n).

We conclude the proof of Claim 4. Consider the computation performed in step 7. For
n consider the set of intervals (1 < g < n) defined as follows. If < i,

{e }. Otherwise,

[max { ae’ j<i <,]{ j<i j<i }]max f, (}j), ma.x fpje (’j) min b, minf(j), min fp_ (j)

We claim that for n the following holds. For each # 6 i there exists a feasible

vector , such that j # and e 6 (e 7(: j). To conclude the proof of property 4, it suffices
to prove the claim. We prove the claim by induction on i.

1328 EDITH COHEN AND NIMROD MEGIDDO

In the base case S (1 < e _< n). We show that for every j a Sj there exists
a feasible solution x such that xj j and xe S’ for e j. Assume the contrary. It
follows from Proposition 2.12 that there exist two bounds s {xj > j, xj < j} and
se {xe < b’e, xe > ae} such that the system subject to xk S (1 < k < n) with the
additional bounds s, se is infeasible. Assume that Sl is xj > j and sg. is xe < b’ (the other
cases are treated similarly). It follows from Corollary 2.11 that there exists a simple path p
frome toj such that fp (b’e) < j. In contrast, it follows from property 3 and the computation
of step 6 that fp,(b) >_ bj for all paths p’ from e to , hence a contradiction.

We prove the correctness of the induction step. Consider the step that determines i.
Assume that the claim is true for previous steps. The induction hy.pothe.sissserts that subject
to the constraints xe (1 < e _< n), we have [xnin, xnax] S . [, b]. For _< e < n,
let e"min’ .nax be the respective values of xnin, xnax subject to x 6 (1 _< e _< n) and the

additional constraint xi i. We need to show that for < e < n, [.nin, nax] +. The
direction + 23 [nin, max,e is obvious. Consider nax (the arguments for nin are similar).

If nax . we are done. Otherwise, it follows from Proposition 2.10 that there exists a
simple path p from vi {-Oi, v_ to _vj such that fp (i) nax. It follows from property 3

that either p’ pTj or p’ p/j is as tight as p. Hence fp’(i) 7nax j+.
REMARK 3.4. Note that step 7 can be replaced by choosing i (a + b)/2, < <_

n. This follows from the fact that for the system subject to xi S < < n, we have
[ximn, xnax] S (1 < < n), andfrom Proposition 2.12 part 2.

3.3. Complexity of the naive implementation. The complexity is dominated by the
calls to an algorithm for Problem 3.2. We present a naive algorithm for Problem 3.2 that is
based on locating single values (see Problem 2.13). The algorithm consists of n sequential
stages as follows. At the th stage the interval Ii is computed and a tightest path is found for
each of the O (n) sets of paths that emanate from either one of {v_i, i }. In the proceeding
stages we consider the system with the additional constraint xi li.

For < < n, denote by k(i) ,u(k-u + kv, u), the number of paths emanating from
{1)i, i }. We discuss stage i. We consider O(n) sets of paths with the goal of choosing a
tightest path in each set. This is done in O(logki)) iterations, where in each iteration the
total number of paths that need to be considered reduces from r to n + 3(r n)/4. Initially,
r k(i). After the stage terminates, r n and each set contains a single path (the tightest
path). Each iteration is as follows. First, we pair up paths that belong to the same pair of
vertices. Each such pair corresponds to a comparison between the two paths that needs to be
resolved. For each pair, we compute the intersection ofthe two linear functions that correspond
to the two paths. Each "comparison" amounts to locating the intersection point with respect
to the interval [x/nin, ximax]. We solve one instance of Problem 2.13 to locate the median of
these r/2 intersections. By doing this, half the comparisons are resolved, and the number of
remaining paths is at most n + 3(r n)/4.

The following proposition is immediate. The parallel bounds follow from known parallel
selection algorithms (see e.g., 13]).

PROPOSITION 3.5. Stage can be performed by an O(ki) + mn log ki)) algorithm. A
parallel algorithm runs in 0 (n log rn log log rn log k(i)) determinisitc time (alternatively, by
allowing randomization, in O(n log k(i)) expected time) using O(mn log k (i) -+- k (i)) work on
a CRCW PRAM.

We discuss the resulting complexity of Algorithm 3.3. In step 2, the total number of
paths (,i= k(i)) is the number of edges in the graph. Hence the number of operations is

O(mn2 log m). In step 4, k(i) O(n2) (1 _< _< n). Hence, the number of operations in each
execution of step 4 is O(n3 + mn2 log n). Step 4 is performed I-log2 2n-I times. It follows that

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1329

the total number of operations is O (mnZ(log m + log2 n)). On a CRCW PRAM the algorithm
runs in O (nZ(log m -t- log2 n) log m log log m) time (alternatively, by allowing randomization,
in O (nZ(log rn + log2 n)) expected time), using O(mnZ(log m + log2 n) work.

3.4. Solving TVPI systems by locating pools ofvalues. Consider the "naive" algorithm
for solving Problem 3.2. The algorithm consists of n stages that are performed sequentially.
We present a different algorithm that performs the stages "concurrently," where iterations
of different stages are interleaving. The algorithm consists of O(maxl<i<,, log k(i)) phases,
where at phase all the th iterations of the n stages are performed.

An iteration of stage _< j < n amounts to locating a value of xj. Performing a phase
amounts to solving an instance of the following problem.

PROBLEM 3.6 [Locate a pool of values]. Given are a graph G and a set of intervals
S $1, as in Definition 2.1. Also given are a set of values i Si (i I) for the
corresponding variables xi (i I), where I C n }. The goal is tofind a set ofintervals
Ji (i I), such that (i) F :/: 0 = F fq {x Rn[i1 Xi Ji} O, and (ii) i ’ interior Ji
(i I).

We give a more elaborate description of the algorithm that reduces Problem 3.2 to locating
pools of values. The correctness is straightforward. The algorithms performs interleaving
executions of the "n" stages. This is done in O(logmaxi k(i)) phases. Denote by I C

n the set of stages that did not terminate at the current phase (initially, I n }).
Phase j is as follows:

1. For each e 6 I" compute the value e of xe arising from an iteration of stage e. This
computation takes O(n + (3/4)J iI k(i)) time, and takes, with optimal speedup,
O (log max/k(i) log log max/k(i)) deterministic time and constant expected time on a
CRCW PRAM.

2. Locate the pool (solve Problem 3.6) e (6 I). Let Je (g. I) be the intervals
constituting the solution.

3. For g. I, Se +-- Se f) Je.
It follows that Problem 3.2 is reduced to solving O (maxi log k(i)) instances of Problem 3.6

and O(n max/log k(i) d- Yl<i<n k(i)) additional time. The problem of solving TVPI systems is

therefore reduced to solving O(log2 n + log m) instances of Problem 3.6 and O(m + n3 log n)
additional computation. Note that, in parallel, the additional computation can be performed
in O (log rn log log rn + log2 n log log n) time deterministically and in O (log n) expected time
with optimal speedup.

Problem 3.6 can be solved naively by sequentially solving III instances of Problem 2.13
(locating a single value). This requires mn2 time, and 0(n2) time in parallel. In 4 we give
algorithms that improve over this bound.

4. Algorithms for locating a pool. The problem of solving TVPI systems was reduced
to locating O(log2 n +log m) pools (Problem 3.6) and O(n log n +m) additional computation.

In 3.4 we showed that a pool can be located in mn2 time, and (n2) time in parallel. In
this section we discuss two algorithms for locating a pool. In 4.1 we present an algorithm
that runs in O(mn2) sequential time, and O(n) time in parallel with optimal speedup. In 4.2
we overview a randomized O(mn log3 n) expected time algorithm. A parallel implementation
runs in O(n) expected time using O(m) processors. The details of the randomized algorithm
are given in 5 and 6.

4.1. O(n) time using O(n2m) work. In this subsection we prove the following.
PROPOSITION 4.1. Problem 3.6 can be solved on a CRCWPRAM in 0 (n log log rn) time

(alternatively, by allowing randomization, in 0 (n) expected time) using 0 (mn I I) work.

1330 EDITH COHEN AND NIMROD MEGIDDO

COROLLARY 4.2. Algorithm 3.3 has a parallel implementation on a CRCW PRAM that
runs in 0 (n log log m(log2 n + log m)) time (0 (n (log2 n + log m)) expected time ifrandom-
ization is allowed) andperforms O(mn(log2 n + log m)) work.

The following algorithm solves Problem 3.6 within the time bounds stated in Proposi-
tion 4.1.

ALGORITHM 4.3 [Locate a pool].
1. In parallel, locate (solve Problem 2.13) each of the values i (i I).

For I do as follows:
Ifi > xax, determine Ji +-" {zlz < i}.
Ifi _< xin. determine Ji +- {zlz _> i}.

Let I’ C I be the set of indices such that xnin < sei < xnax (i 6 I’).
2. For each I’ perform thefollowing computation"

Initialize the values at the vertices of G to 2i xi esi and Yj oo, xj -o
(j i). Apply 2n push phases. For < j < n denote the final values at the nodes

-i
v_j, vj, respectively, by x., xj.

3. Construct a graph H as follows" The graph H has II’1 nodes wi (i I’). There is
--ian edge between wi and wj ifand only ifj < x) or j > xj.

4. Compute a maximal independent set (corresponds to nodes I+ C I’) in H.
Choose intervals Ji (i I’) asfollows:
If I +, Ji +’- {i}.
If I’ \ I +, then

-j/fminjt+ X < i, Ji {ZlZ < i }.
/fmaxjt+ x{ > i, Ji {zlz >_ i}.

We prove the correctness of the algorithm. It follows from Corollary 2.11 that F fq {xlxi
i /k Xj j 0 if and only if x_ < j < -ixj. Hence the graph H captures the dependencies
between pairs of values. Proposition 2.12 (see equivalence of properties and 4) implies that
a set of single variable equations is feasible if and only if every pair is feasible. Hence, the set
of intervals Ji (i I’) solves Problem 3.6.

4.2. Overview of a 0 (mn) algorithm. In this subsection we present an overview of a
faster randomized algorithm for locating a pool of values. A single value can be located in
O(mn) operations by using Algorithm 2.22. In the previous section we solved Problem 3.2
more efficiently by inferring from locating a value of one variable about other values of the
same variable. To locate a set I of values of different variables, however, we still needed
O(mn 1I I) operations. The randomized approach presented in this section enables us to infer
about values of other variables as well, and in particular, locate a pool of values within O (mn)
operations.

We prove the following.
THEOREM 4.4. Problem 3.6 can be solved sequentially in an expected number of

O(mn log n) operations and on a CRCW PRAM in O(n log3 n) expected time using O(m)
processors.

Consequently, TVPI systems can be solved in an expected number of

O (n log n + mn(log5 n + log m log n))

operations.
Consider a pool of values 1 n for the corresponding variables. These values are

classified into three groups as follows (see 2.5):
1. i [X/nin, Xnax] (i is feasible).

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1331

2. ’i [Xnin, ximax], but i E [Xnin* Xnax*] (i is weakly infeasible).
3. i ’ [xffin*, xnax*] (i is strongly infeasible).
We propose a two-stage algorithm for Problem 3.6. In the first stage the algorithm locates

all the strongly infeasible values i (i E I’), and determines whether i < xin* or i > xnax*.
The respective intervals are determined to be Ji [-cxz, i] if i > xnax* and Ji [i, cxz]
if i <Z Xnin*. In the second stage the algorithm solves an easier special case of Problem 3.6
where the values are guaranteed to be either feasible or weakly infeasible. In 5 we present
an algorithm that solves the first stage and in 6 we present an algorithm for the second stage.
These algorithms run in O (mn log n) time, and in O (n log3 n) parallel time using O (m)
processors on a CRCW PRAM.

By combining the above results we obtain algorithms for Problem 3.6 with the running
times stated in Theorem 4.4.

5. Locating the strongly infeasible values. We present an algorithm for the following
problem.

PROBLEM 5.1 [Determine the strongly infeasible values]. Given are values i (i I)for
the corresponding variables xi (i I), where I C {1 n }. The goal is to determine for
each I whether i < Xnin*, :i > Xnax*, or i [X/nin*, X/nax*]. We prove the following.

PROPOSITION 5.2. Problem 5.1 can be solved (i) sequentially, in an expected number of
O(mn log n) operations, and (ii) on a CRCW PRAM, in O(n log n) expected time, using
0 (m) processors.

For purposes of analysis we classify the strongly infeasible values of variables according
to the sizes of their certificates (see Definition 2.20).

DEFINITION 5.3. A strongly infeasible value i ofa variable xi is e big if the certificate is

ofsize at most e. A value is (el, e2] big if it is e2 big but not el big. We interchangeably refer
to strongly infeasible values as big. Note that all strongly infeasible values are 2n big.

We explain the motivation for this classification. The algorithm that determines all the big
values is based on a tradeoff between the following two properties. These properties are stated
more formally and proved later. The first one "favors" big values with small certificates:
For any e-big value . it takes O(me) operations (by using "reveal") to find the certificate.
Hence, a decision procedure that locates an e-big value requires only O (me) operations. The
second property favors values with large certificates: We introduce the procedure "check" that
considers a big value along with an associated certificate E’. The "check" procedure can on
average locate many other big values whose certificates intersect E’.

5.1. The algorithm. The description of the algorithm includes calls to the following
three procedures"

The first procedure "reveal" (Problem 2.23) considers a set of k values, and either
finds a big value that belongs to the set or concludes that all these values are feasible or
weakly infeasible. Algorithm 2.24 solves "reveal." Recall (see Corollary 2.25) that
the algorithm takes O(mn) time. If the input set contains big values, the algorithm
terminates after O(me) operations (where e < n) with a closed certificate of size
0(e). If the original set contained exactly one big value j, the certificate found by
the algorithm is the certificate of j.
The second procedure "check" considers an e-big value and the corresponding certifi-
cate. The "check" procedure uses the certificate to produce upper and lower bounds
on the feasible regions of other variables. These bounds enable us to make decisions
regarding other values in the pool. An O(me) time "check" algorithm is given in

5.3. In 5.4 we discuss properties of the "check" algorithm. We show that at least
half of the (e, 2e]-big values in the pool have the following property: When a "check"

1332 EDITH COHEN AND NIMROD MEGIDDO

is applied to any of them, it determines at least e/(6n) of the other (, 2] big
values in the pool.
The third procedure considers the set of unlocated values I and computes a crude
estimate r* to the number ofbig values r. The estimate r* is such that 1/2 < .r* ! r < 2
with probability at least 1/2. In 5.5 we present an "estimate" algorithm that performs
O((log log n)2) calls to the "reveal" procedure. The time complexity is dominated
by these calls and hence is O(mn(log log n)2).

The following algorithm determines all big values in a pool of III values. The
algorithm performs iterations where each iteration determines some of the big values. The set
I and the number h are updated accordingly. Denote by r < fi the (unknown) number of big
Values in I. Appropriate values for the constants C1, C2, and C are given later.

ALGORITHM 5.4 [Determine all the big values].
Loop A" Steps 1-9

1. Apply the "reveal" procedure to the set I. If there are no big values, stop.
2. Compute an estimate r*for r such that with probability at least 1/2, 1/2 < r*/ r < 2.

Reset the following two counters: tt +-- 0 [number ofoperations];
tb - 0 [number ofbig values discarded] (in the current iteration ofLoop A).
Loop B: Steps 3-9

3. If either (i) tb > r*/4 (successful iteration of Loop A), or (ii) tt > Cmn log2n
(unsuccessful iteration ofLoop A), go to step (next iteration).

4. b -- 0 [the number ofbig values discarded in the current iteration ofLoop B].
5. If r* > /4, s +-- 1. Otherwise, s -- lfi/r*J. Choose k [C log n] random

samples SI Sk ofsize s (with replacements) from the pool I.
6. Execute "concurrently" k runs of"reveal" (see Algorithm 2.24) applied to the sets

S Sk asfollows:
7. Initialize copy according to the set ofvalues Si. Set g -- 0 [currentphase number].

Set K +-- {1 k} [set of"active" runs].
Loop C: Steps 8-9

8. Perform an additional iteration (push phase) to the runs in K. Set +-- g. + 1. Let
K’ C K be the (possibly empty) subset ofthe runsfor which certificates are found.
Apply "check" operations to these certificates, and discardfrom I all the big values
that are determined. Increment b and tb accordingly, and set K +- K \ K.

9. lfeither 2n+ 1 orb > [Czg.r*/(nlogn)] thentt -- tt +Cmlogn, gotostep
3 [next iteration ofLoop B]. Otherwise, go to step 8.

In 5.2 we prove the following.
PROPOSITION 5.5. There exist constants C,C2, and C as follows. If the estimate r* is

such that 1/2 _< r*/r < 2, then with probability at least 1/2, the current iteration ofLoop A
terminates after determining r*/4 big values (the iteration is successful).

It follows that with probability at least 1/4, each iteration of Loop A determines at least

1/8 of the big values in the pool. Hence, the expected number of iterations performed until all
big values are determined is O(log n). Each iteration of Loop A runs in O(mn log2 n) time.
Hence, the expected time in which Algorithm 5.4 terminates is O (mn log n). This concludes
the proof of Proposition 5.2.

REMARK 5.6. Note that the computation of the estimate r* in step 2 can be replaced by
running Loop A with r* 2 22 2[lghj This results in an additional log n factor in the
worst-case time bound.

5.2. Probability for a successful iteration of Loop A. In this subsection we prove
Proposition 5.5.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1333

Denote by ri (i [log 2n]) the number of (2i-1, 2i] big values in I.
DEFINITION 5.7. A sample S C I of values from the pool is good if the following three

conditions hold:
1. The sample contains exactly one big value j. Denote the size of the certificate ofj

by 2i-1 < < 2i.
2. j determines (using "check") at least 2i-1 ri /(6n) big values in I (including j itself).
3. ri >_ r/(4 [log 2n]).
We claim that property (iii) holds for at least 3/4 of the big values. Let

L={1 <i < [log2nqlri <r/(4[log2n])}.

We need to show that Yi6L ri < r/4. The claim follows from the inequality

Zri/r < 1/(4[log2n]) --ILl/(4[log2n]) < 1/4.
i6L iL

It follows from Theorem 5.17 in 5.4 that property (ii) holds for at least half the (2i-1 2 big
values (for all i). Hence, properties (ii) and (iii) hold for at least 3/8 of the big values.

The following proposition motivates the definition of good samples.
PROPOSITION 5.8. Consider an application of the reveal algorithm to a good sample,

followed by a check to the certificatefound. There exists a number e 2 (1 < < [log 2n]),
such that by using O(me) operations we can locate at least [g.r/(24n[log 2n])] big values.

Proof Denote by j the big value in the sample, and let 2 be such that the size of the
certificate of j is in (2i-1, 2i]. Consider an application of the reveal algorithm to the sample.
It follows from Proposition 2.19, part 2 that the certificate is found within O(me) operations.
A check procedure applied to the certificate locates at least 2i-lri/(6n) additional big
values from the pool. Note that ri > r/(4[log2n]). Hence at least g.r/(24n[log2n]) big
values are located.

PROPOSITION 5.9. Consider an integer s > such that (i) s if r >_ fi /2 and in some
cases, when r > h/16, and (ii) otherwise, c rs/fi is such that 0.25 < c < 2. Consider
a random sample S C I (with replacements) of s elements. In some cases, and only when
s > 4, the random sample contains s elements. There exists a constant pl such that
with probability at least p, S contains exactly one big value.

Proof. If IS] s, the probability that S contains exactly one big value is

r()s-1P-s-
n

If s 1, then 16r > fi and hence P >_ 1/16. Otherwise, 2r < fi, hence c/s < 1/2. We
obtain that

P > c ((1 c/s)S/C) (1 c/s) -1 >_ c/4 >_ 1/32.

If IS[s 1, we have

r(_)s-2P (s- 1)- 1-
n

>_ ((s- 1)/s)c/4 > (4/5)(1/32).

Consider an iteration of Loop A. During iterations of Loop B, the number r of big values
in the set I decreases, but the value of the estimate r* is not updated. The iteration of Loop A
terminates when r*/4 big values are discovered. Therefore, if initially 1/2 < r*/r < 2, then
during the iterations of Loop B we have 1/2 < r*/r <_ 4.

1334 EDITH COHEN AND NIMROD MEGIDDO

COROLLARY 5.10. Suppose that 1/2 < r* / r < 4, and consider a random sample S C I
(with replacements) of size s, where s when r* > /4 and s [/r*J otherwise. The
sample S is good with probability p > 3pl/8.

COROLLARY 5.11. Let C1 --1/ln(1 p). Consider [C logn] randomly chosen
samples (with replacements) of size s. If 1/2 < r* / r < 4, the probability that none of the
samples is good is smaller than In.

Proof. The probability that no sample is good is p (1 p)c ognl. It follows that
p < 1In when C1 > -1/ln(1 p).

Assume that initially 1/2 < r*/r < 2. Choose C2 1/96. We compute the expected
number of steps performed until r*/4 big values are located.

DEFINITION 5.12. An iteration ofLoop B is beneficial ifb > [C2er*/(n logn)] when the
iteration terminates (at step 9).

PROPOSITION 5.13. Consider an iteration ofLoop B. Ifat least one ofthe samples is good,
the iteration is beneficial.

Proof The proof follows from Proposition 5.8 and the fact that for r* < 4r,

[C2er*/(n log n)] < [er/(24n [log 2n])]

The counter tt is such that at the end of each iteration of Loop B, the running time
so far of the current iteration of Loop A is O(tt). A beneficial iteration increases tt in
Cme log n units (runs in time O(Cmg log n)), and each unbeneficial iteration by Cmn log n
units (O(Cmn logn) time). It follows from Proposition 5.13 and Corollary 5.11 that an
expected number of (n 1)/n of all iterations of Loop B are beneficial. Hence, the expected
number of operations performed by unbeneficial iterations is not bigger than the expected
number of operations performed by beneficial iterations.

To conclude the proof of Proposition 5.5, it suffices to count the expected number of
operations performed by beneficial iterations (increase of the counter tt) until at least r*/4 big
values are located.

Denote by ti (i [log n]) the number of beneficial iterations that ended within
(2i-1, 2 phases. The total expected increase in the value of tt by beneficial iterations is

[log n

Art < C1

_
ti2im log n.

i=1

The expected final value of tt (number of operations by beneficial and unbeneficial iterations)
is tt <_ 2Art. At all iterations but the last we have

[log n]

(tiCz2i-lr*/(nlogn)) < r*/4.
i=1

-, [log n] 2iHence, after the last iteration, z..,i= ti <_ n log n/(2C2) -+- n. Therefore,

Att ((C + C2)/(2C2))mn log2 n

Thus, the expected final value of tt is

tt < ((C + C2)/C2)mn log2 n

We choose C 2(Cl + C2)/C2. It follows that with probability 1/2, at least r*/4 of the
big values are located before the value of tt reaches Cmn log2 n. This concludes the proof of
Proposition 5.5.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1335

5.3. The "check" procedure. In this subsection we give an algorithm for performing
"checks." The "check" algorithm is applied to a (2k-l 2k]-big value i and the certificate i,
and provides information from which it can be concluded that certain other values are also
big.

We explain how a closed certificate for a value ofone variable is used to obtain information
about other variables in the following remark.

REMARK 5.14. Suppose i is a big value ofxi. The certificate Gi consists ofa path from
1) to a vertex u and a cycle that starts and ends at u, such that 1) 1) if i > Xax *, and
vi -6i ifi < xnin*. For a vertex w in Gi, define i(w) fp(i), where p is the path in Gi
from vi to w. Define i(vi) i. Itfollowsfrom Corollary 2.16 thatfor every vertex w of Gi,
the value i(w) at w is strongly infeasible.

The "check" algorithm is described below. The input is a (2- 2k]-big value i of xi
along with the certificate Gi.

ALGORITHM 5.15 [check].
1. For each vertex v Gi, compute the big value (v) (as in Remark 5.14).
2. Initialize the values of Yl Y, and x x,, as follows. If-j Gi, set xj

i (j); otherwise, if-j Gi, set xj -cx. If v_j Gi, set 2j i (v_j); otherwise,

if v_j Gi, set

3. Perform 2 push phases.
4. Make conclusions as follows. Iffor some value rl we have rl >_ 2j (resp., <_ xj),

conclude that r/> xax* (resp., r/ < xnin*).
The initial values at the vertices are consistent (see Remark 5.14), and hence (see Corol-

lary 2.15), the final values are consistent. It follows that the conclusions made by the "check"
algorithm are correct.

DEFINITION 5.16. If in step 4 ofAlgorithm 5.15 we deduce that a value rl is big, we say
that i 2’ locates

5.4. Properties of the "check" procedure. This subsection establishes the following
theorem.

THEOREM 5.17. Consider a collection ofb (2k-1 2k]-big values. At least half the values
have thefollowing property. Ifa "check" is applied to any ofthem, it results in 2 locating at

least b2’-1/(6n) other valuesfrom the collection.
The following proposition analyzes the dependencies among values of different variables.
PROPOSITION 5.18. Let i and j be big values ofxi and xj, respectively. Let the respective

certificates Gi, Gj, and the nodes vi, vj be as in Remark 5.14. Suppose that

for some g.. Ifthe sets ofvertices participating in Gi and Gj intersect, at least one ofthe values

i and j is located by the other

Proof Suppose u 6 V (similar for u 6 V) participates both in Gi and in Gj. Let Pi be
the directed path in Gi from vi to u and let pj be a directed path in Gj from vj to U. (See Fig.
5 for an illustration, where and j 2.) We claim that if fp (esi) < fp (j), then
locates j;if fpj (j < fp (i), j locates i. Assume that fp (i < fpj (), and consider
an application of "check" to i. The "check" algorithm determines that fpi (i) is a strongly
infeasible value of u. The algorithm initializes u- to the consistent value fp, (i) and applies
push phases. Consider the path pj-’ from u-’ to v1. Since lull < , the value at v’ after
push phases must be at least as tight as j* fp; (fp, (i)). To conclude the proof, note that

* is at least as tight as j at v-1, since j fpT, (fp (j)) and we assumed that fpj () is no

more tight than fpi (i) at u -1. Hence i e-locates j.

1336 EDITH COHEN AND NIMROD MEGIDDO

Vl : P 2
G 1 :" 6 2

FIG. 5. Dependence of intersecting certificates.

DEFINITION 5.19. Consider a pool ofb (2k-1 2k]-big values. The influence graph ofthis
pool is defined asfollows. Each big value in the pool corresponds to a vertex in the influence
graph. If one value 2 locates another, then there is a directed edge from the vertex of the

former to the vertex ofthe latter.
Theorem 5.17 is an immediate corollary of the following theorem.
THEOREM 5.20. In the influence graph ofa pool ofb (2’-1 2]-big values, at least halfof

the vertices have an out degree greater than -1- b2 /n 1. We first prove two propositions
that are used in the proof of the theorem.

PROPOSITION 5.21. In the intersection graph of b subsets of{1 n} with cardinality
g, the sum of the degrees is at least b2e/n b.

Proof. Let si (i n) be the number of subsets containing i. Obviously, Ei%l Si
be. The sum of the degrees plus the number of vertices (subsets) is at least Zi%l S2i/e" This
expression is minimized when si {Ibe/nl, [be/n]} (i n). It follows that the sum
of degrees is at most [b2e/n] b.

PROPOSITION 5.22. In any orientation ofthe edges ofthe intersection graph ofb subsets of
be/n-In with cardinality , at least halfthe vertices have out degrees greater than

Proof. It follows from Proposition 5.21 that the sum of out degrees (i.e., the total number
of edges) in any subgraph induced by b’ vertices is at least 1/2 (b’2e/n b’). Suppose, to the
contrary, that there exists a subset U of cardinality IuI b’ b/2 where the out degree of

bg/n The total number of edges (that equals the sumeach vertex is less than or equal to
b,2gof out degrees) in the subgraph induced by these vertices is /n b’, hence a contradiction

(b’Ze/n b’).since it is less that
ProofofTheorem 5.20. The cardinality of a certificate of a (2’- 2]-big value is greater

than or equal to g 2-. It follows from Proposition 5.18 that if two big values have
intersecting certificates, then in the influence graph there is an edge between the corresponding
vertices. Hence, the influence graph contains an intersection graph of b subsets of n
of cardinality g. Thus, the proof follows from Proposition 5.22.

5.5. Estimating the number of big values. In this subsection we prove the following
proposition.

PROPOSITION 5.23. An estimate r* such that 1/2 < r*/r <_ 2 with probability at least
1/2, can be found using O((log log n):z) "reveal" operations. The problem of computing an
estimate can be stated in the following terms. We are given a collection of stones, where
r of them are radioactive. The number r is not known. We are equipped with a primitive
gauge that, when exposed to a set of stones, can determine if at least one of them is radioactive
(i.e., "reveal" operation). A good estimate to the number of radioactive stones is a number
r* such that 1/2 <_ r*/r <_ 2. The goal is to compute a good estimate that is correct with

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1337

probability at least 1/2, by using at most O((log log fi)2) gauge readings. We first give some
useful propositions.

PROPOSITION 5.24. Denote by po(s) the probability that a sample (with replacements)
of size s contains no radioactive stones and let c =- rs/t. Under these conditions, (i) c <
ln(1/po(s)), and (ii) ifr/ < 0.5, c > log(1/po(s))/log4.

Proof.

(r)s ((r))po(s)= 1--- 1---
It follows that po(s) < e- and if r/fi <_ 0.5, P0 > 4-c.

COROLLARY 5.25. Suppose po(s) is known. We can conclude asfollows:
1. If0.136 < po(s) <_ 0.5, then 1/2 _< c < 2.
2. If0.146 <_ po(s) < 0.49, then 0.514 <_ c <_ 1.92.
3. If po(s) <_ 0.156, then c > 1.34.
4. If po(s) >_ 0.48, then c < 0.74.

PROPOSITION 5.26. Let B’ be the random variable (r.v.) that corresponds to the number
ofnon-radioactive samples out of B 5000(Flog log fi] + 1) random samples ofsize s.

Prob{lB’/B p0(s)l > 0.01} < 1/(2[loglogfi] + 2).

Proof. B’ is the number of successes of B Bernoulli trials with success probability po(s),
and hence, has a binomial distribution. Therefore B’ has expected value po(s)B and variance
Bpo(s)(l po(s)) (see [11] for background). It follows from Chebyshev inequality that

Prob{lB’ po(s)B[> 0.01B} < 2500B/B2 2500/B 1/(2[loglogfi] + 2).
Denote byp)(s) the r.v. B’/B, and by p’o(S) a value ofp)(s).
Below we state an algorithm that computes the estimate r*. For simplicity, we assume that

fi is a power of 2 (the general case can be handled by a small modification of the algorithm).
The algorithm is based on performing a binary search on the log fi possible estimate values
21 22 21g fi-1

ALGORITHM 5.27 [compute an estimate].
1. If p(2) <_ 0.35, stop and return the estimate r* 2lgfi-1.
2. Initialize a 1, b Llog fiJ. Repeat step 3 until a b. Return r* t/2.
3. Set j [(a + b)/2], ands 2j.

If0.146 < fro(S) < 0.49, stop and return the estimate r* fi/s.
lfP’o(S < 0.146, set b j and go to step 3.

Ifp(s) > 0.49, set a j and go to step 3.

We show that with probability at least 0.5, 1/2 _< r*/r < 2. Consider the first step. If
r >_ fi/2, p0(2) < 1/4. Hence, Prob{p)(2) < 0.35} > 1/(2[loglogfi] + 2). Ifr < fi/4,
p0(2) > 9/16. Hence, Prob{p(2) < 0.35} < 1/(2[loglogh] +2). It follows that if r > fi/2,
the algorithm stops with a good estimate with probability at least 1/(2 Flog log hi + 2). If
r _< fi/4 the probability that the algorithm stops at Step with a bad estimate is smaller than

/ (2 F-log log fi-I + 2).
The algorithm performs at most Flog log hq iterations of step 3. Each iteration terminates

with a further restriction ofthe set a, a+ b. Consider a single iteration of step 3. Suppose
that at the beginning of the iteration, at least one of the values 2a, 2a+l 2b constitutes a

good estimate. It follows from Proposition 5.26 that with probability / (2 Flog log hi +2)),
Ip(s) p0(s)l _< 0.01. Assume that this is the case. Note that for r* h/s we have c r/r*.
Therefore, it follows from Corollary 5.25 that when the iteration ends the modified interval
a, a + b is such that at least one of 2a, 2a+l 2b is a good estimate.

1338 EDITH COHEN AND NIMROD MEGIDDO

Therefore, the probability that when the algorithm terminates 2’ is a good estimate is at
least

(1 1/(2[loglogfi] + 2)) [lglgh]+l >_. 0.5.

The algorithm performs O(log log h) iterations, where each iteration computes an ap-
propriate value of p. Each iteration requires O(loglogfi) "gauge readings" (see Propo-
sition 5.26). Hence, the total number of "gauge readings" performed by the algorithm is
O ((log log fi)2). This concludes the proof of Proposition 5.23.

6. Locating a pool of weakly infeasible values and feasible values. In this section we
present an algorithm that asserts the following.

THEOREM 6.1. Problem 3.6, where the values i (i C:. I) are guaranteed to be either

feasible or weakly infeasible, can be solved (i) sequentially, in 0 (mn log n) expected time,
and (ii) on a CRCWPRAM, in O(n log3 n) expected time, using O(m) processors.

The following is a key property of feasible and weakly infeasible values.
PROPOSITION 6.2. Let i and j be feasible or weakly infeasible values of Xi and xj,

respectively. If there exists a path p from l)j E {__Uj, "j to 13 {__Pi, i such that fp (j) is at
least as tight as i at the vertex vi, there exists such a simple path pl.

Proof We assume that vj j, 1) "i. (The proof for the other cases is similar.)
Consider the path p from vj to vi. Suppose a vertex u occurs more than once on p. Consider
two of the occurrences of u. Let p pp2P3, where p is the prefix of p until the first
occurrence and P3 is the suffix of p starting from the second occurrence of u. If fplp2 (j) is
not tighter than fp, () at u, the path pl p p3 is at least as tight as p. Consider iterating
the above process. It follows that there exists a path/3 from vj to vi that is at least as tight as
p with respect to x. sj, and when a vertex appears more than once, the value at subsequent
occurrences is always tighter. We claim that each vertex may occur at most once in/3. Assume
the contrary, and consider the first cycle c along/3. Let u be the vertex where c starts and ends,
and let pl pc be the corresponding prefix of/3. It follows from Proposition 2.17 that either

fp, (j) is strongly infeasible at u, or fp (j) is consistent at u. If fp, (j) is strongly infeasible,
then p’ is a closed certificate for [-o, j with respect to xj and we get a contradiction to the
assumption that s is not strongly infeasible. Otherwise, fp, () is consistent at u. It follows
that for every prefix p2 of/ that contains p and ends at a vertex u’, the value fm (J) is
consistent at u’. Consider the last cycle c’ along/3, and let p’ c’p3 be the corresponding
suffix of/3. It follows that p’ is a closed certificate for [f(j), o] at v/-. Hence, since

i >_ f(S), pl is a closed certificate for [i, cx]. This is a contradiction to i not being
strongly infeasible.

We present two procedures that are subroutines of the algorithm for locating a pool. The
first procedure is applied to a subset of the values and returns a partial solution. The second
procedure extends a partial solution as much as possible without restricting the feasible region
further. We discuss the first procedure in detail. The input is a subset of values i Si
(i 6 1I), where 11 C I. The procedure determines intervals Ji (i 11’), where I" C I’ is
a subset of the values in the input set. The intervals Ji (i I") constitute a partial solution
for Problem 3.6, that is, there exists a set of intervals Ji (i I \ I") such that Ji (i I) is a
solution of Problem 3.6.

ALGORITHM 6.3 nd a partial solution].
1. Initialize the values at the vertices ofG asfollows"

-i X_. i (i II), "i bi, X__ ai (i I’),
2. Apply 2n push phases.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1339

3. For I’ do asfollows:
lfi Yi xi, set Ji {i }.
lfi -Yi < xi, set Ji [i, cx].
Ifi xi > -Yi, set Ji [-, i].
Otherwise, Ji is not determined.

Let I" C I’ be the set of all I’ for which Ji is determined. For I" do:
Si +- Si O Ji

Denote by F* the feasible region prior to applying Algorithm 6.3. Consider an application
of the algorithm. We show that if F* 0 then the system remains feasible, that is, F 4: t3.
The following proposition proves a necessary condition for correctness" If F* :/: t3, then for
all I", F* V {X[X Ji J.

PROPOSITION 6.4. Suppose x__ i (resp., i i is weakly infeasible, and the certificate
does not consist onlyfrom a bound and a simple path. There exists a simple path. pfrom 1) to

-i (resp., i to U__i), such that fp (i) < i (resp., fp (i) > i).
Proof It suffices to prove the existence of a not necessarily simple path p with the above

properties. The existence of a simple path would follow from Proposition 6.2. We assume
X__ i is weakly infeasible (the other case is proved similarly). There exists _< j _< n
and two simple paths emanating from _vi, p to j and P2 to _vj such that fp (i) < fp2 (i).
Consider the path p PP2 from _v to vi. We claim that fp(i) < i. To prove the claim
note that fp(i) fp o fm (i). Since the end vertices of p-I both lie in V, the function

fp is monotone increasing. Hence, fpt o fp (i < fp o fP2 (i i
We show that the intervals Ji (i I") constitute a partial solution.
PROPOSITION 6.5. F F’f){xl/iel" xi Ji} O.
Proof. We first claim that Ji is feasible for all I". Consider I". If i is feasible

the claim is immediate. Otherwise, assume to the contrary that Ji [i, cx] (similar for
[-cxz, i]) is weakly infeasible. If the certificate consists of a bound in Sj (j I) and a
simple path then, when the algorithm terminates, we have Yi < i (since the initialization is
with values at least as tight as Sj (j

_
I)). This is a contradiction. Otherwise, the certificate

contains an open cycle. The contradiction follows from Proposition 6.4. This concludes the
proof of the claim. In order to prove the proposition, Proposition 2.12, part 3 asserts that it
suffices to show that for every pair {i, j} I", F* f3 {xlxi Ji, Xj Jj} O. The latter
follows from Corollary 2.11.

We discuss the procedure that extends a partial solution. Suppose we applied Algo-
rithm 6.3 and as a result, for 6 I", we updated the intervals Si and determined Ji. The
following algorithm may determine the interval Ji for some additional values 6 I \ I".

ALGORITHM 6.6 [extend a partial solution].
1. Initialize the values at the vertices of G asfollows, x__ ai and i bi (i I).
2. Apply 2n push phases.
3. For I \ I" conclude asfollows:

lf-i < i, set Ji {-x, i }.
If X__ > i, set Ji {i, o}.

Let be the set ofall I \ I" such that Ji was determined.
For [do Si +-- Si N Ji

REMARK 6.7. Proposition 2.5 asserts that thefeasible region is not changed by the updates
of the intervals Si done by Algorithm 6.6. In particular, if the feasible region was nonempty
prior to applying the algorithm it remains nonempty.

1340 EDITH COHEN AND NIMROD MEGIDDO

6.1. The algorithm. The following algorithm considers feasible and weakly infeasible
values i (i 6 I), and solves Problem 3.6 for these values. The solution consists of a set of
intervals Ji (i I). The algorithm performs iterations, where in each iteration some intervals

Ji (i I’ C I) are determined. The intervals Ji (i I’) are incorporated into the system, we
set I I \ I’, and the problem is reduced to locating the values i (i 6 I).

ALGORITHM 6.8 [locate a pool].
1. Repeat the following until I 0.
2. For 1, 2, 4 2/lglllj, execute steps 3-5:
3. Choose (uniformly at random) e. elements from I. Let I’ C I be the set of chosen

elements.
4. Apply Algorithm 6.3 to I’. The algorithm determines Ji for I" C I’.
5. Apply Algorithm 6.6 and determine Ji for additional values I. Set I -- I\

{I" U I}.

It follows from Proposition 6.5 and Remark 6.7 that if the problem was feasible, it remains
feasible at any point during the execution of the algorithm. Hence, when the algorithm
terminates, the intervals Ji (i I) constitute a solution for Problem 3.6.

6.2. Complexity. For values i (i 6 I), consider a solution for Problem 3.6, that is,
intervals J/(i 6 I) such that Ji
We designate vertices 1)i (i G I) according to the choice of intervals Ji (i I): If Ji
[-043, i], l)i i. If Ji [i, o], l)i u__

We define a relation on the set I, with respect to the solution Ji (i I):
DEFINITION 6.9. Let . I, j . I be two elements.

1. We say that j locates ifthere exists a path pfrom vj to vi such that fp (j is at least
as tight as

2. We say that interferes with j ifthere exists apath pfrom v-1 to v)- such that fp(esi)
is tighter than j on

3. We define the relation -< on I as follows, j -< if and only if interferes with j.
j -< if and only if j locates i. (Note that j -< implies j i, and j i/xi j
implies j -< i.)

4. For an element I, denote by pred(i) {j 6 l lj i} the set of elements that
locate i, and by succ(i) {j 6 Ilj >- i} the set ofelements that interfere with i.

The following is a corollary of Proposition 6.2.
COROLLARY 6.10. If a path p as in Definition 6.9, parts and 2 exists, then there must

exist a simple path with the same properties.
The following proposition relates the locate and interfere relations to the algorithms

presented earlier. The proof follows from Corollary 6.10.
PROPOSITION 6.11. Let I, j I be two elements.

1. Suppose that j locates i. If Sj C Jj, then an application ofAlgorithm 6.6 would
determine Ji.

2. Suppose that interferes with j. Consider an application ofAlgorithm 6.3 where

{i, j} C I’. The interval Jj will not be determined as a result ofsuch a run. Moreover,

if j
_

I’, the interval Jj is determined in this run ifand only iffor all values I’,
does not interfere with j.

We characterize the values located in an iteration of Algorithm 6.8, in terms of pred and
succ.

COROLLARY 6.12. Thefollowing relations hold in an execution ofSteps 4-5: I" {k
I’lsucc(k) f I’ 0} and I {k I \ l"lpred(k) fq I" :/: 0}.

PROPOSITION 6.13. The relation -< is a partial order on I.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1341

Proof The transitivity of -< is immediate. We need to show that -< has no cycles. If there
is a cycle, it follows from the transitivity that for some j 6 I, j interferes with j. The path
p is in this case a simple cycle that constitutes a closed certificate for j. This contradicts the
assumption that j is not strongly infeasible.

Note that each iteration of steps 3-5 results in determining at least one interval, and
therefore, the algorithm terminates within O(n) iterations. In order to prove Theorem 6.1,
however, we need to show that the expected number of iterations is only O (log3 n).

Define 10 {i 6 llsucc(i) -0}.
PROPOSITION 6.14.

II]+ Z E 1/]succ(j)]=ll].
i6l\l j 6succ-1 (i)

Proof The sum is well defined since in each inner sum, {i} O succ(i) C succ(j), and
hence Isucc(j)l > 2. Note that

Z E 1/Isucc(j)l= E Isucc(i)l/Isucc(i)l-IIl-IIl.
I\I j6succ-l (i) I\I

Consider iterations of steps 2-5. For k > 0, denote by Ik, I, succk I --+ 2lk,
pred Ik --+ 2Ik, respectively, the contents of the sets I, I), and the corresponding succ
and pred functions in the beginning of the kth iteration. For k > 0 and 6 lk we have
succk(i) succ0(i) N Ik and predk(i) pred0(i) (since if j 6 pred(i) is located, then so is i).

For k > 0, define

Lk= {i lk\Il E
jsucc-I (i)

1/Isucck(j)l >_ 1/4}
PROPOSITION 6.15. There exists a constant Po such thatfor every k >_ 0 and Lk 0 I,

Prob{i ’ Ik+l} >_ p0.

Proof Consider 6 I. It follows from Corollary 6.12 that if 6 I’ in some iteration
of Steps 3-5, then gets located. With probability at least 1/2, I’ at the iteration where
g 2 Llgllkl3. Consider/ 6 Lk. For O _< h < Llog IIl/, denote

It follows that

Th {j 6 succ-l(i)12I’ < IIl/Isucc(j)l 2h+l}

2hlZhl/lll > (1/2) E 1/Isucc(j)I 1/8.
0<h [log Ilk [J j 6succ- (i)

For 0 _< h _< [log Ilk]1, consider the iteration where g 2’. Consider an element j 6 T,.
Note that {i}Osucck(i) C succ(j). Hence, Isucck(j)l >_ 2andg < Ilkl/lsucck(j)] <_ Ilkl/2.
Therefore, the probability that succ (j) N I’ 13 is at least

(1- g/llkl)lsucc(J)l > (1- e/llkl)211kl/e >_ 1/16.

Note that these probabilities are dependent for different elements of Th. The probability that
j 6 I’ is at least e/lll. These probabilities are independent for different elements of Th.
Using Corollary 6.12, it follows that the probability that is not located in the iteration where
g 2h is at most

4-21’lThl/lll(1 g/llkl) I’1 < ((1 g/llkl)lIl/e)elThl/lIl <

1342 EDITH COHEN AND NIMROD MEGIDDO

These probabilities are independent for different iterations. Hence, the probability that is
not located in any iteration is at most

2hlrhl/llkl 1/84-2hlThl/llkl 4-EO<-h<-I-IgllklJ 4- < 0.85.
0<h<[log Ilklj

Thus, is located with probability at least 0.15.
PROPOSITION 6.16.

E E 1/Isucc(j)l > 3(111- 1I1)/4.
ieL jesucc-1 (i)

Proof. The proof follows from Proposition 6.14 and from

elk\(IUL) jesucc (i)

PROPOSITION 6.17. Denote P2 3p0/8 and Pl po/2. With probability at least Pl,

\ I +ll + 1/Is.cc (j l z p2]Ikl
i6lk \(lOlk+l) j 6succ-l (i)

Proof. Consider the random variable

R=ll\Ik+,l+ E E 1/[succk(j)l.
iL\lt+l jsucc- (i)

Note that

E E 1/[succk(J)l >-E E 1/Isucck(j)[
iI\(IUIk+l) jsucc-I (i) iL\Ik+l jsucc-I (i)

Hence, it suffices to show that Prob[R >_ p; Ikl} >_ Pl. It follows from Proposition 6.15 that
the expected value of R is

E(R) p011I + Po 1/Isucck(j)t.
iL. jesucc[l (i)

The maximum value of R is at most

Rmax IIl + 1/Isucck(j)l.
ieLk succ (i)

Note that

E(R) <_ Prob{R < E(R)/2}E(R)/2 + Prob{R >_ E(R)/2}Rmax

Therefore,

Prob{R >_ E(R)/2} >_ E(R)/(2Rmax- E(R)) >_ E(R)/(2Rmax) > po/2.

It follows that with probability at least po/2,

The second to last inequality follows from Proposition 6.16.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1343

PROPOSITION 6.18. Consider a sequence of h’ > 4co/pl[logc, IIll iterations of
steps 2-5, starting at the kth iteration, where co > and cl > are constants that are

specified below. With probability at least 1/2, [Ik+h’l < (1 pz/2)llkl.

Proof Let H be the set of all < h < h’ such that

0l+h_ \ Ik+h -F
iElk+h-l\(l+h_lLJlk+ll) ESUCC-+Ih_ (i)

1/ISUCCk+h_I (j)l >-- p2llk+h-1]

It follows from Proposition 6.17 that for < h < h’, h 6 H with probability at least p.
Hence, using bounds on the binomial distribution, with probability -exp(O(-h’p)) > 1/2,
IHI > c0[logc Ilkl]. We assume that [HI > c0[logc Ilkl] and Ilk+h’l > (1 p2/2)llkl and
obtain a contradicition. Consider h 6 H. It follows, using Proposition 6.14, that

0l+h_ 0 Ik+hl q- Z 1/ISUCCk+h-I(J)I
ilk+h\1+-1Jsucc-+l/-I (i)

--I 0I+h_ Ik+h[+ Y’i,+,,\l+,,_l ISUCCk+(i)[/lSUCCk+h-(i)[< (1

We obtain that

Ik+h l+h_
ISUCCk+h(i)I/ISUCCk+h-I(i)I < (1 P2)llk+h-ll 01+h_ N Ik+hl

_< (1 P2)llk+hl/(1 p2/2) II+h-lO (- ik+hl

Denote P3 (1 p2)/(1 p2/2) and P4 (1 + p3)/2. Note that P3 < and P3 < P4 < 1.
The number of elements in the summation that are not smaller than p4 is less than

(P3 Ilk+h 1+h_1 fq lk+hl)/P4.

The number of elements in the summation is Ilk+h \ 0l+h-ll II+,1- II+h_ qlk+hl. Hence,
more than

(1 P3/P4)lIk+hl + (1//94 1)11+,_0 Cq 1,+hl > (1 P3/P4)lIk+hl

elements are smaller than/94. Using Ilk+hi > (1 PZ/2) llk I, it follows that after each iteration
in H, for more than (1 03/P4)(1 p2/2)llkl elements, the number of successors (size of
SUCCk+h) reduces by a factor of at least/94. Let

Co 1/((1 P3/P4)(1 p2/2)) +

and cl (1 -/94) -1. The size of elements in the range of succk is bounded by Ik. Hence

IHI < c0[logcIII, lq,

which contradicts our assumption.
COROLLARY 6.19. The expected number of iterations ofsteps 2-5 is 0 (log2 n).

Proofof Theorem 6.1. Algorithm 6.8 terminates with a correct solution. Each execution
of Steps 2-5 amounts to O(logn) calls to Algorithms 6.3 and 6.6. Hence it follows from
Corollary 6.19 that Algorithm 6.8 performs an expected number of O (log n) applications of
Algorithms 6.3 and 6.6. Recall that Algorithms 6.3 and 6.6 run in O(mn) time sequentially,
and on a CRCW PRAM, in O(n) time using O(m) processors. It follows that the expected
running time of Algorithm 6.8 is as stated in the theorem. E]

1344 EDITH COHEN AND NIMROD MEGIDDO

7. Monotone systems. Consider the following two operations on vectors in Rn"

x vy (max{xl, Yl} max{x,, y,,l)r
x Ay (min{xl, yl} min{xn, yn})r

(the join ofx and y),
(the meet of x and y).

Consider a TVPI system as in Definition 1.1, where the matrixA 7" (resp., -A7") is apre-Leontief
matrix, that is, each row of A contains at most one positive (resp., negative)entry. The set
of solutions of such a system constitutes a semilattice relative to the v (resp., A) operation
(see Cottle and Veinott [10]). It follows that if all the variables are bounded from above
(resp., below), there exists a solution where all the variables are maximized (resp., minimized)
simultaneously, hence, the vector Xmax (resp., Xmin) is feasible. Also, the associated graph of
such a system (see Definition 2.1) does not contain edges from V to V (resp., from V to V).

A TVPI system where the two nonzero coefficients in each inequality have opposite signs
(equivalently, both Ar and -At are pre-Leontief) is called monotone. The set of solutions
of monotone systems constitutes a lattice relative to the v and/,, operations. Note that the
converse is also true: If a polyhedral set constitutes a lattice relative to the v and/ operations,
then it can be represented as the set of solutions of some monotone system. This converse
is a direct consequence of the following result due to Veinott [18]" a polyhedral set is a
semilattice relative to the v (resp.,/) operation if and only if it constitutes the set of solutions
of some linear system Ax < b (resp., Ax > b), where the matrix Ar (resp., -A) is pre-
Leontief. Consider, for example, the nonmonotone system in Fig. 6. The points (5, 1) and
(3, 4) are feasible, but the point (5, 1)/ (3, 4) (3, 1) is not. Monotone systems are related
to generalized network flow problems: The linear programming dual of the uncapacitated
generalized transshipment problem is monotone. In [4] and [7] we present algorithms for
generalized network flow problem that exploit this relationship.

Y

y -3x< 0 3y -4x < 0
8y -3x< 42 5y + x < 46
-y + x< 1 -y + x < 4
-y + x< -3 -2y + 3x < -7

Y

8__

2 4 6 8 I0 12 14 2 4 6 8 i0 12 14

monotone system nonmonotone system

FIG. 6. Examples ofa monotone system and a nonmonotone system.

The algorithms presented here for solving the feasibility of TVPI systems can be adapted
to find the vectors xmin, xmax for monotone systems. Note that in the associated graph of a
monotone system there are no edges passing between the two sets of vertices V and _V. It
follows that all certificates are either closed certificates or simple paths.

We consider an application of Algorithm 3.3 to a monotone system, with the goal of
finding the point Xmax. It suffices to rely on a simpler notion of locating values: Locating the

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1345

value means locating it with respect to xnax (rather than determining its position relative to

x/nin as well). Problem 3.6 amounts to the following.
PROBLEM 7.1 [locate a pool ofvalues]. Given are values i (i E l)for the corresponding

variable xi (i I). Locate these values, i.e., determine if > X/nax (i
_

I). Choose intervals

Ji (i I) asfollows. Ji [i, cx], ifi < xnax and Ji [-cx, i], ifi > Xi
max (i I).

It is easy tO see that the intervals Ji are such that {xl Ai6l Xi Ji contains the simulta-
neous maximum.

Consider step 7 of Algorithm 3.3. The interval S are feasible for xi (1 < < n). Hence,
for < < n, b xnax (xi is unbounded if and only if b cxz). If all variables are bounded,
b xmax. Otherwise, the algorithm supplies dependencies that allow us to compute feasible
solutions when we determine some variables and maximize others.

REMARK 7.2. An algorithm that computesXmax (resp., xmin)forfeasible monotone systems
can be applied to compute xmax (resp., Xmin) for TVPI systems where the matrix Ar (resp.,
--AT) is pre-Leontief Consider a system Ax < b where at most one of the two nonzero
coefficients in each row is positive. Obtain a monotone system A’x < b’ by omitting all rows

ofA where there are two negative entries. Compute the vectory that maximizes all variables
in the resulting monotone system. Ifthe original system Ax < b isfeasible, y is the vector that
maximizes all variables.

8. Concluding remarks. In this paper we considered systems of linear inequalities,
where each inequality has at most two nonzero coefficients (TVPI systems). We presented
algorithms that solve the feasibility problem, that is, either find a point that satisfies all the
inequalities or conclude that no such point exists. We gave a O(mn2) deterministic algorithm
and a O (n3 -t- mn) expected time randomized algorithm. The complexities of the respective
parallel implementations are" (n) time using O (mn) processors, and (n) expected time
using O (n2+m) processors. Although the analysis of these algorithms seems quite lengthy, the
algorithms themselves are simple. The underlying computation amounts to the basic Bellman-
Ford and Floyd-Warshall [8] shortest-path algorithms where only simple data structures are
used. Our algorithms are strongly polynomial, that is, the number of operations does not

depend on the size of input numbers. We comment that the size (number of bits) of the
numbers generated by the algorithms is O(nC), where C is the size of the largest coefficient
in the input.

We give some comments and suggestions for further research:
The time complexity of the randomized algorithm involves many logarithmic factors

(log n). We suspect that a more careful analysis may eliminate some of these factors. The
constant factors in the algorithms of 5 are quite large, but probably can be reduced signifi-
cantly. We believe that some appropriate version of the algorithms presented here could work
well in practice. Another obvious question is whether the O(n + mn) bound can be achieved
deterministically.

We discuss the possibility of improving over a ((n -if- mn) bound. The (n3) factor
results from the all-pairs shortest-paths Floyd-Warshall computati.on and is inherent from our
basic framework. A different approach, however, may yield a O(mn) algorithm. We note

that more work efficient parallel all-pairs shortest-paths algorithms that are applicable for
semirings, can be combined with our techniques (instead of the Floyd-Warshall algorithm)
to obtain better bounds. In particular,_ a polylogarithmic time f(m, n) o(n3) work all-
pairs shortest-paths algorithm yields a 0 (f(m, n) + mn) algorithm for solving TVPI systems.
We comment that better bounds are obtained for TVPI systems where the associated graph
has some special structure for which more work-efficient shortest-paths algorithms exist.
When the associated graph has a separator decomposition using O(nu) size separators (e.g.,
planar graphs, k-dimensional grid graphs bounded on most dimensions, or bounded tree-width

1346 EDITH COHEN AND NIMROD MEGIDDO

graphs), the corresponding TVPI systems can be solved in ((n3 -k- mn) time, using a shortest
paths algorithm by the first author [5]. Consider, as an example, a TVPI system such that the
variables correspond to vertices of a three-dimensional grid, and all inequalities are "local"
(that is, for each inequality, the distance on the grid between the two vertices corresponding
to the variables in the inequality is bounded by some constant). The associated graph has a
separator decomposition using O(n2/3) size separators, and hence, these TVPI systems can
be solved in O(mn) expected time.

The feasibility problem of monotone systems includes as a very special case the problem
of detecting existence of negative weight directed cycles in a graph with n nodes, m edges,
and real weights associated with the edges (using a well-known reduction). The best known
bound for detecting negative weight cycles is O (mn) and hence we believe it is unlikely that
a 6(mn) algorithm exists for solving TVPI systems. We sketch the reduction. Consider a
weighted graph G (V, E, w), where to E R. The corresponding monotone system is
as follows. For each node v V assign a variable xv. For each edge e (u, v) E assign
the inequality x,, x, < w(e). It follows from Proposition 2.10 that G contains a negative
weight cycle if and only if the system is infeasible.

Our algorithms solve the feasibility problem of TVPI systems. They can be adapted,
however, to (i) find a solution that maximizes a specific variable (ii) and find the lexicographic
maximum. Questions that remain open regard finding an optimal solution relative to an arbi-
trary linear objective function. It is not known whether a strongly polynomial time algorithm
exists for the problem, or whether we can achieve a time bound that is better than specializa-
tions of existing general LP algorithms. A partial result is due to Cosares [9], who showed
that when the objective function has a fixed number of nonzero entries, the problem can be
solved in strongly polynomial time bounds. The degree of the polynomial, however, grows
linearly with the number of nonzero entries.

We discuss the parallel complexity of solving TVPI systems. Lueker, Megiddo, and
Ramachandran [14] showed that the problem of finding an optimal solution relative to a
general objective function is 7:’ complete. It is not known, however, whether the feasibility
problem is 7:’ complete. The algorithms presented in this paper have a parallel running time
of O(n). This is the best known parallel time bound achievable by a polynomial number of
processors. Lueker, Megiddo, and Ramachandran [14] gave an algorithm for the problem that
runs in polylogarithmic time, but uses n (lgn) processors.

Acknowledgments. The authors would like to thank the anonymous referee for very
careful reading and many good suggestions for improving the presentation.

REFERENCES

I. ADLER AND S. COSARES, A strongly polynomial algorithmfor a special class of linear programs, Oper. Res.,
39 199 l), pp. 955-960.

[2] I. ASPVALL, Efficient algorithms for certain satisfiability and linear programming problems, Ph.D. thesis,
Department of Computer Science, Stanford University, Stanford, CA, 1980.

[3] B. ASPVALL AND Y. SHILOACH A polynomial time algorithm for solving systems of linear inequalities with two

variables per inequality, SIAM J. Comput., 9 (1980), pp. 827-845.
[4] E. COHEN, Combinatorial Algorithmsfor Optimization Problems, Ph.D. thesis, Department of Computer Sci-

ence, Stanford University, Stanford, CA, 1991.
[5] ,Efficient parallel shortest-paths in digraphs with a separator decomposition, in Proc. 5th Annual ACM

Symposium on Parallel Algorithms and Architectures, ACM Press, New York, 1993, pp. 57-67.
[6] E. COHEN AND N. MEGIDDO, Improved algorithms for linear inequalities with two variables per inequality, in

Proc. 23rd Annual ACM Symposium on Theory ofComputing, ACM Press, New York, 1991, pp. 145-155.
SIAM J. Comput., this paper.

LINEAR SYSTEMS WITH TWO VARIABLES PER INEQUALITY 1347

[7] E. COHEN AND N. MEGIDDO, New algorithmsfor generalized networkflows, in Proc. of the 1st Israeli Symposium
on the Theory ofComputing and Systems, D. Dolev, Z. Galil, and M. Rodeh, eds., Lecture Notes in Comput.
Sci., 601, Springer-Verlag, New York, 1992, pp. 103-114.

[8] T. CORMEN, C. LEISERSON, AND R. RIVEST, Introduction to Algorithms, McGraw-Hill, New York, 1990.
[9] S. COSARES, On the complexity of some primal-dual linear programming pairs, Ph.D. thesis, Department of

IEOR, University of California, Berkeley, CA, 1988.
10] R.W. COTTLE AND A. E VEINOTT JR., Polyhedral sets having a least element, Math. Prog., 3 (1972), pp. 238-249.
11] W. FELLER, An introduction to probability theory and its applications, John Wiley and Sons, New York, 1950.
12] D. HOCHBAUM AND J. NAOR, Simple andfast algorithms for linear and integer programs with two variables

per inequality, Proceedings of the 2nd MPS Conference on Integer Programming and Combinatorial
Optimization (IPCO), CMV, (1992), pp. 44-59; SIAM J. Computing, this issue, pp. 1179-1192.

13] R.M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared-memory machines, in Handbook of The-
oretical Computer Science, vol. A, J. van Leeuwenm, ed., MIT Press/Elsevier, Cambridge, MA, 1991,
pp. 869-941.

14] G.S. LUEKER, N. MEGIDDO, and V. RAMACHANDRAN, Linearprogramming with two variables per inequality in
poly log time, SIAM J. Comput., 19 (1990), pp. 1000-1010.

15] N. MEGIDDO, Towards a genuinely polynomial algorithmfor linearprogramming, SIAM J. Comput., 12 (1983),
pp. 347-353.

[16] C. G. NELSON, An n0gn algorithm for the two-variable-per-constraint linear programming satisfiability
problem, Tech. Report AIM-319, Stanford University, Standord, CA, 1978.

[17] R. SHOSTAK, Deciding linear inequalities by computing loop residues, J. Assoc. Comput. Mach., 28 (1981),
pp. 769-779.

18] A.F. VEINOTT JR., Representation ofgeneral and polyhedral subsemilattices and sublattices ofproduct spaces,
Linear Algebra Appl., 114/115 (1989), pp. 681-704.

	SMJCAT_V23_i1_p0001
	SMJCAT_V23_i1_p0012
	SMJCAT_V23_i1_p0024
	SMJCAT_V23_i1_p0045
	SMJCAT_V23_i1_p0050
	SMJCAT_V23_i1_p0071
	SMJCAT_V23_i1_p0082
	SMJCAT_V23_i1_p0097
	SMJCAT_V23_i1_p0120
	SMJCAT_V23_i1_p0133
	SMJCAT_V23_i1_p0154
	SMJCAT_V23_i1_p0170
	SMJCAT_V23_i1_p0185
	SMJCAT_V23_i1_p0212
	SMJCAT_V23_i2_p0227
	SMJCAT_V23_i2_p0247
	SMJCAT_V23_i2_p0255
	SMJCAT_V23_i2_p0261
	SMJCAT_V23_i2_p0276
	SMJCAT_V23_i2_p0293
	SMJCAT_V23_i2_p0313
	SMJCAT_V23_i2_p0324
	SMJCAT_V23_i2_p0335
	SMJCAT_V23_i2_p0355
	SMJCAT_V23_i2_p0373
	SMJCAT_V23_i2_p0387
	SMJCAT_V23_i2_p0398
	SMJCAT_V23_i2_p0415
	SMJCAT_V23_i2_p0437
	SMJCAT_V23_i2_p0447
	SMJCAT_V23_i3_p0449
	SMJCAT_V23_i3_p0466
	SMJCAT_V23_i3_p0488
	SMJCAT_V23_i3_p0510
	SMJCAT_V23_i3_p0520
	SMJCAT_V23_i3_p0553
	SMJCAT_V23_i3_p0563
	SMJCAT_V23_i3_p0573
	SMJCAT_V23_i3_p0598
	SMJCAT_V23_i3_p0617
	SMJCAT_V23_i3_p0633
	SMJCAT_V23_i3_p0652
	SMJCAT_V23_i3_p0662
	SMJCAT_V23_i4_p0671
	SMJCAT_V23_i4_p0701
	SMJCAT_V23_i4_p0713
	SMJCAT_V23_i4_p0738
	SMJCAT_V23_i4_p0762
	SMJCAT_V23_i4_p0780
	SMJCAT_V23_i4_p0789
	SMJCAT_V23_i4_p0815
	SMJCAT_V23_i4_p0834
	SMJCAT_V23_i4_p0852
	SMJCAT_V23_i4_p0864
	SMJCAT_V23_i5_p0895
	SMJCAT_V23_i5_p0906
	SMJCAT_V23_i5_p0934
	SMJCAT_V23_i5_p0951
	SMJCAT_V23_i5_p0966
	SMJCAT_V23_i5_p0976
	SMJCAT_V23_i5_p0990
	SMJCAT_V23_i5_p1001
	SMJCAT_V23_i5_p1019
	SMJCAT_V23_i5_p1026
	SMJCAT_V23_i5_p1050
	SMJCAT_V23_i5_p1075
	SMJCAT_V23_i6_p1093
	SMJCAT_V23_i6_p1138
	SMJCAT_V23_i6_p1152
	SMJCAT_V23_i6_p1179
	SMJCAT_V23_i6_p1193
	SMJCAT_V23_i6_p1216
	SMJCAT_V23_i6_p1225
	SMJCAT_V23_i6_p1231
	SMJCAT_V23_i6_p1253
	SMJCAT_V23_i6_p1266
	SMJCAT_V23_i6_p1275
	SMJCAT_V23_i6_p1283
	SMJCAT_V23_i6_p1313

